
Towards Bidirectional Ratcheted Key Exchange?

Bertram Poettering1 and Paul Rösler2

1 Information Security Group, Royal Holloway, University of London
bertram.poettering@rhul.ac.uk

2 Horst-Görtz Institute for IT Security,
Chair for Network and Data Security, Ruhr-University Bochum

paul.roesler@rub.de

Abstract. Ratcheted key exchange (RKE) is a cryptographic technique
used in instant messaging systems like Signal and the WhatsApp mes-
senger for attaining strong security in the face of state exposure attacks.
RKE received academic attention in the recent works of Cohn-Gordon et
al. (EuroS&P 2017) and Bellare et al. (CRYPTO 2017). While the former
is analytical in the sense that it aims primarily at assessing the security
that one particular protocol does achieve (which might be weaker than
the notion that it should achieve), the authors of the latter develop and
instantiate a notion of security from scratch, independently of existing
implementations. Unfortunately, however, their model is quite restricted,
e.g. for considering only unidirectional communication and the exposure
of only one of the two parties.
In this article we resolve the limitations of prior work by developing al-

ternative security definitions, for unidirectional RKE as well as for RKE
where both parties contribute. We follow a purist approach, aiming at
finding strong yet convincing notions that cover a realistic communi-
cation model with fully concurrent operation of both participants. We
further propose secure instantiations (as the protocols analyzed or pro-
posed by Cohn-Gordon et al. and Bellare et al. turn out to be weak in
our models). While our scheme for the unidirectional case builds on a
generic KEM as the main building block (differently to prior work that
requires explicitly Diffie–Hellman), our schemes for bidirectional RKE
require a stronger, HIBE-like component.

1 Introduction

Asynchronous two-party communication. Assume an online chat situa-
tion where two parties, Alice and Bob, communicate by exchanging messages
over the Internet (e.g., using a TCP/IP based protocol). Their communication
shall follow the structure of a human conversation in the sense that partici-
pants send messages when they feel they want to contribute to the discussion,
as opposed to in lockstep, i.e., when it is ‘their turn’. In particular, in the con-
sidered asynchronous setting, Alice and Bob may send messages concurrently,
? The full version of this article is available in the IACR eprint archive as article
2018/296, at https://eprint.iacr.org/2018/296.

https://eprint.iacr.org/2018/296

and they also may receive them concurrently after a small delay introduced by
the network. With other words, their messages may ‘cross’ on the wire.

As Alice and Bob are concerned with adversaries attacking their conversation,
they deploy cryptographic methods. Standard security goals in this setting are
the preservation of confidentiality and integrity of exchanged messages. These
can be achieved, for instance, by combining an encryption primitive, a message
authentication code, and transmission counters, where the latter serve for identi-
fying replay and reordering attacks. As the mentioned cryptographic primitives
are based on symmetric keys, Alice and Bob typically engage in an interactive
key agreement protocol prior to starting their conversation.

Forward secrecy. In this classic first-key-agreement-then-symmetric-protocol
setup for two-party chats, the advantage of investing in an interactive key agree-
ment session goes beyond fulfilling the basic need of the symmetric protocol (the
allocation of shared key material): If the key agreement involves a Diffie–Hellman
key exchange (DHKE), and this is nowadays the default, then the communica-
tion between Alice and Bob may be protected with forward secrecy. The latter
means that even if the adversary finds a way, at a point in time after Alice and
Bob finish their conversation, to obtain a copy of the long-term secrets they used
during key establishment (signature keys, passwords, etc.), then this cannot be
exploited to reveal their communication contents. Most current designs of crypto-
graphic chat protocols consider forward secrecy an indispensable design goal [18].
The reason is that inadvertently disclosing long-term secrets is often more likely
to happen than expected: system intruders might steal the keys, thieves might
extract them from stolen Smartphones, law enforcement agencies might lawfully
coerce users to reveal their keys, backup software might unmindfully upload a
copy onto network storage, and so on.

Security with exposed state. Modern chat protocols also aim at protect-
ing users in case of a different kind of attack: the skimming of the session state
of an ongoing conversation [18].1 Note that the session state information is or-
thogonal to the long-term secrets discussed above and, intuitively, an artifact
of exclusively the second (symmetric) phase of communication. The necessity
of being able to recover from session state leakage is usually motivated with
two observations: messaging sessions are in general long-lived, e.g., kept alive for
weeks or months once established, so that state exposures are more damaging,
more easily provoked, and more likely to happen by accident; and leaking state
information is sometimes impossible to defend against (state information held in
computer memory might eventually be swapped to disk and stolen from there,
and in cloud computing it is standard to move virtual machine memory images
around the world from one host to the other).

Ratcheting. Modern messaging protocols are designed with the goal of provid-
ing security even in the face of adversaries that perform the two types of attack
discussed above (compromise of long-term secrets and/or session states) [18].
1 In this article, we consider the terms state reveal, state compromise, state corruption,
and state exposure synonyms.

One technique used towards achieving this is via ‘hash chains’ where the sym-
metric key material contained in the session state is replaced, after each use, by
a new value derived from the old value by applying some one-way function. This
method mainly targets forward security and has a long tradition in cryptography
(e.g., is used in [17] in the context of secure logging). A second technique is to
let participants routinely redo a DHKE and mix the newly established keys into
the session state: As part of every outgoing message a fresh gx value is combined
with prior and later values gy contributed by the peer, with the goal of refreshing
the session state as often as possible. This was introduced with the off-the-record
(OTR) messaging protocol from [13,3] and promises auto-healing after a state
compromise, at least if the DHKE exponents are derived from fresh randomness
gathered from an uncorrupted source after the state reveal took place. Of course
the two methods are not mutually exclusive but can be combined. We say that a
messaging protocol employs a ‘key ratchet’ (this name can be traced back to [9])
if it uses the described or similar techniques for achieving forward secrecy and
security under state exposure attacks.

Ratcheting as a primitive. While many authors associate the word ratchet-
ing with a set of techniques deployed with the aim of achieving certain (typically
not formally defined) security goals, Bellare et al. recently pursued a different
approach by proposing ratcheted key exchange (RKE) as a cryptographic prim-
itive with clearly defined syntax, functionality, and security properties [1]. This
primitive establishes a sequence of session keys that allows for the construction
of higher-level protocols, where instant messaging is just one example.2 Building
a messaging protocol on top of RKE offers clear advantages over using ad-hoc
designs (as all messaging apps we are aware of do): the modularity allows for eas-
ier cryptanalysis, the substitution of constructions by alternatives, etc. We note,
however, that the RKE formalization considered in [1] is too limited to serve
directly as a building block for secure messaging. In particular, the syntactical
framework requires all communication to be unidirectional (in the Alice-to-Bob
direction), and the security model counterintuitively assumes that exclusively
Alice’s state can be exposed.

We give more details on the results of [1]. In the proposed protocol, Alice’s
state has the form (i,K, Y), where integer i counts her send operations, K is
a key for a PRF F, and Y = gy is a public key of Bob. Bob’s state has the
form (i,K, y). When Alice performs a send operation, she samples a fresh ran-
domness x, computes µ ← F(K, gx) and (k,K ′) ← H(i, µ, gx, Y x) where H is
a random oracle, and outputs k as the established session key and (gx, µ) as a
ciphertext that is sent to Bob. (Value µ serves as a message authentication code
for gx.) The next round’s PRF key isK ′, i.e., Alice’s new state is (i+1,K ′, Y). In
this protocol, observe that F and H together implement a ‘hash chain’ and lead
to forward secrecy, while the gx, Y x inputs to the random oracle can be seen
as implementing one DHKE per transmission (where one exponent is static).
2 Note that RKE, despite its name, is a tool to be used in the ‘symmetric phase’ that
follows the preliminary key agreement. In [1], and also in this article, the latter is
abstracted away into a dedicated state initialization algorithm (or: protocol).

Turning to the proposed RKE security model, while the corresponding game
offers an oracle for compromising Alice’s state, there is no option for similarly
exposing Bob. If the model had a corresponding oracle, the protocol would actu-
ally not be secure. Indeed, the following (fully passive) attack exploits that Alice
‘encrypts’ to always the same key Y of Bob: The adversary first reveals Alice’s
session state, learning (i,K, Y); it then makes Alice invoke her send routine a
couple of times and delivers the respective ciphertexts to Bob’s receive routine
in unmodified form; in the final step the adversary exposes Bob and recovers
his past session keys using the revealed exponent y. Note that in a pure RKE
sense these session keys should remain unknown to the adversary: Alice should
have recovered from the state exposure, and forward secrecy should have made
revealing Bob’s state useless.3

Contributions. We follow in the footsteps of [1] and study RKE as a general
cryptographic primitive. However, we significantly improve on their results, in
three independent directions:

Firstly, we extend the strictly unidirectional RKE concept of Bellare et al. to-
wards bidirectional communication. In more detail, if we refer to the setting of [1]
as URKE (unidirectional RKE), we introduce SRKE (sesquidirectional4 RKE)
and BRKE (bidirectional RKE; for space reasons only in the full version [14]).
In SRKE, while both Alice and Bob can send ciphertexts to the respective peer,
only the ciphertexts sent from Alice to Bob establish session keys. Those sent by
Bob have no direct functionality but may help him healing from state exposure.
Also in BRKE both parties send ciphertexts, but here the situation is symmetric
in that all ciphertexts establish keys (plus allow for healing from state exposure).

Secondly, we propose an improved security model for URKE, and introduce
security models for SRKE and BRKE (the latter only in [14]). Our SRKE and
BRKE models assume the likely only practical communication setting for mes-
saging protocols, namely the one in which the operations of both parties can
happen concurrently (in contrast to, say, a ping-pong way). We develop our
models following a purist approach: We start with giving the adversary the full
set of options to undertake its attack (including state exposures of both parties),
and then exclude, one by one, those configurations that unavoidably lead to
a ‘trivial win’ (an example for the latter is if the adversary first compromises
Bob’s state and then correctly ‘guesses’ the next session key he recovers from
an incoming ciphertext). This approach leads to strong and convincing security
models (and it becomes quite challenging to actually meet them). We note that
the (as we argued) insecure protocol from [1] is considered secure in the model
of [1] because the latter was not designed with our strategy in mind, ultimately
missing some attacks.

3 A protocol that achieves security in the described setting is developed in this paper;
the central idea behind our construction is that Bob’s key pair (y, Y) does not stay
fixed but is updated each time a ciphertext is processed.

4 Recall that ‘sesqui’ is Latin for one-and-a-half.

Thirdly, we give provably secure constructions of URKE and SRKE (and
of BRKE in the full version [14]). While all prior RKE protocol proposals, in-
cluding the one from [1], are explicitly based on DHKE as a low-level tool, our
constructions use generic primitives like KEMs, MACs, one-time signatures, and
random oracles. The increased level of abstraction not only clarifies on the role
that these components play in the constructions, it also increases the freedom
when picking acceptable hardness assumptions.

Further details on our URKE construction. In brief, our (unidirec-
tional) URKE scheme combines a hash chain and KEM encapsulations to achieve
both forward secrecy and recoverability from state exposures. The crucial dif-
ference to the protocol from [1] is that in our scheme the public key of Bob
is changed after each use. Concretely, but omitting many details, the state in-
formation of Alice is (i,K, Y) as in [1] (but where Y is the current public key
of Bob), for sending Alice freshly encapsulates a key k∗ to Y , then computes
(k,K ′, k′) ← H(i,K, Y, k∗) using a random oracle H, and finally uses auxiliary
key k′ to update the old public key Y to a new public key Y that is to be used in
her next sending operation. Bob does correspondingly, updating his secret key
with each incoming ciphertext. Note that the attack against [1] that we sketched
above does not work against this protocol (the adversary would obtain a useless
decryption key when revealing Bob’s state).

Further details on our SRKE construction. Recall that, in SRKE, Bob
can send update ciphertexts to Alice with the idea that this will help him recover
from state exposures. Our protocol algorithms can handle fully concurrent oper-
ation of the two participants (in particular, ciphertexts may ‘cross’ on the wire).
This unfortunately adds, as the algorithms need to handle multiple ‘epochs’ at
the same time, considerably to their complexity. Interestingly, the more involved
communication setting is also reflected in stronger primitives that we require for
our construction: Our SRKE construction builds on a special KEM type that
supports so-called key updates (also the latter primitive is constructed in this
paper, from HIBE).

In a nutshell, in our SRKE construction, Bob heals from state exposures by
generating a fresh (updatable) KEM key pair every now and then, and com-
municating the public key to Alice. Alice uses the key update functionality to
‘fast-forward’ these keys into a current state by making them aware of cipher-
texts that were exchanged after the keys were sent (by Bob), but before they
were received (by Alice). In her following sending operation, Alice encapsulates
to a mix of old and new public keys.

Outlook on BRKE. We expose two BRKE constructions in the full ver-
sion [14]. The first works via the amalgamation of two generic SRKE instances,
deployed in reverse directions. To reach full security, the instances need to be
carefully tied together (our solution does this with one-time signatures). The
second construction is less generic but slightly more efficient, namely by com-
bining and interleaving the building blocks of our SRKE scheme in the right
way.

Further related work. The idea of using ‘hash chains’ for achieving forward
security of symmetric cryptographic primitives has been around for quite some
time. For instance, [17] use this technique to protect the integrity of audit logs.
The first formal treatment we are aware of is [2]. A messaging protocol that uses
this technique is the (original) Silent Circle Instant Messaging Protocol [12].

The idea of mixing into the user state of messaging protocols additional key
material that is continuously established with asymmetric techniques (in par-
ticular: DHKE) first appeared in the off-the-record (OTR) messaging protocol
from [13,3]. Subsequently, the technique appeared in many communication pro-
tocols specifically designed to be privacy-friendly, including the ZRTP telephony
protocol [19] and the messaging protocolDouble Ratchet Algorithm [10] (formerly
known as Axolotl). The latter, or close variants thereof, are used by WhatsApp,
the Facebook Messenger, and Signal app. In the full version [14] we study these
protocols more closely, proposing for each of them an attack that shows that it
is not secure in our models.

Widely used messaging protocols were recently analyzed by Cohn-Gordon
et al. [4] and Rösler et al. [16]. In particular, [4] contributes an analysis of the
Signal messaging protocol [10] by developing a “model with adversarial queries
and freshness conditions that capture the security properties intended by Signal”.
While the work does propose a formal security model, for being geared towards
confirming the security of one particular protocol, it may not necessarily serve
as a reference notion for RKE.5

Academic work in a related field was conducted by [5] who study post-
compromise security in (classic) key exchange. Here, security shall be achieved
even for sessions established after a full compromise of user secrets. This nec-
essarily requires mixing user state information with key material that is newly
established via asymmetric techniques, and is thus related to RKE. However, we
note the functionalities and models of (classic) key exchange and RKE are fun-
damentally different: The former generally considers multiple participants who
have long-term keys and who can run multiple sessions, with the same or differ-
ent peers, in parallel, while participants of the latter have no long-term keys at
all, and thus any two sessions are completely independent.

Organization. In Section 2 we fix notation and describe the building blocks of
our RKE constructions: MACs, KEMs (but with a non-standard syntax), one-
time signatures. In Section 3 we develop the URKE syntax and a suitable security
model, and present a corresponding construction in Section 4. In Sections 5 and 6
we do the same for SRKE. In Section 7 we give an intuition of how SRKE can
be extended to BRKE.

5 In fact it defines weaker security than would be natural for RKE. We elaborate on
this in the full version [14] where we explain why the Signal protocol is not secure
in our model.

2 Preliminaries

2.1 Notation

If A is a (deterministic or randomized) algorithm we write A(x) for an invocation
of A on input x. If A is randomized, we write A(x) ⇒ y for the event that an
invocation results in value y being the output. We further write [A(x)] := {y :
Pr[A(x)⇒ y] > 0} for the effective range of A(x).

If a ≤ b are integers, we write [a .. b] for the set {a, . . . , b} and we write [a, ...]
for the set {x ∈ N : a ≤ x}. We also give symbolic names to intervals and their
boundaries (smallest and largest elements): For an interval I = [a .. b] we write
I` for a and Ia for b. We denote the Boolean constants True and False with
T and F, respectively. We use Iverson brackets to convert Boolean values into
bit values: [T] = 1 and [F] = 0. To compactly write if-then-else expressions we
use the ternary operator known from the C programming language: If C is a
Boolean condition and e1, e2 are arbitrary expressions, the composed expression
“C ? e1 : e2” evaluates to e1 if C = T and to e2 if C = F.

When we refer to a list or sequence we mean a (row) vector that can hold
arbitrary elements, where the empty list is denoted with ε. A list can be appended
to another list with the concatenation operator ‖, and we denote the is-prefix-of
relation with �. For instance, for lists L1 = ε and L2 = a and L3 = b ‖ c we have
L1 ‖L2 ‖L3 = a ‖ b ‖ c and L1 � L2 � L3.

Program code. We describe algorithms and security experiments using
(pseudo-)code. In such code we distinguish the following operators for assigning
values to variables: We use symbol ‘←’ when the assigned value results from a
constant expression (including the output of a deterministic algorithm), and we
write ‘←$’ when the value is either sampled uniformly at random from a finite
set or is the output of a randomized algorithm. If we assign a value that is a tu-
ple but we are actually not interested in some of its components, we use symbol
‘ ’ to mark positions that shall be ignored. For instance, (, b,)← (A,B,C) is
equivalent to b← B. If X,Y are sets we write X ∪← Y shorthand for X ← X∪Y ,
and if L1, L2 are lists we write L1

q← L2 shorthand for L1 ← L1 ‖L2. We use
bracket notation to denote associative arrays (a data structure that implements
a dictionary). Associative arrays can be indexed with elements from arbitrary
sets. For instance, for an associative array A the instruction A[7] ← 3 assigns
value 3 to index 7, and the expression A[abc] = 5 tests whether the value at
index abc is equal to 5. We write A[·] ← x to initialize the associative array A
by assigning the default value x to all possible indices. For an integer a we write
A[..., a]← x as a shortcut for ‘For all a′ ≤ a: A[a′]← x ’.

Games. Our security definitions are based on games played between a challenger
and an adversary. Such games are expressed using program code and terminate
when the special ‘Stop’ instruction is executed; the argument of the latter is the
outcome of the game. For instance, we write Pr[G⇒ 1] for the probability that
game G terminates by running into a ‘Stop with 1’ instruction. For a Boolean
condition C, in games we write ‘Require C’ shorthand for ‘If ¬C: Stop with 0’

and we write ‘Reward C’ shorthand for ‘If C: Stop with 1’. The two instructions
are used for appraising the actions of the adversary: Intuitively, if the adversary
behaves such that a required condition is violated then the adversary definitely
‘loses’ the game, and if it behaves such that a rewarded condition is met then it
definitely ‘wins’.

Scheme specifications. We also describe the algorithms of cryptographic
schemes using program code. Some algorithms may abort or fail, indicating this
by outputting the special symbol ⊥. This is implicitly assumed to happen when-
ever an encoded data structure is to be parsed into components but the encoding
turns out to be invalid. A more explicit way of aborting is via the ‘Require C’
shortcut which, in algorithm specifications, stands for ‘If ¬C: Return ⊥’. This in-
struction is typically used to assert that certain conditions hold for user-provided
input.

2.2 Classic Cryptographic Building Blocks

Our RKE constructions use MACs, one-time signature schemes, and KEMs as
building blocks. As the requirements on the MACs and one-time signatures are
standard, we provide only very reduced definitions here and defer the full speci-
fications to [14]. For KEMs, however, we assume a specific non-standard syntax,
functionality, and notion of security; the details can be found below.

MACs and One-Time Signatures. We denote the key space of a MAC M
with K, and assume that the tag and verification algorithms are called tag
and vfyM, respectively. Their syntax will always be clear from the context. As a
security notion we define strong unforgeability, and the corresponding advantage
of an adversary A we denote with Advsuf

M (A). For a one-time signature scheme S
we assume that the key generation algorithm, the signing algorithm, and the
verification algorithm are called genS and sgn and vfyS, respectively. We assume
that vfyS outputs values T or F to indicate its decision, and that the remaining
syntax will again be clear from the context. As a security notion we define strong
unforgeability, and the corresponding advantage of an adversary A we denote
with Advsuf

S (A).

Key encapsulation mechanisms. We consider a type of KEM where key pairs
are generated by first randomly sampling the secret key and then determinis-
tically deriving the public key from it. While this syntax is non-standard, note
that it can be assumed without loss of generality: One can always understand
the coins used for (randomized) key generation of a classic KEM as the secret
key in our sense.

A key encapsulation mechanism (KEM) for a finite session-key space K is a
triple K = (genK, enc,dec) of algorithms together with a samplable secret-key
space SK, a public-key space PK, and a ciphertext space C. In its regular form
the public-key generation algorithm genK is deterministic, takes a secret key
sk ∈ SK, and outputs a public key pk ∈ PK. We also use a shorthand form,

writing genK for the randomized procedure of first picking sk ←$ SK, then
deriving pk ← genK(sk), and finally outputting the pair (sk, pk). Two shortcut
notations for key generation are thus

SK → genK → PK genK →$ SK × PK .

The randomized encapsulation algorithm enc takes a public key pk ∈ PK and
outputs a session key k ∈ K and a ciphertext c ∈ C, and the deterministic
decapsulation algorithm dec takes a secret key sk ∈ SK and a ciphertext c ∈ C,
and outputs either a session key k ∈ K or the special symbol ⊥ /∈ K to indicate
rejection. Shortcut notations for encapsulation and decapsulation are thus

PK → enc→$ K × C SK × C → dec→ K / ⊥ .

For correctness we require that for all (sk, pk) ∈ [genK] and (k, c) ∈ [enc(pk)] we
have dec(sk, c) = k.

We formalize a multi-receiver/multi-challenge version of one-way security
as a security property for KEMs. In this notion, the adversary obtains chal-
lenge ciphertexts and has to recover any of the encapsulated keys. The adver-
sary is supported by a key-checking oracle that, for a provided pair of cipher-
text and (candidate) session key, tells whether the ciphertext decapsulates to
the indicated key. The adversary is also allowed to expose receivers, learning
their secret keys. The details of this notion are in game OW in the full ver-
sion [14]. For a KEM K, we associate with any adversary A its one-way advan-
tage Advow

K (A) := Pr[OW(A)⇒ 1]. Intuitively, the KEM is secure if all practical
adversaries have a negligible advantage.

2.3 Key-Updatable Key Encapsulation Mechanisms

We introduce a type of KEM that we refer to as key-updatable. Like a regular
KEM the new primitive establishes secure session keys, but in addition a ded-
icated key-update algorithm derives new (‘updated’) keys from old ones: Also
taking an auxiliary input into account that we call the associated data, a secret
key is updated to a new secret key, or a public key is updated to a new public
key. A KEM key pair remains functional under such updates, meaning that ses-
sion keys encapsulated for the public key can be recovered using the secret key
if both keys are updated compatibly, i.e., with matching associated data. Con-
cerning security we require a kind of forward secrecy: Session keys encapsulated
to a (potentially updated) public key shall remain secure even if the adversary
gets hold of any incompatibly updated version of the secret key.

A key-updatable key encapsulation mechanism (kuKEM) for a finite session-
key space K is a quadruple K = (genK, enc,dec,up) of algorithms together with
a samplable secret-key space SK, a public-key space PK, a ciphertext space C,
and an associated-data space AD. Algorithms genK, enc,dec are as for regular
KEMs. The key-update algorithm up is deterministic and comes in two shapes:
either it takes a secret key sk ∈ SK and associated data ad ∈ AD and outputs

an updated secret key sk ′ ∈ SK, or it takes a public key pk ∈ PK and associated
data ad ∈ AD and outputs an updated public key pk ′ ∈ PK. Shortcut notations
for the key update algorithm(s) are thus

SK ×AD → up→ SK PK ×AD → up→ PK .

For correctness we require that for all (sk0, pk0) ∈ [genK] and ad1, . . . , adn ∈ AD,
if we let ski = up(ski−1, adi) and pki = up(pki−1, adi) for all i, then for all
(k, c) ∈ [enc(pkn)] we have dec(skn, c) = k.

As a security property for kuKEMs we formalize a multi-receiver/multi-
challenge version of one-way security that also reflects forward security in case
of secret-key updates. It should be hard for an adversary to recover encapsulated
keys even if it obtained secret keys that are further or differently updated than
the challenge secret key(s). The details of the notion are in game KUOW in
the full version [14]. For a key-updatable KEM K, we associate with any adver-
sary A its one-way advantage Advkuow

K (A) := Pr[KUOW(A) ⇒ 1]. Intuitively,
the kuKEM is secure if all practical adversaries have a negligible advantage.

Observe that kuKEMs are related to hierarchical identity-based encryption
(HIBE, [7]): Intuitively, updating a secret key using associated data ad in the
kuKEM world corresponds in the HIBE world with extracting the decryption/
delegation key for the next-lower hierarchy level, using partial identity ad. In-
deed, a kuKEM scheme is immediately constructed from a generic HIBE, with
only cosmetic changes necessary when expressing the algorithms; we give the
details and a specific construction in the full version [14].

3 Unidirectionally Ratcheted Key Exchange (URKE)

We give a definition of unidirectional RKE and its security. While, in principle,
our syntactical definition is in line with the one from [1], our naming convention
deviates significantly from the latter for the sake of a more clear distinction
between (session) keys, (session) states, and ciphertexts6. Further, looking ahead,
our security notion for URKE is stronger than the one of [1]. A speciality of our
formalization is that we let the sending and receiving algorithms of Alice and
Bob accept and process an associated data string [15] that, for functionality, has
to match on both sides.

A unidirectionally ratcheted key exchange (URKE) for a finite key space K
and an associated-data space AD is a triple R = (init, snd, rcv) of algorithms
together with a sender state space SA, a receiver state space SB , and a ciphertext
space C. The randomized initialization algorithm init returns a sender state
SA ∈ SA and a receiver state SB ∈ SB . The randomized sending algorithm snd
takes a state SA ∈ SA and an associated-data string ad ∈ AD, and produces
an updated state S′A ∈ SA, a key k ∈ K, and a ciphertext c ∈ C. Finally, the
6 The mapping between our names (on the left of the equality sign) and the ones of [1]
(on the right) is as follows: ‘(session) key’ = ‘output key’, ‘(session) state’ = ‘session
key plus sender/receiver key’, ‘ciphertext’ = ‘update information’.

deterministic receiving algorithm rcv takes a state SB ∈ SB , an associated-data
string ad ∈ AD, and a ciphertext c ∈ C, and either outputs an updated state
S′B ∈ SB and a key k ∈ K, or the special symbol ⊥ to indicate rejection. A
shortcut notation for these syntactical definitions and a visual illustration of the
URKE communication setup is

init → SA × SB

SA ×AD → snd → SA ×K × C
SB ×AD × C → rcv → SB ×K / ⊥

snd

stateA

ad →
k ←

stateA

→ c→ rcv

stateB

← ad
→ k

stateB

Correctness of URKE. Assume a sender and a receiver that were jointly initial-
ized with init. Then, intuitively, the URKE scheme is correct if for all sequences
(adi) of associated-data strings, if (ki) and (ci) are sequences of keys and cipher-
texts successively produced by the sender on input the strings in (adi), and if
(k′i) is the sequence of keys output by the receiver on input the (same) strings
in (adi) and the ciphertexts in (ci), then the keys of the sender and the receiver
match, i.e., it holds that ki = k′i for all i.

We formalize this requirement via the FUNC game in Figure 1.7 Concretely,
we say scheme R is correct if Pr[FUNCR(A) ⇒ 1] = 0 for all adversaries A.
In the game, the adversary lets the sender and the receiver process associated-
data strings and ciphertexts of its choosing, and its goal is to let the two par-
ties compute keys that do not match when they should. Variables sA and rB

count the send and receive operations, associative array adcA jointly records
the associated-data strings considered by and the ciphertexts produced by the
sender, flag isB is an indicator that tracks whether the receiver is still ‘in-sync’
(in contrast to: was exposed to non-matching associated-data strings or cipher-
texts; note how the transition between in-sync and out-of-sync is detected and
recorded in lines 13,14), and associative array keyA records the keys established
by the sender to allow for a comparison with the keys recovered (or not) by
the receiver. The correctness requirement boils down to declaring the adversary
successful (in line 17) if the sender and the receiver compute different keys while
still being in-sync. Note finally that lines 12,16 ensure that once the rcv algo-
rithm rejects, the adversary is notified of this and further queries to the RcvB
oracle are not accepted.

Security of URKE. We formalize a key indistinguishability notion for URKE. In
a nutshell, from the point of view of the adversary, keys established by the sender
and recovered by the receiver shall look uniformly distributed in the key space. In
our model, the adversary, in addition to scheduling the regular URKE operations
via the SndA and RcvB oracles, has to its disposal the four oracles ExposeA,
ExposeB, Reveal, and Challenge, used for exposing users by obtaining copies
7 Formalizing correctness of URKE via a game might at first seem overkill. However,
for SRKE and BRKE, which allow for interleaved interaction in two directions,
game-based definitions seem to be natural and notationally superior to any other
approach. For consistency we use a game-based definition also for URKE.

Game FUNCR(A)
00 sA ← 0; rB ← 0
01 adcA[·]← ⊥
02 isB ← T
03 keyA[·]← ⊥
04 (SA, SB)←$ init
05 Invoke A
06 Stop with 0

Oracle SndA(ad)
07 (SA, k, c)←$ snd(SA, ad)
08 adcA[sA]← (ad, c)
09 keyA[sA]← k
10 sA ← sA + 1
11 Return c

Oracle RcvB(ad, c)
12 Require SB 6= ⊥
13 If isB ∧ adcA[rB] 6= (ad, c):
14 isB ← F
15 (SB , k)← rcv(SB , ad, c)
16 If SB = ⊥: Return ⊥
17 Reward isB ∧ k 6= keyA[rB]
18 rB ← rB + 1
19 Return

Fig. 1: Game FUNC for URKE scheme R.

of their current state, for learning established keys, and for requesting real-or-
random challenges on established keys, respectively. For an URKE scheme R, in
Figure 2 we specify corresponding key indistinguishability games KINDb

R, where
b ∈ {0, 1} is the challenge bit, and we associate with any adversary A its key
distinguishing advantage Advkind

R (A) := |Pr[KIND1
R(A)⇒ 1]−Pr[KIND0

R(A)⇒
1]|. Intuitively, R offers key indistinguishability if all practical adversaries have
a negligible key distinguishing advantage.

Most lines of code in the KINDb games are tagged with a ‘ · ’ right after
the line number; to the subset of lines marked in this way we refer to as the
games’ core. Conceptually, the cores contain all relevant game logic (participant
initialization, specifications of how queries are answered, etc.); the code lines
available only in the full game, i.e., the untagged ones, introduce certain restric-
tions on the adversary that are necessary to exclude trivial attacks (see below).
The games’ cores should be self-explanatory, in particular when comparing them
to the FUNC game, with the understanding that lines 18,37 (in Figure 2) ensure
that only keys can be revealed or challenged that actually have been established
before, and that line 38 assigns to variable k, depending on bit b, either the real
key or a freshly sampled element from the key space.

Note that, in the pure core code, the adversary can use the four new oracles to
bring itself into the position to distinguish real and random keys in a trivial way.
In the following we discuss five different strategies to do so. We illustrate each
strategy by specifying an example adversary in pseudocode and we explain what
measures the full games take for disregarding the respective class of attack. (That
is, the example adversaries would gain high advantage if the games consisted of
just their cores, but in the full games their advantage is zero.)

The first two strategies leverage on the interplay of Reveal and Challenge
queries; they do not involve exposing participants.

(a) The adversary requests a challenge on a key that it also reveals, it re-
quests two challenges on the same key, or similar. Example: fix some ad;
c ← SndA(ad); k ← Reveal(A, 0); k′ ← Challenge(A, 0); b′ ← [k = k′]; output b′.
The full games, in lines 20,39, overwrite keys that are revealed or challenged
with the special symbol � /∈ K. Because of lines 18,37, this prevents any
second Reveal or Challenge query involving the same key.

Game KINDb
R(A)

00 · sA ← 0; rB ← 0
01 · adcA[·]← ⊥; isB ← T
02 · keyA[·]← ⊥; keyB [·]← ⊥
03 XPA ← ∅
04 TRA ← ∅; TRB ← ∅
05 CHA ← ∅; CHB ← ∅
06 · (SA, SB)←$ init
07 · b′ ←$ A
08 Require TRA ∩ CHA = ∅
09 Require TRB ∩ CHB = ∅
10 · Stop with b′

Oracle SndA(ad)
11 · (SA, k, c)←$ snd(SA, ad)
12 · adcA[sA]← (ad, c)
13 · keyA[sA]← k
14 · sA ← sA + 1
15 · Return c

Oracle ExposeA
16 XPA

∪← {sA}
17 · Return SA

Oracle Reveal(u, i)
18 · Require keyu[i] ∈ K
19 · k ← keyu[i]
20 keyu[i]← �
21 · Return k

Oracle RcvB(ad, c)
22 · Require SB 6= ⊥
23 · If isB ∧ adcA[rB] 6= (ad, c):
24 · isB ← F
25 If rB ∈ XPA:
26 TRB

∪← [rB , ...]
27 · (SB , k)← rcv(SB , ad, c)
28 · If SB = ⊥: Return ⊥
29 If isB : k ← �
30 · keyB [rB]← k
31 · rB ← rB + 1
32 · Return

Oracle ExposeB
33 TRB

∪← [rB , ...]
34 If isB :
35 TRA

∪← [rB , ...]
36 · Return SB

Oracle Challenge(u, i)
37 · Require keyu[i] ∈ K
38 · k ← b ? keyu[i] : $(K)
39 keyu[i]← �
40 CHu

∪← {i}
41 · Return k

Fig. 2: Games KINDb, b ∈ {0, 1}, for URKE scheme R. We require � /∈ K, and in
Reveal and Challenge queries we require u ∈ {A,B}. If the notation in lines 26 or 38
is unclear, please consult Section 2.1.

(b) The adversary combines an attack from (a) with the correctness guarantee,
i.e., that in-sync receivers recover the keys established by senders. For in-
stance, the adversary reveals a sender key and requests a challenge on the cor-
responding receiver key. Example: fix some ad; c← SndA(ad); k ← Reveal(A, 0);
RcvB(ad, c); k′ ← Challenge(B, 0); b′ ← [k = k′]; output b′. The full games, in
line 29, overwrite in-sync receiver keys, as they are known (by correctness) to
be the same on the sender side, with the special symbol � /∈ K. By lines 18,37,
this rules out the attack.

The remaining three strategies involve exposing participants and using their
state to either trace their computations or impersonate them to their peer. In
the full games, the set variables XPA,TRA,TRB ,CHA,CHB (lines 03–05) help
identifying when such attacks occur. Concretely, set XPA tracks the points in
time the sender is exposed (the unit of time being the number of past send-
ing operations; see line 16), sets TRA,TRB track the indices of keys that are

‘traceable’ (in particular: recoverable by the adversary) using an exposed state
(see below), and sets CHA,CHB record the indices of keys for which a challenge
was requested (see line 40). Lines 08,09 ensure that any adversary that requests
to be challenged on a traceable key has advantage zero. Strategies (c) and (d)
are state tracing attacks, while strategy (e) is based on impersonation.
(c) The adversary exposes the receiver and uses the obtained state to trace its

computations: By iteratively applying the rcv algorithm to all later inputs of
the receiver, and updating the exposed state correspondingly, the adversary
implicitly obtains a copy of all later receiver keys. Example: fix some ad;
c ← SndA(ad); S∗B ← ExposeB(); (S∗B , k) ← rcv(S∗B , ad, c); RcvB(ad, c); k′ ←
Challenge(B, 0); b′ ← [k = k′]; output b′. When an exposure of the receiver
happens, the full games, in line 33, mark all future receiver keys as traceable.

(d) The adversary combines the attack from (c) with the correctness guarantee,
i.e., that in-sync receivers recover the keys established by senders: After
exposing an in-sync receiver, by iteratively applying the rcv algorithm to
all later outputs of the sender, the adversary implicitly obtains a copy of
all later sender keys. Example: fix some ad; c ← SndA(ad); S∗B ← ExposeB();
(S∗B , k)← rcv(S∗B , ad, c); k′ ← Challenge(A, 0); b′ ← [k = k′]; output b′. When an
exposure of an in-sync receiver happens, the full games, in lines 34,35, mark
all future sender keys as traceable.

(e) Exposing the sender allows for impersonating it: The adversary obtains a
copy of the sender’s state and invokes the snd algorithm with it, obtaining a
key and a ciphertext. The latter is provided to an in-sync receiver (rendering
the latter out-of-sync), who recovers a key that is already known to the
adversary. Example: fix some ad; S∗A ← ExposeA(); (S∗A, k, c) ←$ snd(S∗A, ad);
RcvB(ad, c); k′ ← Challenge(B, 0); b′ ← [k = k′]; output b′. The full games, in
lines 25,26, detect the described type of impersonation and mark all future
receiver keys as traceable.

We conclude with some notes on our URKE model. First, the model excludes
the (anyway unavoidable) trivial attack conditions we identified, but nothing
else. This establishes confidence in the model, as no attacks can be missed.
Further, observe that it is not possible to recover from an attack based on state
exposure (i.e., of the (c)–(e) types): If one key of a participant becomes weak as a
consequence of a state exposure, then necessarily all later keys of that participant
become weak as well. On the other hand, exposing the sender and not bringing
the receiver out-of-sync does not affect security at all.8 Finally, exposing an out-
of-sync receiver does not harm later sender keys. In later sections we consider
ratcheting primitives (SRKE, BRKE) that resume safe operation after state
exposure attacks.

4 Constructing URKE
We construct an URKE scheme that is provably secure in the model presented
in the previous section. The ingredients are a KEM (with deterministic public-
8 This is precisely the distinguishing auto-recovery property of ratcheted key exchange.

Proc init
00 (sk, pk)←$ genK
01 K ←$ K; k.m ←$ K
02 t← ε
03 SA ← (pk,K, k.m, t)
04 SB ← (sk,K, k.m, t)
05 Return (SA, SB)

Proc snd(SA, ad)
06 (pk,K, k.m, t)← SA

07 (k, c)←$ enc(pk)
08 τ ←$ tag(k.m, ad ‖ c)
09 C ← c ‖ τ
10 t

q← ad ‖C
11 k.o ‖K ‖ k.m ‖ sk ←

H(K, k, t)
12 pk ← genK(sk)
13 SA ← (pk,K, k.m, t)
14 Return (SA, k.o, C)

Proc rcv(SB , ad, C)
15 (sk,K, k.m, t)← SB

16 c ‖ τ ← C
17 Require vfyM(k.m, ad ‖ c, τ)
18 k ← dec(sk, c)
19 Require k 6= ⊥
20 t

q← ad ‖C
21 k.o ‖K ‖ k.m ‖ sk ←

H(K, k, t)
22 SB ← (sk,K, k.m, t)
23 Return (SB , k.o)

Fig. 3: Construction of an URKE scheme from a key-encapsulation mechanism K =
(genK, enc, dec), a message authentication code M = (tag, vfyM), and a random ora-
cle H. For simplicity we denote the key space of the MAC and the space of chaining
keys with the same symbol K.

key generation, see Section 2.2), a strongly unforgeable MAC, and a random
oracle H. The algorithms of our scheme are specified in Figure 3.

We describe protocol states and algorithms in more detail. The state of Alice
consists of (Bob’s) KEM public key pk, a chaining key K, a MAC key k.m, and a
transcript variable t that accumulates the associated data strings and ciphertexts
that Alice processed so far. The state of Bob is almost the same, but instead
of the KEM public key he holds the corresponding secret key sk. Initially, sk
and pk are freshly generated, random values are assigned to K and k.m, and the
transcript accumulator t is set to the empty string. A sending operation of Alice
consists of invoking the KEM encapsulation routine with Bob’s current public
key, computing a MAC tag over the ciphertext and the associated data, updating
the transcript accumulator, and jointly processing the session key established by
the KEM, the chaining key, and the current transcript with the random oracle H.
The output of H is split into the URKE session key k.o, an updated chaining
key, an updated MAC key, and, indirectly, the updated public key (of Bob) to
which Alice encapsulates in the next round. The receiving operation of Bob is
analogue to these instructions. While our scheme has some similarity with the
one of [1], a considerable difference is that the public and secret keys held by
Alice and Bob, respectively, are constantly changed. This rules out the attack
described in the introduction.

Note that our scheme is specified such that participants accumulate in their
state the full past communication history. While this eases the security analysis
(random oracle evaluations of Alice and Bob are guaranteed to be on different
inputs once the in-sync bit is cleared), it also seems to impose a severe imple-
mentation obstacle. However, as current hash functions like SHA2 and SHA3
process inputs in an online fashion (left-to-right with a small state overhead),
they can process append-only inputs like transcripts such that computations are
efficiently shared with prior invocations. In particular, with such a hash function

our URKE scheme can be implemented with constant-size state. (This requires,
though, rearranging the input of H such that t comes first).9

Theorem 1 (informal). The URKE protocol R from Figure 3 offers key indis-
tinguishability if function H is modeled as a random oracle, the KEM provides
OW security, the MAC provides SUF security, and the session-key space of the
KEM is sufficiently large.

The exact theorem statement and the respective proof are in the full ver-
sion [14]. Briefly, the proof first shows that none of Alice’s established session
keys can be derived by the adversary without breaking the security of the KEM
as long as no previous secret key of Alice’s public keys was exposed. Then we
show that Bob will only establish session keys out of sync if Alice was imperson-
ated towards him, his state was exposed before, or a MAC forgery was conducted
by the adversary. Consequently the adversary either breaks one of the employed
primitives’ security or has information-theoretically small advantage in winning
the KIND game.

5 Sesquidirectionally Ratcheted Key Exchange (SRKE)

We introduce sesquidirectionally ratcheted key exchange (see Footnote 4) as a
generalization of URKE. The basic functionality of the two primitives is the
same: Sessions involve two parties, A and B, where A can establish keys and
safely share them with B by providing the latter with ciphertexts. In contrast to
the URKE case, in SRKE also party B can generate and send ciphertexts (to A);
however, B’s invocations of the sending routine do not establish keys. Rather,
the idea behind B communicating ciphertexts to A is that this may increase
the security of the keys established by A. Indeed, as we will see, in SRKE it is
possible for B to recover from attacks involving state exposure. We proceed with
formalizing syntax and correctness of SRKE.

Formally, a SRKE scheme for a finite key space K and an associated-data
space AD is a tuple R = (init, sndA, rcvB , sndB , rcvA) of algorithms together
with a state space SA, a state space SB , and a ciphertext space C. The ran-
domized initialization algorithm init returns a state SA ∈ SA and a state SB ∈
SB . The randomized sending algorithm sndA takes a state SA ∈ SA and an
associated-data string ad ∈ AD, and produces an updated state S′A ∈ SA, a
key k ∈ K, and a ciphertext c ∈ C. The deterministic receiving algorithm rcvB

takes a state SB ∈ SB , an associated-data string ad ∈ AD, and a ciphertext
c ∈ C, and outputs either an updated state S′B ∈ SB and a key k ∈ K, or the
special symbol ⊥ to indicate rejection. The randomized sending algorithm sndB

takes a state SB ∈ SB and an associated-data string ad ∈ AD, and produces an
9 A different approach to achieve a constant-size state is to replace lines 10 and 20 by
the (non-accumulating) assignments t← (ad, C). We believe our scheme would also
be secure in this case as, intuitively, chaining key K reflects the full past communi-
cation.

updated state S′B ∈ SB and a ciphertext c ∈ C. Finally, the deterministic receiv-
ing algorithm rcvA takes a state SA ∈ SA, an associated-data string ad ∈ AD,
and a ciphertext c ∈ C, and outputs either an updated state S′A ∈ SA or the
special symbol ⊥ to indicate rejection. A shortcut notation for these syntactical
definitions is

init →$ SA × SB

SA ×AD → sndA →$ SA ×K × C
SB ×AD × C → rcvB → SB ×K / ⊥
SB ×AD → sndB →$ SB × C

SA ×AD × C → rcvA → SA / ⊥ rcvA

stateA

ad →

stateA

← c← sndB

stateB

← ad

stateB

.

sndA

stateA

ad →
k ←

stateA

→ c→ rcvB

stateB

← ad
→ k

stateB

Correctness of SRKE. Our definition of SRKE functionality is via game FUNC
in Figure 4. We say scheme R is correct if Pr[FUNCR(A) ⇒ 1] = 0 for all
adversaries A. In the figure, the lines of code tagged with a ‘ · ’ right after the
line number also appear in the URKE FUNC game (Figure 1). In comparison
with that game, there are two more oracles, SndB and RcvA, and four new
game variables, sB , rA, adcB , isA, that control and monitor the communication
in the B-to-A direction akin to how SndA,RcvB, sA, rB , adcA, isB do (like in the
URKE case) for the A-to-B direction. In particular, the isA flag is the in-sync
indicator of party A that tracks whether the latter was exposed to non-matching
associated-data strings or ciphertexts (the transition between in-sync and out-
of-sync is detected and recorded in lines 35,36). Given that the specifications
of oracles SndA and RcvB of Figures 1 and 4 coincide (with one exception:
lines 13,21 are guarded by in-sync checks (in lines 12,20) so that parties go out-
of-sync not only when processing unauthentic associated data or ciphertexts, but
also when they process ciphertexts that were generated by an out-of-sync peer10),
and that also the specifications of oracles SndB and RcvA of Figures 4 are quite
similar to them (besides the reversion of the direction of communication, the
difference is that all session-key related components were stripped off), the logics
of the FUNC game in Figure 4 should be clear. Overall, like in the URKE case,
the correctness requirement boils down to declaring the adversary successful, in
line 31, if A and B compute different keys while still being in-sync.

Epochs. The intuition behind having the B-to-A direction of communication
in SRKE is that it allows B to refresh his state every now and then, and to
inform A about this. The goal is to let B recover from state exposure.

Imagine, for example, a SRKE session where B has the following view on the
communication: first he sends four refresh ciphertexts (to A) in a row; then he
receives a key-establishing ciphertext (from A). As we assume a fully concurrent
setting and do not impose timing constraints on the network delivery, the incom-
ing ciphertext can have been crafted by A after her having received (from B)
10 This approach is borrowed from [11,6].

Game FUNCR(A)
00 · sA ← 0; rB ← 0
01 sB ← 0; rA ← 0
02 eA ← 0; EPA[·]← ⊥
03 E`B ← 0; EaB ← 0
04 · adcA[·]← ⊥; isB ← T
05 adcB [·]← ⊥; isA ← T
06 · keyA[·]← ⊥
07 · (SA, SB)←$ init
08 · Invoke A
09 · Stop with 0

Oracle SndA(ad)
10 Require SA 6= ⊥
11 · (SA, k, c)←$ sndA(SA, ad)
12 If isA:
13 · adcA[sA]← (ad, c)
14 EPA[sA]← eA

15 · keyA[sA]← k
16 · sA ← sA + 1
17 · Return c

Oracle SndB(ad)
18 Require SB 6= ⊥
19 (SB , c)←$ sndB(SB , ad)
20 If isB :
21 adcB [sB]← (ad, c)
22 EaB ← EaB + 1
23 sB ← sB + 1
24 Return c

Oracle RcvB(ad, c)
25 · Require SB 6= ⊥
26 · If isB ∧ adcA[rB] 6= (ad, c):
27 · isB ← F
28 If isB : E`B ← EPA[rB]
29 · (SB , k)← rcvB(SB , ad, c)
30 · If SB = ⊥: Return ⊥
31 · Reward isB ∧ k 6= keyA[rB]
32 · rB ← rB + 1
33 · Return

Oracle RcvA(ad, c)
34 Require SA 6= ⊥
35 If isA ∧ adcB [rA] 6= (ad, c):
36 isA ← F
37 If isA: eA ← eA + 1
38 SA ← rcvA(SA, ad, c)
39 If SA = ⊥: Return ⊥
40 rA ← rA + 1
41 Return

Fig. 4: Game FUNC for SRKE scheme R. The lines of code tagged with a ‘ · ’ also
appear in the URKE FUNC game. Note that the variables eA,EPA,E`B ,EaB do not
influence the the game outcome.

between zero and four ciphertexts. That is, even though B refreshed his state a
couple of times, to achieve correctness he has to remain prepared for recovering
keys from ciphertexts that were generated by A before she recognized any of the
refreshs. However, after processing A’s ciphertext, if A created it after receiving
some of B’s ciphertexts (say, the first three), then the situation changes in that
B is no longer required to process ciphertexts that refer to refreshs older than
the one to which A’s current answer is responding to (in the example: the first
two).

These ideas turn out to be pivotal in the definition of SRKE security. We
formalize them by introducing the notion of an epoch. Epochs start when the
sndB algorithm is invoked (each invocation starts one epoch), they are sequen-
tially numbered, and the first epoch (with number zero) is implicitly started by
the init algorithm. Each rcvA invocation makes A aware of one new epoch, and

subsequent sndA invocations can be seen as occurring in its context. Finally, on
B’s side multiple epochs may be active at the same time, reflecting that B has
to be ready to process ciphertexts that were generated by A in the context of
one of potentially many possible epochs. Intuitively, epochs end (on B’s side) if
a ciphertext is received (from A) that was sent in the context of a later epoch.

We represent the span of epochs supported by B with the interval variable EB

(see Section 2.1): its boundaries E`B and EaB reflect at any time the earliest and
the latest such epoch. Further, we use variable eA to track the latest epoch
started by B that party A is aware of, and associative array EPA to register
for each of A’s sending operations the context, i.e., the epoch number that A is
(implicitly) referring to. In more detail, the invocation of init is accompanied by
setting E`B,EaB, eA to zero (in lines 02,03), each sending operation of B introduces
one more supported epoch (line 22), each receiving operation of A increases the
latter’s awareness of epochs supported by B (line 37), the context of each sending
operation of A is recorded in EPA (line 14), and each receiving operation of B
potentially reduces the number of supported epochs by dropping obsolete ones
(line 28). Observe that tracking epochs is not meaningful after participants get
out-of-sync; we thus guard lines 28,37 with corresponding tests.

Security of SRKE. Our SRKE security model lifts the one for URKE to the bidi-
rectional (more precisely: sesquidirectional) setting. The goal of the adversary is
again to distinguish established keys from random. For a SRKE scheme R, the
corresponding key indistinguishability games KINDb

R, for challenge bit b ∈ {0, 1},
are specified in Figure 5. With any adversary A we associate its key distin-
guishing advantage Advkind

R (A) := |Pr[KIND1
R(A) ⇒ 1] − Pr[KIND0

R(A) ⇒ 1]|.
Intuitively, R offers key indistinguishability if all practical adversaries have a
negligible key distinguishing advantage.

The new KIND games are the natural amalgamation of the (URKE) KIND
games of Figure 2 with the (SRKE) FUNC game of Figure 4 (with the excep-
tions discussed below). Concerning the trivial attack conditions on URKE that
we identified in Section 3, we note that conditions (a) and (b) remain valid for
SRKE without modification, conditions (c) and (d) (that consider attacks on par-
ticipants by tracing their computations) need a slight adaptation to reflect that
updating epochs repairs the damage of state exposures, and condition (e) (that
considers impersonation of exposed A to B), besides needing a slight adaptation,
requires to be complemented by a new condition that considers that exposing B
allows for impersonating him to A.

When comparing the KIND games from Figures 2 and 5, note that a crucial
difference is that the keyA, keyB arrays in the URKE model are indexed with
simple counters, while in the SRKE model they are indexed with pairs where
the one element is the same counter as in the URKE case and the other element
indicates the epoch for which the corresponding key was established11. The new
indexing mechanism allows, when B is exposed, for marking as traceable only
11 The adversary always knows the epoch numbers associated with keys, so it can pose

meaningful Reveal and Challenge queries just as before.

Game KINDb
R(A)

00 · sA ← 0; rB ← 0
01 · sB ← 0; rA ← 0
02 · eA ← 0; EPA[·]← ⊥
03 · E`B ← 0; EaB ← 0
04 · adcA[·]← ⊥; isB ← T
05 · adcB [·]← ⊥; isA ← T
06 keyA[·]← ⊥; keyB [·]← ⊥
07 XPA ← ∅; XPB ← ∅
08 TRA ← ∅; TRB ← ∅
09 CHA ← ∅; CHB ← ∅
10 · (SA, SB)←$ init
11 · b′ ←$ A
12 Require TRA ∩ CHA = ∅
13 Require TRB ∩ CHB = ∅
14 · Stop with b′

Oracle SndA(ad)
15 · Require SA 6= ⊥
16 · (SA, k, c)←$ sndA(SA, ad)
17 · If isA:
18 · adcA[sA]← (ad, c)
19 · EPA[sA]← eA

20 keyA[eA, sA]← k
21 · sA ← sA + 1
22 · Return c

Oracle RcvA(ad, c)
23 · Require SA 6= ⊥
24 · If isA ∧ adcB [rA] 6= (ad, c):
25 · isA ← F
26 If rA ∈ XPB :
27 TRA

∪← N× [sA, ...]
28 · If isA: eA ← eA + 1
29 · SA ← rcvA(SA, ad, c)
30 · If SA = ⊥: Return ⊥
31 · rA ← rA + 1
32 · Return

Oracle RcvB(ad, c)
33 · Require SB 6= ⊥
34 · If isB ∧ adcA[rB] 6= (ad, c):
35 · isB ← F
36 If rB ∈ XPA:
37 TRB

∪← N× [rB , ...]
38 · If isB : E`B ← EPA[rB]
39 · (SB , k)← rcvB(SB , ad, c)
40 · If SB = ⊥: Return ⊥
41 If isB : k ← �
42 keyB [E`B , rB]← k
43 · rB ← rB + 1
44 · Return

Oracle SndB(ad)
45 · Require SB 6= ⊥
46 · (SB , c)←$ sndB(SB , ad)
47 · If isB :
48 · adcB [sB]← (ad, c)
49 · EaB ← EaB + 1
50 · sB ← sB + 1
51 · Return c

Oracle ExposeA
52 If isA: XPA

∪← {sA}
53 Return SA

Oracle ExposeB
54 TRB

∪← [E`B ..EaB]× [rB , ...]
55 If isB :
56 XPB

∪← {sB}
57 TRA

∪← [E`B ..EaB]× [rB , ...]
58 Return SB

Oracle Reveal(u, i)
as in URKE (Fig. 2)

Oracle Challenge(u, i)
as in URKE (Fig. 2)

Fig. 5: Games KINDb, b ∈ {0, 1}, for SRKE scheme R. Lines of code tagged with a ‘ · ’
similarly appear in the SRKE FUNC game in Figure 4.

those future keys of A and B that belong to the epochs managed by B at the
time of exposure (lines 54,57). This already implements the necessary adaptation
of conditions (c) and (d) to the SRKE setting. The announced adaptation of
condition (e) is executing line 52 only if isA = T; the change is due as the
motivation given in Section 3 is valid only if A is in-sync (which is always the
case in URKE, but not in SRKE). Finally, complementing condition (e), we
identify the following new trivial attack condition:

(f) Exposing party B allows for impersonating it: Assume parties A and B
are in-sync. The adversary obtains a copy of B’s state and invokes the
sndB algorithm with it, obtaining a ciphertext which it provides to party A
(rendering the latter out-of-sync). If then A generates a new key using
the sndA algorithm, the adversary can feed the resulting ciphertext into
the rcvB algorithm, recovering the key. Example: fix some ad, ad ′; S∗B ←
ExposeB(); (S∗B , c) ←$ sndB(S∗B , ad); RcvA(ad, c); c′ ← SndA(ad ′); (S∗B , k) ←
rcvB(S∗B , ad ′, c′); k′ ← Challenge(A, 0); b′ ← [k = k′]; output b′. Lines 26,27 (in
conjunction with lines 07,56) detect the described type of impersonation and
mark all future keys of A as traceable.

This completes the description of our SRKE security model. As in URKE, it
excludes the minimal set of attacks, indicating that it gives strong security guar-
antees.

6 Constructing SRKE

We present a SRKE construction that generalizes our URKE scheme to the
sesquidirectional setting. The core intuition is as follows: Like in the URKE
scheme, A-to-B ciphertexts correspond with KEM ciphertexts where the cor-
responding public and secret keys are held by A and B, respectively, and the
two keys are evolved to new keys after each use. In addition to this, with the
goal of letting B heal from state exposures, our SRKE construction gives him the
option to sanitize his state by generating a fresh KEM key pair and communicat-
ing the corresponding public key to A (using the B-to-A link specific to SRKE).
The algorithms of our protocol are specified in Figure 6. Although the sketched
approach might sound simple and natural, the algorithms, quite surprisingly,
are involved and require strong cryptographic building blocks (a key-updatable
KEM and a one-time signature scheme, see Section 2). Their complexity is a
result of SRKE protocols having to simultaneously offer solutions to multiple
inherent challenges. We discuss these in the following.

Epoch management. Recall that we assume a concurrent setting for SRKE
and that, thus, if B refreshes his state via the sndB algorithm, then he still
has to keep copies of the secret keys maintained for prior epochs (so that the
rcvB algorithm can properly process incoming ciphertexts created for them). Our
protocol algorithms implement this by including in B’s state the array SK [·] in
which sndB stores all keys it generates (line 27; obsolete keys of expired epochs
are deleted by rcvB in line 47). Beyond that, both A and B maintain an interval
variable E in their state: its boundaries E` and Ea are used by B to reflect the
earliest and latest supported epoch, and by A to keep track of epoch updates
that occur in direct succession (i.e., that are still waiting for their ‘activation’
by sndA). Note finally that the sndA algorithm communicates to rcvB in every
outgoing ciphertext the epoch in which A is operating (line 12).

Secure state update. Assume A executes once the sndA algorithm, then twice
the rcvA algorithm, and then again once the sndA algorithm. That is, following

Proc init
00 (sgk, vfk)←$ genS
01 · (sk, pk)←$ genK
02 · K ←$ K; k.m ←$ K; t← ε
03 E` ← 0; Ea ← 0
04 s← 0; r ← 0
05 PK [·]← ⊥; PK [0]← pk
06 SK [·]← ⊥; SK [0]← sk
07 LA[·]← ⊥; LB [·]← ⊥; LA[0]← �
08 SA ← (PK , E, s, LA, vfk,K, k.m, t)
09 SB ← (SK , E, r, LB , sgk,K, k.m, t)
10 Return (SA, SB)

Proc sndA(SA, ad)
11 (PK , E, s, L, vfk,K, k.m, t)← SA

12 k∗ ← ε; C ← Ea
13 For e′ ← E` to Ea:
14 · (k, c)←$ enc(PK [e′])
15 k∗

q← k; C q← c
16 · τ ←$ tag(k.m, ad ‖C)
17 · C q← τ ; t q← . ‖ ad ‖C
18 · k.o ‖K ‖ k.m ‖ sk ← H(K, k∗, t)
19 · pk ← genK(sk)
20 PK [..., (Ea − 1)]← ⊥; PK [Ea]← pk
21 E` ← Ea; s← s+ 1; L[s]← ad ‖C
22 SA ← (PK , E, s, L, vfk,K, k.m, t)
23 Return (S, k.o, C)

Proc sndB(SB , ad)
24 (SK , E, r, L, sgk,K, k.m, t)← SB

25 (sk∗, pk∗)←$ genK
26 (sgk∗, vfk∗)←$ genS
27 Ea ← Ea + 1; SK [Ea]← sk∗
28 C ← r ‖ pk∗ ‖ vfk∗
29 σ ←$ sgn(sgk, ad ‖C)
30 C

q← σ; L[Ea]← / ‖ ad ‖C
31 SB ← (SK , E, r, L, sgk∗,K, k.m, t)
32 Return (SB , C)

Proc rcvB(SB , ad, C)
33 (SK , E, r, L, sgk,K, k.m, t)← SB

34 t∗ ← ad ‖C; C ‖ τ ← C
35 · Require vfyM(k.m, ad ‖C, τ)
36 k∗ ← ε; e ‖C ← C
37 Require E` ≤ e ≤ Ea

38 t
q← L[E` + 1] ‖ . . . ‖L[e]

39 L[..., e]← ⊥
40 For e′ ← E` to e:
41 c ‖C ← C
42 · k ← dec(SK [e′], c)
43 · Require k 6= ⊥
44 k∗

q← k
45 t

q← . ‖ t∗
46 · k.o ‖K ‖ k.m ‖ sk ← H(K, k∗, t)
47 SK [..., (e− 1)]← ⊥; SK [e]← sk
48 For e′ ← e+ 1 to Ea:
49 SK [e′]← up(SK [e′], t∗)
50 E` ← e; r ← r + 1
51 SB ← (SK , E, r, L, sgk,K, k.m, t)
52 Return (SB , k.o)

Proc rcvA(SA, ad, C)
53 (PK , E, s, L, vfk,K, k.m, t)← SA

54 t
q← / ‖ ad ‖C; C ‖σ ← C

55 Require vfyS(vfk, ad ‖C, σ)
56 r ‖ pk∗ ‖ vfk ← C
57 Require L[r] 6= ⊥
58 L[..., (r − 1)]← ⊥; L[r]← �
59 For s′ ← r + 1 to s:
60 pk∗ ← up(pk∗, L[s′])
61 Ea ← Ea + 1; PK [Ea]← pk∗
62 SA ← (PK , E, s, L, vfk,K, k.m, t)
63 Return SA

Fig. 6: Construction of a SRKE scheme from a key-updatable KEM K =
(genK, enc, dec), a message authentication code M = (tag, vfyM), a one-time signa-
ture scheme S = (genS, sgn, vfyS), and a random oracle H. For simplicity we denote the
key space of the MAC and the space of chaining keys with the same symbol K.
Notation: Lines 07,58: If an entry of an array is expected to contain a ciphertext, but
clearly the value of the ciphertext will not any more matter, we instead store the place-
holder symbol �. Line 38: If E` = e then no value shall be concatenated to t. Line 41:
The last iteration of the loop is meant to clear C; a more precise version of the line
would say “If e′ < e then c ‖C ← C else c ← C”. Lines 17,45,54,30: We use labels .
and / in transcript fragments to distinguish whether they emerged in the A-to-B or
B-to-A direction. Lines of code tagged with a ‘ · ’ depict the URKE construction’s core.

the above sketch of our protocol, as part of her first sndA invocation she will
encapsulate to a public key that she subsequently updates (akin to how she would
do in our URKE solution, see lines 07,12 of Figure 3), then she will receive two
fresh public keys from B, and finally she will again encapsulate to a public
key that she subsequently updates. The question is: Which public key shall she
use in the last step? The one resulting from the update during her first sndA

invocation, the one obtained in her first rcvA invocation, or the one obtained in
her second rcvA invocation? We found that only one configuration is safe against
key distinguishing attacks: Our SRKE protocol is such that she encapsulates to
all three, combining the established session keys into one via concatenation.12
13 The algorithms implement this by including in A’s state the array PK [·] in
which rcvA stores incoming public keys (line 61) and which sndA consults when
establishing outgoing ciphertexts (lines 13–15; the counterpart on B’s side is in
lines 40–44). Once the switch to the new epoch is completed, the obsolete public
keys are removed from A’s state (line 20). If A executes sndA many times in
succession, then all but the first invocation will, akin to the URKE case, just
encapsulate to the (one) evolved public key from the preceding invocation.

We discuss a second issue related to state updates. Assume B executes three
times the sndB algorithm and then once the rcvB algorithm, the latter on input a
well-formed but non-authentic ciphertext (e.g., the adversary could have created
the ciphertext, after exposing A’s state, using the sndA algorithm). In the terms
of our security model the latter action brings B out-of-sync, which means that
if he is subsequently exposed then this should not affect the security of further
session keys established by A. On the other hand, according to the description
provided so far, exposing B’s state means obtaining a copy of array SK [·], i.e.,
of the decapsulation keys of all epochs still supported by B. We found that this
easily leads to key distinguishing attacks,14 so in order to protect the elements of
SK [·] they are evolved by the rcvB algorithm whenever an incoming ciphertext
is processed. We implement the latter via the dedicated update procedure up
provided by the key-updatable KEM. The corresponding lines are 48–49 (note
that t∗ is the current transcript fragment, see line 34). Of course A has to
synchronize on B’s key updates, which she does in lines 59–60, where array L[·]
is the state variable that keeps track of the corresponding past A-to-B transcript
fragments. (Outgoing ciphertexts are stored in L[·] in line 21, and obsolete ones
are removed from it in line 58.) Note that A, for staying synchronized with B,
also needs to keep track of the ciphertexts that he received (from her) so far; for
this reason, B indicates in every outgoing ciphertext the number r of incoming
ciphertexts he has been exposed to (lines 56,28).

Transcript management. Recall that one element of the participants’ state
in our URKE scheme (in Figure 3) is the variable t that accumulates transcript
12 We discuss why it is unsafe to encapsulate to only a subset of the keys in Ap-

pendix A.3.
13 The concatenation of keys of an OW secure KEM can be seen as the implementation

of a secure combiner in the spirit of [8].
14 We discuss this further in Appendix A.2.

information (associated data and ciphertexts) of prior communication so that it
can be input to key derivation. This is a common technique to ensure that the
keys established on the two sides start diverging in the moment an active attack
occurs. Also our SRKE construction follows this approach, but accumulating
transcripts is more involved if communication is concurrent: If both A and B
would add outgoing ciphertexts to their transcript accumulator directly after
creating them, then concurrent sending would immediately desynchronize the
two parties. This issue is resolved in our construction as follows: In the B-to-
A direction, while A appends incoming ciphertexts (from B) to her transcript
variable in the moment she receives them (line 54), when creating the ciphertexts,
B will just record them in his state variable L[·] (line 30), and postpone adding
them to his transcript variable to the point when he is able to deduce (from A’s
ciphertexts) the position of when she did (line 38; obsolete entries are removed in
line 39). The A-to-B direction is simpler15 and handled as in our URKE protocol:
A updates her transcript when sending a ciphertext (line 17), and B updates
his transcript when receiving it (lines 34,45). Note we tag transcript fragments
with labels . or / to indicate whether they emerged in the A-to-B or B-to-A
direction of communication (e.g., in lines 17,30).
Authentication. To reach security against active adversaries we protect the
SRKE ciphertexts against manipulation. Recall that in our URKE scheme a
MAC was sufficient for this. In SRKE, a MAC is still sufficient for the A-to-B
direction (lines 16,35), but for the B-to-A direction, to defend against attacks
where the adversary first exposes A’s state and then uses the obtained MAC
key to impersonate B to her,16 we need to employ a one-time signature scheme:
Each ciphertext created by B includes a freshly generated verification key that
is used to authenticate the next B-to-A ciphertext (lines 26,28,29,55,56).

The only lines we did not comment on are 18,19,25,46—those that also form
the core of our URKE protocol (which are discussed in Section 4).

Practicality of our construction. We remark that the number of updates per
kuKEM key pair is bounded by the number of ciphertexts sent by A during
one round-trip time (RTT) on the network between A and B (intuitively by
the number of ciphertexts sent by A that cross the wire with one epoch update
ciphertext from B). Ciphertexts that B did not know of when proposing an
epoch (1/2 RTT) and ciphertexts A sent until she received the epoch proposal
(1/2 RTT) are regarded for an update of a key pair. As a result, the hierarchy of
an HIBE can be bounded by this number of ciphertexts when used for building
a kuKEM for SRKE.
Theorem 2 (informal). The SRKE protocol R from Figure 6 offers key indis-
tinguishability if function H is modeled as a random oracle, the kuKEM provides
15 Intuitively the disbalance comes from the fact that keys are only established by
A-to-B ciphertexts and that transcripts are only used for key derivation.

16 Note this is not an issue in the A-to-B direction: Exposing B and impersonating
A to him leads to marking all future keys of B as traceable anyway, without any
option to recover. We expand on this in Appendix A.1.

KUOW security, the one-time signature scheme provides SUF security, the MAC
provides SUF security, and the session-key space of the kuKEM is sufficiently
large.

The exact theorem statement and the respective proof are in the full ver-
sion [14]. The approach of the proof is the same as in our URKE proof but with
small yet important differences: (1) the proof reduces signature forgeries to the
SUF security of the signature scheme to show that communication from B to A
is authentic, (2) the security of session keys established by A is reduced to the
KUOW security of the kuKEM. The reduction to the KUOW game is split into
three cases: (a) session keys established by A in sync, (b) the first session key
established by A out of sync, and (c) all remaining session keys established by A
out of sync. This distinction is made as in each of these cases a different encap-
sulated key—as part of the random oracle input—is assumed to be unknown to
the adversary. Finally the SRKE proof—as in the URKE proof—makes use of
the MAC’s SUF security to show that B will never establish challengeable keys
out of sync.

7 From URKE and SRKE to BRKE

In Sections 3–6 we proposed security models and constructions for URKE and
SRKE. For space reasons we defer the corresponding formalizations for BRKE
(bidirectional RKE) to the full version [14]. Here we quickly sketch how one can
obtain notions and constructions for the latter from the former.

The syntax, correctness, and security definitions for BRKE can be seen as
an amalgamation of two copies of the corresponding definitions for SRKE, one
in each direction of communication. Fortunately, several of the game variables
can be unified so that the games remain relatively compact.

The same type of amalgamation can be applied to obtain a BRKE construc-
tion: While just running two generic SRKE instances side by side (in reverse
directions) is not sufficient to obtain a secure solution, carefully binding them
together, in our case with one-time signatures as an auxiliary tool, is. More pre-
cisely, each BRKE send operation results in (1) the creation of a fresh one-time
signature key pair, (2) the invocation of the two SRKE send routines (the one
in the A-to-B and the other in the B-to-A direction) where the signature verifi-
cation key is provided as associated data, (3) encoding the verification key and
the two SRKE ciphertexts into a single ciphertext and securing the latter with
a signature. See [14] for the details.

Acknowledgments. We thank Fabian Weißberg for very inspiring discussions
at the time we first explored the topic of ratcheted key exchange. We further
thank Giorgia Azzurra Marson and anonymous reviewers for comments and feed-
back on the article. (This holds especially for a EUROCRYPT 2018 reviewer who
identified an issue in a prior version of our URKE construction.) Bertram Po-
ettering conducted part of the work at Ruhr University Bochum supported by

ERC Project ERCC (FP7/615074). Paul Rösler received support by SyncEnc,
funded by the German Federal Ministry of Education and Research (BMBF,
FKZ: 16KIS0412K).

References

1. Bellare, M., Singh, A.C., Jaeger, J., Nyayapati, M., Stepanovs, I.: Ratcheted en-
cryption and key exchange: The security of messaging. In: Katz, J., Shacham, H.
(eds.) CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 619–650. Springer, Heidel-
berg, Germany, Santa Barbara, CA, USA (Aug 20–24, 2017)

2. Bellare, M., Yee, B.S.: Forward-security in private-key cryptography. In: Joye, M.
(ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 1–18. Springer, Heidelberg, Germany,
San Francisco, CA, USA (Apr 13–17, 2003)

3. Borisov, N., Goldberg, I., Brewer, E.A.: Off-the-record communication, or, why not
to use PGP. In: Atluri, V., Syverson, P.F., di Vimercati, S.D.C. (eds.) Proceedings
of the 2004 ACMWPES 2004, Washington, DC, USA, October 28, 2004. pp. 77–84.
ACM (2004)

4. Cohn-Gordon, K., Cremers, C.J.F., Dowling, B., Garratt, L., Stebila, D.: A formal
security analysis of the signal messaging protocol. In: 2017 IEEE EuroS&P 2017,
Paris, France, April 26-28, 2017. pp. 451–466. IEEE (2017)

5. Cohn-Gordon, K., Cremers, C.J.F., Garratt, L.: On post-compromise security. In:
IEEE CSF 2016, Lisbon, Portugal, June 27 - July 1, 2016. pp. 164–178. IEEE
Computer Society (2016)

6. Eugster, P.T., Marson, G.A., Poettering, B.: A cryptographic look at multi-party
channels. 31st IEEE Computer Security Foundations Symposium 2018 (to appear)

7. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg, Germany,
Queenstown, New Zealand (Dec 1–5, 2002)

8. Giacon, F., Heuer, F., Poettering, B.: KEM combiners. In: Public Key Cryptog-
raphy (1). Lecture Notes in Computer Science, vol. 10769, pp. 190–218. Springer
(2018)

9. Langley, A.: Source code of Pond (05 2016), https://github.com/agl/pond
10. Marlinspike, M., Perrin, T.: The double ratchet algorithm (11 2016),

https://whispersystems.org/docs/specifications/doubleratchet/
doubleratchet.pdf

11. Marson, G.A., Poettering, B.: Security notions for bidirectional channels. IACR
Trans. Symm. Cryptol. 2017(1), 405–426 (2017)

12. Moscaritolo, V., Belvin, G., Zimmermann, P.: Silent Circle Instant Messaging Pro-
tocol protocol specification (2012), https://silentcircle.com/sites/default/
themes/silentcircle/assets/downloads/SCIMP_paper.pdf

13. Off-the-Record Messaging. http://otr.cypherpunks.ca (2016)
14. Poettering, B., Rösler, P.: Asynchronous ratcheted key exchange. Cryptology

ePrint Archive, Report 2018/296 (2018), https://eprint.iacr.org/2018/296
15. Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.)

ACM CCS 02. pp. 98–107. ACM Press, Washington D.C., USA (Nov 18–22, 2002)
16. Rösler, P., Mainka, C., Schwenk, J.: More is less: On the end-to-end security of

group chats in Signal, WhatsApp, and Threema. IEEE EuroS&P 2018 (2018)
17. Schneier, B., Kelsey, J.: Secure audit logs to support computer forensics. ACM

Trans. Inf. Syst. Secur. 2(2), 159–176 (1999)

https://github.com/agl/pond
https://whispersystems.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://whispersystems.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://silentcircle.com/sites/default/themes/silentcircle/assets/downloads/SCIMP_paper.pdf
https://silentcircle.com/sites/default/themes/silentcircle/assets/downloads/SCIMP_paper.pdf
http://otr.cypherpunks.ca
https://eprint.iacr.org/2018/296

18. Unger, N., Dechand, S., Bonneau, J., Fahl, S., Perl, H., Goldberg, I., Smith, M.:
SoK: Secure messaging. In: 2015 IEEE Symposium on Security and Privacy. pp.
232–249. IEEE Computer Society Press, San Jose, CA, USA (May 17–21, 2015)

19. Zimmermann, P., Johnston, A., Callas, J.: ZRTP: Media path key agreement
for unicast secure RTP. RFC 6189, RFC Editor (April 2011), http://www.
rfc-editor.org/rfc/rfc6189.txt

A Rationale for SRKE design

We sketched the reasons for employing sophisticated primitives as basic blocks
for our design of SRKE in the main body. In this section we develop more
detailed arguments for our design choices by providing attacks on constructions
different from our design. At first it is described why SRKE requires signatures
for protecting the communication from B to A—in contrast to employing a
MAC from A to B. Then we will evaluate the requirements for the KEM key
pair update in the setting of concurrent sending of A and B.

A.1 Signatures from A to B

While a MAC suffices to protect authenticity for ciphertexts sent from A to B it
does not suffice to protect the authenticity in the counter direction. The reason
for this lies within the conditions with which future session keys of A and B are
marked traceable in the KINDR game of SRKE. An impersonation of A towards
B has the same effect on the traceability of B’s future session keys as if the
adversary exposes B’s state and then brings B out of sync. Either way all future
session keys of B are marked traceable (see Figure 5 lines 37 and 54,38). In the
first scenario, the adversary can compute the same session keys as B because
the adversary initiates the key establishment impersonating A. In the second
scenario, the adversary can comprehend B’s computations during the receipt of
ciphertexts because it possesses the same state information as B.

For computations of A, however, only the former scenario is applicable: if
the adversary impersonated B towards A, then again the adversary is in the
position to trace the establishment of session keys of A because it can simulate
the respective counterpart’s receiver computations. In contrast to this, when
exposing A and bringing her out of sync, according to the KINDR game, the
adversary must not obtain information on her future session keys (see Figure 5
lines 52 et seqq.). As a result, the exposure of A’s state should not enable the
adversary to impersonate B towards A. Consequently the authentication of the
communication from B to A cannot be reached by a primitive with a symmetric
secret but rather the protocol needs to ensure that B needs to be exposed in
order to impersonate him towards A.

The non-trivial attack that is defended by employing signatures consists of
the following adversary behavior: SA ← ExposeA; Extract authentication secrets
from SA to derive S′B ; (C′, S′′B)←$ sndB(S′B , ε); RcvA(C′, ε); CA1 ←$ SndA(ε); kb ←$

Challenge(A, 1). Thereby the adversary must not be able to decide whether it

http://www.rfc-editor.org/rfc/rfc6189.txt
http://www.rfc-editor.org/rfc/rfc6189.txt

obtained the real or random key for ciphertext CA1 from the challenge oracle.
Please note that this is related to key-compromise impersonation resilience (while
in this case ephemeral signing keys are compromised).

A.2 Key-Updatable KEM for Concurrent Sending

There exist two crucial properties that are required from the key pair update of
the KEM in the setting in which A and B send concurrently. Firstly, the key
update needs to be forward secure which means that an updated secret key does
not reveal information on encapsulations to previous secret keys or to differently
updated secret keys. Secondly, the update of the public key must not reveal
information on keys that will be encapsulated to its respective secret key. We
will explain the necessity of these requirements one after another.

The key pair update for concurrently sending only affects epochs that have
been proposed by B, but that have not been processed by A yet. These updates
have to consider ciphertexts that A sent during the transmission of the public
key for a new epoch from B to A. Subsequently we describe an example scenario
in which these updates are necessary for defending a non-trivial attack: In the
worst case, all secrets among A and B have been exposed to the adversary be-
fore B proposes a new epoch (SA ← ExposeA; SB ← ExposeB). Thereby only a
public key sent by B after the exposure will provide security for future session key
establishments initiated by A. Now consider a scenario in which B proposes this
new public key to A (CB1 ←$ SndB(ε); RcvA(CB1, ε)) and A is simultaneously im-
personated towards B ((S′A, k′, C′)←$ sndA(SA, ε); RcvB(C′, ε)). Since B proposed
the new public key within CB1 in sync and A received it in sync respectively—
and B was not exposed under the new state—, future established session keys of
A are considered to be indistinguishable from random key space elements again
(CA1 ←$ SndA(ε); kb ←$ Challenge(A, 1)). Due to the impersonation of A towards
B, however, B became out of sync. Becoming out of sync cannot be detected by
B because the adversary can send a valid ciphertext C ′ under the exposed state
of A SA. Exposing B out of sync afterwards (S′B ← ExposeB), by definition, must
not have an impact on the security of session keys established by A (see Figure 5
line 55). As a result, after the adversary performed these steps, the challenged
session key is required to be indistinguishable from a random element from the
key space. Consequently B must perform an update of the secret key for the
newest epoch when receiving C ′ such that the public key transmitted in CB1
still provides its security guarantees when using it in A’s final send operation
(remember that all previous secrets among A and B were exposed before).

When accepting that an update of B’s future epoch’s secret keys is required
at the receipt of ciphertexts, another condition arises for the respective update
of A’s public keys. For maintaining correctness, A of course needs to compute
updates of a received new public key with respect to all previously sent cipher-
texts that B was not aware of when sending the public key. Suppose A’s and
B’s secrets have all been exposed towards the adversary again (SA ← ExposeA;
SB ← ExposeB). Now A sends a new key establishing ciphertext and B proposes
a new epoch public key (CA1 ←$ SndA(ε); CB1 ←$ SndB(ε)). According to the

previous paragraph, A needs to update the received public key in CB1 with re-
spect to CA1 after receiving CB1 (RcvA(CB1, ε)). Since CB1 introduces a new
epoch, the next send operation of A needs to establish a secure session key again
(CA2 ←$ SndA(ε); kb ←$ Challenge(A, 2)). Now observe that in order to update
the received public key, A can only use information from her state SA—which is
known by the adversary—, public information like the transmitted ciphertexts,
and randomness. Essentially, the update can hence only depend on information
that the adversary knows plus random coins which cannot be transmitted confi-
dentially to B before performing the update (because there exist no secrets apart
from the key pair that first needs to be updated). Since B probably received CA1
before A received CB1, A cannot influence the update performed by B on his
secret key. This means that the updates of A and B need to be conducted in-
dependently. As such, the adversary is able to perform the update on the same
information that A has (only randomness of A and the adversary can differ).
Nevertheless, both updates—the one performed by the adversary and the one
performed by A—need to be compatible to the secret key that B derives from his
update. As a result, the update of the public key must not reveal the respective
secret key (or any other information that can be used to obtain information on
keys encapsulated to this updated public key). Otherwise, the adversary would
obtain this information as well (and thereby the security of key (A, 2) would not
be preserved).

Both requirements are reflected in the security game of the kuKEM (see full
version [14]).

A.3 Encapsulation to All Public Keys

Subsequently we describe a scenario in which A only maintains one public key
in her state to which she can securely encapsulate keys (while the state contains
multiple useless public keys). This scenario is crucial because A does not know,
which of her public keys provides security, and the SRKE protocol is required
to output secure session keys in this scenario. Consequently only encapsulating
to all public keys in A’s state solves the underlying issue. The reasons for en-
capsulating to all public keys in A’s state is closely related to the reasons for
employing a kuKEM in SRKE (see the previous subsection).

Assume the adversary exposes the states of both parties (SA ← ExposeA;
SB ← ExposeB). Consequently none of A’s public keys provides any security
guarantees for the encapsulation towards the adversary anymore. If the adversary
lets B send a ciphertext and thereby propose a new public key to A, A’s future
session keys are required to be secure again (CB1 ←$ SndB(ε); RcvA(CB1, ε)).
Impersonating A towards B and then exposing B to obtain his state has—
according to the KINDR game—no influence on the traceability of A’s future
session keys ((S′A, k′, C′) ←$ sndA(SA, ε); RcvB(C′, ε); S′B ← ExposeB). However,
our construction allows the adversary to impersonate B towards A afterwards:
the impersonation of A towards B only invalidates the kuKEM secret key in
B’s state via the key update in B’s receive algorithm. The signing key in B’s
state is still valid for the communication to A since it was not modified at the

receipt of the impersonating ciphertext. As such, the adversary may use the
signing key and then implant further public keys in A’s state by sending these
public keys to A ((S′′B , C′′) ←$ sndB(S′B , ε); RcvA(C′′, ε)). These public keys do
not provide security with respect to A’s session keys since the adversary can
freely choose them. As a result, only the public key that B sent in sync before A
was impersonated towards B belongs to a secret key that the adversary does not
know (public key in CB1). Since A has no indication which public key’s secret
key is not known by the adversary (note that A and B were exposed at the
beginning of the presented scenario and the adversary planted own public keys
in A’s state at the end of the scenario by sending valid ciphertexts), A needs to
encapsulate to all public keys in order to obtain at least one encapsulated key as
secret input to the random oracle such that the session key also remains secure
(CA1 ←$ SndA(ε); kb ←$ Challenge(A, 1)).

Observe that the scenario, described above, lacks an argument why also the
first public key in A’s state needs to be used for the encapsulation if A received
further public keys from B afterwards. The reason for also using the first public
key, that is always derived from the previous random oracle output, lies within
A’s sending after becoming out of sync. A became out of sync by receiving
C ′′ (see above). When sending CA1, A derived a new public key for her state.
The secret key to this public key was part of the same random oracle output
as the session key that is challenged afterwards (A, 1). As argued before, this
session key is secure (for all details we refer the reader to the proof in the
full version [14]). Consequently the public key in A’s state after sending CA1
provides security against the adversary regrading encapsulations. However, the
adversary can still plant new public keys to A’s state ((S′′′B , C

′′′)←$ sndB(S′′B , ε);
RcvA(C′′′, ε)). As such, only the first public key in A’s state provides security
after A became out of sync (and sent once afterwards). All remaining public keys
may belong to secret keys chosen by the adversary. Since A will not notice when
she became out of sync, she also needs to include the first public key in her state
for encapsulating within her send algorithm in order to compute secure session
keys (CA2 ←$ SndA(ε); kb2 ←$ Challenge(A, 2)).

As a result, A always needs to encapsulate to all public keys in her state such
that at least one encapsulated key is a secret input to the random oracle (in case
her future session keys were not marked traceable by the KINDR game).

	Towards Bidirectional Ratcheted Key Exchange

