
Practical and Tightly-Secure Digital Signatures
and Authenticated Key Exchange

Kristian Gjøsteen?1 and Tibor Jager2

1 NTNU - Norwegian University of Science and Technology, Trondheim, Norway,
kristian.gjosteen@ntnu.no

2 Paderborn University, Paderborn, Germany, tibor.jager@upb.de

Abstract. Tight security is increasingly gaining importance in real-
world cryptography, as it allows to choose cryptographic parameters in
a way that is supported by a security proof, without the need to sacrifice
efficiency by compensating the security loss of a reduction with larger
parameters. However, for many important cryptographic primitives, in-
cluding digital signatures and authenticated key exchange (AKE), we are
still lacking constructions that are suitable for real-world deployment.
We construct the first truly practical signature scheme with tight security
in a real-world multi-user setting with adaptive corruptions. The scheme
is based on a new way of applying the Fiat-Shamir approach to construct
tightly-secure signatures from certain identification schemes.
Then we use this scheme as a building block to construct the first prac-
tical AKE protocol with tight security. It allows the establishment of a
key within 1 RTT in a practical client-server setting, provides forward
security, is simple and easy to implement, and thus very suitable for prac-
tical deployment. It is essentially the “signed Diffie-Hellman” protocol,
but with an additional message, which is crucial to achieve tight secu-
rity. This additional message is used to overcome a technical difficulty in
constructing tightly-secure AKE protocols.
For a theoretically-sound choice of parameters and a moderate number
of users and sessions, our protocol has comparable computational effi-
ciency to the simple signed Diffie-Hellman protocol with EC-DSA, while
for large-scale settings our protocol has even better computational per-
formance, at moderately increased communication complexity.

1 Introduction

Tight security. In modern cryptography it is standard to propose new cryp-
tographic constructions along with a proof of security. The provable security
paradigm, which goes back to a seminal work of Goldwasser and Micali [27], be-
comes increasingly relevant for “real-world” cryptosystems today. For instance,
the upcoming TLS version 1.33 is the first version of this important protocol
where formal security proofs were used as a basis for several fundamental design
decisions [44].

? Funded by The Research Council of Norway under Project No. 248166.
3 See https://tools.ietf.org/html/draft-ietf-tls-tls13-23 for the latest draft.

A security proof usually describes a reduction (in a complexity-theoretic
sense), which turns an efficient adversary A breaking the considered cryptosys-
tem into an efficient adversary B breaking some underlying complexity assump-
tion, such as the discrete logarithm problem, for example. If B can be shown to
have about the same running time and success probability as A (up to a constant
factor), then the reduction is said to be tight. However, many security proofs are
not tight. For example, we are often only able to show that if A runs in time tA
and has success probability εA, then B runs in time tB ≈ tA, but we can bound
its success probability only as εB ≥ εA/Q, where Q is the security loss. Q can
often be “large”, e.g., linear or even quadratic in the number of users.

If Q is polynomially bounded, then this still yields a polynomial-time re-
duction in the sense of classical asymptotic complexity theory. However, if we
want to deploy the cryptosystem in practice, then the size of cryptographic pa-
rameters (like for instance the size of an underlying algebraic group, where the
discrete logarithm problem is assumed to be hard) must be determined. If we
want to choose these parameters in a theoretically-sound way, then a larger loss
Q must be compensated by larger parameters, which in turn has a direct impact
on efficiency. For example, in the discrete logarithm setting, this would typically
require an increase in the group order by a factor Q2. As a concrete example,
232 users with 232 sessions each and quadratic security loss would force us to
use 521 bit elliptic curves instead of 256 bit elliptic curves, which more than
quintuples the cost of an exponentiation on one typical platform (as measured
by openssl speed). Thus, in order to be able to instantiate the cryptosystem
with “optimal” parameters, we need a tight security proof.

The possibility and impossibility of tight security proofs has been consid-
ered for many primitives, including symmetric encryption [29, 31, 36], public-key
encryption [5, 32, 24, 3], (hierarchical) identity-based encryption [16, 11], digital
signatures [37, 45, 32, 33, 43, 23, 47, 22], authenticated key exchange [2], and more.
It also becomes increasingly relevant in “real-world” cryptography. For instance,
most recently, Gueron and Lindell [29] improved the tightness of the AES-
GCM-SIV nonce misuse-resistant encryption scheme, with a new nonce-based
key derivation method. This construction is now part of the current draft of the
corresponding RFC proposal,4 won the best paper award at ACM CCS 2017,
and is already used in practice in Amazon’s AWS key management scheme.5

In many important areas with high real-world relevance, including digital
signature schemes and authenticated key exchange protocols, we still do not
have any tightly-secure constructions that are suitable for practical deployment.
Known schemes either have a security loss which is at least linear in the number
of users (typical for digital signatures) or even quadratic in the number of proto-
col sessions (typical for authenticated key exchange), if a real-world multi-user
security model is considered. This huge security loss often makes it impossible
to choose deployment parameters in a theoretically-sound way, because such
parameters would have to be unreasonably large and thus impractical.

4 See https://tools.ietf.org/html/draft-irtf-cfrg-gcmsiv-07.
5 See https://rwc.iacr.org/2018/Slides/Gueron.pdf.

2

1.1 Tightly-Secure Digital Signatures

In the domain of digital signatures, there are two relevant dimensions for tight-
ness: (i) the number of signatures issued per public key, and (ii) the number of
users (=public keys).

For some important “real-world” schemes, such as Schnorr signatures, impos-
sibility results suggest that current proof techniques are not sufficient to achieve
tightness [43, 23, 47, 22], not even if only the first dimension is considered in a
single-user setting. Some other schemes have a tight security proof in the first
dimension [37, 45, 32, 10]. However, in a more realistic multi-user setting with
adaptive corruptions, which appears to be the “right” real-world security notion
for applications of signatures such as key exchange, cryptocurrencies, secure in-
stant messaging, or e-mail signatures, there are only very few constructions with
tight security in both dimensions.

One construction is due to Bader [1]. It is in the random oracle model [6],
but this seems reasonable, given the objective of constructing simple and effi-
cient real-world cryptosystems. However, the construction requires bilinear maps
(aka. pairings). Even though bilinear maps have become significantly more effi-
cient in the past years, their practical usability is still not comparable to schemes
over classical algebraic groups, such as elliptic curves without pairings. Fur-
thermore, bilinear maps involve rather complex mathematics, and are therefore
rather difficult to implement, and not yet available on many platforms and soft-
ware libraries, in particular not for resource-constrained lightweight devices or
smartcards. Finally, recent advances in solving the discrete logarithm problem
[4] restrain the applicability of bilinear maps in settings with high performance
and security requirements.

The other two known constructions are due to Bader et al. [2]. Both have a
security proof in the standard model (i.e., without random oracles), but are also
based on bilinear maps. The first one uses a simulation-sound Groth-Sahai [28]
proof system, which internally uses a tree-based signature scheme to achieve
tightness. Thus, a signature of the resulting construction consists of hundreds
of group elements, and is therefore not suitable for practical deployment. The
second scheme is more efficient, but here public keys consist of hundreds of group
elements, which is much larger than the public key size of any other schemes
currently used in practice, and seems too large for many applications.

In summary, the construction of a practical signature scheme without bi-
linear maps, which provides tight security in a realistic multi-user setting with
corruptions and in the standard sense of existential unforgeability under chosen-
message attacks, is an important open problem. A solution would provide a very
useful building block for applications where the multi-user setting with adaptive
corruptions appears to be the “right” real-world security notion, such as those
mentioned above.

The difficulty of constructing tightly-secure signatures. Constructing a tightly-
secure signature scheme in a real-world multi-user security model with adaptive
corruptions faces the following technical challenge. In the µ-user setting, the ad-

3

versary A receives as input a list pk1, . . . , pkµ of public keys. We denote the cor-
responding secret keys with sk1, . . . , skµ. A is allowed to ask two types of queries.
It may either output a tuple (m, i), to request a signature for a chosen message m

under secret key sk i. The security experiment responds with σ
$← Sign(sk i,m).

Or it may “corrupt” keys. To this end, it outputs an index i, and the experiment
responds with sk i. Adversary A breaks the security, if it outputs (i∗,m∗, σ∗)
such that σ∗ verifies correctly for a new message m∗ and with respect to an
uncorrupted key pk i∗ . Note that this is the natural extension of existential un-
forgeability under chosen-message attacks (EUF-CMA) to the multi-user setting
with corruptions. Following [2], we will call it MU-EUF-CMAcorr-security. Secu-
rity in this sense is implied by the standard EUF-CMA security definition, by
a straightforward reduction that simply guesses the index i∗ of the uncorrupted
key, which incurs a security loss of Q = 1/µ that is linear in the number of users.

Now let us consider the difficulty of constructing a security reduction B which
does not lose a factor Q = 1/µ. On the one hand, in order to avoid the need to
guess an uncorrupted key, B must “know” all secret keys sk1, . . . , skµ, in order
to be able to answer key corruption queries.

On the other hand, however, the reduction B must be able to extract the
solution to a computationally hard problem from the forgery (i∗,m∗, σ∗). If B
“knows” sk i∗ , then it seems that it could compute (m∗, σ∗) even without the help
of the adversary. Now, if B is then able to extract the solution of a “hard” com-
putational problem from (m∗, σ∗), then this means that the underlying hardness
assumption must be false, and thus the reduction B is not meaningful.

The above argument seems to suggests that achieving tight MU-EUF-CMAcorr-
security is impossible. One can even turn this intuition into a formal impossibility
result, as done in [3]. However, it turns out that the impossibility holds only for
schemes where the distribution of signatures that are computable with a se-
cret key sk i∗ known to reduction B is identical to the distribution of signatures
(m∗, σ∗) output by adversary A. This provides a leverage to overcome the seem-
ing impossibility. Indeed, the known constructions of tightly MU-EUF-CMAcorr-
secure schemes [1, 2] circumvent the impossibility result. As we describe below
in more detail, these constructions essentially ensure that with sufficiently high
probability the adversary A will output a message-signature pair (m∗, σ∗) such
that σ∗ is not efficiently computable, even given sk i∗ .

The main technical challenge in constructing signature schemes with tight
security in a real-world multi-user security model with corruptions is therefore
to build the scheme in a way that makes it possible to argue that the reduction
B is able to extract the solution to a computationally hard problem from the
forged signature computed by A, even though B knows secret keys for all users.

On constructing tightly-secure signatures without bilinear maps. All previously
known tightly MU-EUF-CMAcorr-secure signature schemes [1, 2] essentially work
as follows. A public key pk consists of two public keys pk = (pk0, pk1) of a “base”
signature scheme, which is tightly-secure in a multi-user setting without corrup-

tions. The secret key sk consists of a random secret key sk = sk b, b
$← {0, 1},

4

for either pk0 or pk1. A signature consists of a Groth-Sahai-based [28] witness-
indistinguishable OR-proof of knowledge, proving knowledge of a signature that
verifies either under pk0 OR under pk1. In the security proof, the reduction B
basically knows sk b (and thus is able to respond to all corruption-queries of A),
but it hopes that A produces a proof of knowledge of a signature under pk1−b,
which can then be extracted from the proof of knowledge and be used to break
the instance corresponding to pk1−b.

A natural approach to adopt this technique to signatures without pairings
would be to use a Fiat-Shamir-like proof of knowledge [21], in combination
with the very efficient OR-proofs of Cramer-Damg̊ard-Schoenmakers (CDS) [18].
However, here we face the following difficulties. First, existing signature schemes
that use a Fiat-Shamir-like proof of knowledge, such as for the Schnorr scheme [46],
are already difficult to prove tightly secure in the single-user setting, due to
known impossibility results [43, 23, 47, 22]. Second, its tightly-secure variants,
such as the DDH-based scheme of Katz-Wang [37] and the CDH-based schemes
of Goh-Jarecki [25] or Chevallier-Mames [17], do not use a proof of knowledge,
but actually a proof of language membership, where we cannot extract a witness
along the lines of [1, 2]. Thus, adopting the approach of [1, 2] to efficient signature
schemes without pairings requires additional ideas and new techniques.

Our contributions. We construct the first tightly MU-EUF-CMAcorr-secure signa-
ture scheme which does not require bilinear maps. We achieve this by describing a
new way of combining the efficient EDL signature scheme considered in [25] with
Cramer-Damg̊ard-Schoenmakers proofs [18], in order to obtain tightly-secure sig-
natures in the multi-user setting with adaptive corruptions.

The scheme is very efficient, in particular in comparison to previous schemes
with tight multi-user security. A public key consists of only two group elements,
while the secret key consists of a bit and one integer smaller than the group
order. A signature consists of a random nonce, two group elements and four
integers smaller than the group order. The computational cost of the algorithms
is dominated by exponentiations. Key generation costs a single exponentiation.
Signing costs a single exponentiation plus the generation of a proof, for a total
of seven exponentiations. Verification costs eight exponentiations.

1.2 Tightly-Secure Authenticated Key Exchange

Modern security models for authenticated key exchange consider very strong
adversaries, which control the entire communication network, may adaptively
corrupt parties to learn their long-term secret keys, or reveal session keys of cer-
tain sessions. This includes all security models that follow the classical Bellare-
Rogaway [7] or Canetti-Krawczyk [14] approach, for instance. The adversary
essentially breaks the security, if it is able to distinguish a non-revealed session
key from random. Furthermore, in order to achieve desirable properties like for-
ward security (aka. perfect forward secrecy) [30], the attacker is even allowed to
attack session keys belonging to sessions where one or both parties are corrupted,

5

as long as these corruptions do not allow the adversary to trivially win the se-
curity experiment (e.g., because it is able to corrupt a communication partner
before the key is computed, such that the attacker can impersonate this party).

The huge complexity of modern security models for authenticated key ex-
change makes it difficult to construct tightly-secure protocols. Most examples of
modern key exchange protocols even have a quadratic security loss in the total
number of protocol sessions, which stems from the fact that a reduction has to
guess two oracles in the security experiment that belong to the protocol ses-
sion “tested” by the adversary (cf. the discussion of the “commitment problem”
below).

Despite the huge practical importance of authenticated key exchange proto-
cols, we currently know only a single example of a protocol that achieves tight
security [2], but it requires complex building blocks, such as one of the tightly-
secure signature schemes sketched above, as well as a special key encapsulation
mechanisms that is composed of two public-key encryption schemes. Given the
huge demand for efficient key exchange protocol in practice, the construction of
a simple and efficient, yet tightly-secure, authenticated key exchange protocol
without these drawbacks is an important open problem.

Our contributions. We describe the first truly practical key exchange protocol
with tight security in a standard security model for authenticated key exchange.
The construction (but not the security proof) is very simple, which makes the
protocol easy to implement and ready to use, even on simple devices.

Our protocol is able to establish a key with very low latency, in three mes-
sages and within a single round-trip time (1-RTT) in a standard client-server
setting. This holds even in a typical real-world situation where both communi-
cation partners are initially not in possession of their communication partner’s
public keys, and therefore have to exchange their certified public keys within the
protocol. Furthermore, the protocol provides full forward security.

In Appendix 5 we analyse the computational efficiency of our protocol, in-
stantiated with our signature scheme, by comparing it to the simple “signed
Diffie-Hellman” protocol, instantiated with EC-DSA. The analysis is based on
the benchmark for ECC arithmetic of OpenSSL, and considers a theoretically-
sound choice of cryptographic parameters based on the tightness of security
proofs. Even though our protocol requires a larger absolute number of exponen-
tiations, already in small-to-medium-scale settings this is quickly compensated
by the fact that arithmetic in large groups is significantly more costly than
in small groups. In a large-scale setting, our protocol even outperforms signed
Diffie-Hellman with EC-DSA with respect to computational performance. This
comes at the cost of moderately increased communication complexity, when com-
pared to the (extremely communication-efficient) EC-DSA-signed Diffie-Hellman
protocol.

Sketch of our construction and technical difficulties. Our starting point is the
standard “signed Diffie-Hellman” protocol, instantiated with our tightly-secure
multi-user signature scheme. However, we stress that this is not yet sufficient to

6

achieve tight security, due to the “commitment problem” described below. We
resolve this problem with an additional message, which is important to achieve
tight security, but does not add any additional latency to the protocol.

More precisely, consider the standard “signed Diffie-Hellman” protocol, exe-
cuted between Alice and Bob, where Bob first sends v = (gb, σB), where σB is
a signature under Bob’s secret key over gb, Alice responds with w = (ga, σA),
where σA is Alice’s signature over ga, and the resulting key is k = gab. Let us
sketch why this protocol seems not to allow for a tight security proof.

In a Bellare-Rogaway-style security model, such as the one that we describe
in Section 4.1, each session of each party is modelled by an oracle πsi , where
(i, s) ∈ [µ] × [`], µ is the number of parties and ` is the number of sessions per
party. Now, consider a reduction B which receives as input a DDH challenge
(g, gx, gy, gz), and now wants to embed these values into the view of the key
exchange adversaryA. One way to do this, which is used in most existing security
proofs of “signed Diffie-Hellman-like” protocols (such as [34, 39, 35], for instance)
is to guess two oracles πsi and πtj , embed gx into the message sent by πsi , g

y into
the message sent by πtj , and then hope that the adversary will forward gy to
πsi and “test” the key of oracle πsi , where the gz-value from the DDH challenge
is then embedded. Note that the need to guess two out of µ` oracles correctly
incurs a quadratic security loss of O(µ2`2), which is extremely non-tight.

A natural approach to improve tightness is to use the well-known random
self-reducibility of DDH [5], and embed randomised versions of gx and gy into the
messages of more than one oracle. However, here we face the following difficulty.
As soon as an oracle πsi has output a Diffie-Hellman share ga, the reduction B
has essentially committed itself to whether it “knows” the discrete logarithm a.

– If oracle πsi outputs a randomised version of gx, ga = gx+e
s
i where esi is the

randomization, then B does not “know” the discrete logarithm a = x + esi .
Now it may happen that the adversary A, which controls the network and
possibly also some parties, sends a value h to oracle πsi (on behalf of some
third party), such that h is not controlled by the reduction B. If then A asks
the reduction to reveal the key of oracle πsi , then the reduction fails, because
it is not able to efficiently compute k = ha.

– This problem does not occur, if ga = ge
s
i such that B “knows” the discrete

logarithm a. However, if it now happens that the adversary A decides to
distinguish the key k of oracle πsi from random, then again the reduction
fails, because it is not able to embed gz into k.

This “commitment problem” is the reason why many classical security proofs,
in particular for signed Diffie-Hellman protocols, have a quadratic security loss.
They embed a DDH challenge into the view of adversary A by guessing two out
of µ` oracles, and the reduction will fail if the guess is incorrect.

We resolve the commitment problem in a novel way by adding an additional
message. We change the protocol such that Alice initiates the protocol with
a message u = G(ga), where G is a cryptographic hash function (cf. Figure 3).
This message serves as a commitment by Alice to ga. Then the protocol proceeds
as before: Bob sends v = (gb, σB), Alice responds with w = (ga, σA), and the

7

resulting key is k = gab.6 However, Bob will additionally check whether the
first message u received from Alice matches the third protocol message, that is,
u = G(ga), and abort if not.

As we will prove formally in Section 4.2, the additional message u resolves
the commitment problem as follows. We will model G as a random oracle. This
guarantees that from the point of view of the adversary A, a value G(h) forms
a binding and hiding commitment to h. However, for the reduction B, u is not
binding, because B controls the random oracle. We will construct B such that
whenever an oracle πsi outputs a first protocol message u, then receives back a
message v = (gb, σB), and now has to send message w = (ga, σA), then B it is
able to retroactively decide to embed the element gx from the DDH challenge
into u such that u = G(gx+e

s
i), or not and it holds that u = G(ge

s
i). This is

possible by re-programming the random oracle in a suitable way.7

We will explain in Section 4.2 that the additional message u does not in-
crease latency to the protocol, when used in a standard client-server setting.
This is essentially because Alice can send cryptographically protected payload
immediately after receiving message v = (gb, σB) from Bob, along with message
w = (ga, σA). Thus, in a typical client-server setting, where the client initiates
the protocol and then sends data to the server, the overhead required to establish
a key is only 1 RTT, exactly like for ordinary signed Diffie-Hellman.

Outline. Section 2 recalls the necessary background and standard definitions.
The signature scheme is described and proven secure in Section 3, the AKE
protocol is considered in Section 4.

2 Background

In this section, we recap some background and standard definitions of Diffie-
Hellman problems, the Fiat-Shamir heuristic, and digital signatures.

Diffie-Hellman Problems. Let G denote a cyclic group of prime order p and
let g be a generator. Let DDH be the set of DDH tuples {(ga, gb, gab) | a, b ∈
{0, 1, . . . , p− 1}.

Definition 1. Let A be an algorithm that takes two group elements as input
and outputs a group element. The success probability af A against the Compu-
tational Diffie-Hellman (CDH) problem is

SuccCDH
G,g (A) = Pr[A(x, y) = z | (x, y, z)← DDH].

6 Our actual protocol will compute the key as k = H(gab) for a hash function H, but
this is not relevant here.

7 We note that a programmable random oracle is not inherently necessary here. In-
stead, we could use an equivocal commitment scheme[19] in place of random oracle
G. However, this would make the protocol more complex. Since we want to max-
imise efficiency and simplicity of the protocol, we consider the random oracle as an
adequate choice for our purpose.

8

We say that A (t, ε)-breaks CDH if A runs in time t and its success probability
SuccCDH

G,g (A) is at least ε.

Definition 2. Let A be an algorithm that takes three group elements as input
and outputs 0 or 1. The advantage of A against the Decision Diffie-Hellman
(DDH) problem [12] is

AdvDDH
G,g (A) = |Pr[A(x, y, z) = 0 | (x, y, z)← DDH]−

Pr[A(x, y, z) = 0 | (x, y, z)← G3]|.

We say that A (t, ε)-breaks DDH if A runs in time t and its advantage AdvDDH
G,g (A)

is at least ε.

In proofs, it is often convenient to consider an adversary that sees multiple
CDH/DDH problems. The n-CDH adversary must solve a CDH problem, but
it gets to choose the group elements from two lists of randomly chosen group
elements. The n-DDH adversary gets n tuples, all of which are either DDH tuples
or random tuples. Again, it is often convenient if some of these DDH tuples share
coordinates.

Definition 3. Let A be an algorithm that takes as input 2n group elements and
outputs two integers and a group element. The success probability of A against
the n-CDH problem is

Succn-CDH
G,g (A) = Pr

[
(xi, yj , z) ∈ DDH

∣∣∣∣ x1, . . . , xn, y1, . . . , yn ← G;
(i, j, z)← A(x, . . . , xn, y1, . . . , yn)

]
.

Definition 4. Let A be an algorithm that outputs 0 or 1. A has access to an
oracle that on input of an integer i returns three group elements. If i > 0, then
the first group element returned will be the same as the first group element in
the oracle’s ith response. Let O0 be such an oracle that returns randomly chosen
DDH tuples. Let O1 be such an oracle that returns randomly chosen triples of
group elements.

The advantage of the algorithm A against the n-DDH problem is

Advn-DDH
G,g (A′) = |Pr[AO0 = 0]− Pr[AO1 = 0]|.

It is clear that 1-CDH and 1-DDH correspond to the ordinary problems.
Likewise, it is clear that we can embed a CDH or DDH problem in a n-CDH or
n-DDH problem, so a hybrid argument would relate their advantage. However,
the DH problems are random self-reducible, which means that we can create
better bounds.

Theorem 1. Let A be an adversary against n-CDH. Then there exists an ad-
versary B against CDH such that

Succn-CDH
G,g (A) = SuccCDH

G,g (B).

The difference in running time is linear in n.

9

Theorem 2. Let A be an adversary against n-DDH. Then there exists an ad-
versary B against DDH such that

Advn-DDH
G,g (A′) ≤ AdvDDH

G,g (B) +
1

p
.

The difference in running time is linear in n.

The proof of the first theorem is straight-forward. A proof of the second
theorem can be found in e.g. Bellare, Boldyreva and Micali [5].

Proofs of equality of discrete logarithms. Sigma protocols are special three-move
protocols originating in the Schnorr identification protocol [46]. We shall need
a proof of equality for discrete logarithms [15] together with the techniques for
creating a witness-indistinguishable OR-proof [18].

Let y, x, z ∈ G be such that x = ga and z = ya. The standard sigma protocol
[15] for proving that logg x = logy z works as follows:

Commitment Sample ρ ← {0, 1, . . . , p − 1}. Compute α0 = gρ and α1 = yρ.
The commitment is (α0, α1).

Challenge Sample β ← {0, 1, . . . , p− 1}. The challenge is β.
Response Compute γ ← ρ− βa mod p. The response is γ.
Verification The verifier accepts the response if

α0 = gγxβ α1 = yγzβ .

The usual special honest verifier zero knowledge simulator producing a sim-
ulated conversation on public input (x, y, z) and challenge β is denoted by
ZSimeq(x, y, z;β), and it is a perfect simulator. The cost of generating a proof is
dominated by the two exponentiations, while the simulation cost is dominated
by four exponentiations.

We turn the proofs non-interactive using the standard Fiat-Shamir [21] heuris-
tic, in which case the proof is a pair of integers (β, γ). We denote the algorithm for
generating a non-interactive proof πeq that logg x = logy z by ZPrveq(a;x, y, z).
The algorithm for verifying that πeq is a valid proof of this claim is denoted by
ZVfyeq(πeq;x, y, z), which outputs 1 if and only if the proof is valid.

Based on this proof of equality for a pair of discrete logarithms, an OR-proof
for the equality of one out of two pairs of discrete logarithms can be constructed
using standard techniques [18].

Briefly, the prover chooses a random challenge β1−b and uses the perfect
simulator ZSimeq(. . .) to generate a simulated proof for the inequal pair. It then
runs the equal d.log. prover which produces a commitment. When the verifier
responds with a challenge β, the prover completes the proof for the equal pair
using the challenge βb = β − β1−b. It then responds with both challenges and
both responses. The verifier checks that the challenges sum to β.

We denote the special honest verifier simulator by

ZSimeq,or(x0, x1, y0, y1, z0, z1;β0, β1)

10

We note that for any given challenge pair (β0, β1), the simulator generates a
particular transcript with probability 1/p2.

Again, we can turn these proofs non-interactive using Fiat-Shamir and a hash
function H2. In this case, the proof is a tuple (β0, β1, γ0, γ1) of integers, and the
verifier additionally checks that the hash value equals the sum of β0 and β1. The
non-interactive algorithms for generating and verifying proofs are denoted by
ZPrveq,or(b, ab;x0, x1, y0, y1, z0, z1) and ZVfyeq,or(πeq,or;x0, x1, y0, y1, z0, z1). The
cost of generating a proof is dominated by the two exponentiations for the real
equality proof and the four exponentiations for the fake equality proof.

As usual, the simulator is perfect. In addition, these proofs have very strong
properties in the random oracle model.

Theorem 3. Let A be an algorithm in the random oracle model, making at most
l hash queries, that outputs a tuple (x0, x1, y0, y1, z0, z1) of group elements and
a proof πeq,or. The probability that ZVfyeq,or(πeq,or;x0, x1, y0, y1, z0, z1) = 1, but

(x0, y0, z0) 6∈ DDH and (x1, y1, z1) 6∈ DDH, is at most l+1
p .

The proof of the theorem is straightforward and is implicit in e.g. Goh and
Jarecki [25].

Digital Signatures. A digital signature scheme consists of a triple (Gen,Sign,Vfy)
of algorithms. The key generation algorithm Gen (possibly taking a set of pa-
rameters Π as input) outputs a key pair (vk , sk). The signing algorithm Sign
takes a signing key sk and a message m as input and outputs a signature σ.
The verification algorithm Vfy takes a verification key vk , a message m and a
signature σ as input and outputs 0 or 1. For correctness, we require that for all
(vk , sk)← Gen we have that Pr[Vfy(vk ,m,Sign(sk ,m))] = 1.

3 Signatures with Tight Multi-User Security

Now we are ready to describe our signature scheme with tight multi-user security
in a “real-world” security model with adaptive corruptions.

3.1 Security Definition

We define multi-user existential unforgeability under adaptive chosen-message
attacks with adaptive corruptions, called MU-EUF-CMAcorr security in [2]. Con-
sider the following game between a challenger C and an adversary A, which is
parametrized by the number of public keys µ.

1. For each i ∈ [µ], it computes (pk (i), sk (i))
$← Gen(Π). Furthermore, it ini-

tializes a set Scorr to keep track of corrupted keys, and µ sets S1, . . . ,Sµ, to
keep track of chosen-message queries. All sets are initially empty. Then it
outputs (pk (1), . . . , pk (µ)) to A.

11

2. A may now issue two different types of queries. When A outputs an index
i ∈ [µ], then C updates Scorr := Scorr∪{i} and returns sk (i). When A outputs
a tuple (m, i), then C computes σ := Sign(ski,m), adds (m,σ) to Si, and
responds with σ.

3. Eventually A outputs a triple (i∗,m∗, σ∗).

Definition 5. Let A be a MU-EUF-CMAcorr-adversary against a signature scheme
Σ = (Gen,Sign,Vfy). The advantage of A is

Adveuf-cma
Σ (A) = Pr

[
(m∗, i∗, σ∗)← AC :

i∗ 6∈ Scorr ∧ (m∗, ·) 6∈ Si∗

∧Vfy(vk(i
∗),m∗, σ∗) = 1

]
.

We say that A (t, ε, µ)-breaks the MU-EUF-CMAcorr-security of Σ if A runs in
time t and Adveuf-cma

Σ (A) ≥ ε. Here, we include the running time of the security
experiment into the running time of A.

Remark 1. We include the running time of the security experiment into the
running time t of A, because this makes it slightly simpler to analyse the running
time of our reduction precisely. Let tExp denote the time required to run the
security experiment alone, and let tA be the running time of the adversary
alone. Given that the experiment can be implemented very efficiently, we may
assume tA ≥ tExp for any conceivable adversary A, so this increases the running
time at most by a small constant factor. It allows us to make the analysis of our
reduction more rigorous.

3.2 Construction

Let H1 : R × {0, 1}∗ → G be a hash function from a randomness set R and a
message space {0, 1}∗ to the group G. The digital signature scheme Σmu works
as follows:

Key generation Sample b ← {0, 1}, ab ← {0, 1, . . . , p − 1} and x1−b ← G.
Compute xb ← gab . The signing key is sk = (b, ab) and the verification key
is vk = (x0, x1).

Signing To sign a message m using signing key sk = (b, ab), sample t ← R
and z1−b ← G, let y = H1(t,m) and compute zb ← yab . Then create a
non-interactive zero knowledge proof

πeq,or ← ZPrveq,or(b, ab;x0, x1, y, y, z0, z1)

proving that logg x0 = logy z0 or logg x1 = logy z1. The signature is σ =
(t, z0, z1, πeq,or).

Verification To verify a signature σ = (t, z0, z1, πeq,or) on a message m under
verification key vk = (x0, x1), compute y = H1(t,m) and verify that πeq,or
is a proof of the claim that logg x0 = logy z0 or logg x1 = logy z1 by checking
that ZVfyeq,or(πeq,or;x0, x1, y, y, z0, z1) = 1.

12

The correctness of the scheme follows directly from the correctness of the
non-interactive zero knowledge proof.

Theorem 4. Let S be a forger for the signature scheme Σmu in the random
oracle model, making at most l hash queries (with no repeating queries), inter-
acting with at most µ users and asking for at most n signatures. Then there
exists adversaries B and C against DDH and CDH, respectively, such that

Adveuf-cma
Σmu

(A) ≤ AdvDDH
G,g (B) + 2 SuccCDH

G,g (C) +
nl

p2
+

nl

|R|
+

1

p
+
ln

2p
+
l + 1

p
.

The difference in running time is linear in µ+ l + n.

3.3 Proof of Theorem 4

The proof proceeds as a sequence of games between a simulator and a forger for
the signature scheme. For each game Gi, there is an event Ei corresponding to
the adversary “winning” the game. We prove bounds on the differences Pr[Ei]−
Pr[Ei+1] for consecutive games, and finally bound the probability Pr[E5] for the
last game. Our claim follows directly from these bounds in the usual fashion.

Game 0 The first game is the standard multi-user signature game where µ key
pairs are generated. The adversary S may ask for signatures on any message
under any un-revealed key. The adversary may also ask for any signing key.

Let E0 be the event that the adversary produces a valid forgery (and let Ei
be the corresponding event for the remaining games). We have that

Adveuf-cma
Σmu

(S) = Pr[E0]. (1)

Game 1 In this game, when the adversary asks for a signature on a message,
instead of creating the zero knowledge proofs using ZPrveq,or(. . .), we sample
challenges β0, β1 and create a simulated proof using ZSimeq,or(. . . ;β0, β1) and
then reprogram the random oracle H2 such that H2(. . .) = β0 + β1 mod p.

Since the challenge in the simulated conversation has been chosen uniformly
at random, this change is not observable unless the random oracle H2 had been
queried at this exact position before the reprogramming, and the reprogramming
attempt fails.

As discussed in Section 2, the simulator will choose any particular proof with
probability at most 1/p2, so the probability that any reprogramming attempt
fails is at most l/p2. The probability of the exceptional event, that at least one
of the n attempts fail, is then upperbounded by nl/p2, giving us

|Pr[E1]− Pr[E0]| ≤ nl/p2. (2)

13

Game 2 Next, when the adversary asks for a signature on a message, instead of
just computing the hash of the message directly, we sample ξ ← {0, 1, . . . , p−1},
compute y ← gξ and then reprogram the random oracle H1 such that H1(t,m) =
y.

Since t is sampled from a set R with |R| elements, if there are at most l hash
queries in the game, the probability that any one reprogramming attempt fails
is at most l/|R|. The probability of the exceptional event, that at least one of
the n attempts fail, is then upperbounded by nl/|R|, giving us

|Pr[E2]− Pr[E1]| ≤ nl

|R|
. (3)

Game 3 We now modify the key generation algorithm used by the simulator,
so that instead of sampling x1−b from G, it samples a1−b ← {0, 1, . . . , p − 1}
and computes x1−b ← ga1−b . The experiment stores the a1−b along with ab as
(b, a0, a1). However, when the adversary asks for a signing key, the simulator still
returns (b, ab).

In the original key generation algorithm, x1−b is sampled from the uniform
distribution on the group. The key value a1−b is sampled from the uniform
distribution on {0, 1, . . . , p − 1}, so x1−b will also be sampled from the same
distribution in this game. Since a1−b is never used and never revealed, this game
is indistinguishable from the previous game and

Pr[E3] = Pr[E2]. (4)

Game 4 We now modify the signing algorithm used by the simulator, so that
instead of sampling z1−b from G, we compute z1−b ← ya1−b .

The distinguisher has access to an oracle O.
It proceeds to run Game 4 with S with the following modifications:

1. The key generation algorithm used by the simulator queries its oracle with 0
and gets the reply (x, y, z). It sets x1−b ← x and discards y, z.

2. The signing algorithm used by the simulator, when signing with the signing
key (b, a0, a1) corresponding to the public key (x0, x1) with x1−b equal to the
first group element of the ith oracle response, the simulator sends i to its
oracle and receives the response (x1−b, y, z). It then uses y unchanged as the
hash value and sets z1−b ← z.

If S eventually produces a valid forgery, the distinguisher outputs 0. Otherwise it
outputs 1.

Fig. 1. µ+ n-DDH distinguisher B′ used in the proof of Theorem 4.

To bound the difference between this game and the previous one, we need
the auxillary µ+ n-DDH distinguisher B′ given in Figure 1.

14

Regardless of which oracle B′ interacts with, the verification key element x1−b
and y are sampled from the uniform distribution on G, just like it is in both this
game and the previous game.

When the adversary B′ interacts with the oracle O1 which returns random
tuples, then the oracle samples its third coordinate from the uniform distribution
on G, and this value is independent of all other values. Thus z1−b is sampled
from the uniform distribution on G, just like in Game 3.

When the adversary B′ interacts with the oracle O0 which returns DDH
tuples, then (x1−b, y, z1−b) is a DDH tuple, just like in Game 4.

We conclude that B′ perfectly simulates the two games, depending on which
oracle it has access to, and by Theorem 2 it follows that there exists a DDH
adversary B such that

|Pr[E4]− Pr[E3]| = |Pr[B′O0]− Pr[B′O1]| ≤ AdvDDH
G,g (B) +

1

p
. (5)

At this point, we observe that in this game, the adversary has no information
about b for any of the unrevealed keys.

Game 5 We now modify the signing algorithm, so that instead of computing
z1−b ← ya1−b , we compute z1−b ← xξ1−b, where ξ comes from the computation

y ← gξ introduced in Game 2.
Since ya1−b = (gξ)a1−b = (ga1−b)ξ = xξ1−b, the adversary cannot detect this

change. Therefore
Pr[E5] = Pr[E4]. (6)

Note that in this game, the fake signing key a1−b introduced in Game 3 is
no longer actually used for anything except computing x1−b.

The solver takes (x1, . . . , xl, y1, . . . , yl) as input.
It proceeds to run Game 5 with S with the following modifications:

1. When the key generation algorithm used by the simulator generates the ith
key pair, it sets x1−b ← xi.
The algorithm remembers (x1−b, i).

2. When the forger S queries the hash oracle with the jth value (t,m) that has
not been seen before, the hash oracle sets y ← yj and reprograms the hash
oracle so that H1(t,m) = y.
The algorithm remembers (t,m, j).

When the signature forger outputs a valid signature (t, z0, z1, πeq,or) for a
message m under an unrevealed key (b, a0, a1) with corresponding public key
(x0, x1), the solver recalls (x1−b, i) and (t,m, j) and outputs

(i, j, z1−b).

Fig. 2. l-CDH adversary C′ used in the proof of Theorem 4.

15

Suppose the adversary wins Game 5 by outputting a signature (t, z0, z1, πeq,or)
for a message m and hash y = H1(t,m) under the verification key (x0, x1) with
signature key (b, a0, a1).

Since we can recover a tuple (x0, x1, y, y, z0, z1) and a proof πeq,or, we would
like to apply Theorem 3. But this is tricky because we simulate proofs and repro-
gram the random oracle involved in the theorem. However, since the adversary’s
forgery must be on a message that has not been signed by our signature oracle,
the forgery cannot involve any value for which we have reprogrammed the ran-
dom oracle, unless the adversary has found a collision in H1. This collision must
involve a (t,m) pair from a signing query, which means that the probability of
a collision is at most ln/2p.

When there is no such collision, Theorem 3 applies and we know that either
logy z0 = logg x0 or logy z1 = logg x1 (or both), except with probability (l+1)/p.

Since the forger S has no information about b, it follows that if equality holds
for one of the discrete logarithm pairs, then logy z1−b = logg x1−b at least half
the time.

Consider the l-CDH adversary C′ given in Figure 2. It is clear that it perfectly
simulates Game 5 with the adversary S. Furthermore, when the output signature
satisfies logy z1−b = logg x1−b, the l-CDH adversary outputs the correct answer.
By Theorem 1 there exists a CDH adversary C such that

Pr[E5] ≤ 2 SuccCDH
G,g (C) +

ln

2p
+
l + 1

p
. (7)

Theorem 4 now follows from equations (1)–(7).

4 Key Exchange

Now we describe our construction of a tightly-secure key exchange protocol,
which uses the signature scheme presented above as a subroutine and addition-
ally resolves the “commitment-problem” sketched in the introduction. This yields
the first authenticated key exchange protocol which does not require a trusted
setup, has tight security, and truly practical efficiency. The security proof is in
the Random Oracle Model [6].

4.1 Security Model

Up to minor notational changes and clarifications, our security model is iden-
tical to the model from [2], except that we use the recent approach of Li and
Schäge [41] to define “partnering” of oracles. Furthermore, we include a “sender
identifier” into the Send query (its relevance is discussed below). As in [2], we
let the adversary issue more than one Test-query, in order to achieve tightness
in this dimension, too.

16

Execution Environment. We consider µ parties P1, . . . , Pµ. Each party Pi is
represented by a set of ` oracles, {π1

i , . . . , π
`
i}, where each oracle corresponds

to a single protocol execution, and ` ∈ N is the maximum number of protocol
sessions per party. Each oracle is equipped with a randomness tape containing
random bits, but is otherwise deterministic. Each oracle πsi has access to the
long-term key pair (sk(i), pk(i)) of party Pi and to the public keys of all other
parties, and maintains a list of internal state variables that are described in the
following:

– ρsi is the randomness tape of πsi .
– Pidsi stores the identity of the intended communication partner.
– Ψsi ∈ {accept, reject} indicates whether oracle πsi has successfully com-

pleted the protocol execution and “accepted” the resulting key.
– ksi stores the session key computed by πsi .

For each oracle πsi these variables are initialized as (Pidsi , Ψ
s
i , k

s
i) = (∅, ∅, ∅),

where ∅ denotes the empty string. The computed session key is assigned to
the variable ksi if and only if πsi reaches the accept state, that is, we have
ksi 6= ∅ ⇐⇒ Ψsi = accept.

Attacker Model. The attacker A interacts with these oracles through queries.
Following the classical Bellare-Rogaway approach [7], we consider an active at-
tacker that has full control over the communication network, and to model fur-
ther real world capabilites of an attacker, we provide additionally queries. The
Corrupt-query allows the adversary to compromise the long-term key of a party.
The Reveal-query may be used to obtain the session key that was computed in a
previous protocol instance. The RegisterCorrupt enables the attacker to register
maliciously-generated public keys, and we do not require the adversary to know
the corresponding secret key. The Test-query does not correspond to any real
world capability of an adversary, but it is used to evaluate the advantage of A
in breaking the security of the key exchange protocol. However, we do not allow
reveals of ephemeral randomness, as in [14, 8]. More precisely:

– Send(i, s, j,m): A can use this query to send any message m of its choice
to oracle πsi on behalf of party Pj . The oracle will respond according to the
protocol specification and depending on its internal state.
If (Pidsi , Ψ

s
i) = (∅, ∅) and m = ∅, then this means that A initiates a protocol

execution by requesting πsi to send the first protocol message to party Pj . In
this case, πsi will set Pidsi = j and respond with the first message according
to the protocol specification.
If (Pidsi , Ψ

s
i) = (∅, ∅) and m 6= ∅, then this means that A sends a first protocol

message from party Pj to πsi . In this case, πsi will set Pidsi = j and respond
with the second message according to the protocol specification. This is the
only reason why we include the “partner identifier” j in the Send query.
If Pidsi = j′ 6= ∅ and j 6= j′, then this means that the partner id of πsi has
already been set to j′, but the adversary issues a Send-query with j 6= j′. In
this case, πsi will abort by setting Ψsi = reject and responding with ⊥.

17

Finally, if πsi has already rejected (that is, it holds that Ψsi = reject), then
πsi always responds with ⊥.
If Send(i, s, j,m) is the τ -th query asked by A, and oracle πsi sets variable
Ψsi = accept after this query, then we say that πsi has τ -accepted.

– Corrupt(i): This query returns the long-term secret key ski of party Pi. If
the τ -th query of A is Corrupt(i), then we call Pi τ -corrupted, or simply
corrupted. If Pi is corrupted, then all oracles π1

i , . . . , π
`
i respond with ⊥ to

all queries.
We assume without loss of generality that Corrupt(i) is only asked at most
once for each i. If Corrupt(i) has not yet been issued by A, then we say that
party i is currently ∞-corrupted.

– RegisterCorrupt(i, pk(i)): This query allows A to register a new party Pi,
i > µ, with public key pk(i). If the same party Pi is already registered
(either via RegisterCorrupt-query or i ∈ [µ]), a failure symbol ⊥ is returned
to A. Otherwise, Pi is registered, the pair (Pi, pk

(i)) is distributed to all
other parties.
Parties registered by this query are called adversarially-controlled. All parties
controlled by the adversary are defined to be 0-corrupted. Furthermore, there
are no oracles corresponding to these parties.

– Reveal(i, s): In response to this query πsi returns the contents of ksi . Recall
that we have ksi 6= ∅ if and only if Ψsi = accept. If Reveal(i, s) is the τ -th
query issued by A, we call πsi τ -revealed. If Reveal(i, s) has not (yet) been
issued by A, then we say that oracle πsi is currently ∞-revealed.

– Test(i, s): If Ψsi 6= accept, then a failure symbol ⊥ is returned. Otherwise

πsi flips a fair coin bsi , samples k0
$← K at random, sets k1 = ksi , and returns

kbsi .
The attacker may ask many Test-queries to different oracles, but not more
than one to each oracle. Jumping slightly ahead, we note that there exists
a trivial adversary that wins with probability 1/4, if we allow Test-queries
of the above form to “partnered” oracles. In order to address this, we have
to define partnering first. Then we will disallow Test-queries to partnered
oracles in the AKE security definition (Definition 7).

Partnering and original keys. In order to exclude trivial attacks, we need a
notion of “partnering” of two oracles. Bader et al. [2] base their security definition
on the classical notion of matching conversations of Bellare and Rogaway [7].
However, Li and Schäge [41] showed recently that this notion is error-prone and
argued convincingly that it captures the cryptographic intuition behind “secure
authenticated key exchange” in a very conservative way. This is because the
strong requirement of matching conversation even rules out theoretical attacks
based on “benign malleability” (e.g., efficient re-randomizability of signatures),
which does not match any practical attacks, but breaks matching conversations,
and thus seems stronger than necessary. This may hinder the design of simple
and efficient protocols.

The new idea of [41] is to based “partnering” on an original key of a pair of
oracles (πsi , π

t
j). Recall that we consider an oracle πsi as a deterministic algorithm,

18

but with access to a fixed randomness tape ρsi . The original key K0(πsi , π
t
j) of

a pair of oracles (πsi , π
t
j) consists of the session key that both oracles would

have computed by executing the protocol with each other, and where πsi sends
the first message. Note that K0(πsi , π

t
j) depends deterministically on the partner

identities i and j and the randomness ρsi and ρtj of both oracles. Note also that
for certain protocols it may not necessarily hold that K0(πsi , π

t
j) = K0(πtj , π

s
i),

thus the order of oracles in the K0 function matters.

Definition 6 (Partnering). We say that oracle πsi is partnered to oracle πtj,
if at least one of the following two condition holds.

1. πsi has sent the first protocol message and it holds that ksi = K0(πsi , π
t
j)

2. πsi has received the first protocol message and it holds that ksi = K0(πtj , π
s
i)

Security experiment. Consider the following game, played between an adversary
A and a challenger C. The game is parameterized by two numbers µ (the number
of honest identities) and ` (the maximum number of protocol executions per
party).

1. C generates µ long-term key pairs (sk(i), pk(i)), i ∈ [µ]. It provides a A with
all public keys pk(1), . . . , pk(µ).

2. The challenger C provides A with the security experiment, by implementing
a collection of oracles {πsi : i ∈ [µ], s ∈ [`]}. A may adaptively issue Send,
Corrupt, Reveal, RegisterCorrupt and Test queries to these oracles in arbitrary
order.

3. At the end of the game, A terminates and outputs (i, s, b′), where (i, s)
specifies an oracle πsi and b′ is a guess for bsi .

We write GΠ(µ, `) to denote this security game, carried out with parameters
µ, ` and protocol Π.

Definition 7 (AKE Security). An attacker A breaks the security of protocol
Π, if at least one of the following two events occurs in GΠ(µ, `):

Attack on authentication. Event breakA denotes that at any point throughout the
security experiment there exists an oracle πsi such that all the following conditions
are satisfied.

1. πsi has accepted, that is, it holds that Ψsi = accept.
2. It holds that Pidsi = j for some j ∈ [µ] and party Pj is ∞-corrupted.
3. There exists no unique oracle πtj that πsi is partnered to.

Attack on key indistinguishability. We assume without loss of generality that
A issues a Test(i, s)-query only to oracles with Ψsi = accept, as otherwise the
query returns always returns ⊥. We say that event breakKE occurs if A outputs
(i, s, b′) and all the following conditions are satisfied.

1. breakA does not occur throughout the security experiment.

19

2. The intended communication partner of πsi is not corrupted before the Test(i, s)-
query. Formally, if Pidsi = j and πsi is τ -tested, then it holds that j ≤ µ and
party Pj is τ ′-corrupted with τ ′ ≥ τ .

3. The adversary never asks a Reveal-query to πsi . Formally, we require that πsi
is ∞-revealed throughout the security experiment.

4. The adversary never asks a Reveal-query to the partner oracle of πsi .8 For-
mally, we demand that πtj is ∞-revealed throughout the security experiment.

5. A answers the Test-query correctly. That is, it holds that bsi = b′, and if
there exists an oracle πtj that πsi is partnered to, then A must not have asked
Test(j, t).

The advantage of the adversary A against AKE security of Π is

AdvAKE
Π (A) = max {Pr [breakA] , |Pr [breakKE]− 1/2|} .

We say that A (εA, t, µ, `)-breaks Π if its running time is t and AdvAKE
Π (A) ≥ εA.

Again, we include the running time of the security experiment into the running
time of A (cf. Remark 1).

Remark 2. Note that Definition 7 defines event breakKE such that it occurs only
if breakA does not occur. We stress that this is without loss of generality. It makes
the two possible ways to break the security of the protocol mutually exclusive,
which in turn makes the reasoning in a security proof slightly simpler.

Remark 3. Note that an oracle πsi may be corrupted before the Test(i, s)-query.
This provides security against key-compromise impersonation attacks. Further-
more, the communication partner πtj may be corrupted as well, but only after
πsi has accepted (to prevent the trivial impersonation attack), which provides
forward security (aka. perfect forward secrecy).

4.2 Construction

In this section, we construct our protocol, based on a digital signature scheme
Σ = (Gen,Sign,Vfy), a prime-order group (G, g, p), and cryptographic hash func-
tions G : {0, 1}∗ → {0, 1}κ and H : G→ {0, 1}d for some d ∈ N.

Protocol description. Let us consider a protocol execution between two parties
Alice and Bob. The protocol is essentially the classical “signed Diffie-Hellman”
with hashed session key, except that there is an additional first message which
contains a cryptographic commitment to the Diffie-Hellman share ga of the ini-
tiator of the protocol. This adds another message to the protocol, but is an
important ingredient to achieve tightness, along the lines sketeched in the intro-
duction. We stress that this additional message does not increase the latency of
the protocol. That is, the protocol initiator is able to send cryptographically-
protected payload data after one round-trip times (RTTs), exactly as with ordi-
nary signed Diffie-Hellman.

8 Note that conditions 1. and 2. together imply that there exists a unique oracle πt
j

that πs
i is partnered to, as otherwise breakA occurs.

20

Alice Bob

a
$← Zp

−
u = G(ga)
−−−−−−−−−−−−→

b
$← Zp

TB := u||gb||sr
σB := Sign(skB , TB)

←−
v = (gb, σB)
−−−−−−−−−−−−

T ′B := u||gb||sr
Vfy(pkB , T

′
B , σB)

?
= 1

TA := u||v||ga||cl
σA := Sign(skA, TA)

k̂A := (ga)b

kA := H(k̂A)

−
w = (ga, σA)
−−−−−−−−−−−−→

T ′A := u||v||ga||cl
Vfy(pkA, T

′
A, σA)

?
= 1

u
?
= G(ga)

k̂B := (gb)a

kB := H(k̂B)

Fig. 3. Basic protocol outline.

Each party is in possession of a long-term key pair (pk , sk)
$← Gen(1κ) for

signature scheme Σ. We write (pkA, skA) and (pkB , skB) to denote the key pair
of Alice and Bob, respectively. If Alice initiates a key exchange, then both parties
proceed as follows.

1. Alice chooses a random exponent a
$← Zp, computes u := G(ga), and sends

u to Bob.

2. When Bob receives u, he picks b
$← Zp and defines its local transcript of

messages as TB = u||gb||sr, where sr is a constant that indicates that Bob
acts as a server in this session. Then it computes σB := Sign(skB , TB) , and
responds with v := (gb, σB) to Alice.

3. When Alice receives v := (gb, σB), she first defines her local view of Bob’s

transcript as T ′B = u||gb||sr and checks Vfy(pkB , T
′
B , σB)

?
= 1. If not, then

she terminates the protocol execution and sets ΨA := reject. Otherwise, she
defines her local transcript as TA = u||v||ga||cl, where cl 6= sr is a constant
indicating that Alice acts as a client. Then she computes σA := Sign(skA, TA)
and sends w := (ga, σA) to Bob. Furthermore, she first computes an “internal

Diffie-Hellman key” k̂A = gab, and then the actual session key as kA =
H(k̂A), and sets ΨA := accept.

21

4. When Bob receives w := (ga, σA), he first defines his local view of Alice’s
transcript as T ′A = u||v||ga||cl and checks whether Vfy(pkA, T

′
A, σA) = 1 and

whether ga matches the commitment from the first message, that is, it holds
that u = G(ga). If one of these checks fails, then he sets ΨB := reject and
terminates. Otherwise he first computes its “internal Diffie-Hellman key”
k̂B = gab, and then the actual session key kB = H(k̂B), and sets ΨA :=
accept.

Remark 4. We make the “internal Diffie-Hellman key” explicit in the above de-
scription, because it will be useful to refer to it in order to define a certain event
in the security proof.

Remark 5. We point out that the signatures σA and σB over TA = u||v||ga||cl
and TB = u||gb||sr protect the whole message transcripts, which is more than
actually necessary for our security proof (for which signing ga and gb, respec-
tively, would actually be sufficient). However, this is not only a more conservative
design, but also facilitates a future security proof of the protocol in a security
model based on matching conversations, such as the one from [2].

This seems easily possible, by instantiating the protocol with a strongly
MU-EUF-CMAcorr-secure signature scheme in the sense of [13]. Indeed, our sig-
nature scheme can easily be made tight strongly-unforgeable, by applying the
generic transformation of [49], but this would increase the size of signatures by
one group element and one exponent. We leave it as an interesting open prob-
lem to prove tight strong MU-EUF-CMAcorr-security directly for our signature
scheme, without increasing the size of signatures.

Correctness. It is straightforward to verify that this protocol is correct.

Efficiency and latency. At a first glance, our protocol seems less efficient than
ordinary signed Diffie-Hellman, because the additional message u adds another
protocol round and thus latency. We stress that this is actually not the case, for
typical applications. Consider a setting where Alice (a client) wants to send cryp-
tographically protected payload data to a server (Bob). To this end, she initiates
the protocol by sending message u. Then she waits for message v, which takes
about 1 RTT (round trip time). Finally, she computes message w. At this time
Alice has already accepted the key exchange, in particular she has computed the
key kA. This means that she can immediately send cryptographically protected
payload data along with message w. Thus, the latency overhead of our protocol,
defined as the time that Alice has to wait before she can send cryptographically
protected payload, is only 1 RTT.

Now let us compare this to standard signed Diffie-Hellman, which essentially
corresponds to our protocol restricted to messages v and w, without the addi-
tional commitment message u. In the same setting as above, the client Alice
would now send the first protocol message v and then wait for w, which again
takes 1 RTT. Only then is Alice able to compute the session key, and use it to
send cryptographically protected payload. Thus, even though one message less
is sent, it still takes 1 RTT before the session key can be used by Alice.

22

Thus, while our tightly-secure protocol uses an additional message u, this
message does not increase the latency of key establishment at all. Furthermore,
message u can be as small as 20-32 bytes in practice, such that the total commu-
nication overhead incurred by the key exchange protocol is not significantly in-
creased. At the same time, the best known security proof of signed Diffie-Hellman
has even quadratic security loss. In contrast, our protocol achieves tightness with
only constant security loss, without significantly increasing latency or commu-
nication complexity.

Efficiency in real-world PKI settings. As usual in cryptographic theory, our
security model considers a setting where each party “magically” has access to
all public keys of all other parties. In practice, this is not realistic. Instead, in
typical real-world protocols like TLS [20] public keys are typically exchanged
within the protocol, along with certificates attesting their authenticity. Often
this requires additional protocol rounds, and thus adds further messages and
latency to the protocol.

We point out that our protocol does not require any such additional pro-
tocol rounds when used in a real-world PKI setting. Concretely, we could sim-
ply extend message v to v = (gb, σB , pkB , certB), where (pkB , certB) is the
certified public key of Bob. Message w would be adopted accordingly to w =
(ga, σA, pkA, certA), where (pkA, certAB) is the certified public key of Alice.

Preventing unknown key-shake (UKS) attacks. Blake-Wilson and Menezes [9]
introduced UKS attacks, where a party Alice can be tricked into believing that
it shares a key with Eve, even though actually the key is shared with a different
party Bob. A simple generic method to prevent such attacks in protocols that use
digital signatures for authentication (such as ours) is to include user identities
in signatures. In a real-world setting where certified public keys are exchanged
during the protocol, one could sign the certificates along with all other messages.

Server-only authentication. Another important real-world application scenario
is where only the server is authenticated cryptographically, while the client is
not in possession of a long-term cryptographic key pair, and thus the protocol
can only achieve unilateral authentication. This setting has been considered e.g.
in [38] for TLS, and in [48, 42, 26] for more general key exchange protocols. While
we do not model and prove it formally, we expect that our protocol achieves
tight security also for server-only authentication, by an adopting the security
model from Section 4 and the proof to the unilateral setting. More precisely, in
this setting we would consider a security model where we distinguish between
client oracles (which are not in possession of a cryptographic long-term key),
and server oracles in possession of long-term signature keys. For authentication,
the proof is identical, except that event breakA is restriced to accepting client
oracles. For key indistinguishability, we would allow Test-queries only for sessions
that involve a Diffie-Hellman share that originates from a client oracle controlled
by the experiment (as otherwise the adversary is trivially able to win). In this

23

case, we are able to embed a DDH challenge exactly as in the proof for mutual
authentication.

Theorem 5. Consider protocol Π as defined above, where hash functions G and
H are modeled as random oracles. Let A be an adversary that (t, µ, `, εA)-breaks
Π. Then we can construct and adversaries BA and BKE such that:

1. Either BA (t′, ε′, µ)-breaks the MU-EUF-CMAcorr-security of (Gen,Sign,Vfy)
with t′ = O(t) and ε′ ≥ εA − µ2`2/p.

2. Or BKE (t′, ε′)-breaks the decisional Diffie-Hellman assumption in (G, g, p)
with t′ = O(t) and ε′ ≥ εA − t2/2d − µ2`2/p− µ2`2/2d − µ`t/p.

The proof of Theorem 5 consists of two parts. First, we prove that any adversary
breaking authentication in the sense of Definition 7 implies an algorithm breaking
the MU-EUF-CMAcorr-security of the signature scheme. This part is standard,
with a straightforward reduction. Then we prove key indistinguishability. This
result contains the main novelty of our proof. It follows the approach sketched in
the introduction very closely. Due to space limitations, the full proofs are given
only in the full version, which can be found at the Cryptology ePrint Archive at
https://eprint.iacr.org/2018/.

5 Efficiency Analysis

Let us compare an instantiation of our protocol from Section 4.2, instantiated
with our signature scheme from Section 3.2, to plain “signed Diffie-Hellman”,
instantiated with EC-DSA. The latter is the currently most efficient practical
instantiation of an authenticated key exchange protocol over simple groups with
explicit authentication (in contrast, some protocols, such as NAXOS [40], do not
provide explicit authentication via digital signatures, but only implicit authen-
tication via indistinguishability of keys).

We consider a setting where both the signature scheme and the Diffie-Hellman
key exchange are instantiated over the same group. This is desirable in practice
for many different reasons. Most importantly, it reduces the size of the imple-
mentation. This makes the protocol not only faster to implement, but also easier
to implement securely (e.g., constant-time and resilient to other side-channels)
and easier to maintain, which are very desirable properties, from a real-world
security point of view.

Furthermore, an implementation requiring a small codebase or circuit size
is particularly desirable for resource-constrained devices, such as IoT devices,
where tightness is particularly relevant due to the large number of devices in
use.

Computational efficiency. In order to compare the efficiency of protocols, we
count the number of exponentiations, as this is the most expensive computa-
tion to be performed. Below we will also briefly discuss the potential impact of
optimisations.

24

Our protocol. Each party running our protocol has to perform two exponen-
tiations to perform the Diffie-Hellman key exchange, seven exponentiations
to sign a message, and eight exponentiations to verify a signature. In total,
this amounts to 17 exponentiations.

Signed Diffie-Hellman. Executing the signed Diffie-Hellman protocol with
EC-DSA takes two exponentiations to perform the Diffie-Hellman key ex-
change, one exponentiation to compute an EC-DSA signature, and two ex-
ponentiations to verify a signature. In total, this amounts to 5 exponentia-
tions.

Thus, our protocol requires 3.4 times more exponentiations than signed Diffie-
Hellman.

Theoretically-sound instantiations. Let us consider a desired security level equiv-
alent to an 128-bit symmetric key.

Our protocol. The tightness of our security proof allows to instantiate out
protocol on a 256-bit elliptic curve group, such as the NIST P-256 curve,
independent of the number of users or sessions.

Signed Diffie-Hellman. When instantiating plain “signed Diffie-Hellman”, we
have to compensate the quadratic security loss of Q = µ2`2 of the security
proof, depending on the number of users µ and the number of sessions `, by
choosing a larger group. For instance:
– In a small-to-medium-scale setting with µ = 216 and ` = 216, the security

loss amounts already to a factor of Q = 264. In order to compensate this
with larger parameters, we have to increase the group size by a factor of
Q2 = 2128. We can do this by using the NIST P-384 curve.

– In a large-scale setting with µ = 232 and ` = 232, the security loss
amounts even to a factor of Q = 2128. In order to compensate this with
larger parameters, we have to increase the group size by a factor of
Q2 = 2256, e.g., by using the NIST P-521 curve.

Remark 6. To justify the numbers chosen above, let us consider Facebook as an
example. Facebook lists 2.13 billion active users in December 2017, see https://
newsroom.fb.com/company-info/. Even if we assume that each user performs
only a single TLS handshake (that is, only a single login) per month, this amounts
to about 231 execution of the TLS protocol per month, and about 234 per year
(the lifetime of the certified public key). Since known security proofs for TLS
have a quadratic security loss, we thus have a security loss of 268 already in the
single-user setting where only Facebook is considered.

Comparison of computational efficiency. In order to estimate the time required
for one exponentiation for different curves, we consider OpenSSL as an example.
OpenSSL is a very widely-used and stable cryptographic library with good per-
formance properties. The benchmark tests of elliptic curve Diffie-Hellman, which
analyse the performance of different elliptic curves implemented by OpenSSL,

25

Curve Security level Time/Operation in s Operations per s

NIST P256 128 0.0021 476.9
NIST P384 128 0.0056 179.7
NIST P521 128 0.0161 62.0

NIST K233 128 0.0016 640.1
NIST K409 128 0.0068 147.6
NIST K571 128 0.0151 66.4

NIST B283 128 0.0035 284.6
NIST B409 128 0.0074 135.1
NIST B571 128 0.0167 59.8

Table 1. OpenSSL Benchmark Results for NIST Curves

can be run on a system where OpenSSL is installed by executing the command
openssl speed ecdh.

We ran this benchmark on a MacBook Pro computer with 3.3 GHz Intel Core
i7 CPU and 16 GB RAM, running Mac OS Version 10.13.2. Figure 1 summarises
the results for the considered NIST curves (P256, P384, P521), as well as suitable
alternatives. Note that one ECDH operation for the P384 curve takes about 2.7
times longer than for P256, while for P521 it is even about 7.7 times longer.
The results for other families of curves (K233/409/571 and B283/409/571) are
comparable.

Comparison of communication complexity. Now let us compare the amount of
data to be transmitted for a key exchange. Again, we consider “128-bit security”.
We assume that each element of an n-bit elliptic group takes n + 1 bits, which
can be achieved via standard point compression.

Our protocol. This protocol requires the transmission of two group elements
for the Diffie-Hellman key exchange, each consisting of 257 bits, plus two
signatures (each consisting of a random 256-bit nonce, two group elements,
and four 256-bit exponents, which yields 1794 bits), plus the first protocol
message, which corresponds to one 256-bit value, if SHA-256 is used.
In total, this yields 2 · 257 + 2 · 1794 + 256 = 4358 bytes, which corresponds
to ≈ 545 bytes.

Signed Diffie-Hellman. When instantiating plain “signed Diffie-Hellman” with
EC-DSA, each party sends one group element plus one signature consisting
of two exponents. This yields:
– When using the NIST P-384 curve, this amounts to 2·385+4·384 = 2306

bits, which corresponds to ≈ 289 bytes.
– In a large-scale setting with the NIST P-521 curve, this amounts to

2 · 522 + 4 · 521 = 3128 bits, or ≈ 391 bytes.

Conclusion. Even though the absolute number of exponentiations required to
run our protocol is larger than for simple signed Diffie-Hellman, it turns out
that for small-to-medium-scale settings the overall computational efficiency is

26

already comparable to signed Diffie-Hellman, if the group order is chosen in a
theoretically-sound way. For large-scale settings, it is even significantly better.
Concretely, the fact that our protocol requires 3.4 times more exponentiations
is already almost compensated by the fact that an exponentiation is about 2.7-
times more expensive in the small-to-medium-scale setting. Furthermore, given
that in the large-scale setting an exponentiation is about 7.7 times more expen-
sive, it turns out that our protocol is even significantly more efficient by a factor
greater than 2.25. We note that this pencil-and-paper analysis considers näıve
exponentation, and does not yet involve optimisations, such as pre-computations,
which usually tend to be more effective if more exponentiations are performed.

The improved computational efficiency comes at only very moderate cost
of increased communication complexity, amounting to 256 bytes for the entire
protocol in the small-to-medium-scale setting, and 154 bytes in the large-scale
setting. This holds in comparison to the very minimalistic EC-DSA-signed Diffie-
Hellman protocol, which is of course extremely communication-efficient in com-
parison to any other protocol with similar properties.

Given that our protocol is the first proposal for a truly practical and tightly-
secure key exchange protocol, we expect that future work building upon our
techniques will be able to improve this further.

References

1. Bader, C.: Efficient signatures with tight real world security in the random-oracle
model. In: Gritzalis, D., Kiayias, A., Askoxylakis, I.G. (eds.) CANS 14. LNCS, vol.
8813, pp. 370–383. Springer, Heidelberg (Oct 2014)

2. Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated
key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol.
9014, pp. 629–658. Springer, Heidelberg (Mar 2015)

3. Bader, C., Jager, T., Li, Y., Schäge, S.: On the impossibility of tight cryptographic
reductions. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS,
vol. 9666, pp. 273–304. Springer, Heidelberg (May 2016)

4. Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. Journal
of Cryptology (Jan 2018), https://doi.org/10.1007/s00145-018-9280-5

5. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user set-
ting: Security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 259–274. Springer, Heidelberg (May 2000)

6. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 93. pp. 62–73. ACM Press (Nov
1993)

7. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO’93. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (Aug
1994)

8. Bergsma, F., Jager, T., Schwenk, J.: One-round key exchange with strong security:
An efficient and generic construction in the standard model. In: Katz, J. (ed.)
PKC 2015. LNCS, vol. 9020, pp. 477–494. Springer, Heidelberg (Mar / Apr 2015)

9. Blake-Wilson, S., Menezes, A.: Unknown key-share attacks on the station-to-
station (STS) protocol. In: Imai, H., Zheng, Y. (eds.) PKC’99. LNCS, vol. 1560,
pp. 154–170. Springer, Heidelberg (Mar 1999)

27

10. Blazy, O., Kakvi, S.A., Kiltz, E., Pan, J.: Tightly-secure signatures from chameleon
hash functions. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 256–279.
Springer, Heidelberg (Mar / Apr 2015)

11. Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) identity-based encryption from affine
message authentication. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I.
LNCS, vol. 8616, pp. 408–425. Springer, Heidelberg (Aug 2014)

12. Boneh, D.: The decision Diffie-Hellman problem. In: Third Algorithmic Number
Theory Symposium (ANTS). LNCS, vol. 1423. Springer, Heidelberg (1998), invited
paper

13. Boneh, D., Shen, E., Waters, B.: Strongly unforgeable signatures based on com-
putational Diffie-Hellman. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.)
PKC 2006. LNCS, vol. 3958, pp. 229–240. Springer, Heidelberg (Apr 2006)

14. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (May 2001)

15. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.
(ed.) CRYPTO’92. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (Aug 1993)

16. Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp.
435–460. Springer, Heidelberg (Aug 2013)

17. Chevallier-Mames, B.: An efficient CDH-based signature scheme with a tight secu-
rity reduction. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 511–526.
Springer, Heidelberg (Aug 2005)

18. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y. (ed.) CRYPTO’94.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (Aug 1994)

19. Di Crescenzo, G., Katz, J., Ostrovsky, R., Smith, A.: Efficient and non-interactive
non-malleable commitment. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 40–59. Springer, Heidelberg (May 2001)

20. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246 (Proposed Standard) (Aug 2008), https://www.rfc-editor.org/rfc/
rfc5246.txt, updated by RFCs 5746, 5878, 6176, 7465, 7507, 7568, 7627, 7685,
7905, 7919

21. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO’86. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (Aug 1987)

22. Fleischhacker, N., Jager, T., Schröder, D.: On tight security proofs for Schnorr
signatures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol.
8873, pp. 512–531. Springer, Heidelberg (Dec 2014)

23. Garg, S., Bhaskar, R., Lokam, S.V.: Improved bounds on security reductions for
discrete log based signatures. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol.
5157, pp. 93–107. Springer, Heidelberg (Aug 2008)

24. Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without
pairings. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part I. LNCS,
vol. 9665, pp. 1–27. Springer, Heidelberg (May 2016)

25. Goh, E.J., Jarecki, S.: A signature scheme as secure as the Diffie-Hellman problem.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 401–415. Springer,
Heidelberg (May 2003)

26. Goldberg, I., Stebila, D., Ustaoglu, B.: Anonymity and one-way authentication
in key exchange protocols. Des. Codes Cryptography 67(2), 245–269 (2013),
\url{https://doi.org/10.1007/s10623-011-9604-z}

28

27. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-
tem Sciences 28(2), 270–299 (1984)

28. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (Apr 2008)

29. Gueron, S., Lindell, Y.: Better bounds for block cipher modes of operation via
nonce-based key derivation. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu,
D. (eds.) ACM CCS 17. pp. 1019–1036. ACM Press (Oct / Nov 2017)

30. Günther, C.G.: An identity-based key-exchange protocol. In: Quisquater, J.J., Van-
dewalle, J. (eds.) EUROCRYPT’89. LNCS, vol. 434, pp. 29–37. Springer, Heidel-
berg (Apr 1990)

31. Hoang, V.T., Tessaro, S.: The multi-user security of double encryption. In: Coron,
J., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 381–411.
Springer, Heidelberg (May 2017)

32. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607.
Springer, Heidelberg (Aug 2012)

33. Hofheinz, D., Jager, T., Knapp, E.: Waters signatures with optimal security re-
duction. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol.
7293, pp. 66–83. Springer, Heidelberg (May 2012)

34. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the
standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 273–293. Springer, Heidelberg (Aug 2012)

35. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: Authenticated confidential channel
establishment and the security of TLS-DHE. Journal of Cryptology 30(4), 1276–
1324 (Oct 2017)

36. Jager, T., Stam, M., Stanley-Oakes, R., Warinschi, B.: Multi-key authenticated
encryption with corruptions: Reductions are lossy. In: Kalai, Y., Reyzin, L. (eds.)
TCC 2017, Part I. LNCS, vol. 10677, pp. 409–441. Springer, Heidelberg (Nov 2017)

37. Katz, J., Wang, N.: Efficiency improvements for signature schemes with tight se-
curity reductions. In: Jajodia, S., Atluri, V., Jaeger, T. (eds.) ACM CCS 03. pp.
155–164. ACM Press (Oct 2003)

38. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol: A
systematic analysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 429–448. Springer, Heidelberg (Aug 2013)

39. Krawczyk, H., Wee, H.: The OPTLS protocol and TLS 1.3. In: IEEE Euro-
pean Symposium on Security and Privacy, EuroS&P 2016, Saarbrücken, Germany,
March 21-24, 2016. pp. 81–96. IEEE (2016), https://doi.org/10.1109/EuroSP.
2016.18

40. LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (Nov 2007)

41. Li, Y., Schäge, S.: No-match attacks and robust partnering definitions: Defining
trivial attacks for security protocols is not trivial. In: Thuraisingham, B.M., Evans,
D., Malkin, T., Xu, D. (eds.) ACM CCS 17. pp. 1343–1360. ACM Press (Oct / Nov
2017)

42. Maurer, U., Tackmann, B., Coretti, S.: Key exchange with unilateral authenti-
cation: Composable security definition and modular protocol design. Cryptology
ePrint Archive, Report 2013/555 (2013), http://eprint.iacr.org/2013/555

29

43. Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equivalent to
discrete log. In: Roy, B.K. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 1–20.
Springer, Heidelberg (Dec 2005)

44. Paterson, K.G., van der Merwe, T.: Reactive and proactive standardisation of
TLS. In: Chen, L., McGrew, D.A., Mitchell, C.J. (eds.) Security Standardisation
Research - Third International Conference, SSR 2016, Gaithersburg, MD, USA,
December 5-6, 2016, Proceedings. Lecture Notes in Computer Science, vol. 10074,
pp. 160–186. Springer (2016), https://doi.org/10.1007/978-3-319-49100-4_7

45. Schäge, S.: Tight proofs for signature schemes without random oracles. In: Pa-
terson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 189–206. Springer,
Heidelberg (May 2011)

46. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO’89. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (Aug
1990)

47. Seurin, Y.: On the exact security of Schnorr-type signatures in the random oracle
model. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol.
7237, pp. 554–571. Springer, Heidelberg (Apr 2012)

48. Shoup, V.: On formal models for secure key exchange. Cryptology ePrint Archive,
Report 1999/012 (1999), http://eprint.iacr.org/1999/012

49. Steinfeld, R., Pieprzyk, J., Wang, H.: How to strengthen any weakly unforgeable
signature into a strongly unforgeable signature. In: Abe, M. (ed.) CT-RSA 2007.
LNCS, vol. 4377, pp. 357–371. Springer, Heidelberg (Feb 2007)

30

