
Risky Traitor Tracing and New Differential
Privacy Negative Results

Rishab Goyal1, Venkata Koppula1, Andrew Russell1, and Brent Waters1

University of Texas at Austin, Austin, USA
{rgoyal,kvenkata,ahr,bwaters}@cs.utexas.edu

Abstract. In this work we seek to construct collusion-resistant traitor
tracing systems with small ciphertexts from standard assumptions that
also move toward practical efficiency. In our approach we will hold stead-
fast to the principle of collusion resistance, but relax the requirement on
catching a traitor from a successful decoding algorithm. We define a f -
risky traitor tracing system as one where the probability of identifying
a traitor is f(λ, n) times the probability a successful box is produced.
We then go on to show how to build such systems from prime order bi-
linear groups with assumptions close to those used in prior works. Our
core system achieves, for any k > 0, f(λ, n) ≈ k

n+k−1
where ciphertexts

consists of (k+4) group elements and decryption requires (k+3) pairing
operations.
At first glance the utility of such a system might seem questionable
since the f we achieve for short ciphertexts is relatively small. Indeed
an attacker in such a system can more likely than not get away with
producing a decoding box. However, we believe this approach to be viable
for four reasons:

1. A risky traitor tracing system will provide deterrence against risk
averse attackers. In some settings the consequences of being caught
might bear a high cost and an attacker will have to weigh his utility
of producing a decryption D box against the expected cost of being
caught.

2. Consider a broadcast system where we want to support low overhead
broadcast encrypted communications, but will periodically allow for
a more expensive key refresh operation. We refer to an adversary
produced algorithm that maintains the ability to decrypt across key
refreshes as a persistent decoder. We show how if we employ a risky
traitor tracing systems in this setting, even for a small f , we can
amplify the chances of catching such a “persistent decoder” to be
negligibly close to 1.

3. In certain resource constrained settings risky traitor tracing provides
a best tracing effort where there are no other collusion-resistant al-
ternatives. For instance, suppose we had to support 100K users over
a radio link that had just 10KB of additional resources for extra
ciphertext overhead. None of the existing

√
N bilinear map systems

can fit in these constraints. On the other hand a risky traitor tracing
system provides a spectrum of tracing probability versus overhead
tradeoffs and can be configured to at least give some deterrence in
this setting.

4. Finally, we can capture impossibility results for differential privacy
from 1

n
-risky traitor tracing. Since our ciphertexts are short (O(λ)),

we get the negative result which matches what one would get plug-
ging in the obfuscation based tracing system Boneh-Zhandry [9] so-
lution into the prior impossibility result of Dwork et al. [14].

1 Introduction

A traitor tracing [11] system is an encryption system in which a setup algo-
rithm produces a public key pk, master secret key msk and n private keys
sk1, sk2, . . . , skn that are distributed to n user devices. One can encrypt a mes-
sage m using the public key to produce a ciphertext ct which can be decrypted
using any of the private keys; however, is inaccessible by an attacker that is
bereft of any keys. The tracing aspect comes into play if we consider an attacker
that corrupts some subset S ⊆ {1, . . . , n} of the devices and produces a decryp-
tion algorithm D that decrypts ciphertext with some non-negligible probability
ε(λ) where λ is the security parameter. An additional Trace algorithm will take
as input the master secret key msk and with just oracle access to D will identify
at least one user from the corrupted set S (and no one outside it). Importantly,
any secure system must be able to handle attackers that will construct D in an
arbitrary manner including using techniques such as obfuscation.

While the concept of traitor tracing was originally motivated by the example
of catching users that created pirate decoder boxes in broadcast TV systems,
there are several applications that go beyond that setting. For example cipher-
texts could be encryptions of files stored on cloud storage. Or one might use
a broadcast to transmit sensitive information to first responders on an ad-hoc
deployed wireless network. In addition, the concepts and techniques of traitor
tracing have had broader impacts in cryptography and privacy. Most notably
Dwork et al. [14] showed that the existence of traitor tracing schemes leads to
certain impossibility results in the area of differential privacy [13]. Briefly, they
consider the problem of constructing a “sanitizer” A that takes in a database
x1, . . . , xn of entries and wishes to efficiently produce a sanitized summary of
database that can evaluate a set of predicate queries on the database. The san-
itized database should both support giving an average of answers without too
much error and the database should be differentially private in that no one entry
should greatly impact the output of the sanitization process. The authors show
that an efficient solution to such a problem is impossible to achieve (for certain
parameters) assuming the existence of a (collusion resistant) traitor tracing sys-
tem. The strength of their negative results is directly correlated with the size of
ciphertexts in the traitor tracing system.

A primary obstacle in building traitor tracing systems is achieving (full)
collusion resistance. There have been several proposals [5, 25, 20, 29, 4, 6, 19] for
building systems that are k-collusion resistant where the size of the ciphertexts
grows as some polynomial function of k. These systems are secure as long as the
number of corrupted keys |S| ≤ k; however, if the size of the corrupted set exceeds

2

k the attacker will be able to produce a decryption box that is untraceable.
Moreover, the collusion bound of k is fixed at system setup so an attacker will
know how many keys he needs to exceed to beat the system. In addition, the
impossibility results of Dwork et al. [14] only apply for fully collusion resistant
encryption systems. For these reasons we will focus on collusion resistant systems
in the rest of the paper.

The existing approaches for achieving collusion resistant broadcast encryp-
tion can be fit in the framework of Private Linear Broadcast Encryption (PLBE)
introduced by Boneh, Sahai and Waters [7]. In a PLBE system the setup algo-
rithm takes as input a security parameter λ and the number of users n. Like a
traitor tracing system it output a public key pk, master secret key msk and n pri-
vate keys sk1, sk2, . . . , skn where a user with index j is given key skj . Any of the
private keys is capable of decrypting a ciphertext ct created using pk. However,
there is an additional TrEncrypt algorithm that takes in the master secret key, a
message and an index i. This produces a ciphertext that only users with index
j ≥ i can decrypt. Moreover, any adversary produced decryption box D that
was created with a set of S where i /∈ S would not be able to distinguish between
encryption to index i or i+ 1. These properties lead to a tracing system where
the tracer measures for each index the probability that D decrypts a ciphertext
encrypted (using TrEncrypt) for that index and reports all indices i where there
is a significant discrepancy between i and i+1. These properties imply that such
a PLBE based traitor tracing system will catch at least one user in S with all
but negligible probability and not falsely accuse anyone in S.

The primary difficulty in achieving collusion resistant traitor tracing is to do
so with short ciphertext size. There are relatively few approaches for achieving
this goal. First, one can achieve PLBE in a very simple way from public key
encryption. Simply create n independent public and private key pairs from the
PKE system and lump all the individual public keys together as the PLBE public
key. To encrypt one just encrypts to each sub public key in turn. The downside
of this method is that the ciphertext size grows as O(n · λ) as each of the n
users need their own slot in the PLBE ciphertext. If one plugs this into the
Dwork et al. [14] impossibility result it rules out systems with a query set Q of
size 2O(n·λ) or larger. Boneh, Sahai and Waters [7] showed how ciphertexts in a
PLBE system can be compressed to O(

√
n · λ) using bilinear maps of composite

order. Future variants [17, 15] moved this to the decision linear assumption in
prime order groups. While this was an improvement and worked under standard
assumptions, there was still a large gap between this and the ideal case where
ciphertext size has only polylogarithmic dependence on n.

To achieve really short ciphertexts one needs to leverage heavier tools such as
collusion resistant functional encryption or indistingishability obfuscation [2, 16].
For instance, a simple observation shows that one can make a PLBE scheme di-
rectly from a collusion resistant FE scheme such as the [16]. Boneh and Zhandry [9]
gave a construction of PLBE from indistinguishability obfuscation. These two
approaches get ciphertexts that grow proportionally to log n and thus leading to
differential privacy impossibility results with smaller query sets of size n · 2O(λ).

3

However, general functional encryption and indistinguishability obfuscation can-
didates currently rely on multilinear map candidates, many of which have been
broken and the security of which is not yet well understood. In addition, the
actual decryption time resulting from using obfuscation is highly impractical.

Our Results. In this work we seek to construct collusion resistant traitor tracing
systems with small ciphertexts from standard assumptions geared towards prac-
tical efficiency. In our approach we will hold steadfast to the principle of collusion
resistance, but relax the requirement on catching a traitor from a successful de-
coding algorithm. We define a f -risky traitor tracing system as one where the
probability of identifying a traitor is f(λ, n) times the probability a successful
box is produced. We then go on to show how to build such systems from prime
order bilinear groups. Our core system achieves f(λ, n) ≈ k

n+k−1 where cipher-
texts consist of (k + 4) group elements and decryption requires (k + 3) pairing
operations, where k > 0 is a system parameter fixed at setup time. For the basic
setting, i.e. k = 1, this gives us a success probability of 1

n , ciphertext consisting
of 5 group elements, and decryption requiring just 4 pairing operations in primer
order groups.1 In addition, we show a generic way to increase f by approximately
a factor of c at the cost of increasing the size of the ciphertext and decryption
time also by a factor of c.

Finally, we show that the argument of Dwork et al. applies to 1
n -risky traitor

tracing. Interestingly, when we structure our argument carefully we achieve the
same negative results as when it is applied to a standard traitor tracing system.
Since our ciphertexts are short (O(λ)), we get the negative result which matches
what one would get plugging in the obfuscation based tracing system Boneh-
Zhandry [9] solution into the prior impossibility result of Dwork et al. [14].

1.1 Technical Overview

In this section, we give a brief overview of our technical approach. We start
by discussing the definitional work. That is, we discuss existing traitor tracing
definitions, mention their limitations and propose a stronger (and possibly more
useful) definition, and finally introduce a weaker notion of traitor tracing which
we call risky traitor tracing. Next, we describe our construction for risky traitor
tracing from bilinear maps. Lastly, we discuss the differential privacy negative
results implied by existence of risky traitor tracing schemes.

Definitional Work. A traitor tracing system consists of four poly-time algorithms
— Setup, Enc, Dec, and Trace. The setup algorithm takes as input security
parameter λ, and number of users n and generates a public key pk, a master
secret key msk, and n private keys sk1, . . . , skn. The encrypt algorithm encrypts
messages using pk and the decrypt algorithm decrypts a ciphertext using any

1 In addition to our construction from prime-order bilinear groups, we also provide a
construction from composite order bilinear groups where ciphertexts consist of three
group elements and decryption requires two pairing operations only.

4

one of the private keys ski. The tracing algorithm takes msk as input and is
given a black-box oracle access to a pirate decoder D. It either outputs a special
failure symbol ⊥, or an index i ∈ {1, . . . , n} signalling that the key ski was used
to create the pirate decoder.

Traditionally, a traitor tracing scheme is required to satisfy two security
properties. First, it must be IND-CPA secure, i.e. any PPT adversary, when given
no private keys, should not be able to distinguish between encryptions of two
different messages. Second, it is required that if an adversary, given private keys
{ski}i∈S for any set S of its choice, builds a good pirate decoding box D (that
is, a decoding box that can can decrypt encryptions of random messages with
non-negligible probability), then the trace algorithm should be able to catch one
of the private keys used to build the pirate decoding box. Additionally, the trace
algorithm should not falsely accuse any user with non-negligible probability. This
property is referred to as secure traitor tracing.

Now a limitation of the traitor tracing property as traditionally defined is that
a pirate box is labeled as a good decoder only if it extracts the entire message from
a non-negligible fraction of ciphertexts.2 In numerous practical scenarios such a
definition could be useless and problematic. For instance, consider a pirate box
that can always decrypt encryptions of messages which lie in a certain smaller
set but does not work on others. If the size of this special set is negligible,
then it won’t be a good decoder as per existing definitions, but might still be
adversarially useful in practice. There are also other reasons why the previous
definitions of traitor tracing are problematic (see Section 3.2 for more details). To
this end, we use an indistinguishability-based secure-tracing definition, similar
to that used in [26], in which a pirate decoder is labeled to a good decoder if it
can distinguish between encryptions of messages chosen by the adversary itself.
We discuss this in more detail in Section 3.2.

In this work, we introduce a weaker notion of traitor tracing called f -risky
traitor tracing, where f is a function that takes the security parameter λ and
number of users n as inputs. The syntax as well as IND-CPA security requirement
is identical to that of standard traitor tracing schemes. The difference is in the
way security of tracing traitors is defined. In an f -risky system, we only require
that the trace algorithm must catch a traitor with probability at least f(λ, n)
whenever the adversary outputs a good decoder. This property is referred to
as f -risky secure traitor tracing. Note that a 1-risky traitor tracing scheme is
simply a standard traitor tracing scheme, and as f decreases, this progressively
becomes weaker.

Constructing Risky Traitor Tracing from Bilinear Maps. As mentioned before,
our main construction is based on prime order bilinear groups, and leads to a

k
n+k−1 -risky traitor tracing where k is chosen at setup time. However, for ease
of technical exposition we start with a simpler construction that uses composite
order bilinear groups and leads to 1

n -risky traitor tracing scheme. This scheme
conveys the basic idea and will serve as a basis for our prime order construction.

2 The tracing algorithm only needs to work when the pirate box is a good decoder.

5

Let G,GT be groups of order N = p1p2p3p4 such that there exists a bilinear
mapping e : G × G → GT (that is, a mapping which maps (ga, gb) to e(g, g)a·b

for all a, b ∈ ZN). Since these groups are of composite order, G has subgroups
G1,G2,G3,G4 of prime order p1, p2, p3 and p4 respectively. Moreover, pairing
any element in Gi with an element in Gj (for i 6= j) results in the identity
element (we will say that elements in Gi and Gj are orthogonal to each other).

At a high level, our construction works as follows. There are three key-
generation algorithms: ‘less-than’ key-generation, ‘equal’ key-generation and
‘greater-than’ key-generation. Similarly, we have three encryption algorithms :
‘standard’ encryption, ‘less-than’ encryption and ‘less-than-equal’ encryption.
Out of these encryption algorithms, the ‘less-than’ and ‘less-than-equal’ encryp-
tions require the master secret key, and are only used for tracing traitors. The
decryption functionality can be summarized by Table 1.

‘less-than’ keygen ‘equal’ keygen ‘greater-than’ keygen

standard enc 3 3 3

‘less-than’ enc 7 3 3

‘less-than-equal’ enc 7 7 3

Table 1: Decryption functionality for different encryption/key-generation algorithms.
The symbol 3 denotes that decryption works correctly, while 7 denotes that decryption
fails.

The master secret key consists of a ‘cutoff’ index i chosen uniformly at ran-
dom from {1, . . . , n}. For any index j < i, it uses the ‘less-than’ key-generation
algorithm to generate keys. For j > i, it uses the ‘greater-than’ key-generation
algorithm, and for j = i, it uses the ‘equal’ key-generation algorithm. The ci-
phertext for a message m is a ‘standard’ encryption of m. From Table 1, it is
clear that decryption works. The trace algorithm tries to identify if the cutoff
index i is used by the pirate box D. It first checks if D can decrypt ‘less-than’
encryptions. If so, then it checks if D can decrypt ‘less-than-equal’ encryptions.
If D works in the ‘less-than’ case, but not in the ‘less-than-equal’ case, then the
trace algorithm identifies index i as one of the traitors.

Let us now look at how the encryption/key generation algorithms work at a
high level. The public key in our scheme consists of g1 ∈ G1 and e(g1, g1)α, while
the master secret key has the cut-off index i, element α, as well as generators
for all subgroups of G. The ‘less-than’ keys are set to be gα1 · w3 · w4, where
w3, w4 are random group elements from G3,G4 respectively. The ‘equal’ key is
gα1 ·w2 ·w4, where w2 ← G2, w4 ← G4. Finally, the ‘greater-than’ key has no G2

or G3 terms, and is set to be gα1 · w4.
The ‘standard’ encryption of message m is simply (m · e(g1, g1)α·s, gs1). In

the ‘less-than’ and ‘less-than-equal’ ciphertexts, the first component is com-
puted similarly but the second component is modified. For ‘less-than’ encryp-
tions, the ciphertext is (m · e(g1, g1)α·s, gs1 · h3), where h3 is a uniformly ran-
dom group element in G3. For ‘less-than-equal’ encryptions the ciphertext is

6

(m · e(g1, g1)α·s, gs1 · h2 · h3), where h2 and h3 are uniformly random group ele-
ments in G2 and G3 respectively.

To decrypt a ciphertext ct = (ct1, ct2) using a key K, one must compute
ct1/e(ct2,K). It is easy to verify that the keys and encryptions follow the decryp-
tion behavior described in Table 1. For instance, an ‘equal’ key K = gα1 ·w2 ·w4

can decrypt a ‘less-than’ encryption (m · e(g1, g1)α·s, gs1 ·h3) because e(ct2,K) =
e(g1, g1)α·s. However, an ‘equal’ key cannot decrypt a ‘less-than-equal’ ciphertext
ct = (m · e(g1, g1)α·s, gs1 · h2) because e(ct2,K) = e(g1, g1)α·s · e(h2, w2).

Given this construction, we need to prove two claims. First, we need to show
that no honest party is implicated by our trace algorithm; that is, if an adversary
does not receive key for index i, then the trace algorithm must not output index
i. We show that if an adversary does not have key for index i, then the pirate
decoding box must not be able to distinguish between ‘less-than’ and ‘less-than-
equal’ encryptions (otherwise we can break the subgroup-decision assumption on
composite order bilinear groups). Next, we show that if an adversary outputs a
pirate decoding box that works with probability ρ, then we can identify a traitor
with probability ρ/n. To prove this, we show that if ρi denotes the probability
that the adversary outputs a ρ-functional box and i is the cutoff-index, then
the sum of all these ρi quantities is close to ρ. The above scheme is formally
described in the full version along with a detailed security proof. Next we move
on to our risky traitor tracing construction from prime order bilinear groups.

Moving to Prime Order Bilinear Maps and k
n+k−1 -Risky. The starting point for

building k
n+k−1 -risky traitor tracing scheme from prime order bilinear groups is

the aforementioned scheme. Now to increase the success probability of the tracing
algorithm by a factor k, we increase the types of secret keys and ciphertexts from
3 to k+ 2 such that the decryptability of ciphertexts w.r.t. secret keys can again
be described as an upper-triangular matrix of dimension k + 2 as follows.

‘< w’ ‘= w’ ‘= w + 1’ · · · ‘= w + k − 1’ ‘≥ w + k’
keygen keygen keygen keygen keygen

standard enc 3 3 3 · · · 3 3

‘< w’ enc 7 3 3 · · · 3 3

‘< w + 1’ enc 7 7 3 · · · 3 3
...

...
...

. . .
. . .

...
...

‘< w + k − 1’ enc 7 7 7 · · · 3 3

‘< w + k’ enc 7 7 7 · · · 7 3

Table 2: New Decryption Functionality.

The basic idea will similar to the one used previously, except now we choose
a cutoff window W = {w,w + 1, . . . , w + k − 1} of size k uniformly at random.
(Earlier the window had size 1, that is we choose a single index.) The first w− 1
users are given ‘< w’ keys. For w ≤ j < w + k, the jth user gets ‘= j’ key, and

7

rest of the users get the ‘≥ w + k’ keys. The remaining idea is similar to what
we used which is that the tracer estimates the successful decryption probability
for a decoder D on all the special index encryptions (i.e., ‘< j’ encryptions), and
outputs the indices of all those users where there is a gap in decoding probability
while moving from type ‘< j’ to ‘< j + 1’.

Now instead of directly building a scheme that induces such a decryption
functionality, we provide a general framework for building risky traitor tracing
schemes. In this work, we introduce a new intermediate primitive called Mixed
Bit Matching Encryption (mBME) and show that it is sufficient to build risky
traitor tracing schemes. In a mBME system, the secret keys and ciphertexts
are associated with bit vectors x,y ∈ {0, 1}` (respectively) for some `. And de-
cryption works whenever f(x,y) = 1 where f computes an ‘AND-of-ORs’ over
vectors x,y (i.e., for every i ≤ `, either xi = 1 or yi = 1). Using the public pa-
rameters, one could encrypt to the ‘all-ones’ vector, and using the master secret
key one could sample a ciphertext (or secret key) for any vector. For security,
we require that the ciphertexts and the secret keys should not reveal non-trivial
information about their associated vectors. In other words, the only information
an adversary learns about these vectors is by running the decryption algorithm.
In the sequel, we provide a generic construction of risky traitor tracing from a
mBME scheme, and also give a construction of mBME scheme using prime order
bilinear groups. They are described in detail later in Sections 5 and 6.

Finally, we also provide a performance evaluation of our risky traitor tracing
scheme in Section 7.

Relation to BSW traitor tracing scheme. Boneh, Sahai and Waters [7] con-
structed a (fully) collusion-resistant traitor tracing scheme with O(

√
n · λ) size

ciphertexts. The BSW construction introduced the private linear broadcast en-
cryption (PLBE) abstraction, showed how to build traitor tracing using PLBE,
and finally gave a PLBE construction using composite-order bilinear groups.

Our framework deviates from the PLBE abstraction in that we support en-
cryptions to only k+1 adjacent indices (that is, if w is starting index of the cutoff
window, then we support encryptions to either w, . . . , w + k) and index 0. As a
result, the trace algorithm can only trace an index in the window w, . . . , w + k.
The main difficulty in our proof argument is that encrypting to index j is not
defined for indices oustide the cutoff window, i.e. j /∈ {0, w, w+1, . . . , w+k}. As
a result, we need to come up with a new way to link success probabilities across
different setups and weave these into an argument.

Negative Results for Differential Privacy. Given a databaseD = (x1, x2, . . . , xn) ∈
Xn, in which each row represents a single record of some sensitive information
contributed by an individual and each record is an element in the data universe
X , the problem of privacy-preserving data analysis is to allow statistical anal-
yses of D while protecting the privacy of individual contributors. The problem
is formally defined in the literature by representing the database with a sani-
tized data structure s that can be used to answer all queries q in some query

8

class Q with reasonable accuracy, with the restriction that the sanitization of
any two databases D,D′ which differ at only a single position are indistinguish-
able. In this work, we will focus on counting (or statistical) queries. Informally,
a counting query q on a database D tells what fraction of records in D satisfy
the property associated with q.

Dwork et al. [14] first showed that secure traitor tracing schemes can be
used to show hardness results for efficient differentially private sanitization. In
their hardness result, the data universe is the private key space of traitor tracing
scheme and the query space is the ciphertext space. A database consists of n
private keys and each query is associated with either an encryption of 0 or 1.
Formally, for a ciphertext ct, the corresponding query qct on input a private
key sk outputs the decryption of ct using sk. They show that if the underlying
traitor tracing scheme is secure, then there can not exist sanitizers that are
simultaneously accurate, differentially private, and efficient. At a very high level,
the idea is as follows. Suppose there exists an efficient sanitizer A that, on input
D = (sk1, . . . , skn) outputs a sanitization s. The main idea is to use sanitizer A
to build a pirate decoding box such that the tracing algorithm falsely accuses
a user with non-negligible probability, thereby breaking secure traitor traitor
property. Concretely, let B be an attacker on the secure tracing property that
works as follows — B queries for private keys of all but ith party, and then uses
sanitizer A to generate sanitization s of the database containing all the queried
private keys, and finally it outputs the pirate decoding box as the sanitization
evaluation algorithm which has s hardwired inside and on input a ciphertext
ouputs its evaluation given sanitization s.3

To prove that the tracing algorithm outputs i (with non-negligible probabil-
ity) given such a decoding box, Dwork et al. crucially rely on the fact that A is
differentially private. First, they show that if an adversary uses all private keys
to construct the decoding box, then the tracing algorithm always outputs an
index and never aborts.4 Then, they argue that there must exist an index i such
that tracing algorithm outputs i with probability p ≥ 1/n. Finally, to complete
the claim they show that even if ith key is removed from the database, the trac-
ing algorithm will output i with non-negligible probability since the sanitizer is
differentially private with parameters ε = O(1) and δ = o(1/n).

In this work, we show that their analysis can be adapted to risky traitor trac-
ing as well. Concretely, we show that f -risky secure traitor tracing schemes can
be used to show hardness results for efficient differentially private sanitization,
where f directly relates to the differential privacy parameters. At a high level,
the proof strategy is similar, i.e. we also show that an efficient sanitizer could be
used to build a good pirate decoding box. The main difference is that now we can
only claim that if an adversary uses all private keys to construct the decoding
box, then (given oracle access to the box) the tracing algorithm outputs an index

3 Technically, the decoding box must round the output of evaluation algorithm in
order to remove evaluation error.

4 In the full proof, one could only argue that tracing algorithm outputs an index with
probability at least 1− β where β is the accuracy parameter of sanitizer A.

9

with probability at least f , i.e. the trace algorithm could potentially abort with
non-negligible probability. Next, we can argue that there must exist an index i
such that tracing algorithm outputs i with probability p ≥ f/n. Finally, using
differential privacy of A we can complete the argument. An important caveat in
the proof is that since the lower bounds in the probability terms have an addi-
tional multiplicative factor of f , thus f -risky traitor tracing could only be used
to argue hardness of differential privacy with slightly lower values of parameter
δ, i.e. δ = o(f/n).

However, we observe that if the risky traitor tracing scheme additionally
satisfies what we call “singular trace” property, then we could avoid the 1/n
loss. Informally, a risky scheme is said to satisfy the singular trace property if
the trace algorithm always outputs either a fixed index or the empty set. One
could visualize the fixed index to be tied to the master secret and public keys.
Concretely, we show that f -risky traitor tracing with singular trace property
implies hardness of differential privacy for δ = o(f), thereby matching that
achieved by previous obfuscation based result of [9]. We describe our hardness
result in detail in Section 8.2.

Amplifying the Probability of Tracing — Catching Persistent Decoders. While
an f -risky traitor tracing system by itself gives a small probability of catching a
traitor, there can be ways to deploy it that increase this dramatically. We discuss
one such way informally here.

Consider a broadcast system where we want to support low overhead broad-
cast encrypted communications, but will periodically allow for a more expensive
key refresh operation. Suppose that we generate the secret keys sk1, sk2, . . . , skn
for a risky traitor tracing system and in addition generate standard secret keys
SK1, . . . ,SKn. In this system an encryptor can use the traitor tracing public
key pk to compute a ciphertext. A user i will use secret key ski to decrypt. The
system will allow this to continue for a certain window of time. (Note during
the window different ciphertexts may be created by different users.) Then at
some point in time the window will close and a new risky tracing key pk′ and
secret keys sk′1, sk

′
2, . . . , sk

′
n will be generated. The tracing secret keys will be

distributed by encrypting each sk′i under the respective permanent secret key
SKi. And the encryptors will be instructed to only encrypt using the new public
key pk′. This can continue for an arbitrary number of windows followed by key
refreshes. Note that each key refresh requires O(nλ) size communication.

Consider an attacker that wishes to disperse a stateless decoder D that is
capable of continuing to work through multiple refresh cycles. Such a “persistent
decoder” can be traced with very high probability negligibly close to 1. The
tracing algorithm must simply give it multiple key refreshes followed by calls to
the Trace algorithm and by the risky property it will eventually pick one that
can trace one of the contributors.

We emphasize that care must be taken when choosing the refresh size window.
If the window is too small the cost of key refreshes will dominate communication
— in one extreme if a refresh happens at the frequency that ciphertexts are cre-
ated then the communication is as bad as the trivial PLBE system. In addition,

10

dispersing new public keys very frequently can be an issue. On the other hand
if a refresh window is very long, then an attacker might decide there is value in
producing a decoding box that works only for the given window and we are back
to having only an f(λ, n) chance of catching him.

1.2 Additional Related Work

Our traitor tracing system allows for public key encryption, but requires a master
secret key to trace users as do most works. However, there exists exceptions [27,
28, 31, 21, 10, 8, 9] where the tracing can be done using a public key. In a different
line of exploration, Kiayias and Yung [20] argue that a traitor tracing system
with higher overhead can be made “constant rate” with long enough messages.
Another interesting point in the space of collusion resistant systems is that of
Boneh and Naor [6]. They show how to achieve short ciphertext size, but require
private keys that grow quadratically in the number of users as O(n2λ). In addi-
tion, this is only achievable assuming a perfect decoder. If the decoder D works
with probability δ then the secret key grows to O(n2λ/δ2). Furthermore, the sys-
tem must be configured a-priori with a specific δ value and once it is set one will
not necessarily be able to identify a traitor from a box D that works with smaller
probability. Such systems have been called threshold traitor tracing systems [24,
12]. Both [24, 12] provide combinatorial and probabilistic constructions in which
the tracing algorithm is guaranteed to work with high probability, and to trace t
traitors they get private keys of size O(t · log n). In contrast we can capture any
traitor strategy that produces boxes that work with any non-negligible function
ε(λ). Chor et al. [12] also considered a setting for traitor tracing in which the
tracing algorithm only needs to correctly trace with probability 1 − p, where p
could the scheme parameter. However, this notion has not been formally defined
or explored since then.

Dwork et al. [14] first showed that existence of collusion resistant traitor
tracing schemes implies hardness results for efficient differentially private saniti-
zation. In their hardness result, the database consists of n secret keys and each
query is associated with an encryption of 0/1. Thus, the size of query space de-
pends on the size of ciphertexts. Instantiating the result of Dwork et al. with the
traitor tracing scheme of Boneh et al. [7], we get that under assumptions on bi-
linear groups, there exist a distribution on databases of size n and a query space
of size O(2

√
n·λ) such that it is not possible to efficiently sanitize the database

in a differentially private manner.
Now the result of Dwork et al. gives hardness of one-shot sanitization. A one-

shot sanitizer is supposed to produce a summary of an entire database from which
approximate answers to any query in the query set could be computed. A weaker
setting could be where we consider interactive sanitization, in which the queries
are fixed and given to the sanitizer as an additional input and the sanitizer only
needs to output approximate answers to all those queries instead of a complete
summary. Ullman [30] showed that, under the assumption that one-way functions
exist, there is no algorithm that takes as input a database of n records along with
an arbitrary set of about O(n2) queries, and approximately answers each query

11

in polynomial time while preserving differential privacy. Ullman’s result differs
from the result of Dwork et al. in that it applies to algorithms answering any
arbitrary set of O(n2) queries, whereas Dwork et al. show that it is impossible
to sanitize a database with respect to a fixed set of O(2

√
n·λ) queries.

Recently a few works [9, 23] have improved the size of query space for which
(one-shot) sanitization is impossible from O(2

√
n·λ) to n ·O(2λ) to poly(n).5 [9]

showed the impossibility by first constructing a fully collusion resistant scheme
with short ciphertexts, and later simply applying the Dwork et al. result. On the
other hand, [23] first construct a weakly secure traitor tracing scheme by building
on top of PLBE abstraction, and later adapt the Dwork et al. impossibility re-
sult for this weaker variant. These works however assume existence of a stronger
cryptographic primitive called indistinguishability-obfuscator (iO) [2, 16]. Cur-
rently we do not know of any construction of iO from a standard cryptographic
assumption. In this work, we are interested in improving the state-of-the-art
hardness results in differential privacy based on standard assumptions.

More recent related work. In an independent and concurrent work, Kowalczyk,
Malkin, Ullman and Wichs [22] gave similar differential privacy negative results
from one way functions. The negative results they achieve are similar to ours,
but also apply for slightly smaller database sizes. However, the paths taken
in our and their work diverge significantly. Our approach has been to focus on
weaker notion of traitor tracing that suffices for DP impossibility while still being
useful as a standalone primitive. On the other hand, KMUW instead closely
follow the approach taken in [23], and they build special purpose functional
encryption scheme for comparisons that supports 2 ciphertexts and bounded
number of secret keys (succinctly) and achieves a very weak notion of IND-
based security. Thus, the focus of their work is on negative results for differential
privacy, whereas our risky tracing framework has both positive applications as
well as lead to differential privacy impossibility results.

Subsequent to our work, Goyal, Koppula and Waters [18] gave a collusion
resistant tracing system from the Learning with Errors assumption where the
ciphertext size grows polynomially in λ, lg(N). Their result could be directly
plugged into the Dwork et al. [14] differential privacy result as is, however they
do not develop paths for weakening TT.

2 Preliminaries

Notations. For any set X , let x← X denote a uniformly random element drawn
from the set X . Given a PPT algorithm D, let AD denote an algorithm A
that uses D as an oracle (that is, A sends queries to D, and for each query x,
it receives D(x)). Throughout this paper, we use PPT to denote probabilistic
polynomial-time. We will use lowercase bold letters for vectors (e.g. v), and we
will sometimes represent bit vectors v ∈ {0, 1}` as bit-strings of appropriate
length.

5 In this work, we only focus on the size of query space.

12

2.1 Assumptions

In this work, we will be using bilinear groups. Let Grp-Gen be a PPT algorithm
that takes as input security parameter λ (in unary), and outputs a λ-bit prime
p, an efficient description of groups G1,G2,GT of order p, generators g1 ∈ G1,
g2 ∈ G2 and an efficient non-degenerate bilinear mapping e : G1 × G2 → GT
(that is, e(g1, g2) 6= 1GT

, and for all a, b ∈ Zp, e(ga1 , gb2) = e(g1, g2)a·b).

We will be using the following assumptions in this work.

Assumption 1 For every PPT adversary A, there exists a negligible function
negl(·) s.t. for all λ ∈ N,

Pr

[
b← A

(
params,

gx1 , g
y
1 , g

y·z
1 , gy2 , g

z
2 , Tb

)
:
params = (p,G1,G2,GT , g1, g2, e(·, ·))← Grp-Gen(1λ);

x, y, z, r ← Zp, T0 = gx·y·z1 , T1 = gx·y·z+r1 , b← {0, 1}

]
≤ 1/2 + negl(λ).

Assumption 2 For every PPT adversary A, there exists a negligible function
negl(·) s.t. for all λ ∈ N,

Pr

[
b← A

(
params,

gy1 , g
z
1 , g

x
2 , g

y
2 , Tb

)
:
params = (p,G1,G2,GT , g1, g2, e(·, ·))← Grp-Gen(1λ);

x, y, z, r ← Zp, T0 = gx·y·z2 , T1 = gx·y·z+r2 , b← {0, 1}

]
≤ 1/2 + negl(λ).

3 Risky Traitor Tracing

In this section, we will first introduce the traditional definition of traitor tracing
based on that given by Boneh, Sahai and Waters [7]. We provide a “public key”
version of the definition in which the encryption algorithm is public, but the
tracing procedure will require a master secret key. Our definition will by default
capture full collusion resistance.

A limitation of this definition is that the tracing algorithm is only guaran-
teed to work on decoders that entirely decrypt encryptions of randomly selected
messages with non-negligible probability. We we will discuss why this definition
can be problematic and then provide an indistinguishability based definition for
secure tracing.

Finally, we will present our new notion of risky traitor tracing which captures
the concept of a trace algorithm that will identify a traitor from a working pirate
box with probability close to f(λ, n). Our main definition for risky traitor tracing
will be a public key one using the indistinguishability; however we will also
consider some weaker variants that will be sufficient for obtaining our negative
results in differential privacy.

13

3.1 Public Key Traitor Tracing

A traitor tracing scheme with message spaceM consists of four PPT algorithms
Setup,Enc,Dec and Trace with the following syntax:

(msk, pk, (sk1, . . . , skn)) ← Setup(1λ, 1n) : The setup algorithm takes as input
the security parameter λ, number of users n, and outputs a master secret
key msk, a public key pk and n secret keys sk1, sk2, . . . , skn.

ct ← Enc(pk,m ∈ M) : The encryption algorithm takes as input a public key
pk, message m ∈M and outputs a ciphertext ct.

y ← Dec(sk, ct) : The decryption algorithm takes as input a secret key sk,
ciphertext ct and outputs y ∈M∪ {⊥}.

S ← TraceD(msk, 1y) : The tracing algorithm takes a parameter y ∈ N (in
unary) as input, has black box access to an algorithm D, and outputs a set
S ⊆ {1, 2, . . . , n}.

Correctness For correctness, we require that if ct is an encryption of message
m, then decryption of ct using one of the valid secret keys must output m.
More formally, we require that for all λ ∈ N, n ∈ N, (msk, pk, (sk1, . . . , skn)) ←
Setup(1λ, 1n), m ∈M, ct← Enc(pk,m) and i ∈ {1, 2, . . . , n}, Dec(ski, ct) = m.

Security A secure traitor tracing scheme must satisfy two security properties.
First, the scheme must be IND-CPA secure (that is, any PPT adversary, when
given no secret keys, cannot distinguish between encryptions of m0,m1). Next,
we require that if an adversary, using some secret keys, can build a pirate de-
coding box, then the trace algorithm should be able to catch at least one of the
secret keys used to build the pirate decoding box. In this standard definition,
the trace algorithm identifies a traitor if the pirate decoding box works with
non-negligible probability in extracting the entire message from an encryption
of a random message.

Definition 1 (IND-CPA security). A traitor tracing scheme T = (Setup,Enc,
Dec,Trace) is IND-CPA secure if for any PPT adversary A = (A1,A2), poly-
nomial n(·), there exists a negligible function negl(·) such that for all λ ∈ N,
|Pr[1 ← Expt-IND-CPATA(1λ, 1n)] − 1/2| ≤ negl(λ), where Expt-IND-CPAT ,A is
defined below.

– (msk, pk, (sk1, . . . , skn))← Setup(1λ, 1n(λ))
– (m0,m1, σ)← A1(pk)
– b← {0, 1}, ct← Enc(pk,mb)
– b′ ← A2(σ, ct). Experiment outputs 1 iff b = b′.

Definition 2 (Secure traitor tracing). Let T = (Setup,Enc,Dec,Trace) a
traitor tracing scheme. For any polynomial n(·), non-negligible function ε(·) and
PPT adversary A, consider the following experiment ExptTA,n,ε(λ):

–
(
msk, pk,

(
sk1, . . . , skn(λ)

))
← Setup(1λ, 1n(λ)).

– D ← AO(·)(pk)

14

– SD ← TraceD(msk, 11/ε(λ)).

Here, O(·) is an oracle that has {sk1, sk2, . . . , skn(λ)} hardwired, takes as in-
put an index i ∈ {1, 2, . . . , n(λ)} and outputs ski. Let S be the set of indices
queried by A. Based on this experiment, we will now define the following (prob-
abilistic) events and the corresponding probabilities (which is a function of λ,
parameterized by A, n, ε):

– Good-Decoder : Pr[D(ct) = m : m←M, ct← Enc(pk,m)] ≥ ε(λ)
Pr -G-DA,n,ε(λ) = Pr[Good-Decoder].

– Cor-Tr : SD ⊆ S ∧ SD 6= ∅
Pr -Cor-TrA,n,ε(λ) = Pr[Cor-Tr].

– Fal-Tr : SD \ S 6= ∅
Pr -Fal-TrA,n,ε(λ) = Pr[Fal-Tr].

A traitor tracing scheme T is said to be secure if for every PPT adversary
A, polynomials n(·), p(·) and non-negligible function ε(·), there exists negligible
functions negl1(·), negl2(·) such that for all λ ∈ N such that ε(λ) > 1/p(λ),
Pr -Fal-TrA,n,ε(λ) ≤ negl1(λ) and Pr -Cor-TrA,n,ε(λ) ≥ Pr -G-DA,n,ε(λ)−negl2(λ).

3.2 Indistinguishability Security Definition for Traitor Tracing
Schemes

A limitation of the previous definition is that the tracing algorithm is only guar-
anteed to work on decoders that entirely decrypt a randomly selected message
with non-negligible probability. This definition can be problematic for the fol-
lowing reasons.

– First, there could be pirate boxes which do not extract the entire message
from a ciphertext, but can extract some information about the message un-
derlying a ciphertext. For example, a box could paraphrase English sentences
or further compress an image. Such boxes could be very useful to own in
practice yet the tracing definition would give no guarantees on the ability to
trace them.

– Second, a pirate decoder may not be very successful in decrypting random
ciphertexts, but can decrypt encryptions of messages from a smaller set. In
practice the set of useful or typical messages might indeed fall in a smaller
set.

– Finally, if the message space is small (that is, of polynomial size), then one
can always construct a pirate decoder which succeeds with non-negligible
probability and can not get caught (the pirate decoder box simply outputs a
random message for each decryption query. IfM is the message space, then
decryption will be successful with probability 1/|M|). Since such a strategy
does not use any private keys, it cannot be traced. Therefore the above
definition is only sensible for superpolynomial sized message spaces.

15

To address these issues, we provide a stronger definition, similar to that
used in [26], in which a pirate decoder is successful if it can distinguish between
encryptions of messages chosen by the decoder itself. For this notion, we also
need to modify the syntax of the Trace algorithm. Our security notion is similar
to the one above except that an attacker will output a box D along with two
messages (m0,m1). If the box D is able to distinguish between encryptions of
these two messages with non-negligible probability then the tracing algorithm
can identify a corroborating user.

TraceD(msk, 1y,m0,m1): The trace algorithm has oracle access to a program
D, it takes as input a master secret key msk, y (in unary) and two messages
m0,m1. It outputs a set S ⊆ {1, 2, . . . , n}.

Definition 3 (Ind-secure traitor tracing). Let T = (Setup,Enc,Dec,Trace)
be a traitor tracing scheme. For any polynomial n(·), non-negligible function ε(·)
and PPT adversary A, consider the experiment Expt-TTTA,n,ε(λ) defined in Fig-
ure 1. Based on this experiment, we will now define the following (probabilistic)
events and the corresponding probabilities (which is a function of λ, parameter-
ized by A, n, ε):

– Good-Decoder : Pr[D(ct) = b : b← {0, 1}, ct← Enc(pk,mb)] ≥ 1/2 + ε(λ)
Pr -G-DA,n,ε(λ) = Pr[Good-Decoder].

– Cor-Tr : SD ⊆ S ∧ SD 6= ∅
Pr -Cor-TrA,n,ε(λ) = Pr[Cor-Tr].

– Fal-Tr : SD \ S 6= ∅
Pr -Fal-TrA,n,ε(λ) = Pr[Fal-Tr].

A traitor tracing scheme T is said to be ind-secure if for every PPT adversary
A, polynomials n(·), p(·) and non-negligible function ε(·), there exists negligible
functions negl1(·), negl2(·) such that for all λ ∈ N satisfying ε(λ) > 1/p(λ),
Pr -Fal-TrA,n,ε(λ) ≤ negl1(λ) and Pr -Cor-TrA,n,ε(λ) ≥ Pr -G-DA,n,ε(λ)−negl2(λ).

Experiment Expt-TTTA,n,ε(λ)

–
(
msk, pk,

(
sk1, . . . , skn(λ)

))
← Setup(1λ, 1n(λ)).

– (D,m0,m1)← AO(·)(pk)
– SD ← TraceD(msk, 11/ε(λ),m0,m1).

Here, O(·) is an oracle that has {sk1, sk2, . . . , skn(λ)} hardwired, takes
as input an index i ∈ {1, 2, . . . , n(λ)} and outputs ski. Let S be the
set of indices queried by A.

Fig. 1: Experiment Expt-TT

16

3.3 Risky Traitor Tracing

In this section, we will introduce the notion of risky traitor tracing. The syntax
is same as that of ind-secure traitor tracing. However, for security, if the adver-
sary outputs a good decoder, then the trace algorithm will catch a traitor with
probability f where f is a function of λ and the number of users.

Definition 4 (f-risky secure traitor tracing). Let f : N × N → [0, 1] be
a function and T = (Setup,Enc,Dec,Trace) a traitor tracing scheme. For any
polynomial n(·), non-negligible function ε(·) and PPT adversary A, consider the
experiment Expt-TTTA,n,ε(λ) (defined in Figure 1). Based on this experiment,
we will now define the following (probabilistic) events and the corresponding
probabilities (which are functions of λ, parameterized by A, n, ε):

– Good-Decoder : Pr[D(ct) = b : b← {0, 1}, ct← Enc(pk,mb)] ≥ 1/2 + ε(λ)
Pr -G-DA,n,ε(λ) = Pr[Good-Decoder].

– Cor-Tr : SD ⊆ S ∧ SD 6= ∅
Pr -Cor-TrA,n,ε(λ) = Pr[Cor-Tr].

– Fal-Tr : SD \ S 6= ∅
Pr -Fal-TrA,n,ε(λ) = Pr[Fal-Tr].

A traitor tracing scheme T is said to be f -risky secure if for every PPT
adversary A, polynomials n(·), p(·) and non-negligible function ε(·), there exists
negligible functions negl1(·), negl2(·) such that for all λ ∈ N satisfying ε(λ) >
1/p(λ), Pr -Fal-TrA,n,ε(λ) ≤ negl1(λ) and Pr -Cor-TrA,n,ε(λ) ≥ Pr -G-DA,n,ε(λ) ·
f(λ, n(λ))− negl2(λ).

We also define another interesting property for traitor tracing schemes which
we call “singular” trace. Informally, a scheme satisfies it if the trace algorithm
always outputs either a fixed index or the reject symbol. The fixed index could
depend on the master secret and public keys. Below we define it formally.

Definition 5 (Singular Trace). A traitor tracing scheme T = (Setup,Enc,Dec,
Trace) is said to satisfy singular trace property if for every polynomial n(·),
λ ∈ N, keys (msk, pk, (sk1, . . . , skn)) ← Setup(1λ, 1n), there exists an index
i∗ ∈ {1, . . . , n} such that for every poly-time algorithm D, parameter y ∈ N,
any two messages m0,m1,

Pr[TraceD(msk, 1y,m0,m1) ∈ {{i∗}, ∅}] = 1,

where the probability is taken over random coins of Trace.

One can analogously define the notion of private key risky traitor tracing,
which suffices for our differential privacy lower bound. We present this notion in
the full version.

17

4 A New Abstraction for Constructing Risky Traitor
Tracing

Let {Mλ}λ denote the message space. A mixed bit matching encryption scheme
for M consists of five algorithms with the following syntax.

Setup(1λ, 1`)→ (pk,msk): The setup algorithm takes as input security param-
eter λ, a parameter ` and outputs a public key pk and master secret key
msk.

KeyGen(msk,x ∈ {0, 1}`) → sk: The key generation algorithm takes as input

the master secret key msk and a vector x ∈ {0, 1}`. It outputs a secret key
sk corresponding to x.

Enc-PK(pk,m ∈M)→ ct: The public-key encryption algorithm takes as input
a public key pk and a message m, and outputs a ciphertext ct.

Enc-SK(msk,m ∈ M,y ∈ {0, 1}`) → ct: The secret-key encryption algorithm
takes as input master secret key msk, message m, and an attribute vector
y ∈ {0, 1}`. It outputs a ciphertext ct.

Dec(sk, ct) → z: The decryption algorithm takes as input a ciphertext ct, a
secret key sk and outputs z ∈M∪ {⊥}.

Permissions Define f : {0, 1}` × {0, 1}` → {0, 1} by the following:

f(x,y) =
∧̀
i=1

xi ∨ yi

We will use this function to determine when secret keys with attribute vectors
x are “permitted” to decrypt ciphertexts with attribute vectors y.

Correctness We require the following properties for correctness:

– For every λ ∈ N, ` ∈ N, (pk,msk) ← Setup(1λ, 1`), x ∈ {0, 1}`, sk ←
KeyGen(msk,x), message m ∈ Mλ and ct ← Enc-PK(pk,m), Dec(sk, ct) =
m.

– For every λ ∈ N, ` ∈ N, (pk,msk) ← Setup(1λ, 1`), x ∈ {0, 1}`, sk ←
KeyGen(msk,x), message m ∈Mλ, y ∈ {0, 1}` and ct← Enc-SK(msk,m,y),
if f(x,y) = 1 then Dec(sk, ct) = m.

4.1 Security

Oracles To begin, we define two oracles we use to enable the adversary to query
for ciphertexts and secret keys. Let m be a message, and x,y,∈ {0, 1}`.

– Osk
msk(x)← KeyGen(msk,x).

– Oct
msk(m,y)← Enc-SK(msk,m,y).

18

Experiments We will now define three security properties that a mixed bit
matching encryption scheme must satisfy. These definitions are similar to the
indistinguishability-based data/function privacy definitions for attribute based
encryption. For each of these experiments we restrict the adversary’s queries
to the ciphertext and secret key oracles to prevent trivial distinguishing strate-
gies. Also, we will be considering selective definitions, since our constructions
achieve selective security, and selective security suffices for our risky traitor trac-
ing application. One could also consider full (adaptive) versions of these security
definitions.

Definition 6. A mixed bit matching encryption scheme mBME = (Setup,KeyGen,
Enc-PK,Enc-SK,Dec) is said to satisfy pk-sk ciphertext indistinguishability if
for any polynomial `(·) and stateful PPT adversary A, there exists a negli-
gible function negl(·) such that for all security parameters λ ∈ N, Pr[1 ←
Expt-pk-sk-ctmBME

`(λ),A(1λ)] ≤ 1/2 + negl(λ), where Expt-pk-sk-ct is defined in Fig-
ure 2.

Experiment Expt-pk-sk-ctmBME
`(λ),A(1λ)

– (pk,msk)← Setup(1λ, 1`(λ))

– m← AO
sk
msk,O

ct
msk(pk).

– ct0 ← Enc-SK(msk,m, 1`(λ)), ct1 ← Enc-PK(pk,m), b← {0, 1}
– b′ ← AO

sk
msk,O

ct
msk(ctb).

– Output 1 if b = b′, and 0 otherwise.

Fig. 2: Public-key vs Secret-key Ciphertext Indistinguishability Experiment

Definition 7. A mixed bit matching encryption scheme mBME = (Setup, KeyGen,
Enc-PK,Enc-SK,Dec) is said to satisfy selective ciphertext hiding if for any
polynomial `(·) and stateful PPT adversary A, there exists a negligible function
negl(·) such that for all security parameters λ ∈ N, Pr[1← Expt-ct-indmBME

`(λ),A(1λ)]
≤ 1/2 + negl(λ), where Expt-ct-ind is defined in Figure 3.

Definition 8. A mixed bit matching encryption scheme mBME = (Setup, KeyGen,
Enc-PK,Enc-SK,Dec) is said to satisfy selective key hiding if for any polyno-
mial `(·) and stateful PPT adversary A, there exists a negligible function negl(·)
such that for all security parameters λ ∈ N, Pr[1 ← Expt-key-indmBME

`(λ),A(1λ)]
≤ 1/2 + negl(λ), where Expt-key-ind is defined in Figure 4.

4.2 Simplified Ciphertext Hiding

As a tool for proving mixed bit matching encryption constructions secure, we
define two simplified ciphertext hiding experiments, and then show that they
imply the original (selective) ciphertext hiding security game.

19

Experiment Expt-ct-indmBME
`(λ),A(1λ)

– (y0,y1)← A(1λ).
– (pk,msk)← Setup(1λ, 1`(λ))

– (m0,m1)← AO
sk
msk,O

ct
msk(pk)

– b← {0, 1}, ctb ← Enc-SK(msk,mb,yb)

– b′ ← AO
sk
msk,O

ct
msk(ctb)

– Output 1 if b = b′, and 0 otherwise.

Adversarial Restrictions: For all queries x made by A to Osk
msk the

following conditions must hold:

– If m0 = m1, then f(x,y0) = f(x,y1).
– If m0 6= m1, then f(x,y0) = f(x,y1) = 0.

Fig. 3: Ciphertext Hiding Experiment

Experiment Expt-key-indmBME
`(λ),A(1λ)

– (x0,x1)← A(1λ)
– (pk,msk)← Setup(1λ, 1`(λ))
– b← {0, 1}, skb ← KeyGen(msk,xb)

– b′ ← AO
sk
msk,O

ct
msk(pk, skb)

– Output 1 if b = b′, and 0 otherwise.

Adversarial Restrictions: For all queries (m,y) made by A to Oct
msk

the following equality must hold: f(x0,y) = f(x1,y).

Fig. 4: Key Hiding Experiment

Definition 9. A mixed bit matching encryption scheme mBME = (Setup, KeyGen,
Enc-PK,Enc-SK,Dec) is said to satisfy selective 1-attribute ciphertext hiding
if for any polynomial `(·) and stateful PPT adversary A, there exists a neg-
ligible function negl(·) such that for all security parameters λ ∈ N, Pr[1 ←
Expt-1-attr-ct-indmBME

`(λ),A(1λ)] ≤ 1/2 + negl(λ), where Expt-1-attr-ct-ind is defined
in Figure 5.

Definition 10. A mixed bit matching encryption scheme mBME = (Setup,
KeyGen, Enc-PK,Enc-SK,Dec) is said to satisfy selective ciphertext indistin-
guishability under chosen attributes if for any polynomial `(·) and stateful PPT
adversary A, there exists a negligible function negl(·) such that for all secu-
rity parameters λ ∈ N, Pr[1 ← Expt-IND-CAmBME

`(λ),A(1λ)] ≤ 1/2 + negl(λ), where
Expt-IND-CA is defined in Figure 6.

Theorem 1. If a mixed bit matching encryption scheme mBME = (Setup, KeyGen,
Enc-PK,Enc-SK,Dec) satisfies selective 1-attribute ciphertext hiding (Definition
9) and selective ciphertext indistinguishability under chosen attributes (Defini-
tion 10), then it also satisfies selective ciphertext hiding (Definition 7).

20

Experiment Expt-1-attr-ct-indmBME
`(λ),A(1λ)

– (y0,y1) ← A(1λ) where y0,i 6= y1,i for at most one i ∈
{1, . . . , `(λ)}.

– (pk,msk)← Setup(1λ, 1`(λ))

– m← AO
sk
msk,O

ct
msk(pk)

– b← {0, 1}, ctb ← Enc-SK(msk,mb,yb).

– b′ ← AO
sk
msk,O

ct
msk(pk, ctb)

– Output 1 if b = b′, and 0 otherwise.

Adversarial Restrictions: For all queries x made by A to Osk
msk the

following equality must hold: f(x,y0) = f(x,y1).

Fig. 5: 1-Attribute Ciphertext Hiding Experiment

Experiment Expt-IND-CAmBME
`(λ),A(1λ)

– y← A(1λ).
– (pk,msk)← Setup(1λ, 1`(λ))

– (m0,m1)← AO
sk
msk,O

ct
msk(pk)

– b← {0, 1}, ctb ← Enc-SK(msk,mb,y).

– b′ ← AO
sk
msk,O

ct
msk(pk, ctb)

– Output 1 if b = b′, and 0 otherwise.

Adversarial Restrictions: If m0 6= m1, then for all queries x made
by A to Osk

msk the following equality must hold: f(x,y) = 0.

Fig. 6: Ciphertext Indistinguishability under Chosen Attributes Experiment

The proof of above theorem is provided in the full version.

4.3 Simplified Key Hiding

We also define a similar simplified experiment for the key hiding security prop-
erty.

Definition 11. A mixed bit matching encryption scheme mBME = (Setup,
KeyGen, Enc-PK,Enc-SK,Dec) is said to satisfy selective 1-attribute key hid-
ing if for any polynomial ` and stateful PPT adversary A, there exists a neg-
ligible function negl(·) such that for all security parameters λ ∈ N, Pr[1 ←
Expt-1-attr-key-indmBME

`(λ),A(1λ)] ≤ 1/2 + negl(λ), where Expt-1-attr-key-ind is de-
fined in Figure 7.

Theorem 2. If a mixed bit matching encryption scheme mBME = (Setup, KeyGen,
Enc-PK,Enc-SK,Dec) satisfies 1-attribute key hiding (Definition 11) then it sat-
isfies key hiding (Definition 8).

The proof of above theorem is provided in the full version.

21

Experiment Expt-1-attr-key-indmBME
`(λ),A(1λ)

– (x0,x1)← A(1λ) where x0,i 6= x1,i for at most one i.
– (pk,msk)← Setup(1λ, 1`(λ)).
– b← {0, 1}, skb ← KeyGen(msk,xb).

– b′ ← AO
sk
msk,O

ct
msk(pk, skb).

– Output 1 if b = b′.

Adversarial Restrictions: For all queries (m,y) made by A to Oct
msk

the following equality must hold: f(x0,y) = f(x1,y).

Fig. 7: 1-Attribute Key Hiding Experiment

5 Building Risky Traitor Tracing using Mixed Bit
Matching Encryption

In this section, we provide a generic construction for risky traitor tracing schemes
from any mixed bit matching encryption scheme. Our transformation leads to
a risky traitor tracing scheme with secret-key tracing. The risky-ness of the

scheme will be f = k
n+k−1 − O

(
k(k−1)
n2

)
,6 where k can be thought of as a

scheme parameter fixed during setup, and the size of ciphertext will grow with
k.

5.1 Construction

– Setup(1λ, 1n): The setup algorithm chooses a key pair for mixed bit match-
ing encryption system as (mbme.pk,mbme.msk) ← mBME.Setup(1λ, 1k+1).
Next, it samples an index w as w ← {−k+ 2,−k+ 3, . . . , n− 1, n}, and sets
vectors xi for i ∈ [n] as

xi =

0k+1 if i < w,

0k−i+w1i−w+1 if w ≤ i < w + k,

1k+1 otherwise.

It sets the master secret key as msk = (mbme.msk, w), public key as pk =
mbme.pk, and computes the n user secret keys as ski ←
mBME.KeyGen(mbme.msk,xi) for i ∈ [n].

– Enc(pk,m): The encryption algorithm outputs the ciphertext ct as ct ←
mBME.Enc-PK(pk,m).

– Dec(sk,m): The decryption algorithm outputs the message m as m =
mBME.Dec(sk, ct).

6 We want to point out that for k = 1 we get the tight risky-ness, i.e. prove that our
scheme is 1

n
-risky secure.

22

– TraceD(msk, 1y,m0,m1): Let msk = (mbme.msk, w). To define the trace al-
gorithm, we first define a special index encryption algorithm Enc-ind which
takes as input a master secret key msk, message m, and an index i ∈ [k+ 1].

Enc-ind(msk,m, i): The index encryption algorithm outputs ct←
mBME.Enc-SK(msk,m, 1k+1−i0i).

Next, consider the Subtrace algorithm defined in Figure 8. The sub-tracing
algorithm simply tests whether the decoder box uses the key for user i+w−1
where i is one of the inputs provided to Subtrace. Now the tracing algorithm
simply runs the Subtrace algorithm for all indices i ∈ [k], and for each index
i where the Subtrace algorithm outputs 1, the tracing algorithm adds index
i+ w − 1 to the set of traitors. Concretely, the algorithm runs as follows:

• Let S = ∅. For i = 1 to k:

∗ Compute b← Subtrace(mbme.msk, 1y,m0,m1, i).
∗ If b = 1, set S := S ∪ {i+ w − 1}.

• Output S.

Algorithm Subtrace(msk, 1y,m0,m1, i)

Inputs: Key msk, parameter y, messages m0,m1, index i
Output: 0/1
Let ε = b1/yc. It sets T = λ ·n/ε, and count1 = count2 = 0. For j = 1
to T , it computes the following:

1. It chooses bj ← {0, 1} and computes ctj,1 ← Enc-ind(msk,mbj , i)
and sends ctj,1 to D. If D outputs bj , set count1 = count1 + 1,
else set count1 = count1 − 1.

2. It chooses cj ← {0, 1} and computes ctj,2 ← Enc-ind(msk,mcj , i+
1) and sends ctj,2 to D. If D outputs cj , set count2 = count2 + 1,
else set count2 = count2 − 1.

If count1 − count2 > T · (ε/4n), output 1, else output 0.

Fig. 8: Subtrace

Correctness. Since the encryption algorithm simply runs the public-key en-
cryption algorithm for mixed bit matching encryption the correctness of above
scheme follows directly from the correctness of the mixed bit matching encryp-
tion scheme.

Singular Trace Property. Note that if k is fixed to be 1, then our scheme satisfies
the singular trace property as defined in Definition 5. This is because the trace
algorithm will either output the fixed index w (chosen during setup), or output
an empty set.

Due to space constraints, the proof of security is provided in the full version.

23

6 Construction: Mixed Bit Matching Encryption Scheme

Let Grp-Gen be an algorithm that takes as input security parameter 1λ and out-
puts params = (p,G1,G2,GT , e(·, ·), g1, g2) where p is a λ bit prime, G1,G2,GT
are groups of order p, e : G1 × G2 → GT is an efficiently computable non-
degenerate bilinear map and g1, g2 are generators of G1,G2 respectively.

(pk,msk) ← mBME.Setup(1λ, 1`): The setup algorithm first chooses params =
(p,G1,G2,GT , e(·, ·), g1, g2)← Grp-Gen(1λ). It chooses α← Zp, ai ← Zp, bi ←
Zp, ci ← Zp for each i ∈ [`]. The public key consists of params, e(g1, g2)α,∏
i∈[`] g

ai·bi+ci
1 and {gai1 }i∈[`], while the master secret key consists of

(
params,

α, {ai, bi, ci}i∈`
)
.

sk ← mBME.KeyGen(x,msk): Let msk =
(
params, α, {ai, bi, ci}i∈`

)
. The key

generation algorithm first chooses t ← Zp and ui ← Zp for each i ∈ [`]. It

computes K0 = gα2 ·
(∏

i∈[`] g
−t·ci
2

)
·
(∏

i:xi=0 g
−ui·ai
2

)
. Next, it sets K1 = gt2,

and for each i ∈ [`], K2,i = g−t·bi if xi = 1, else K2,i = g−t·bi+ui
2 . The key is(

K0,K1, {K2,i}i∈[`]
)

.

ct ← mBME.Enc-SK(m,y,msk): Let msk =
(
params, α, {ai, bi, ci}i∈`

)
. The se-

cret key encryption algorithm first chooses s← Zp, and for each i ∈ [`] such
that yi = 0, it chooses ri ← Zp. It sets C = m · e(g1, g2)α·s, C0 = gs1,

C1 =
(∏

i:yi=1 g
s·(ai·bi+ci)
1

)
·
(∏

i:yi=0 g
s·ci+ai·bi·ri
1

)
. For each i ∈ [`], it

sets C2,i = gai·s1 if yi = 1, else C2,i = gai·ri1 if yi = 0. The ciphertext is(
C,C0, C1, {C2,i}i∈[`]

)
.

ct← mBME.Enc-PK(m, pk): Let pk = (params, e(g1, g2)α,
∏
i∈` g

ai·bi+ci
1 ,

{gai1 }i∈[`]). The public key encryption algorithm is identical to the secret key

encryption algorithm. It first chooses s ← Zp. It sets C = m · e(g1, g2)α·s,

C0 = gs1, C1 =
(∏

i∈` g
ai·bi+ci
1

)s
. For each i ∈ [`], it sets C2,i = (gai1)

s
. The

ciphertext is
(
C,C0, C1, {C2,i}i∈[`]

)
.

z ← mBME.Dec(ct, sk): Let ct =
(
C,C0, C1, {C2,i}i∈[`]

)
and sk =

(
K0,K1,

{K2,i}i∈[`]
)

. The decryption algorithm outputs

C

e(C0,K0) · e(C1,K1) ·
∏
i∈[`] e(C2,i,K2,i)

.

6.1 Correctness

Fix any security parameter λ, message m, vectors x,y such that f(x,y) = 1 and
public key pk = (params, e(g1, g2)α,

∏
i∈[`] g

ai·bi+ci
1 , {gai1 }i∈[`]). Let (s, {ri}i:yi=0)

be the randomness used during encryption, (t, {ui}i:xi=0) the randomness used
during key generation, ciphertext ct = (C,C0, C1, {C2,i}i∈[`]) and key sk =

24

(K0,K1, {K2,i}i∈[`]). To show that decryption works correctly, it suffices to show

that e(C0,K0) · e(C1,K1) ·
(∏

i∈[`] e(C2,i,K2,i)
)

= e(g1, g2)α·s.

e(C0,K0) · e(C1,K1) ·

∏
i∈[`]

e(C2,i,K2,i)

=
(
e(g1, g2)α·s−(

∑
i s·t·ci)−(

∑
i:xi=0 s·ui·ai)

)
·
(
e(g1, g2)(

∑
i s·t·ci)+(

∑
i:yi=1 s·t·ai·bi)+(

∑
i:yi=0 t·ai·bi·ri)

)
·
(
e(g1, g2)−(

∑
i:yi=1 t·s·ai·bi)−(

∑
i:yi=0 t·ai·bi·ri)+(

∑
i:xi=0 ai·s·ui)

)
In the second step, we use the fact that since f(x,y) = 1, whenever xi = 0, yi = 1
(if this was not the case, then we would have, for all i such that xi = yi = 0,
e(g1, g2)ui·ai·ri terms in the product). Simplifying the expression, we get the
desired product e(g1, g2)α·s.

Due to space constraints, the proof of security is provided in the full version.

7 Performance Evaluation

We provide the performance evaluation of our risky traitor tracing scheme ob-
tained by combining the mixed bit matching encryption scheme and the transfor-
mation to risky TT provided in Sections 6 and 5, respectively. Our performance
evaluation is based on concrete measurements made using the RELIC library [1]
written in the C language.

We use the BN254 curve for pairings. It provides 126-bit security level [3]. All
running times below were measured on a server with 2.93 GHz Intel Xeon CPU
and 40GB RAM. Averaged over 10000 iterations, the time taken to perform an
exponentiation in the groups G1, G2 and GT is approximately 0.28 ms, 1.60 ms
and 0.90 ms, respectively. The time for perform a pairing operation is around
2.22 ms. The size of elements in group G1 is 96 bytes.

Based on the above measurements, for risky traitor tracing with parameter k
we get the ciphertext size as (96 ·k+288) bytes, encryption time (0.28 ·k+1.74)
ms, and decryption time (2.226 · k + 6.66) ms.7 We point out in the above
evaluations we consider the KEM version of our risky traitor tracing in which
the message is encrypted using a symmetric key encryption with the hash of the
first component of ciphertext e(g1, g2)α·s is used as the secret key. That is, the
hashed value could be used as an AES key to perform message encryptions. For
the basic setting of risky traitor tracing, i.e. k = 1, we get the ciphertext size,
encryption time, and decryption time to be around 384 bytes, 2.16 ms, 8.89 ms
(respectively).

7 In these estimations, we ignore the time to evaluate the hash function on the element
in the target group GT since it has an insiginicant effect on the running time.

25

8 Hardness of Differentially Private Sanitization

In this section, we show that the Dwork et al. [14] result works even if the traitor
tracing scheme is f -risky secure. This, together with our risky TT constructions,
results in a hardness result with query set size 2O(λ) and based on assumptions
over bilinear groups. First, we introduce some differential privacy related prelim-
inaries following the notations from [23]. Next, we describe our hardness result.

8.1 Definitions

Differentially Private Algorithms. A database D ∈ Xn is a collection of n rows
x1, . . . , xn, where each row is an element of the date universe X . We say that two
databases D,D′ ∈ X ∗ are adjacent, denoted by D ∼ D′, if D′ can be obtained
from D by the addition, removal, or substitution of a single row (i.e., they differ
only on a single row). Also, for any database D ∈ Xn and index i ∈ {1, 2, . . . , n},
we use D−i to denote a database where the ith element/row in D is set removed.
At a very high level, an algorithm is said to be differentially private if its behavior
on all adjacent databases is similar. The formal definition is provided below.

Definition 12 (Differential Privacy [13]). Let A : Xn → Sn be a randomized
algorithm that takes a database as input and outputs a summary. A is (ε, δ)-
differentially private if for every pair of adjacent databases D,D′ ∈ Xn and
every subset T ⊆ Sn,

Pr[A(D) ∈ T] ≤ eε Pr[A(D′) ∈ T] + δ.

Here parameters ε and δ could be functions in n, the size of the database.

Accuracy of Sanitizers. Note that any algorithm A that always outputs a fixed
symbol, say ⊥, already satisfies Definition 12. Clearly such a summary will never
be useful as the summary does not contain any information about the underlying
database. Thus, we also need to specify what it means for the sanitizer to be
useful. As described before, in this work we study the notion of differentially
private sanitizers that give accurate answers to statistical queries.8 A statistical
query on data universe X is defined by a binary predicate q : X → {0, 1}. Let
Q = {q : X → [0, 1]} be a set of statistical queries on the data universe X . Given

any n ∈ N, database D ∈ Xn and query q ∈ Q, let q(D) =

∑
x∈D q(x)

n
.

Before we define accuracy, we would like to point out that the algorithm A
might represent the summary s of a database D is any arbitrary form. Thus, to
extract the answer to each query q from summary s, we require that there exists
an evaluator Eval : S × Q → [0, 1] that takes the summary and a query, and
outputs an approximate answer to that query. As in prior works, we will abuse
notation and simply write q(s) to denote Eval(s, q), i.e. the algorithm’s answer
to query q. At a high level, an algorithm is said to be accurate if it answers every
query to within some bounded error. The formal definition follows.

8 Statistical queries are also referred as counting queries, predicate queries, or linear
queries in the literature.

26

Definition 13 (Accuracy). For a set Q of statistical queries on X , a database
D ∈ Xn and a summary s ∈ S, we say that s is α-accurate for Q on D if

∀q ∈ Q, |q(D)− q(s)| ≤ α.

A randomized algorithm A : Xn → S is said to be an (α, β)-accurate sanitizer if
for every database D ∈ Xn,

Pr
A’s coins

[A(D) is α-accurate for Q on D] ≥ 1− β.

The parameters α and β could be functions in n, the size of the database.

Efficiency of Sanitizers. In this work, we are interested in asymptotic efficiency,
thus we introduce a computation parameter λ ∈ N. The data universe and query
space, both will be parameterized by λ; that is, for every λ ∈ N, we have a data
universe Xλ and a query space Qλ. The size of databases will be bounded by
n = n(λ), where n(·) is a polynomial. Now the algorithm A takes as input a
database Xnλ and output a summary in Sλ, where {Sλ}λ∈N is a sequence of
output ranges. And, there is an associated evaluator Eval that takes a query
q ∈ Qλ and a summary S ∈ Sλ and outputs a real-valued answer. The definitions
of differential privacy and accuracy readily extend to such sequences.

Definition 14 (Efficiency). A sanitizer A is efficient if, on input a database
D ∈ Xnλ , A runs in time poly(λ, log(|Xλ|), log(|Qλ|)), as well as on input a
summary s ∈ Sλ and query q ∈ Qλ, the associated evaluator Eval runs in time
poly(λ, log(|Xλ|), log(|Qλ|)).

8.2 Hardness of Efficient Differentially Private Sanitization from
Risky Traitor Tracing

In this section, we prove hardness of efficient differentially private sanitization
from risky traitor tracing schemes. The proof is an adaptation of the proofs in [14,
30, 23] to this restricted notion. At a high level, the idea is to set the data universe
to the secret key space and each query will be associated with a ciphertext
such that answer to a query on any secret key will correspond to the output of
decryption of associated ciphertext using the secret key. Now to show hardness of
sanitization we will prove by contradiction. The main idea is that if there exists
an efficient (accurate) sanitizer, then that could be successfully used as a pirate
box in the traitor tracing scheme. Next, assuming that the sanitizer satisfies
differential privacy, we can argue that the sanitizer could still be a useful pirate
box even if one of keys in the database is deleted, however the tracing algorithm
will still output the missing key as a traitor with non-negligible probability,
thereby contradicting the property that the tracing algorithm incorrectly traces
with only negligible probability.

Below we state the formal theorem. The proof of this theorem can be found
in the full version. Later we also show to get a stronger hardness result if the
underlying risky traitor tracing schemes also satisfies “singular trace” property
(Definition 5).

27

Hardness from Risky Traitor Tracing

Theorem 3. If there exists a f -risky secure private-key no-query traitor tracing
scheme T = (Setup,Enc,Dec,Trace), then there exists a data universe and query
family {Xλ,Qλ}λ such that there does not any sanitizer A : Xnλ → Sλ that is
simultaneously — (1) (ε, δ)-differentially private, (2) (α, β)-accurate for query
space Qλ on Xnλ , and (3) computationally efficient — for any ε = O(log λ), α <
1/2, β = o(1) and δ ≤ f · (1− β)/4n.

Theorem 4. If there exists a f -risky secure private-key no-query traitor trac-
ing scheme T = (Setup,Enc,Dec,Trace) satisfying singular trace property (Def-
inition 5), then there exists a data universe and query family {Xλ,Qλ}λ such
that there does not any sanitizer A : Xnλ → Sλ that is simultaneously — (1)
(ε, δ)-differentially private, (2) (α, β)-accurate for query space Qλ on Xnλ , and
(3) computationally efficient — for any ε = O(log λ), α < 1/2, β = o(1) and
δ ≤ f · (1− β)/4.

Hardness from Assumptions over Bilinear Groups Combining Theorem 4
with our risky TT scheme over prime order bilinear groups, we get the following
corollary.

Corollary 1. If Assumption 1 and Assumption 2 hold, then there exists a data
universe and query family {Xλ,Qλ}λ such that there does not any sanitizer A :
Xnλ → Sλ that is simultaneously — (1) (ε, δ)-differentially private, (2) (α, β)-
accurate for query space Qλ on Xnλ , and (3) computationally efficient — for any
ε = O(log λ), α < 1/2, β = o(1) and δ ≤ (1− β)/4n.

Similary, combining Theorem 4 with our risky TT scheme over composite
order bilinear groups, we get the following corollary.

Corollary 2. Assuming subgroup decision and subgroup hiding in target group
assumptions, there exists a data universe and query family {Xλ,Qλ}λ such that
there does not any sanitizer A : Xnλ → Sλ that is simultaneously — (1) (ε, δ)-
differentially private, (2) (α, β)-accurate for query space Qλ on Xnλ , and (3)
computationally efficient — for any ε = O(log λ), α < 1/2, β = o(1) and δ ≤
(1− β)/4n.

Acknowledgements

The fourth author is supported by NSF CNS-1414082, DARPA SafeWare, Mi-
crosoft Faculty Fellowship, and Packard Foundation Fellowship.

References

1. Relic toolkit, https://github.com/relic-toolkit/relic

28

2. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: CRYPTO. pp. 1–18
(2001)

3. Beuchat, J.L., González-Dı́az, J.E., Mitsunari, S., Okamoto, E., Rodŕıguez-
Henŕıquez, F., Teruya, T.: High-speed software implementation of the optimal ate
pairing over barreto–naehrig curves. In: International Conference on Pairing-Based
Cryptography. pp. 21–39. Springer (2010)

4. Billet, O., Phan, D.H.: Efficient traitor tracing from collusion secure codes. In:
Information Theoretic Security, Third International Conference, ICITS 2008, Cal-
gary, Canada, August 10-13, 2008, Proceedings. pp. 171–182 (2008)

5. Boneh, D., Franklin, M.K.: An efficient public key traitor tracing scheme. In: Ad-
vances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings. pp.
338–353 (1999)

6. Boneh, D., Naor, M.: Traitor tracing with constant size ciphertext. In: Proceedings
of the 2008 ACM Conference on Computer and Communications Security, CCS
2008, Alexandria, Virginia, USA, October 27-31, 2008. pp. 501–510 (2008)

7. Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing with short
ciphertexts and private keys. In: Advances in Cryptology - EUROCRYPT 2006,
25th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, St. Petersburg, Russia, May 28 - June 1, 2006, Proceedings.
pp. 573–592 (2006)

8. Boneh, D., Waters, B.: A fully collusion resistant broadcast, trace, and revoke
system. In: Proceedings of the 13th ACM conference on Computer and communi-
cations security. pp. 211–220. ACM (2006)

9. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In: Advances in Cryptology - CRYPTO
2014 - 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-
21, 2014, Proceedings, Part I. pp. 480–499 (2014)

10. Chabanne, H., Phan, D.H., Pointcheval, D.: Public traceability in traitor tracing
schemes. In: Advances in Cryptology - EUROCRYPT 2005, 24th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Aarhus, Denmark, May 22-26, 2005, Proceedings. pp. 542–558 (2005)

11. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: CRYPTO. pp. 257–270 (1994)

12. Chor, B., Fiat, A., Naor, M., Pinkas, B.: Tracing traitors. IEEE Transactions on
Information Theory 46(3), 893–910 (2000)

13. Dwork, C., McSherry, F., Nissim, K., Smith, A.D.: Calibrating noise to sensitivity
in private data analysis. In: Theory of Cryptography, Third Theory of Cryptogra-
phy Conference, TCC 2006, New York, NY, USA, March 4-7, 2006, Proceedings.
pp. 265–284 (2006)

14. Dwork, C., Naor, M., Reingold, O., Rothblum, G.N., Vadhan, S.: On the complexity
of differentially private data release: Efficient algorithms and hardness results. In:
Proceedings of the Forty-first Annual ACM Symposium on Theory of Computing.
pp. 381–390. STOC ’09, ACM, New York, NY, USA (2009)

15. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In: Advances in Cryptology - EUROCRYPT 2010,
29th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, French Riviera, May 30 - June 3, 2010. Proceedings. pp. 44–61
(2010)

29

16. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
(2013)

17. Garg, S., Kumarasubramanian, A., Sahai, A., Waters, B.: Building efficient fully
collusion-resilient traitor tracing and revocation schemes. In: Proceedings of the
17th ACM Conference on Computer and Communications Security, CCS 2010,
Chicago, Illinois, USA, October 4-8, 2010. pp. 121–130 (2010)

18. Goyal, R., Koppula, V., Waters, B.: Collusion resistant traitor tracing from learning
with errors (2018)

19. Kiayias, A., Pehlivanoglu, S.: Encryption for Digital Content, Advances in Infor-
mation Security, vol. 52. Springer (2010)

20. Kiayias, A., Yung, M.: Traitor tracing with constant transmission rate. In: Ad-
vances in CryptologyEUROCRYPT 2002. pp. 450–465. Springer (2002)

21. Kiayias, A., Yung, M.: Breaking and repairing asymmetric public-key traitor trac-
ing. In: Digital Rights Management: ACM CCS-9 Workshop, DRM 2002, Wash-
ington, DC, USA, November 18, 2002, Revised Papers (2003)

22. Kowalczyk, L., Malkin, T., Ullman, J., Wichs, D.: Hardness of non-interactive
differential privacy from one-way functions. Cryptology ePrint Archive, Report
2017/1107 (2017), https://eprint.iacr.org/2017/1107

23. Kowalczyk, L., Malkin, T., Ullman, J., Zhandry, M.: Strong hardness of privacy
from weak traitor tracing. In: Proceedings of TCC 2016-B (2016)

24. Naor, M., Pinkas, B.: Threshold traitor tracing. In: Advances in Cryptology-
CRYPTO’98. pp. 502–517. Springer (1998)

25. Naor, M., Pinkas, B.: Efficient trace and revoke schemes. In: Financial Cryptogra-
phy, 4th International Conference, FC 2000 Anguilla, British West Indies, February
20-24, 2000, Proceedings. pp. 1–20 (2000)

26. Nishimaki, R., Wichs, D., Zhandry, M.: Anonymous traitor tracing: How to embed
arbitrary information in a key. In: Advances in Cryptology - EUROCRYPT 2016
- 35th Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II. pp.
388–419 (2016)

27. Pfitzmann, B.: Trials of traced traitors. In: Information Hiding. pp. 49–64. Springer
(1996)

28. Pfitzmann, B., Waidner, M.: Asymmetric fingerprinting for larger collusions. In:
Proceedings of the 4th ACM conference on Computer and communications security.
pp. 151–160. ACM (1997)

29. Sirvent, T.: Traitor tracing scheme with constant ciphertext rate against power-
ful pirates. Cryptology ePrint Archive, Report 2006/383 (2006), http://eprint.
iacr.org/2006/383

30. Ullman, J.: Answering n{2+o(1)} counting queries with differential privacy is hard.

In: Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA,
USA, June 1-4, 2013. pp. 361–370 (2013)

31. Watanabe, Y., Hanaoka, G., Imai, H.: Efficient asymmetric public-key traitor trac-
ing without trusted agents. Topics in CryptologyCT-RSA 2001 pp. 392–407 (2001)

30

