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Abstract. Wang et al. (CCS 2017) recently proposed a protocol for
malicious secure two-party computation that represents the state-of-the-
art with regard to concrete efficiency in both the single-execution and
amortized settings, with or without preprocessing. We show here several
optimizations of their protocol that result in a significant improvement
in the overall communication and running time. Specifically:

— We show how to make the “authenticated garbling” at the heart
of their protocol compatible with the half-gate optimization of Za-
hur et al. (Eurocrypt 2015). We also show how to avoid sending an
information-theoretic MAC for each garbled row. These two opti-
mizations give up to a 2.6x improvement in communication, and
make the communication of the online phase essentially equivalent
to that of state-of-the-art semi-honest secure computation.

— We show various optimizations to their protocol for generating AND
triples that, overall, result in a 1.5x improvement in the communi-
cation and a 2x improvement in the computation for that step.

1 Introduction

In recent years, we have witnessed amazing progress in secure two-party compu-
tation, in both the semi-honest and malicious settings. In the semi-honest case,
there has been an orders-of-magnitude improvement in protocols based on Yao’s
garbled circuit [39] since the initial implementation by Malkhi et al. [26]. This
has resulted from several important techniques, including oblivious-transfer ex-
tension [16], pipelining [13], hardware acceleration [6], free-XOR, [19] and other
improved garbling techniques [32, 17], etc. Similarly, the concrete efficiency of
secure two-party computation in the malicious case has also improved tremen-
dously in both the single-execution [22, 30, 34, 23, 20, 10, 14, 21, 35, 8, 1, 36,
28, 18, 41, 37] and amortized [15, 24, 25, 31, 33] settings. Whereas initial imple-
mentations in the malicious case could evaluate up to 1,000 gates at the rate of
1 gate/second [32], the current state-of-the-art protocol by Wang et al. [37] (the
WRK protocol) can compute tens of millions of gates at a rate up to 700,000 x
faster. With this steady stream of improvements, it has become more and more



One-way comm. Two-way comm.

Dep. + online Total Dep. + online Total
semi-honest 0.22 0.22 0.22 0.22

Single-execution setting

[28] 0.22 15 0.22 15

[37] 0.57 3.43 0.57 6.29

[12] 3.39 3.39 3.39 3.39
This work, v. 1 0.33 2.24 0.33 4.15
This work, v. 2 0.22 2.67 0.22 5.12

Amortized setting (1024 executions)

[33] 1.60 1.60 3.20 3.20
[28] 0.22 6.6 0.22 6.6
[37] 0.57 2.57 0.57 4.57
[18] 1.59 1.59 1.59 1.59
This work, v. 1 0.33 1.70 0.33 3.07
This work, v. 2 0.22 2.13 0.22 4.04

Table 1. Communication complexity of different protocols (in MB) for eval-
uating an AES circuit. One-way communication refers to the maximum communi-
cation one party sends to the other; two-way communication refers to the sum of both
parties’ communication. The best prior number in each column is bolded for reference.

difficult to squeeze out additional performance gains; as an illustrative example,
Zahur et al. [40] introduced a highly non-trivial optimization (“half-gates”) just
to reduce communication by 33%.

We show several improvements to the WRK protocol that, overall, improve
its performance by 2-3x. Recall their protocol can be divided into three phases:
a function-independent phase (Ind.) in which the parties know an upper bound
on the number of gates in the circuit to be evaluated and the lengths of their
inputs; a function-dependent phase (Dep.) in which the parties know the circuit,
but not their inputs; and an online phase in which the parties evaluate the circuit
on their respective inputs. Our results can be summarized as follows:

— We show how to make the “authenticated garbling” at the heart of the online
phase of the WRK protocol compatible with the half-gate optimization of
Zahur et al. We also show that it is possible to avoid sending an information-
theoretic MAC for each garbled row. These two optimizations result in up
to a 2.6 X improvement in communication and, somewhat surprisingly, result
in a protocol for malicious secure two-party computation in which the com-
munication complexity of the online phase is essentially equivalent to that
of state-of-the-art semi-honest secure computation.

— The function-dependent phase of the WRK protocol involves the computa-
tion of (shared) “AND triples” between the parties. We show various opti-



mizations of that step that result in a 1.5x improvement in the communi-
cation and a 2x improvement in the computation. Our optimizations also
simplify the protocol significantly.

We can combine these improvements in various ways, and suggest in particular
two instantiations of protocols with malicious security: one that minimizes the
total communication across all phases, and one that trades off increased com-
munication in the function-independent phase for reduced communication in the
function-dependent phase. These protocols improve upon the state-of-the-art by
a significant margin, as summarized in Table 1. For example, compared to the
protocol of Nielsen et al. [28] we achieve the same communication across the
function-dependent and online phases, but improve the total communication by
more than 6x; compared to the prior work with the best total communica-
tion [12], we achieve a 1.5x improvement overall and, at the same time, push
almost all communication to the function-independent preprocessing phase. (Our
protocol also appears to be significantly better than that of Hazay et al. [12] in
terms of computation. See Section 6 for a more detailed discussion.)

The multi-party case. It is natural to wonder whether we can extend our
improved technique for authenticated garbling to the multi-party case, i.e., to
improve upon [38]. Unfortunately, we have not yet been able to do so. In Sec-
tion 7, we discuss some of the difficulties that arise.

1.1 Outline

In Section 2 we provide some background about the WRK protocol. We provide
the high-level intuition behind our improvements in Section 3. In Section 4, we
describe in detail our optimizations of the online phase of the WRK protocol,
and in Section 5 we discuss our optimizations of the preprocessing phase. In
Section 6, we compare our resulting protocols to prior work.

2 Background

We begin by describing some general background, followed by an in-depth review
of the authenticated-garbling technique introduced in [37]. In the section that
follows, we give a high-level overview of our optimizations and improvements.

We use k and p to denote the computational and statistical security param-
eters, respectively. We sometimes use “:=" to denote assignment.

Information-theoretic M ACs. As in prior work, we authenticate bits using
a particular information-theoretic MAC. Let Ag € {0,1}” be a value known to
Pg that is chosen at the outset of the protocol. We say a bit b known to Pa is
authenticated to Pg if Pg holds a key K[b] and Pa holds the corresponding tag
M[b] = K[b] @ bAg. We abstractly denote such a bit by [b]a; i.e., for some fixed
Ag, when we say the parties hold [b]a we mean that Pa holds (b, M[b]) and Pg
holds K[b] such that M[b] = K[b] ® bAg. We analogously let [b]g denote a bit b
known to Pg and authenticated to Pa.



Functionality F.pi

Honest case:

1. Upon receiving init from both parties, choose uniform Aa, Ag € {0,1}”; send
Apa to Pa and Ag to Ps.

2. Upon receiving (random, A) from both parties, choose uniform z € {0,1} and
Klz] € {0,1}*, set M[z] := K[z] ® 2Ag, and send (z,M[z]) to Pa and K|x]
to Pg.

3. Upon receiving (random, B) from both parties, generate an authenticated bit
for Pg in a manner symmetric to the above.

Corrupted parties: A corrupted party can specify the randomness used on its

behalf by the functionality.

Global-key queries: A corrupted Pa (resp., Pg) can, at any time, send A, and
is told whether A = Ag (resp., A = Aa).

Fig. 1. The authenticated-bits functionality.

A pair of authenticated bits [b1]a, [b2]s, each known to a different party, form
an authenticated share of by @ ba. We denote this by (b1 | b2), where the value in
the left slot is known to Pa, and the value in the right slot is known to Pg. Both
authenticated bits and authenticated shares are XOR-~-homomorphic.

Authenticated bits can be computed efficiently based on oblivious trans-
fer [29, 28]. We abstract away the particular protocol used to generate authen-
ticated bits, and design our protocols in the Fypii-hybrid model (cf. Figure 1) in
which there is an ideal functionality that provides them.

Opening authenticated values. An authenticated bit [b]a known to Pa can
be opened by having Pa send b and M[b] to Pg, who then verifies that M[b] =
K[b] @ bAg. As observed in prior work [9], it is possible to open n authenti-
cated bits with less than n times the communication. Specifically, Pa can open
[b1]as - - -, [bn]a by sending by, ..., b, along with h := H(M[b1],..., M[b,]), where
H is a hash function modeled as a random oracle. Pa then simply checks whether
h = H(K[b1] ® b14s,...,K[b,] ® b, Ag).

We let Open([b1]a,...) denote the process of opening one or more authenti-
cated bits in this way, and overload this notation so that Open((b; | b2)) denotes
the process of having each party open its portion of an authenticated share.

Circuit-dependent preprocessing. We consider boolean circuits with gates
represented as a tuple («, 3,7,T), where o and 3 are (the indices of) the input
wires of the gate, v is the output wire of the gate, and T' € {®, A} is the type
of the gate. We use W to denote the output wires of all AND gates, Z1,7Z5 to
denote the input wires for each party, and O to denote the output wires.



Functionality Fye

1. Choose uniform A, Ag € {0,1}”. Send Aa to Pa and Ag to Pg.
2. For each wire w € W UZ, generate a random authenticated share (ry | sw).
3. For each gate G = («, 8,7, T), in topological order:
— If T = @, generate a random authenticated share (r | s,) for which r, ®
Sy =Ta D Sa DTs D sp.
— If T'= A, generate a random authenticated share (1} |s3) for which 73 @
5 = (ra @ sa) A (rs @ sp).

Fig. 2. Preprocessing functionality for some fixed circuit.

Wang et al. [37] introduced an ideal functionality called Fyre (cf. Figure 2)
that is used by the parties in a circuit-dependent, but input-independent, prepro-
cessing phase. This functionality sets up information for the parties as follows:

1. For each wire w that is either an input wire of the circuit or an output wire
of an AND gate, generate a random authenticated share (ry, | s,,). We refer

to the value A\, def Tw B Sy as the mask on wire w.

2. For the output wire v of each XOR gate (a, 8,7,®), generate a random
authenticated share (r,|s,) whose value r., & s, is the XOR of the masks
on the input wires «, 3.

3. For each AND gate (a,f3,7,A), generate a random authenticated share
(r2]s%) such that

L @8, = (Ta ©sa) N(rs A sp).

We refer to a triple of authenticated shares ((ra | sa), (rg | sp) , (2 | s%)) for which
75 @ 85 = (Ta @ Sa) A (rp @ sp) as an authenticated AND triple. These are just
(authenticated) Beaver triples [4] over the field Fs.

Authenticated garbling. We now describe the idea behind the authenticated
garbling technique from the WRK protocol. We assume the reader is famil-
iar with basic concepts of garbled circuits, e.g., point-and-permute [5], free-
XOR [19], etc.

Following the preprocessing phase described above, every wire w is associated
with a secret mask \,,, unknown to either party. If the actual value on that wire
(when the circuit is evaluated on the parties’ inputs) is z,, then the masked
value on that wire is defined to be 2, = z, ®\y,. We focus on garbling a single
AND gate («, 8,7,A). Assume Pp is the circuit garbler and Pg is the circuit
evaluator. Say the garbled wire labels are (Lq,0,La,1) and (Lg,,Lg, 1) for wires «
and f3, respectively. Since we apply the free-XOR, optimization, Pa also holds A
such that Ly, 0 @ Ly,1 = A for any wire w. The protocol inductively ensures that
the evaluator Pg knows the wire labels Ly 5., La,s, and masked values Z,, 25 for



both input wires. Note that the correct masked value for the output wire is then
Zy = (Aa @ 2a) A (Ag @ 25) @ Ays

and we need to ensure that Pg learns this value.
To achieve this, Pa generates a garbled gate consisting of 4 rows (one for
each u,v € {0,1})

Gu,v = H('—a,uy I—ﬂ,v) 53] (ru,va M[Tu,v]a [I—'y,éu,vbv
with bit 2, , defined as
Zuw=Aa Bu) A (AgBv) B\,

Here, [Ly 2, ,] is Pa’s share of the garbled label; 7y, is Pa’s share of the bit 2, ,;
and Pg holds the corresponding share s, ,, such that 7, , ® sy, = 24,0 The value
M([ry,,] is the MAC authenticating the underlying bit to Pg. Also note that the
definition of 2, , indicates that when u = 2, and v = 23 then 2, , = 2,.

Suppose the evaluator Pg holds (u,L,,) and (v,Lg,), where u = 2, and
v = Zg. Then Pg can evaluate this AND gate by decrypting G, to obtain
Tup and Pa’s share of Lz, . After verifying the MAC on r, ,, party Pg can
combine these values with its own shares to reconstruct the masked output value
Zyw (that is, 2,) and its corresponding label L, s, , (that is, L,z ).

Assuming that the authenticated bits and shares of the labels can be com-
puted securely, the above protocol is secure against malicious adversaries. In
particular, even if P cheats and causes Pg to abort during evaluation, any
such abort depends only on the masked values on the wires. Since the masks
are random and unknown to either party, this means that any abort is input-
independent. The MACs checked by Pg ensure correctness, namely that evalua-
tion has resulted in the correct (masked) output-wire value.

From authenticated shares to shared labels. Another important optimiza-
tion in the WRK protocol is to compute shares of labels efficiently using authen-
ticated shares. Assume the parties hold an authenticated share (r|s) of some
mask A\ = s @ r. It is then easy to compute a share of AAa, since

NAp = (1@ 5)2n = (rAx & K[s]) & (Mls]).

Since Pa has r, Aa, and K[s] while Pg has M[s|, the two parties can locally
compute shares of AAa (namely, [AAA]) given only (r|s).

We can use this fact to compute shares of labels for a secret masked bit
efficiently. Assuming the global authentication key (i.e., Aa) is also used as the
free-XOR shift, then it holds that L, s, , = L, 0® 2,,,Aa. Therefore, the task of
computing shares of labels reduces to the task of computing shares of 2, , Aa,
since L, o is known to Pa.

Notice that

ZupwAa = ((Aa @u) A(Ag Dv) B N,) Aa



= /\a/\,BAA D UAGAA D ’U)\BAA D uvAp © )"YAA'

If the parties hold an authenticated AND triple ((r4 | sa), (15 |s), (3| s})) and
a random authenticated share (r, |s,) such that Ay = 7o @ 54, Ag = 13 @ 55,
AaAAg =15@5%, and Ay = r,®s,. The parties can then locally compute shares
of AaAn, AgAp, A\yAp, and (Mg A Ag)Aa, and finally compute shares of 2, , Aa
by linearly combining the above shares.

3 Overview of Our Optimizations

We separately discuss our optimizations for the authenticated garbling and the
preprocessing phases. Details and proofs can be found in Sections 4 and 5.

3.1 Improving Authenticated Garbling

As a high level, the key ideas behind authenticated garbling are that (1) it is
possible to share garbled circuits such that neither party knows how rows in
the garbled tables are permuted (since no party knows the masks on the wires);
moreover, (2) information-theoretic MACs can be used to ensure correctness of
the garbled tables. In the original protocol by Wang et al., these two aspects are
tightly integrated: each garbled row includes an encryption of the corresponding
MAC tag, so the evaluator only learns one such tag for each gate.

Here, we take a slightly different perspective on how authenticated garbling
works. In particular, we (conceptually) divide the protocol into two parts:

— In the first part, the parties compute a shared garbled circuit, without any
authentication, and let the evaluator reconstruct and evaluate that garbled
circuit. We stress here that, even though there is no authentication, corrupt-
ing one or more garbled rows does not allow a selective-failure attack for
the same reason as in the WRK protocol: any failure depends only on the
masked wire values, but neither party knows those masks.

This part is achieved by the encrypted wire labels alone, which have the form
H(Lau,Lgw) @ [Ly,z,,]- These require 4« bits of communication per gate.

— In the second part, the evaluator holds masked wire values for every wire of
the circuit. It then checks correctness of all these masked values. For exam-
ple, it will ensure that for every AND gate, the underlying (real) values on
the wires form an AND relationship. Such verification is needed for masked
values that Pg obtains during the evaluation of the garbled circuit.

The WRK protocol achieves this by encrypting authenticated shares of the
form H(Lau,Lgw)®(ruw, M1y ,]) in each row of a garbled table. The evalua-
tor decrypts one of the rows and checks the appropriate tag. These encrypted
tags contribute 4p bits of communication per gate.

With this new way of viewing authenticated garbling, we can optimize each part
independently. By doing so, we are able to reduce the communication of the



first part to 2k + 1 bits per gate, and reduce the communication of the second
part to 1 bit per gate. In the process, we also reduce the computation (in terms
of hash evaluations) by about half. In the following, we discuss intuitively how
these optimizations work.

Applying row-reduction techniques. In garbled circuits, row reduction refers
to techniques that use fewer than four garbled rows per garbled gate [27, 32, 40,
11]. We review the simplest row-reduction technique here, describe the challenge
of applying the technique to authenticated garbling, and then show how we
overcome the challenge. This will serve as a warm-up to our final protocol that
is compatible with the half-gate technique.

In classical garbling, a garbled AND gate can be written as (in our notation):

Go 0= H( @,05 Lgyo) &) L'y,éo,o = H(me Lg,o) () L%o D 2070AA
Goi1 = H(Lao,Lg1) @ Ly z, = H(Lao, L) ® Ly 0@ 20,144
Gi0=H(Laj,Lpo) ® Ly 2z, = H(La1,Lgo) © Ly oD 21,044
Gip=H(Lajg,Lg1) ®Lyz, = H(La,Lg) @ Lyo @ 21,144,

The idea behind GRR3 row reduction [27] is to choose wire labels so Gg,o = 0.
That is, the garbler chooses

L%0 = H(La’o, L,B,O) @ 20’0A/_\.

The garbler now needs to send only (Go,1,G1,0,G1.1), reducing the communi-
cation from 4k to 3k bits. If the evaluator has input wires with masked values
(0,0), it can simply set Go,o = 0" and then proceed as before.

In authenticated garbling, the preprocessing results in shares of {2, ,Aa}.
Hence, if Pa could compute L, o then the parties could locally compute shares
of the {Gy} (since Pa knows all the Ly, Lg,, values and their hashes). Pa
could then send its shares to Pg to allow Pg to recover the entire garbled gate.
Unfortunately, Pa cannot compute L, o because Pa does not know Zg ¢! Indeed,
that value depends on the secret wire masks, unknown to either party.

Summarizing, row-reduction techniques in general compute one (or both)
of the output-wire labels as a function of the input-wire labels and the secret
masks, making them a challenge for authenticated garbling.

Our observation is that although Pa does not know %y o, the garbling requires
only 2p0Aa for which the parties do have shares. Let S4 and Sp denote the
parties’ shares of this value, so that Sy @ Sp = 2p,0Aa. Our main idea is for the
parties to “shift” the entire garbling process by the value Sg, as follows:

1. Pa computes Ly o := H(La,0,Lg,0) ® Sa. Note this value differs from the
standard garbling value by a shift of Sg. Intuitively, instead of choosing L o
so that Goo = 0%, we set implicitly set Goo = Sp. Although Pa does not
know Sp, it only matters that the evaluator Pg knows it.

2. Based on this value of L, o, the parties locally compute shares of the garbled
gate Go,1,G1,0,G1,1 defined above, and open them to Pg.



3. When Pg evaluates the gate on input Lo, 4, Lg v, if (u,v) # (0,0) then evalu-
ation is the same as usual. If (u,v) = (0,0) then Pg sets Go o = Sp. This is
equivalent to Pg doing the usual evaluation but shifting the result by Sp.

Using the half-gate technique. The state-of-the-art in semi-honest garbling
is the half-gate construction of Zahur et al. [40]. It requires 2k bits of communi-
cation per AND gate, while being compatible with free-XOR. We describe this
idea, translated from the original work [40] to be written in terms of masks and
masked wire values so as to match our notation.
The circuit garbler computes a garbled gate as:
Go:=H(Lao) ® H(La) ® AgAn

) s

Gl = H(LB@) (&) H(Lﬂ 1) D I—a,O 5] )\aAAa

)

and computes the 0-label for that gate’s output wire as:
L%O = H(La70) %) H(L,&Q) (&) (Aa/\,g S5 >\’Y)AA'

If the evaluator Pg holds masked values u, v and corresponding labels Lq 4, L3 v,
it computes:

Eval(u, v, Lau, Lgw) := H(Law) @ H(Lgw) ® uGo @ v(G1 @ Law)-
This results in the value

Eval(u, v, Lou, Lgw) = H(Lao) ® H(Lg,0) ® (uv & vAq & urg)Aa

)

= H(Lao)® H(Lso) & ((u B Aa)(v B Ag) B Aa)\B)AA

s

H(Layp) ® H(Lg,0) @ (2u0 ® Aol B Ay)An,

s

which is the correct output L, 2, , = Ly 0 ® 240 Aa.

As before, this garbling technique is problematic for authenticated garbling,
because the garbler Pa cannot compute L, o as specified. (Pa does not know the
wire masks, so cannot compute the term (AaAg @ Ay)An.)

However, the parties hold' shares of this value; say, SA®Sp = (AaAgDA,) Aa.
We can thus conceptually “shift” the entire garbling procedure by S to obtain
the following interactive variant of half-gates:

1. Pa computes the output wire label as
L%O = H(Lmo) (&) H(Lg,o) (&) SA,

which is “shifted” by Sp from what the half-gates technique specifies.
2. The parties locally compute shares of Gy, G as per the half-gates technique
described above. These shares are opened to Pg, so Pg learns (Go, G1).

! Note that (AaAs ® A\y) = 20,0, the same secret value as in the previous example.



3. To evaluate the gate on inputs L, 4, L 3,4, the evaluator Pg performs standard
half-gates evaluation and then adds Sp as a correction value. This results in
the correct output-wire label, since:

EvaI(La,u, Lg,v) ® S = Eval(Lmu, Lﬁﬂ)) D (/\a/\g (5] )\,y)AA ® Sz
= H(La,o) ® H(Lgo) D 2y Ar D Sa
= L'y,O S 72u,vAA

= L'Y7£u,v'

Authentication almost for free. In the WRK scheme, suppose the actual
values on the wires of an AND gate are 2., 23,2, With z4 A 28 = z,. During
evaluation, Pg learn masked values 2, = 24 @ Aa, 28 = 23D Ag, and 2, = z, DA,
For correctness it suffices to show that

ZaNzg =2y <= (Za @A) N(Z B Ag) = (2, N\,)

Za,B

Note the parties already have authenticated shares of Ay, Ag, Ay, and (Ag A Ng),
so they can also derive authenticated shares of related values.

In the WRK scheme the garbler Pa prepares an authenticated share (MAC)
of 2, g corresponding to each of the 4 possible values of 2., 23. It encrypts this
share so that it can only be opened using the corresponding wire labels. Pg can
then decrypt and verify the relevant 2, g value (and take it to be the masked
output value 2,).

Our approach is to apply a technique suggested for the SPDZ protocol [9]:
evaluate the circuit without authentication and then perform batch authentica-
tion at the end. Thus, in our new protocol authentication works as follows:

1. Pg evaluates the circuit, obtaining (unauthenticated) masked values Z, for
every wire .

2. Pg reveals the masked values of every wire (1 bit per wire). Revealing these to
Pa does not affect privacy because the masks are hidden from both parties
(except for certain input/output wires where one or both of the parties
already know the underlying values).

3. Pa generates authenticated shares of only the relevant 2, s values and sends
them. Pg verifies the authenticity of each share. This is equivalent to sending
a MAC of Pa’s shares. As described in Section 2, this can be done by sending
only a hash of the MACs.

This technique for authentication adds an extra round, but it makes the authen-
tication almost free in terms of communication. Pg sends 1 bit per wire and Pa
sends only a single hash value to authenticate.

Details of the optimizations described above can be found in Section 4.



3.2 Improving the Preprocessing Phase

We also improve the efficiency of preprocessing in the WRK protocol signifi-
cantly; specifically: (1) we design a new protocol for generating so-called leaky-
AND triples. Compared to the best previous protocol by Wang et al., it reduces
the number of hash calls by 2.5x and reduces communication by s bits. (2) we
propose a new function-dependent preprocessing protocol that can be computed
much more efficiently. We remark that the second optimization is particularly
suitable for RAM-model secure computation, where CPU circuits are fixed ahead
of time.

To enable the above optimizations, we set Isb(Aa) := 1 and Isb(Ag) := 0,
where Isb(z) denotes the least significant bit of x.

A new leaky-AND protocol. The output of a leaky-AND protocol is a ran-
dom authenticated AND triple ((ro | sa), (rs]ss), (v} | s3)) with one caveat: the
adversary can choose to guess the value of r, @ s,. A correct guess remains un-
detected while an incorrect guess will be caught. (See Figure 4 for a formal
definition.) The leaky-AND protocol by Wang et al. works in two steps. Two
parties first run a protocol whose outputs are triples that are leaky without any
correctness guarantee; then a checking procedure is run to ensure correctness.
The leakage is later eliminated by bucketing. In our new protocol, we observe
that these two steps can be computed at the same time, reducing the number
of rounds as well as the amount of computation (i.e., H-evaluations). Moreover,
computing and checking can be further improved by adopting ideas from the
half-gate technique. Details are below.

Recall that in the half-gate approach, if a wire is associated with wire labels
(Lo,Ly = Lo ® Aa), the first row of the gate computed by the garbler has the
form

G=HL)aeHL)aC,

for some C. An evaluator holding (b, L) can evaluate it as

E=0bG & H(L)
=b(H(Ly)® H(L1)®d C) ® H(Ly)
=b(H(Ly) ® H(Ly)) ® H(Ly) ® bC
= H(Ly) ® bC.

(1)

Correctness ensures that E@ H(Lg) = bC, which means that after the evaluation
the two parties hold shares of bC. Note that when free-XOR is used with shift Aa,
then a pair of garbled labels (Lg, L) and the IT-MAC for a bit (i.e., (K[b], M[?]))
have the same structure. Therefore the above can be reformulated and extended
as follows:

G = H(K[b])) ® HMD)) @ C1

E =bG @ H(M[b]) & bCs

. Assuming the two parties have an authenticated bit [b]g, then E @ H(K[b]) =
b(C1 @ Cy). If we view C; and Cs as shares of some value C = Cy @ Cs, then this



can be interpreted as a way to select on a shared value such that the selection
bit b is known only to one party and at the same time the output (namely,
bC = H(K[b]) @ E) is still shared.

Now we are ready to present our protocol. We will start with a set of ran-
dom authenticated bits ({z1 | x2), (y1 |y2), (21 |7)). We want the two parties to
directly compute shares of

S=(r1Bx2) ANy1 DY) D21 Br)(An ® Ap).

Assuming Isb(Ap® Ag) = 1, revealing d = Isb(.5) allows the parties to “fix” these
random authenticated shares to a valid triple (by computing [z3]g = [r]g @ d).
Once the parties hold shares of S (for example, Pa holds S; and Pg holds Sy =
S @ S1), checking the correctness of d also becomes easy: d is valid if and only if
S1 @ dAp from Pa equals to So ® dAg from Pg. A wrong d can pass the equality
check only if the adversary guesses the other party’s A value. Now the task is
to compute shares of S, where S can be rewritten as

S =x1(y1 ©y2)(Ar ® Ag) © 22(y1 D y2)(Aa D Ag) ® (21 B 7)(Ar © Ag).
Here, we will focus on how to compute shares of
T2(y14a @ Y148 © y2 Aa © y24B).

Now we apply the half-gate observation: Pa has C; = y1 Aa @ K[ya] ® M[y1] and
Pg has Cy = yo Ag @ Ky1] & M[y2], and we have

22(C1 & C2) = 22(y1 An B 1148 B y2An S y148).

Therefore, this value can be computed by Pa sending one ciphertext to Pg. Given
the above observations, the final protocol can be derived in a straightforward
way. Overall this new approach improves communication by 1.2x and improves
computation by 2x.

For details and a security proof corresponding to the above, see Section 5.1.

New function-dependent preprocessing. Here we show how to further im-
prove the efficiency of function-dependent preprocessing. Recall that in the WRK
protocol, each AND triple is derived from B leaky-AND triples, for B ~ @;
these triples are then used to multiply authenticated masked values for each
AND gate of the circuit. Our observation is that we can reduce the number of
authenticated shares needed per gate from 3B + 2 to 3B — 1. This idea was
initially used by Araki et al. [3] in the setting of honest-majority three-party
computation. See Section 5.2 for details.

4 Technical Details: Improved Authenticated Garbling

Since we already discussed the main intuition of the protocol in the previous
section, we will present our main protocol in the Fp-hybrid model. Detailed
protocol description is shown in Figure 3. Each step in the protocol can be
summarized as follows:
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Inputs: Pa holds z € {0,1}”* and P holds y € {0, 1}"2. Parties agree on a circuit
for a function f : {0,1}™* x {0,1}"* — {0,1}°.

1.

Pa and Pg call Fue, which sends Aax to Pa, Ag to Pg, and sends
{{rw| $w) }wezuw, {(ry | sw)twew to Pa and Pg. For each w € Z1 U Iy, Pa
also picks a uniform x-bit string L.,o.
Following the topological order of the circuit, for each gate G = (o, 8,7, T),
— If T'= @, Pa computes L0 :=La,0® Lg,o
— If T = A, Pa computes Lo,1 := La,0 ® Aa, Lg,1 1= Lg,0 ® Aa, and
Gr,0 = H(La,0,7) ® H(La1,7) ® K[sp] @ r5Aa
Gy = H(Lgo,7) ® H(Lp1,7) ® K[sa] ®1alda @ Lao
Lyo = H(La,0,7) ® H(Lg0,7) ® K[sy] ® 1y An & K[s]] & 75 An
by :=Isb(Ly,0)
Pa sends G0, G+,1,b to Ps.

For each w € 7, two parties compute r,, := Open([ry]a). Pg then sends
Yw D Aw 1= Yuw @ Sw ® 7w to Pa. Finally, Pa sends Ly, @x, to Ps.
For each w € 7Z;, two parties compute s, = Open([sw}s). Pa then sends

Tw B A 1= T D Sw D 7w and Ly 2, or, t0 Pa.

Pg evaluates the circuit in topological order. For each gate G = («, 3,v,T),

Pg initially holds (za @ Aa,La,ze@r.) and (23 ® Ag, L@,zﬂ@Aﬂ), where za, 23

are the underlying values of the wires.

(a) If T'= @, Pg computes zy DAy 1= (2a ® Aa) © (25 D Ap) and L,z ax, =
Lazaora @ Lo zgmrs-

(b) If T'= A, Pg computes Go := G~,0 ® M[sg], and G1 := G+,1 & M[s.]. Pg
evaluates the garbled table (Go, G1) to obtain the output label

L“/,Z»yéBz\y = H(La,za@/\avV) D H(Lﬁ,ZﬁEB)\Lga'V) D M[S’Y} D M[S:]
] (Za @ )\OC)GO ©® (Z['S ] Aﬁ)(Gl @ La,z(,@)\a)

and z, ® Ay :=by @ Isb(L, 2, ax,)
For each w € W, Pg sends Zy := 2y ® Ay to Pa.
For each AND gates (o, 8,7, A), both parties know 24 = 2o DA, £ = 28D g,
and 2y = 2, @ A\y. Two parties compute authenticated share of bit ¢, defined
as

Cy = (?:‘a (&) )\a) A (25 [&5) )\5) [&5) (7:’7 D AW).

Note that ¢, is a linear combination of Au, Ag, Ay and A} = Ao A Ag, therefore
authenticated share of ¢, can be computed locally.
Two parties use Open to check that ¢y is O for all gates v, and abort if any
check fails.
For each w € O, two parties compute 7, := Open([rw]a). Ps computes z,, :=
(Aw ® 2w) B rw D Sw-

Fig. 3. The main protocol in the Fy hybrid model




1. Parties generate circuit preprocessing information using Fpre.
2. Pa computes its own share of the garbled circuit and sends to Pg.
3-4. Parties process P and Pg’s input and let Pg learn the corresponding masked
input wire values and garbled labels.
5. Pg locally reconstructs the garbled circuit and evaluates it.
6-8. Pg sends all masked wire values (including all input, output, and internal
wires) to Pa; two parties check the correctness of all masked wire values.
9. Pa reveals the masks of output wires to Pg, who can recover the output.

Note that steps 2 through 9 are performed in the online phase, with 2k + 2 bits
of communication per AND gate, x+ 1 bits of communication per input bit, and
1 bit of communication per output bit.

4.1 Proof of Security
We start by stating our main theorem.

Theorem 1. If H is modeled as a random oracle, the protocol in Figure 3 se-
curely computes f against malicious adversaries in the Fye-hybrid model.

Before proceeding to the formal proof, we first introduce two important lem-
mas. The first lemma addresses correctness of our distributed garbling scheme
in the semi-honest case; the second lemma addresses correctness of the whole
protocol when Pp is corrupted.

Lemma 1. When both parties follow the protocol honestly then, after step 5, for
each wire w in the circuit Pg holds (2w @ Aw; Lw 202w )-

Proof. We prove this by induction on the gates in the circuit.

Base case. It is easy to verify from step 3 and step 4 that the lemma holds for
input wires.

Induction step. XOR-gates are trivial and so focus on an AND gate («, 3,7, A).
First, the garbled tables are computed distributively, therefore we first write
down the table after Pg merged its own share as follows. Note that we ignore
the gate id () for simplicity.

Go=H(Lao) ® H(La1) ®K[sg] ®rplda & M[sgs]
H(LmO) (La,l) @)‘ﬂAA

G1=H(Lgo)® H(Lg1) ® K[sa] ®TeAa ® M[sa] ® Lao
= H(Lpo) ® H(Lg1) ® Aada @ Lao.

Pa locally computes the output garbled label for 0 values, namely L o as:
L%O = H(La 0) EB H(Lﬁ Q) @ K[S»Y} @ T—YAA @ K[ ] EB T*AA

Pg, who holds (2o © AasLa,z.@r,) and (zg @ Ag,Lgz;@x,) by the induction
hypothesis, evaluates the circuit as follows:

L’Y7Z~,€BM = H(La,zaGBAa) D H(Lﬁ,ZB@/\B) ® (20 ® Aa)Go



D (Z,B ® /\ﬂ)(Gl D L(X7Zo<®>\a) D M[S’Y] @ M[s:]
Observe that

(20 ® Aa)Go ® H(Lazoonr.)
= (20 ® Aa) (H(Lao) ® H(La1) B AsA) ® H(La,z,0n,)
= (20 ® Aa) (H(Lao) ® H(La1) ® AsAa) ® (20 ® Aa) (H(La0) & H(La,1)) & H(Lay)

= H(La,O) D /\g(za D )\a)A/_\,
and

(28 ® Ag)(G1 @ Lazeer,) ® H(Lg zpmr,)

= (25 © Ag) (H(Lg,0) © H(Lg,1) D AalA D (2a D Aa)AA) © H(Lg z50x,)

= (28 ® Ag) (H(Lgo) ® H(Lg,1) ® zala) © (28 D Ag) (H(Lpo) © H(Lg,1)) © H(Lg,)
= H(Lgﬁo) S¥) ()\5 > Zﬁ)ZaAA.

Therefore, we conclude that

Lyo ® Ly 2 e,

= H(I—a,O) D H(I—,@,O) D H(La,zaeaka) S H(LB7ZB@>\B) @ (Za S3) )‘oc)GO
@ (28 ®A3)(G1 @ Lazoor,) ®AyAA D (Ao A Ag)An

= ()\a > ZQ)AgﬂA () ()\5 &) ZQ)ZQAA D )"YAA @& ()\a AN )\g)AA

= ((2a N 28) ® A7) A = (2y ® Ay)An.

This means that, with respect to Pa’s definition of L.z, @A, Pe’s label is always
correct. The masked value is correct because the least-significant bit of Aa is 1;
thus,

by @ 1sb(L,,..ex,) = Isb(L,0) ©Isb(Ly - @x,)
=Isb(Ly,0 @ Ly, 0n,)
=Isb((zy ® Ay)An) = 2, B A,
Lemma 2. Let = def Tw D Ay and y = yw ® A, where T, is what Pg sends
in step 3, Y is what Pa sends in step 4, and Ay is defined by Fore. If Pa is
malicious, then Pg either aborts or outputs f(x,y).

Proof. After step 5, Pg obtains a set of masked values z,, @ A, for all wires w
in the circuit. In the following, we will show that if these masked values are not
correct, then Pg will abort with all but negligible probability.

Again we will prove by induction. Note that the lemma holds for all wires
w € Iy UZ,, according to how x,y are defined, as well as for XOR-gates. In the
following, we will focus on an AND gate («, 8,7, A). Now, according to induction
hypothesis, we already know that Pg hold correct values of (2o @ A, 23 D Ag).

Recall that the checking is done by computing

c=(2a @ Aa) A (23D Ag) B (2, ® Ay).



The correctness of input masked values means that
c=2aN23D 2y DN,

Since Open does not abort, ¢ = 0, which means that 2, = 2o A2g @A, = 2, B A,.
This means that the output masked wire value is also correct.

Given the above two lemmas, the proof of security of our main protocol is
relatively easy. We provide all details below.

Proof. We consider separately a malicious Pp and Pg.

Malicious Pa. Let A be an adversary corrupting Pa. We construct a simulator S
that runs A as a subroutine and plays the role of P4 in the ideal world involving
an ideal functionality F evaluating f. S is defined as follows.

1. S plays the role of F and records all values that Fy. sends to two parties.

2. S receives all values that A sends.

3. S acts as an honest Pg using input y := 0.

4. For each wire w € 7, S receives &,, and computes T,, := Ty D Ty D S,
where 7, 5., are the values used by Fyre in the previous steps.

6. S picks random bits for all Z,, and send them to A.

7-9. S acts as an honest Pg If an honest Pg would abort, S aborts; otherwise S
computes the input = of A. from the output of Fy. and the values A sent.
S then sends x to F.

We show that the joint distribution of the outputs of A and the honest Pg in the
real world is indistinguishable from the joint distribution of the outputs of S and
Pg in the ideal world. We prove this by considering a sequence of experiments,
the first of which corresponds to the execution of our protocol and the last of
which corresponds to execution in the ideal world, and showing that successive
experiments are computationally indistinguishable.

Hybrid;. This is the hybrid-world protocol, where we imagine S playing the
role of an honest Pg using Pg’s actual input y, while also playing the role

of Fore.
Hybrid;. Same as Hybrid;, except that in step 6, for each wire w € Z; the
simulator S receives I, and computes X,, := Ty B Ty P Sw, Where ry, Sy

are the values used by Fpre. If an honest Pg would abort in any later step,

S sends abort to F; otherwise it sends x = {4 }wez, to F.

The distributions on the view of A in Hybrid; and Hybrids are identical.

The output Pg gets are the same due to Lemma 1 and Lemma 2.
Hybrids. Same as Hybrids, except that S uses ' = 0 in step 3 and ignore

what A4 sends back. Then in step 6, S sends random bits instead of the value

for zy ® Ay

The distributions on the view of A in Hybrids and Hybrid, are again

identical (since the {s, }wez, are uniform).



Note that Hybrids corresponds to the ideal-world execution described earlier.
This completes the proof for a malicious Pa.

Malicious Pg. Let A be an adversary corrupting Pg. We construct a simulator S
that runs A as a subroutine and plays the role of Pg in the ideal world involving
an ideal functionality F evaluating f. S is defined as follows.

1. S plays the role of Fy. and records all values sent to both parties.

S acts as an honest Py and send the shared garbled tables to Pg.

For each wire w € Ty, S receives 1, and computes ¥, := Yoy BT P S, Where
Ty, Sw are the values used by Fpre in the previous steps.

S acts as an honest Pp using input = = 0.

S acts as an honest Pa. If an honest Pa would abort, S abort.

S sends y computed in step 3 to F, which returns z = f(x,y). S then
computes 2z’ := f(0,y) and defines 7}, = z, ® z,, ® 1y, for each w € O. §
then acts as an honest P5 and opens values 7/, to A. If an honest Pp would
abort, S S outputs whatever A outputs.

w N

T
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We now show that the distribution on the view of A in the real world is indis-
tinguishable from the distribution on the view of A in the ideal world. (Note Pa
has no output.)

Hybrid;. This is the hybrid-world protocol, where S acts as an honest Pp
using Pa’s actual input x, while playing the role of Fpre.

Hybrid;. Same as Hybrid;, except that in step 3, S receives 3, and computes
Yw = Y © Ty D Sy, Where 1y, 5, are the values used by Fye. If an honest
Pa abort in any step, send abort to F.

Hybrids. Same as Hybrids, except that in step 4, S acts as an honest Pa with
input = 0. S sends = computed in step 3 to F, which returns z = f(x,y).
S then computes 2’ := f(0,y) and defines ), = z,, 2z}, D1, for each w € O.
S then acts as an honest Pa and opens values 7/, to A. If an honest Pa would
abort, S S outputs whatever A outputs.

The distributions on the view of A in Hybridsz and Hybrids are identical.

Note that Hybridg is identical to the ideal-world execution.

5 Technical Details: Improved Preprocessing

In this section, we provide details for our two optimizations of the preprocessing
phase. The first optimization improves the efficiency to compute a leaky AND
gate. Leaky AND gate is a key component towards a preprocessing with full se-
curity. This functionality (Fiang) outputs triples with guaranteed correctness but
the adversary can choose to guess the x value from the honest party: an incorrect
guess will be caught immediately; while a correct guess remain undetected.

The second optimization focuses on how to combine leaky triples in a more
efficient way. In particular, we observe that a recent optimization in the honest-
majority secret sharing protocol by Araki et al. [3], can be applied to our setting
too. As a result, we can roughly reduce the bucket size by one.



Functionality Fiang

Honest case:

1. Generate uniform (x1 |z2), (Y1 |y2), (z1]22) such that z1 ® z2 = (v1 D x2) A
(y1 @ y2), and send the respective shares to the two parties.
2. Pa can choose to send (P1,p2, P3) € {0,1}"x{0,1} x{0,1}". The functionality
checks
Ps @ axo P = (p2 D 1'2|Sb(P1)) Ag.

If the check fails, the functionality sends fail to both parties and abort. (Pg
can do the same symmetrically.)

Corrupted parties: A corrupted party gets to specify the randomness used on
its behalf by the functionality.

Fig. 4. Functionality Fiand for computing a leaky AND triple.

5.1 Improved Leaky AND

Before giving the details, we point out a minor difference in the leaky-AND
functionality (Fiand) as compared to [37]. As shown in Figure 4, instead of letting
A directly learn the value of z, the functionality allows A to send a query in a
form of (Py, pa, Ps) and return if Ps @ zoP; = (p2 ® x2lsb(Py)) Ag. It can be seen
that this special way is no more than a query on x and two queries on A, and
the A cannot learn any information on y or z.

The main intuition of the protocol is already discussed in Section 3.2. We
will proceed to present the protocol, in Figure 5.

Theorem 2. The protocol in Figure 5 securely realizes Fiand i the (Fapit,Feq)-
hybrid model.

Proof. As the first step, we will show that the protocol is correct if both parties
are honest. We recall that

1. Gy := H(K[z2] @ Ap) ® H(K[xz]) ® Ca
2. Gy := H(K[z1] ® Ag) ® H(K[z1]) ® Cp
3. Ca :=y14a @ K[y2] & My1]
4. Cpg = y2 A ® M[y2] ® Kly1]

Note that

E H(K[l‘gb =12G1 P H(M[xg]) @ 2oC B H(K[QSQD
When x5 = 0, we have

E1 D H(K[Jjg]) = Z‘QGl D H(M[J?Q]) D Z‘QCB D H(K[.TQ])
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Protocol:

1. Pa and Pg obtain random authenticated shares ({x1|z2), (y1 |y2), (21 |7)).
Pa locally computes Ca := y1 Ap @ K[y2] ® M[y1], and
Pg locally computes Cg := y2Ag © M[yz2] ® K[y1].
2. Pa sends G1 = H(K[l’g] D AA) D H(K[ ]) @ Ca to Pg.
Pg computes E1 := z2G1 & H(M[z2]) ® 22Ck.
3. Pg sends G2 := H(K[z1] ® Ag) ® H(K[z1]) ® Cs to Pa.
Pa computes Es := x1G2 & H(M[z1]) ® 21Cha.

Isb(S2) to Pa. Both parties computes d := Isb(S1) @ Isb(S52).

returns 0, parties abort, otherwise, they compute [22]g := [r]g @ d.

4. Pa computes S1 = H(K[z2]) @ E2 @ (z14Aa & K[r] & M[z1]), Ps computes
Sy := H(K[z1]) @ E1 @ (rAs @ M[r] ® K[z1]). Pa sends Isb(S1) to Pg; Pg sends

5. Pa sends L; := S1 @& dAa to Feq, Pe sends Ly := S2 @& dAg to Feq. If Feq

Fig. 5. Our improved leaky-AND protocol.

= H(Mzs]) ® H(K[z2])
= {EQ(CA (&) CB)

When x5 = 1, we have
E1 D H(K[Ig]) = JZQGl D H(M[QZ‘QD D JTQCB D H(K[J?Q])

= 12(G1 © Cp) ® H(M[22]) @ H(K[z2])
= 25(G1 @ Cg) ® H(K[z2] ® Ap)) ® H (K[z2])
)

= xQ(CA ® Cg).
Therefore,
FEi @ H(K[l‘g]) = .%'Q(CA D CB)
= 12(y14a & K[y2] & My1] © y2Ag & My2] & K[y1]))
= 22 (y14a B Y2 Ap B y1 A & Y2 Ap)
= 22(y1 D y2)(Aa ® Ag).
Similarly,

Ey ® H(K[z1]) = 21(y1 ® y2)(An & Ap).
Taking these two equations, we know that
516 82 = (E1 @ H(K[zz]) & (B2 & H(K[z1]))
@ (2144 ® K[r] © M[z1] ® rAg & M[r] @ K[z])
= (21 © z2)(y1 D y2)(Aa © AB)



@ (2144 ® K[z1] ® M[z1] ® rAg & K[r] & M[r])
= (21 ® x2)(y1 B y2)(Aa ® Ap)

D (214 D 214 B rAg ®rAa)
= (21 ® 22)(y1 © y2)(Aa ® AB) & (21 & 7)(An & Ag)
=((z1 @) A (Y1 ©y2) ® 21 ©7)(Ar D AB).

Since Isb(Ap @ Ag) = 1, it holds that
d=1sb(S1® S2) = (x1®x2) A (y1 DY2) D21 BT

Therefore, (1 ®x2) A(y1 D y2) =d D21 BT = 21 D 29.

Now we will focus on the security of the protocol in the malicious setting.
First note that the protocol is symmetric, therefore we only need to focus on the
case of a malicious Pp. The local computation of both parties is deterministic,
with all inputs sent from Fapir. Therefore, all messages sent during the protocol
can be anticipated (emulated) by S after S sending out the shares. This is not
always possible if A uses local random coins or if A has private inputs. This
fact significantly reduces the difficulty of the proof. Intuitively, S will be able to
immediately catch A cheating by comparing what it sends with what it would
have sent (which S knows by locally emulating). The majority of the work then
is to extract A’s attempt to perform a selective failure attack.

Define a simulator S as follows.

Oa. S interacts with Fiang and obtains Pa’s share of ({(x1 | x2), (y1 | y2), (21 ] 22)).
S also gets Ap from Fpie. S randomly picks Ag and Pg’s share of ({x1 | x2),
(y1 |y2), (z1]22)) in a way that makes it consistent with Pa’s share. S now
randomly picks d and computes [r]g := [22]g @ d.

Ob. Using values ((z1 | z2), (y1|y2), (21 | 7)) from both parties, S locally emulates
all messages sent by each party, namely (G1,d;, L1) sent by an honest Pa
and (Ga,ds, La) sent by an honest Pg.

1. S plays the role of Fypir and sends out ((z1 | z2), (y1|y2), (21 ]7)) as defined
above.

. S acts as an honest Pg and receive G/ sent by A. S computes P = G| ®G;.

. S randomly picks a G and send it to A.

. & acts as an honest Pg and receives dj. S computes ps := d} @ d;.

. S plays the role of Feq and obtain L;. S computes P; = L] @ L;. S sends
(P1,p2, P3) to Fland as the selective failure attack query. If Fi,nq abort, S
plays the role of Fq and aborts. If the value d in the protocol equals to r
defined in step Oa, Feq returns 0; otherwise Feq returns 1.

6. S sends (P1,pa, P3) to Frand as the selective failure query. If Fiang returns

fail, S sends 0 to A as the output of Feq.

U W N

Note that messages that S sends to A in the protocol are changed from (G, dz, L2)
to (Ga,ds @ xalsb(Py), La @ xo Py @ d' Ag), where d' = ps @ o - Isb(Py) and the
equality checking in step 5 changed from comparing Ly, = Ly to

L1 D P3 = L2 @Jﬁgpl D (pg D $2|Sb(P1)) AB,
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Inputs: Two parties agree on a circuit for a function f : {0,1}™* x {0,1}72 —
{0,1}°.
Protocol:

1. Two parties initialize Fapir, which sends Aa to Pa and Ag to Pg.

2. For each wire w € Z; UZy U W, two parties obtain an authenticated share
(rw | Sw) from Fapie.

3. For each gate G = (o, 8,7, ®), two parties compute (ry|sy) = (sa|Ta) ®
(rg|ss)-

4. For each gate G = (a, 8,7, ), two parties have ((ra |sa), (rg|ss)), and run
step 2 to step 5 in Ii.ng to obtain (1} |s3), such that 73 @ s3 = (1o @ sa) A
(rp @ sp)

5. Pa and Pg call Fiana to obtain (B — 1)|C| number of leaky AND triples
(@1 @2), (Y1 |y2), (21 22)).

6. Two parties perform secure coin-flipping to determine a random permutation
and permute the triples obtained in step 4. For each AND gate G = («, 5,7, A)
in the circuit, perform secure merging for B — 1 times.

(a) Obtain the next triple in the permuted list, namely
(@1 ]@2), (1| y2), (21| 22))

(b) Compute {d1|dz2) := (y1 |y2) ® (rg|sg), and d := Open((d1 | d2)).

(c) Update triple: (ra|sa) = (ra|Sa) ® (z1]x2), (15 ]sy) = (ri|s)) @
<21 ‘ ZQ> ®d <l’1 | x2>4

Fig. 6. Protocol Iy instantiating Fpre in the (Fapit, Fland)-hybrid model.

that is
P3 D $2P1 = (p2 EBJZQ'Sb(Pl)) AB.

This is the same form as the selective failure query in Fianqg-

5.2 Improved Function-Dependent Preprocessing

In this section, we will focus on improving the preprocessing in the Leaky AND
triple generation (Fiand) hybrid model. The main observation is that in the
protocol of WRK, each wire is associated with a mask (in the authenticated
share format). Then the AND of input masks are computed using one AND
triple. This is a waste of randomness, since we also directly construct all triples
in place for all wires. Note that the idea is similar to Araki et al. [3]. The detailed
protocol is presented in Figure 6

Note that although the above optimization aims to reduce the overall cost
of the protocol, but it turns out that even in this case, most of the computation
and communication (including computation of all authenticated bits as well as
all leaky-AND triples in step 5) can be still done in the function-independent



One-way Communication (Max) Two-way Communication

Ind. Dep. Online Total Ind. Dep. Online Total
(MB) (MB) (KB) (MB) (MB) (MB) (KB) (MB)
Single execution
[28] 15 0.22 16 15 15 0.22 16 15
[37] 2.9 057 4.9 3.4 5.7 0.57 6.0 6.3
[12] - 34 >49 3.4 - 34 >49 34
This work, v.1 1.9 0.33 5.0 2.2 3.8 0.33 5.0 4.2
This work, v. 2 2.5 0.22 5.0 2.7 4.9 0.22 5.0 5.1

Amortized cost over 1024 executions

[33] - 16 17 1.6 - 32 17 32
[28] 64 0.22 16 6.6 64 022 16 6.6
[18] - 16 19 1.6 - 16 19 1.6
[37] 2.0 057 4.9 2.6 4.0 057 6.0 46
This work, v.1 1.4 033 5.0 1.7 2.7 033 50 3.1
This work, v. 2 1.9 0.22 5.0 2.1 3.8 022 50 40

Table 2. Communication complexity of different protocols for evaluating
AES, rounded to two significant figures. As in Table 1, one-way communication
refers to the maximum communication one party sends to the other; two-way commu-
nication refers to the sum of both parties’ communication. The best prior number in
each column is bolded for reference.

phase. The function-dependent cost is increased by only x bits per AND gate
only. Therefore, here we have an option to trade-off between total communication
and communication in the offline stage. By increasing the function-dependent
cost by k bits per gate, we reduce bucket size by 1. We believe both versions can
be useful depending on the application, and the concrete cost of both versions
of the protocol are presented in the performance section.

6 Performance

In this section, we discuss the concrete efficiency of our protocol. We consider
two variants of our protocol that optimize the cost of different phases: The first
version of our protocol is optimized to minimize the total communication; the
second version is optimized to minimize the communication in the function-
dependent phase. (The cost of the online phase is identical in both versions.)

6.1 Communication Complexity

Table 2 shows the communication complexity of recent two-party computation
protocols in the malicious setting. Numbers for these protocols are obtained from
the respective papers, while numbers for our protocol are calculated. We tabulate



both one-way communication and total communication. If parties’ data can be
sent at the same time over a full-duplex network, then one-way communication
is a better reflection of the running time. In general, for a circuit that requires
a bucket size of B, we can obtain an estimation of the concrete communication
cost: our first version has function dependent cost of 3k per gate, and function
independent cost of (4B — 2)x + (3B — 1)p per gate; our second version has
a function dependent cost of 2k per gate, and a function independent cost of
(4B + 2)x + (3B + 2)p per gate.

We see that our protocol and the protocol by Nielsen et al. [28] are the only
ones that, considering the function-dependent phase and the online phase, have
cost similar to that of the state-of-the-art semi-honest garbled-circuit protocol.
In other words, the overhead induced by malicious security can be completely
pushed to the preprocessing stage. Compared to the protocol by Nielsen et al.,
we are able to reduce the communication in the preprocessing stage by 6x in
the single-execution setting, and by 3.4 in the amortized setting. Our protocol
also has the best total communication complexity in both settings, excepting the
work of [33, 18] which are 6% better but do not support function-independent
preprocessing.

6.2 Computational Complexity

Since the WRK protocol represents the state-of-the-art as far as implementations
are concerned, we compare the computational complexity of our protocol to
theirs. We also include a comparison to the more recent protocol by Hazay et
al. [12] (the HIV protocol), which has not yet been implemented.

Comparing to the WRK protocol. Our protocol follows the same high-level
approach as the WRK protocol. Almost all H-evaluations in our protocol can
be accelerated using fixed-key AES, as done in [6]. We tabulate the number of
H-evaluations for both protocols in Table 3. Due to our improved Fianq, We are
able to achieve a 2-2.5x improvement.

Ind. Dep. Online Total

WRK 10B 8 2 10B + 10
This work, v.1 4B —4 8 2 4B +6
This work, v. 2 4B 4 2 4B+ 6

Table 3. Number of H-evaluations. We align the security parameters in both
protocols and set B = p/log C' + 1 for a fair comparison.

Comparing to the HIV protocol. As noted by the authors, the HIV protocol
has polylogarithmic computational overhead compared to semi-honest garbled
circuits. This is due to their use of the MPC-based zero-knowledge proof by
Ames et al. [2]. On the other hand, in our protocol, the computation is linear in



the circuit size. Furthermore, almost all cryptographic operations in our protocol
can be accelerated using hardware AES instructions.

Taking an AES circuit as example, the ZK protocol by Ames et al. for a circuit
of that size has a prover running time of around 70 ms and a verifier running
time of around 30 ms. Therefore, even if we ignore the cost of computing and
sending the garbled circuit, the oblivious transfers, and other operations, the
end-to-end running time of the HIV protocol will still be at least 100 ms. On the
other hand, the entire WRK protocol runs within 17 ms for the same circuit. As
our protocol results in at least a 2x improvement, our protocol will be at least
an order of magnitude faster than the HIV protocol.

7 Challenges in Extending to the Multi-Party Case

Wang et al. [38] have also shown how to extend their authenticated-garbling pro-
tocol to the multi-party case. In this section, we discuss the challenges involved
in applying our new techniques to that setting. Note that Ben-Efraim et al. [7]
recently proposed new techniques for multi-party garbling, making it compatible
with some of the half-gate optimizations. Despite being based on half-gates, they
still require 4 garbled rows per AND gate, and thus their work still leaves open
the question of reducing the communication complexity of the online phase in
the multi-party case.

In the multi-party WRK protocol, there are n — 1 garbling parties and one
evaluating party. For each wire, each garbler chooses their own set of wire labels
(called “subkeys”). As in the 2-party case, the preprocessing defines some au-
thenticated bits, and as a result all parties can locally compute additive shares
of any garbler’s subkey corresponding to any authenticated value.

In each gate, each garbler P; generates standard Yao garbled gate consisting
of 4 rows. Each row of P;’s gate is encrypted by only P;’s subkeys, and the
payload of the row is P;’s shares of all garblers’ subkeys. That way, the evaluator
can decrypt the correct row of everyone’s garbled gates, obtain everyone’s shares
of everyone’s subkeys, and combine them to get everyone’s appropriate subkey
for the output wire.

Now suppose we modify things so each garbler generates a half-gates-style
garbled gate instead of a standard Yao garbled gate. The half-gate uses gar-
bler P;’s subkeys as its “keys” and encodes P;’s shares of all subkeys as its
“payloads”. Now the protocol may not be secure against an adversary cor-
rupting the evaluator and a garbler. In particular, half-gates garbling defines
Go = H(Lao)® H(Lo1) ® AgA. When P; is acting as garbler, these Ly, values
correspond to P;’s subkeys. Now suppose P; colludes with the evaluator. If the
evaluator comes to learn Gy (which is necessary to evaluate the gate in half of
the cases), then the adversary can learn the secret mask \g since it is the only
unknown term in Gy. Clearly revealing the secret wire mask breaks the privacy
of the protocol. This is not a problem with Yao garbled gates, where each row
can be written as Gy, = H(Lau,Lgw) @ [payload already known to garbler].



The secret masks do not appear in the garbled table, except indirectly through
the payloads (subkey shares).

It is even unclear if row-reduction can be made possible. In the multi-party
setting, the garbler has no control over the “payload” (i.e., output wire label) of
the garbled gate when using row-reduction. Indeed, this is what makes it possible
to reduce the size of a garbled gate. This is not a problem in the two-party case,
where there is only one garbler who has control over all garbled gates and all
wire labels. He generates a garbled table, and then computes his output wire
label (subkey) as a function of the payload in the table. However, in the multi-
party case, P; generates a half-gate whose payloads include P;’s shares of P;’s
subkeys! We would need P;’s choice of subkeys to depend on the payloads of
P;’s garbling (for all 4 and j!). It is not clear how this can be done, and even if it
were possible it would apparently require additional rounds proportional to the
depth of the circuit.
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