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Abstract. We settle the exact round complexity of three-party computation
(3PC) in honest-majority setting, for a range of security notions such as selective
abort, unanimous abort, fairness and guaranteed output delivery. Selective abort
security, the weakest in the lot, allows the corrupt parties to selectively deprive
some of the honest parties of the output. In the mildly stronger version of unan-
imous abort, either all or none of the honest parties receive the output. Fairness
implies that the corrupted parties receive their output only if all honest parties
receive output and lastly, the strongest notion of guaranteed output delivery im-
plies that the corrupted parties cannot prevent honest parties from receiving their
output. It is a folklore that the implication holds from the guaranteed output de-
livery to fairness to unanimous abort to selective abort. We focus on two network
settings– pairwise-private channels without and with a broadcast channel.
In the minimal setting of pairwise-private channels, 3PC with selective abort is
known to be feasible in just two rounds, while guaranteed output delivery is in-
feasible to achieve irrespective of the number of rounds. Settling the quest for
exact round complexity of 3PC in this setting, we show that three rounds are nec-
essary and sufficient for unanimous abort and fairness. Extending our study to
the setting with an additional broadcast channel, we show that while unanimous
abort is achievable in just two rounds, three rounds are necessary and sufficient
for fairness and guaranteed output delivery. Our lower bound results extend for
any number of parties in honest majority setting and imply tightness of several
known constructions.
The fundamental concept of garbled circuits underlies all our upper bounds. Con-
cretely, our constructions involve transmitting and evaluating only constant num-
ber of garbled circuits. Assumption-wise, our constructions rely on injective (one-
to-one) one-way functions.

1 Introduction

In secure multi-party computation (MPC) [37, 19, 67], n parties wish to jointly per-
form a computation on their private inputs in a secure way, so that no adversary
A actively corrupting a coalition of t parties can learn more information than their
outputs (privacy), nor can they affect the outputs of the computation other than by
choosing their own inputs (correctness). MPC has been a subject of extensive re-
search and has traditionally been divided into two classes: MPC with dishonest majority
[37, 27, 12, 28, 31, 16, 2] and MPC with honest majority [10, 18, 64, 7, 6, 26, 11, 8, 25].



While the special case of MPC with dishonest majority, namely the two-party compu-
tation (2PC) has been at the focus of numerous works [67, 46, 54, 66, 42, 1, 65, 59], the
same is not quite true for the special case of MPC protocols with honest majority.

The three-party computation (3PC) and MPC with small number of parties main-
taining an honest majority make a fascinating area of research due to myriad reasons
as highlighted below. First, they present useful use-cases in practice, as it seems that
the most likely scenarios for secure MPC in practice would involve a small number of
parties. In fact, the first large scale implementation of secure MPC, namely the Danish
sugar beet auction [15] was designed for the three-party setting. Several other appli-
cations solved via 3PC include statistical data analysis [14], email-filtering [52], fi-
nancial data analysis [14] and distributed credential encryption service [60]. The prac-
tical efficiency of 3PC has thus got considerable emphasis in the past and some of
them have evolved to technologies [33, 13, 53, 52, 20, 30, 3]. Second, in practical
deployments of secure computation between multiple servers that may involve long-
term sensitive information, three or more servers are preferred as opposed to two. This
enables recovery from faults in case one of the servers malfunctions. Third and im-
portantly, practical applications usually demand strong security goals such as fairness
(corrupted parties receive their output only if all honest parties receive output) and
guaranteed output delivery (corrupted parties cannot prevent honest parties from re-
ceiving their output) which are feasible only in honest majority setting [22]. Fourth and
interestingly, there are evidences galore that having to handle a single corrupt party can
be leveraged conveniently and taken advantage of to circumvent known lower bounds
and impossibility results. A lower bound of three rounds has been proven in [35] for
fair MPC with t ≥ 2 and arbitrary number of parties, even in the presence of broadcast
channels. [43] circumvents the lower bound by presenting a two-round 4PC protocol
tolerating a single corrupt party that provides guaranteed output delivery without even
requiring a broadcast channel. Verifiable secret sharing (VSS) which serves as an im-
portant tool in constructing MPC protocols are known to be impossible with t ≥ 2 with
one round in the sharing phase irrespective of the computational power of the adversary
[34, 62, 5]. Interestingly enough, a perfect VSS with (n = 5, t = 1) [34], statistical
VSS with (n = 4, t = 1) [62, 43] and cryptographic VSS with (n = 4, t = 1) [5] are
shown to be achievable with one round in the sharing phase.

The world of MPC for small population in honest majority setting witnesses a few
more interesting phenomena. Assumption-wise, MPC with 3, 4 and 5 parties can be
built from just One-way functions (OWF) or injective one-way functions/permutations
[43, 60, 17], shunning public-key primitives such as Oblivious Transfer (OT) entirely,
which is the primary building block in the 2-party setting. Last but not the least, the
known constructions for small population in the honest majority setting perform ar-
guably better than the constructions with two parties while offering the same level of
security. For instance, 3PC with honest majority [43, 60] allows to circumvent certain
inherent challenges in malicious 2PC such as enforcing correctness of garbling which
incurs additional communication.

The exact round complexity is yet another measure that sets apart the protocols with
three parties over the ones with two parties. For instance, 3PC protocol is achievable just
in two rounds with the minimal network setting of pairwise-private channels [43]. The
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2PC (and MPC with dishonest majority) protocols achieving the same level of security
(with abort) necessarily require 4 rounds [50] and have to resort to a common reference
string (CRS) to shoot for the best possible round complexity of 2 [41].

With the impressive list of motivations that are interesting from both the theoretical
and practical viewpoint, we explore 3PC in the honest majority setting tolerating a
malicious adversary. In this work, we set our focus on the exact round complexity of
3PC. To set the stage for our contributions, we start with a set of relevant works below.

Related Works. Since round complexity is considered an important measure of effi-
ciency of MPC protocols, there is a rich body of work studying the round complexity
of secure 2PC and MPC protocols under various adversarial settings and computational
models. We highlight some of them below. Firstly, it is known that two rounds of in-
teraction are essential for realizing an MPC protocol irrespective of the setting. This is
because in a 1-round protocol, a corrupted party could repeatedly evaluate the “residual
function" with the inputs of the honest parties fixed on many different inputs of its own
(referred as “residual function" attack) [41]. In the plain model, any actively secure 2PC
is known to require 5 rounds in non-simultaneous message model [50] (under black-box
simulation). The bound can be improved to 4 even in the dishonest majority setting [32]
in simultaneous message model and tight upper bounds are presented in [16, 2, 40].
With a common reference string (CRS), the lower bound can be further improved to 2
rounds [41]. Tight upper bounds are shown in [31] under indistinguishability obfusca-
tion (assumption weakened to witness encryption by [39]), and in [61] under a variant
of Fully Homomorphic Encryption (FHE) and Non-interactive Zero-knowledge.

In the honest majority setting which is shown to be necessary [22] and sufficient
[10, 18, 24] for the feasibility of protocols with fairness and guaranteed output delivery,
the study on round complexity has seen the following interesting results. Three is shown
to be the lower bound for fair protocols in the stand-alone model (surprisingly even
with access to a CRS), assuming non-private channels [39]. The same work presents
a matching upper bound that provides guaranteed output delivery, uses a CRS and a
broadcast channel and relies on a ‘special’ FHE. Their protocol can be collapsed to two
rounds given access to PKI where the infrastructure carries the public keys correspond-
ing to the ‘special’ FHE. In the plain model, three rounds are shown to be necessary for
MPC with fairness and t ≥ 2, even in the presence of a broadcast channel and arbitrary
number of parties [35]. In an interesting work, [43] circumvents the above result by con-
sidering 4PC with one corruption. The protocol provides guaranteed output delivery,
yet does not use a broadcast channel. In the same setting (plain model and no broad-
cast), [43] presents a 2-round 3PC protocol tolerating single corruption; whose com-
munication and computation efficiency was improved by the 3-round protocol of [60].
Both these protocols achieve a weaker notion of security known as security with selec-
tive abort. Selective abort security [44] (referred as ‘security with abort and no fairness’
in [38]) allows the corrupt parties to selectively deprive some of the honest parties of
the output. In the mildly stronger version of unanimous abort (referred as ‘security
with unanimous abort and no fairness’ in [38]), either all or none of the honest parties
receive the output. An easy observation concludes that the 3PC of [60] achieves unani-
mous abort, when its third round message is broadcasted, albeit for functions giving the
same output to all. The works relevant to honest majority setting are listed below.
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3PC has been studied in different settings as well. High-throughput MPC with non-
constant round complexity are studied in [30, 3]. [21] studies 3PC with dishonest ma-
jority. Recently, [17] presents a practically efficient 5-party MPC protocol in honest
majority setting, going beyond 3-party case, relying on distributed garbling technique
based on [7].

Ref. Setting Round Network Setting / Assumption Security Comments
[4] t < n/2 ≥ 5 private channel, Broadcast / CRS, FHE, NIZK fairness upper bound
[39] t < n/2 3 non-private channel, Broadcast / CRS, FHE guaranteed output delivery upper bound
[39] t < n/2 2 non-private channel, Broadcast / CRS, PKI, FHE guaranteed output delivery upper bound
[44] n = 5, t = 1 2 private channel / OWF guaranteed output delivery upper bound
[43] n = 3, t = 1 2 private channel / OWF selective abort upper bound
[43] n = 4, t = 1 2 private channel / (injective) OWF guaranteed output delivery upper bound
[60] n = 3, t = 1 3 private channel, Broadcast / PRG unanimous abort upper bound
[39] t < n/2 3 non-private channel, Broadcast / CRS fairness lower bound
[35] n; t > 1 3 private channel, Broadcast fairness lower bound

1.1 Our Results

In this paper, we set our focus on the exact round complexity of 3PC protocols with
one active corruption achieving a range of security notions, namely selective abort,
unanimous abort, fairness and guaranteed output delivery in a setting with pair-wise
private channels and without or with a broadcast channel (and no additional setup). In
the minimal setting of pair-wise private channels, it is known that 3PC with selective
abort is feasible in just two rounds [43], while guaranteed output delivery is infeasible
to achieve irrespective of the number of rounds [23]. No bound on round complexity
is known for unanimous abort or fairness. In the setting with a broadcast channel, the
result of [60] implies 3-round 3PC with unanimous abort. Neither the round optimality
of the [60] construction, nor any bound on round complexity is known for protocols
with fairness and guaranteed output delivery.

This work settles all the above questions via two lower bound results and three
upper bounds. Both our lower-bounds extend for general n and t with strict honest
majority i.e. n/3 ≤ t < n/2. They imply tightness of several known constructions of
[43] and complement the lower bound of [35] which holds for only t > 1. Our upper
bounds are from injective (one-to-one) one-way functions. The fundamental concept of
garbled circuits (GC) contributes as their key basis, following several prior works in
this domain [21, 43, 60]. The techniques in our upper bounds do not seem to extend for
t > 1, leaving open designing round-optimal protocols for the general case with various
security notions. We now elaborate on the results below:

Without Broadcast Channel. In this paper, we show that three rounds are necessary to
achieve 3PC with unanimous abort and fairness, in the absence of a broadcast channel.
The sufficiency is proved via a 3-round fair protocol (which also achieves unanimous
abort security). Our lower bound result immediately implies tightness of the 3PC pro-
tocol of [43] achieving selective abort in two rounds, in terms of security achieved.
This completely settles the questions on exact round complexity of 3PC in the mini-
mal setting of pair-wise private channels. Our 3-round fair protocol uses a sub-protocol
that is reminiscent of Conditional Disclosure of Secrets (CDS) [36], with an additional
property of authenticity that allows a recipient to detect the correct secret. Our imple-
mentation suggests a realisation of authenticated CDS from privacy-free GCs.
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With Broadcast Channel. With access to a broadcast channel, we show that it takes just
two rounds to get 3PC with unanimous abort, implying non-optimality of the 3-round
construction of [60]. On the other hand, we show that three rounds are necessary to
construct a 3PC protocol with fairness and guaranteed output delivery. The sufficiency
for fairness already follows from our 3-round fair protocol without broadcast. The suf-
ficiency for guaranteed output delivery is shown via yet another construction in the
presence of broadcast. The lower bound result restricted for t = 1 complements the
lower bound of [35] making three rounds necessary for MPC with fairness in the honest
majority setting for all the values of t. The lower bound further implies that for two-
round fair (or guaranteed output delivery) protocols with one corruption, the number of
parties needs to be at least four, making the 4PC protocol of [43] an optimal one. No-
tably, our result does not contradict with the two-round protocol of [39] that assumes
PKI (where the infrastructure contains the public keys of a ‘special’ FHE), CRS and
also broadcast channel.

The table below captures the complete picture of the round complexity of 3PC. The
necessity of two rounds for any type of security follows from [41] via the ‘residual
attack’. Notably, broadcast facility only impacts the round complexity of unanimous
abort and guaranteed output delivery, leaving the round complexity of selective abort
and fairness unperturbed.

Security Without References With References
Broadcast Necessity/Sufficiency Broadcast Necessity/Sufficiency

Selective Abort 2 [41] / [43] 2 [41] / [43]
Unanimous Abort 3 This paper / This paper 2 [41] / This paper
Fairness 3 This paper / This paper 3 This paper / This paper
Guaranteed output delivery Impossible [23] 3 This paper / This paper

1.2 Techniques

Lower Bounds. We present two lower bounds– (a) three rounds are necessary for
achieving fairness in the presence of pair-wise channels and a broadcast channel; (b)
three rounds are necessary for achieving unanimous abort in the presence of just pair-
wise channels. The lower bounds are shown by taking a special 3-party function and by
devising a sequence hybrid executions under different adversarial strategies, allowing
to conclude any 3PC protocol computing the considered function cannot be simultane-
ously private and fair or secure with unanimous abort.

Upper Bounds. We present three upper bounds– (a) 3-round fair protocol;
(b) 2-round protocol with unanimous abort and (c) 3-round protocol with
guaranteed output delivery. The former in the presence of just pairwise channels, the
latter two with an additional broadcast channel. The known generic transformations
such as, unanimous abort to (identifiable) fairness [45] or identifiable fairness to
guaranteed output delivery [24], does not help in any of our constructions. For instance,
any 3-round fair protocol without broadcast cannot take the former route as it is not
round-preserving and unanimous abort in two rounds necessarily requires broadcast
as shown in this work. A 3-round protocol with guaranteed output delivery cannot be
constructed combining both the transformations due to inflation in round complexity.
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Building on the protocol of [60], the basic building block of our protocols needs
two of the parties to enact the role of the garbler and the remaining party to carry out
the responsibility of circuit evaluation. Constrained with just two or three rounds, our
protocols are built from the parallel composition of three sub-protocols, each one with
different party enacting the role of the evaluator (much like [43]). Each sub-protocol
consumes two rounds. Based on the security needed, the sub-protocols deliver distinct
flavours of security with ‘identifiable abort’. For the fair and unanimous abort, the iden-
tifiability is in the form of conflict that is local (privately known) and public/global
(known to all) respectively, while for the protocol with guaranteed output delivery, it
is local identification of the corrupt. Achieving such identifiability in just two rounds
(sometime without broadcast) is challenging in themselves. Pulling up the security guar-
antee of these subprotocols via entwining three executions to obtain the final goals of
fairness, unanimous abort and guaranteed output delivery constitute yet another nov-
elty of this work. Maintaining the input consistency across the three executions pose
another challenge that are tackled via mix of novel techniques (that consume no addi-
tional cost in terms of communication) and existing tricks such as ‘proof-of-cheating’
or ‘cheat-recovery’ mechanism [54, 21]. The issue of input consistency does not appear
in the construction of [60] at all, as it does not deal with parallel composition. On the
other hand, the generic input consistency technique adopted in [43] can only (at the
best) detect a conflict locally and cannot be extended to support the stronger form of
identifiability that we need.

Below, we present the common issues faced and approach taken in all our protocols
before turning towards the challenges and way-outs specific to our constructions. Two
of the major efficiency bottlenecks of 2PC from garbled circuits, namely the need of
multiple garbled circuits due to cut-and-choose approach and Oblivious Transfer (OT)
for enabling the evaluator to receive its input in encoded form are bypassed in the 3PC
scenario through two simple tricks [43, 60]. First, the garblers use common randomness
to construct the same garbled circuit individually. A simple comparison of the GCs
received from the two garblers allows to conclude the correctness of the GC. Since at
most one party can be corrupt, if the received GCs match, then its correctness can be
concluded. Second, the evaluator shares its input additively among the garblers at the
onset of the protocol, reducing the problem to a secure computation of a function on
the garblers’ inputs alone. Specifically, assuming P3 as the evaluator, the computation
now takes inputs from P1 and P2 as (x1, x31) and (x2, x32) respectively to compute
C(x1, x2, x31, x32) = f(x1, x2, x31 ⊕ x32). Since the garblers possess all the inputs
needed for the computation, OT is no longer needed to transfer the evaluator’s input in
encoded form to P3.

Next, to force the garblers to input encoding and decoding information (the keys)
that are consistent with the GCs, the following technique is adopted. Notice that the is-
sue of input consistency where a corrupt party may use different inputs as an evaluator
and as a garbler in different instances of the sub-protocols is distinct and remains to
be tackled separately. Together with the GC, each garbler also generates the commit-
ment to the encoding and decoding information using the common shared randomness
and communicates to the evaluator. Again a simple check on whether the set of com-
mitments are same for both the garblers allows to conclude their correctness. Now it is
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infeasible for the garblers to decommit the encoded input corresponding to their own in-
put and the evaluator’s share to something that are inconsistent to the GC without being
caught. Following a common trick to hide the inputs of the garblers, the commitments
on the encoding information corresponding to every bit of the garblers’ input are sent
in permuted order that is privy to the garblers. The commitment on the decoding infor-
mation is relevant only for the fair protocol where the decoding information is withheld
to force a corrupt evaluator to be fair. Namely, in the third round of the final protocol,
the evaluator is given access to the decoding information only when it helps the honest
parties to compute the output. This step needs us to rely on the obliviousness of our gar-
bling scheme, apart from privacy. The commitment on the decoding information and its
verification by crosschecking across the garblers are needed to prevent a corrupt party
to lie later. Now we turn to the challenges specific to the constructions.

Achieving fairness in 3 rounds. The sub-protocol for our fair construction only achieves
a weak form of identifiability, a local conflict to be specific, in the absence of broad-
cast. Namely, the evaluator either computes the encoded output (‘happy’ state) or it just
gets to know that the garblers are in conflict (‘confused’ state) in the worst case. The
latter happens when it receives conflicting copies of GCs or commitments to the encod-
ing/decoding information. In the composed protocol, a corrupt party can easily breach
fairness by keeping one honest evaluator happy and the other confused in the end of
round 2 and selectively enable the happy party to compute the output by releasing the
decoding information in the third round (which was withheld until Round 2). Noting
that the absence of a broadcast channel ensues conflict and confusion, we handle this
using a neat trick of ‘certification mechanism’ that tries to enforce honest behaviour
from a sender who is supposed to send a common information to its fellow participants.

A party is rewarded with a ‘certificate’ for enacting an honest sender and emulating
a broadcast by sending the same information to the other two parties, for the common
information such as GCs and commitments. This protocol internally mimics a CDS
protocol [36] for equality predicate, with an additional property of ‘authenticity’, a de-
parture from the traditional CDS. An authenticated CDS allows the receiver to detect
correct receipt of the secret/certificate (similar to authenticated encryption where the
receiver knows if the received message is the desired one). As demonstrated below,
the certificate allows to identify the culprit behind the confusion on one hand, and to
securely transmit the decoding information from a confused honest party to the happy
honest party in the third round, on the other. The certificate, being a proof of correct
behaviour, when comes from an honest party, say Pi, the other honest party who sees
conflict in the information distributed by Pi communicated over point-to-point channel,
can readily identify the corrupt party responsible for creating the conflict in Round 3.
This aids the latter party to compute the output using the encoded output of the former
honest party. The certificate further enables the latter party to release the decoding infor-
mation in Round 3 in encrypted form so that the other honest party holding a certificate
can decrypt it. The release of encryption is done only for the parties whose distributed
information are seen in conflict, so that a corrupt party either receives its certificate or
the encryption but not both. Consequently, it is forced to assist at least one honest party
in getting the certificate and be happy to compute the output, as only a happy party
releases the decoding information on clear. In a nutshell, the certification mechanism
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ensures that when one honest party is happy, then no matter how the corrupt party be-
haves in the third round, both the honest parties will compute the output in the third
round. When no honest party is happy, then none can get the output. Lastly, the corrupt
party must keep one honest party happy, for it to get the output.

Yet again, we use garbled circuits to implement the above where a party willing to
receive a certificate acts as an evaluator for a garbled circuit implementing ‘equality’
check of the inputs. The other two parties act as the garblers with their inputs as the
common information dealt by the evaluator. With no concern of input privacy, the circuit
can be garbled in a privacy-free way [49, 29]. The certificate that is the key for output
1 is accessible to the evaluator only when it emulates a broadcast by dealing identical
copies of the common information to both the other parties. Notably, [47] suggests
application of garbling to realise CDS.

Achieving unanimous abort in 2 rounds. Moving on to our construction with unanimous
abort, the foremost challenge comes from the fact that it must be resilient to any corrupt
Round 2 private communication. Because there is no time to report this misbehaviour to
the other honest party who may have got the output and have been treated with honest
behaviour all along. Notably, in our sub-protocols, the private communication from both
garblers in second round inevitably carries the encoded share of the evaluator’s input
(as the share themselves arrives at the garblers’ end in Round 1). This is a soft spot for
a corrupt garbler to selectively misbehave and cause selective abort. While the problem
of transferring encoded input shares of the evaluator without relying on second round
private communication seems unresolvable on the surface, our take on the problem uses
a clever ‘two-part release mechanism’. The first set of encoding information for random
inputs picked by the garblers themselves is released in the first round privately and any
misbehaviour is brought to notice in the second round. The second set of encoding
information for the offsets of the random values and the actual shares of the evaluator’s
input is released in the second round via broadcast without hampering security, while
allowing public detection. Thus the sub-protocol achieves global/public conflict and
helps the final construction to exit with ⊥ unanimously when any of the sub-protocol
detects a conflict.

Achieving guaranteed output delivery in 3 rounds. For achieving this stronger notion,
the sub-protocol here needs a stronger kind of identifiability, identifying the corrupt
locally to be specific, to facilitate all parties to get output within an additional round
no matter what. To this effect, our sub-protocol is enhanced so that the evaluator either
successfully computes the output or identifies the corrupt party. We emphasise that the
goals of the sub-protocols for unanimous abort and guaranteed output delivery, namely
global conflict vs. local identification, are orthogonal and do not imply each other. The
additional challenge faced in composing the executions to achieve guaranteed output
delivery lies in determining the appropriate ‘committed’ input of the corrupt party based
on which round and execution of sub-protocol it chooses to strike. Tackling input con-
sistency. We take a uniform approach for all our protocols. We note that a party takes
three different roles across the three composed execution: an evaluator, a garbler who
initiate the GC generation by picking the randomness, a co-garbler who verifies the
sanity of the GC. In each instance, it gets a chance to give inputs. We take care of input
consistency in two parts. First, we tie the inputs that a party can feed as an evaluator and
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as a garbler who initiates a GC construction via a mechanism that needs no additional
communication at all. This is done by setting the permutation strings (used to permute
the commitments of encoding information of the garblers) to the shares of these parties’
input in a certain way. The same trick fails to work in two rounds for the case when a
party acts as a garbler and a co-garbler in two different executions. We tackle this by su-
perimposing two mirrored copies of the sub-protocol where the garblers exchange their
roles. Namely, in the final sub-protocol, each garbler initiates an independent copy of
garbled circuit and passes on the randomness used to the fellow garbler for verification.
The previous trick is used to tie the inputs that a party feeds as an evaluator and as a
garbler for the GC initiated by it (inter-execution consistency). The input consistency
of a garbler for the two garbled circuits (one initiated by him and the other by the co-
garbler) is taken care using ‘proof-of-cheating’ mechanism [54] where the evaluator can
unlock the clear input of both the other parties using conflicting output wire keys (intra-
execution consistency). While this works for our protocols with unanimous abort and
guaranteed output delivery, the fair protocol faces additional challenges. First, based on
whether a party releases a clear or encoded input, a corrupt garbler feeding two different
inputs can conclude whether f leads to the same output for both his inputs, breaching
privacy. This is tackled by creating the ciphertexts using conflicting input keys. Sec-
ond, inspite of the above change, a corrupt garbler can launch ‘selective failure attack’
[58, 51] and breach privacy of his honest co-garbler. We tackle this using ‘XOR-tree
approach’ [55] where every input bit is broken into s shares and security is guaranteed
except with probability 2−(s−1) per input bit. We do not go for the refined version of
this technique, known as probe-resistant matrix, [55, 66] for simplicity.
On the assumption needed. While the garbled circuits can be built just from OWF,
the necessity of injective OWF comes from the use of commitments that need bind-
ing property for any (including adversarially-picked) public parameter. Our protocols,
having 2-3 rounds, seem unable to spare rounds for generating and communicating the
public parameters by a party who is different from the one opening the commitments.
On concrete efficiency. Though the focus is on the round complexity, the concrete ef-
ficiency of our protocols is comparable to Yao [67] and require transmission and eval-
uation of few GCs (upto 9) (in some cases we only need privacy-free GCs which per-
mit more efficient constructions than their private counterparts [49, 29]). The broadcast
communication of the optimized variants of our protocols is independent of the GC size
via applying hash function. We would like to draw attention towards the new tricks such
as the ones used for input consistency, getting certificate of good behaviour via garbled
circuits, which may be of both theoretical and practical interest. We believe the detailed
take on our protocols will help to lift them or their derivatives to practice in future.

1.3 Roadmap

We present a high-level overview of the primitives used in Section 2. We present our
3-round fair protocol, 2-round protocol with unanimous abort and 3-round protocol
with guaranteed output delivery in Section 3, 4 and 5 respectively. Our lower bound
results appear in Section 6. The security definitions, complete security proofs and op-
timizations appear in the full version [63]. We define authenticated CDS and show its
realisation from one of the sub-protocols used in our fair protocol in the full version.
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2 Preliminaries

2.1 Model

We consider a set of n = 3 parties P = {P1, P2, P3}, connected by pair-wise secure
and authentic channels. Each party is modelled as a probabilistic polynomial time Tur-
ing (PPT) machine. We assume that there exists a PPT adversary A, who can actively
corrupt at most t = 1 out of the n = 3 parties and make them behave in any arbitrary
manner during the execution of a protocol. We assume the adversary to be static, who
decides the set of t parties to be corrupted at the onset of a protocol execution. For our 2-
round protocol achieving unanimous abort and 3-round protocol achieving guaranteed
output delivery, a broadcast channel is assumed to exist.

We denote the cryptographic security parameter by κ. A negligible function in κ
is denoted by negl(κ). A function negl(·) is negligible if for every polynomial p(·)
there exists a value N such that for all m > N it holds that negl(m) < 1

p(m) . We
denote by [x], the set of elements {1, . . . , x} and by [x, y] for y > x, the set of elements
{x, x+ 1, . . . , y}. For any x ∈R {0, 1}m, xi denotes the bit of x at index i for i ∈ [m].
Let S be an infinite set and X = {Xs}s∈S , Y = {Ys}s∈S be distribution ensembles.
We say X and Y are computationally indistinguishable, if for any PPT distinguisherD
and all sufficiently large s ∈ S, we have |Pr[D(Xs) = 1]−Pr[D(Ys) = 1]| < 1/p(|s|)
for every polynomial p(·).

2.2 Primitives

Garbling Schemes. The term ‘garbled circuit’ (GC) was coined by Beaver [7], but it
had largely only been a technique used in secure protocols until they were formalized
as a primitive by Bellare et al. [9]. ‘Garbling Schemes’ as they were termed, were
assigned well-defined notions of security, namely correctness, privacy, obliviousness,
and authenticity. A garbling scheme G is characterised by a tuple of PPT algorithms
G = (Gb,En,Ev,De) described below.

– Gb (1κ, C) is invoked on a circuitC in order to produce a ‘garbled circuit’ C, ‘input
encoding information’ e, and ‘output decoding information’ d.

– En (x, e) encodes a clear input x with encoding information e in order to produce
a garbled/encoded input X.

– Ev (C,X) evaluates C on X to produce a garbled/encoded output Y.
– De (Y, d) translates Y into a clear output y as per decoding information d.

We give an informal intuition of the notion captured by each of the security proper-
ties, namely correctness, privacy, obliviousness, and authenticity. Correctness enforces
that a correctly garbled circuit, when evaluated, outputs the correct output of the un-
derlying circuit. Privacy aims to protect the privacy of encoded inputs. Authenticity
enforces that the evaluator can only learn the output label that corresponds to the value
of the function. Obliviousness captures the notion that when the decoding information
is withheld, the garbled circuit evaluation leaks no information about any underlying
clear values; be they of the input, intermediate, or output wires of the circuit. The for-
mal definitions are presented in the full version [63].
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We are interested in a class of garbling schemes referred to as projective in [9].
When garbling a circuit C : {0, 1}n 7→ {0, 1}m, a projective garbling scheme produces
encoding information of the form e =

(
e0i , e

1
i

)
i∈[n], and the encoded input X for x =

(xi)i∈[n] can be interpreted as X = En(x, e) = (exii )i∈[n].
Our 3-round fair protocol relies on garbling schemes that are simultaneously cor-

rect, private and oblivious. One of its subroutine uses a garbling scheme that is only
authentic. Such schemes are referred as privacy-free [49, 29]. Our protocols with unan-
imous abort and guaranteed output delivery need a correct, private and authentic gar-
bling scheme that need not provide obliviousness. Both these protocols as well as the
privacy-free garbling used in the fair protocol further need an additional decoding mech-
anism denoted as soft decoding algorithm sDe [60] that can decode garbled outputs
without the decoding information d. The soft-decoding algorithm must comply with
correctness: sDe(Ev(C,En(e, x))) = C(x) for all (C, e, d). While both sDe and De
can decode garbled outputs, the authenticity needs to hold only with respect to De. In
practice, soft decoding in typical garbling schemes can be achieved by simply append-
ing the truth value to each output wire label.

Non-interactive Commitment Schemes. A non-interactive commitment scheme
(NICOM) consists of two algorithms (Com,Open) defined as follows. Given a security
parameter κ, a common parameter pp, message x and random coins r, PPT algorithm
Com outputs commitment c and corresponding opening information o. Given κ, pp, a
commitment and corresponding opening information (c, o), PPT algorithm Open out-
puts the message x. The algorithms should satisfy correctness, binding (i.e. it must be
hard for an adversary to come up with two different openings of any c and any pp)
and hiding (a commitment must not leak information about the underlying message)
properties. We need this kind of strong binding as the same party who generates the
pp and commitment is required to open later. Two such instantiations of NICOM based
on symmetric key primitives (specifically, injective one-way functions) and the for-
mal definitions of the properties are given in the full version. We also need a NICOM
scheme that admits equivocation property. An equivocal non-interactive commitment
(eNICOM) is a NICOM that allows equivocation of a certain commitment to any given
message with the help of a trapdoor. The formal definitions and instantiations appear in
the full version [63].

Symmetric-Key Encryption (SKE) with Special Correctness. Our fair protocol uses a
SKE π = (Gen,Enc,Dec) which satisfies CPA security and a special correctness prop-
erty [48, 56]– if the encryption and decryption keys are different, then decryption fails
with high probability. The definition and an instantiation appear in the full version.

3 3-round 3PC with Fairness

This section presents a tight upper bound for 3PC achieving fairness in the setting
with just pair-wise private channels. Our lower bound result showing necessity of three
rounds for unanimous abort assuming just pairwise private channels (appears in the
full version [63]) rules out the possibility of achieving fairness in 2 rounds in the same
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setting. Our result from Section 6.1 further shows tightness of 3 rounds even in the
presence of a broadcast channel.

Building on the intuition given in the introduction, we proceed towards more de-
tailed discussion of our protocol. Our fair protocol is built from parallel composition of
three copies of each of the following two sub-protocols: (a) fairi where Pi acts as the
evaluator and the other two as garblers for computing the desired function f . This sub-
protocol ensures that honest Pi either computes its encoded output or identifies just a
conflict in the worst case. The decoding information is committed to Pi, yet not opened.
It is released in Round 3 of the final composed protocol under subtle conditions as elab-
orated below. (b) certi where Pi acts as the evaluator and the other two as garblers for
computing an equality checking circuit on the common information distributed by Pi
in the first round of the final protocol. Notably, though the inputs come solely from the
garblers, they are originated from the evaluator and so the circuit can be garbled in a
privacy-free fashion. This sub-protocol ensures either honest Pi gets its certificate, the
key for output 1 (meaning the equality check passes through), or identifies a conflict
in the worst case. The second round of certi is essentially an ‘authenticated’ CDS for
equality predicate tolerating one active corruption. Three global variables are main-
tained by each party Pi to keep tab on the conflicts and the corrupt. Namely, Ci to keep
the identity of the corrupt, flagj and flagk (for distinct i, j, k ∈ [3]) as indicators of
detection of conflict with respect to information distributed by Pj and Pk respectively.
The sub-protocols fairi and certi assure that if neither the two flags nor Ci is set, then
Pi must be able to evaluate the GC successfully and get its certificate respectively.

Once {fairi, certi}i∈[3] complete by the end of round 2 of the final protocol fair,
any honest party will be in one of the three states: (a) no corruption and no conflict
detected ( (Ci = ∅) ∧ (flagj = 0) ∧ (flagk = 0)); (b) corruption detected (Ci 6= ∅);
(c) conflict detected (flagj = 1) ∨ (flagk = 1). An honest party, guaranteed to have
computed its encoded output and certificate only in the first state, releases these as
well as the decoding information for both the other parties unconditionally in the third
round. In the other two states, an honest party conditionally releases only the decoding
information. This step is extremely crucial for maintaining fairness. Specifically, a party
that belongs to the second state, releases the decoding information only to the party
identified to be honest. A party that belongs to the third state, releases the decoding
information in encrypted form only to the party whose distributed information are not
agreed upon, so that the encryption can be unlocked only via a valid certificate. A
corrupt party will either have its certificate or the encrypted decoding information, but
not both. The former when it distributes its common information correctly and the latter
when it does not. The only way a corrupt party can get its decoding information is by
keeping one honest party in the first state, in which case both the honest parties will
be able to compute the output as follows. The honest party in state one, say Pi, either
gets it decoding information on clear or in encrypted form. The former when the other
honest party, Pj is in the first or second state and the latter when Pj is in the third state.
Pi retrieves the decoding information no matter what, as it also holds the certificate to
open the encryption. An honest party Pj in the second state, on identifying Pi as honest,
takes the encoded output of Pi and uses its own decoding information to compute the
output. The case for an honest party Pj in the third state is the most interesting. Since
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honest Pi belongs to the first state, a corrupt party must have distributed its common
information correctly as otherwise Pi will find a conflict and would be in third state.
Therefore, Pj in the third state must have found Pi’s information on disagreement due
the corrupt party’s misbehaviour. Now, Pi’s certificate that proves his correct behaviour,
allows Pj to identify the corrupt, enter into the second state and compute the output by
taking the encoded output of honest Pi. In the following, we describe execution fairi
assuming input consistency, followed by certi. Entwining the six executions, tackling
the input consistency and the final presentation of protocol fair appear in the end.

3.1 Protocol fairi

At a high level, fairi works as follows. In the first round, the evaluator shares its input
additively between the two garblers making the garblers the sole input contributors to
the computation. In parallel, each garbler initiates construction of a GC and commit-
ments on the encoding and decoding information. While the GC and the commitments
are given to the evaluator Pi, the co-garbler, acting as a verifier, additionally receives
the source of the used randomness for GC and openings of commitments. Upon verifi-
cation, the co-garbler either approves or rejects the GC and commitments. In the former
case, it also releases its own encoded input and encoded input for the share of Pi via
opening the commitments to encoding information in second round. In the latter case,
Pi sets the flag corresponding to the generator of the GC to true. Failure to open a veri-
fied commitment readily exposes the corrupt to the evaluator. If all goes well, Pi eval-
uates both circuits and obtains encoded outputs. The correctness of the evaluated GC
follows from the fact that it is either constructed or scrutinised by a honest garbler. The
decoding information remains hidden (yet committed) with Pi and the obliviousness of
GC ensures that Pi cannot compute the output until it receives the correct opening.

To avoid issues of adaptivity, the GCs are not sent on clear in the first round to Pi
who may choose its input based on the GCs. Rather, a garbler sends a commitment to
its GC to Pi and it is opened only by the co-garbler after successful scrutiny. The cor-
rectness of evaluated GC still carries over as a corrupt garbler cannot open to a different
circuit than the one committed by an honest garbler by virtue of the binding property
of the commitment scheme. We use an eNICOM for committing the GCs and decoding
information as equivocation is needed to tackle a technicality in the security proof. The
simulator of our final protocol needs to send the commitments on GC, encoding and de-
coding information without having access to the input of an evaluator Pi (and thus also
the output), while acting on behalf of the honest garblers in fairi. The eNICOM cannot
be used for the encoding information, as they are opened by the ones who generate the
commitments and eNICOM does not provide binding in such a case. Instead, the GCs
and the decoding information are equivocated based on the input of the evaluator and
the output.

Protocol fairi appears in Figure 1 where Pi returns encoded outputs Yi = (Yj
i ,Y

k
i )

(initially set to ⊥) for the circuits created by Pj , Pk, the commitments to the respec-
tive decoding information Cdec

j , Cdec
k and the flags flagj , flagk (initially set to false)

to be used in the final protocol. The garblers output their respective corrupt set, flag
for the fellow garbler and opening for the decoding information corresponding to its
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co-garbler’s GC and not its own. This is to ensure that it cannot break the binding of
eNICOM which may not necessarily hold for adversarially-picked public parameter.

Lemma 1. During fairi, Pβ /∈ Cα holds for honest Pα, Pβ .

Proof. An honest Pα would include Pβ in Cα only if one of the following hold: (a)
Both are garblers and Pβ sends commitments to garbled circuit, encoding and decoding
information inconsistent with the randomness and openings shared privately withPα (b)
Pα is an evaluator and Pβ is a garbler and either (i) Pβ’s opening of a committed garbled
circuit fails or (ii) Pβ’s opening of a committed encoded input fails. It is straightforward
to verify that the cases will never occur for honest (Pα, Pβ). ut

Lemma 2. If honest Pi has Ci = ∅ and flagj = flagk = 0, then Yi = (Yj
i ,Y

k
i ) 6= ⊥.

Proof. According to fairi, Pi fails to compute Yi when it identifies the corrupt or
finds a mismatch in the common information Dj or Dk or receives a nOK signal from
one of its garblers. The first condition implies Ci 6= ∅. The second condition implies,
Pi would have set either flagj or flagk to true. For the third condition, if Pj sends
nOK then Pi would set flagk = 1. Lastly, if Pk sends nOK, then Pi sets flagj = 1.
Clearly when Ci = ∅ ∧ flagj = 0 ∧ flagk = 0, Pi evaluates both Cj ,Ck and obtains
Yi = (Yj

i ,Y
k
i ) 6= ⊥. ut

3.2 Protocol certi

When a party Pi in fairi is left in a confused state and has no clue about the corrupt, it is
in dilemma on whether or whose encoded output should be used to compute output and
who should it release the decoding information (that it holds as a garbler) to in the final
protocol. Protocol certi, in a nutshell, is introduced to help a confused party to identify
the corrupt and take the honest party’s encoded output for output computation, on one
hand, and to selectively deliver the decoding information only to the other honest party,
on the other. Protocol certi implements evaluation of an equality checking function that
takes inputs from the two garblers and outputs 1 when the test passes and outputs the in-
puts themselves otherwise. In the final protocol, the inputs are the common information
(GCs and commitments) distributed by Pi across all executions of fairj . The certificate
is the output key corresponding to output 1. Since input privacy is not a concern here,
the circuit is enough to be garbled in privacy-free way and authenticity of garbling will
ensure a corrupt Pi does not get the certificate. certi follows the footstep of fairi with
the following simplifications: (a) Input consistency need not be taken care across the
executions implying that it is enough one garbler alone initiates a GC and the other
garbler simply extends its support for verification. To divide the load fairly, we assign
garbler Pj where i = (j + 1) mod 3 to act as the generator of GC in certi. (b) The
decoding information need not be committed or withheld. We use soft decoding that
allows immediate decoding.

Similar to fairi, at the end of the protocol, either Pi gets its certificate (either the
key for 1 or the inputs themselves), or sets its flags (when GC and commitment do
not match) or sets its corrupt set (when opening of encoded inputs fail). Pi outputs its
certificate, the flag for the GC generator and corrupt set, to be used in the final protocol.
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Protocol fairi()

Inputs: Party Pα has xα for α ∈ [3].
Common Inputs: The circuit C(x1, x2, x3, x4) that computes f(x1, x2, x3 ⊕ x4).
Output: A garbler Pl (l ∈ {j, k}) outputs corrupt set Cl, flag{j,k}\l and Odec

i . Pi outputs (Ci,
Yi = (Yj

i ,Y
k
i ), C

dec
j , Cdec

k , flagj , flagk) where Yi denote a pair of encoded outputs or ⊥.
Primitives: A garbling scheme G = (Gb,En,Ev,De) that is correct, private and oblivious, a

NICOM (Com,Open), an eNICOM (eGen, eCom, eOpen,Equiv) and a PRG G.

Round 1:

– Pi randomly secret shares his input xi as xi = xij ⊕ xik and sends xij to Pj and xik to Pk.
– Pl for l ∈ {j, k} samples sl ∈R {0, 1}κ, eppl and ppl for G, eNICOM and NICOM resp. and:

◦ compute garbled circuit (Cl, el, dl) ← Gb(1κ, C) using randomness from G(sl).
Assume {e0lα, e1lα}α∈[`], {e0l(`+α), e1l(`+α)}α∈[`], {e0l(2`+α), e1l(2`+α)}α∈[2`] denote the
encoding information for the input of Pj , Pk and the secret shares of Pi respectively.

◦ compute commitments for GC and decoding information. (cl, ol) ← eCom(eppl,Cl)
and (cdecl , odecl )← eCom(eppl, dl).

◦ sample permutation strings plj , plk ∈R {0, 1}` for the inputs of Pj and Pk. Com-
pute commitments to encoding information as: for b ∈ {0, 1}, (cblα, o

b
lα) ←

Com(ppl, e
pαlj⊕b
lα ), (cbl(`+α), o

b
l(`+α)) ← Com(ppl, e

pαlk⊕b
l(`+α)) when α ∈ [`],

(cbl(2`+α), o
b
l(2`+α))← Com(ppl, e

b
l(2`+α)) when α ∈ [2`].

◦ send Dl = (eppl, ppl, cl, {cblα, }α∈[4`],b∈{0,1}, cdecl ) to both the other parties and send
{sl, plj , plk, ol, {oblα, }α∈[4`],b∈{0,1}, odecl } only to co-garbler P{j,k}\l.

– Pj sets Cj = Pk if Dk and {sk, pkj , pkk, ok, {obkα, }α∈[4`],b∈{0,1}, odeck } are inconsistent.
Else, set Odec

i = odeck . Pk performs similar steps for the values received from Pj .

Round 2:

– Pi sends Dj to Pk and Dk to Pj . Pj sets flagk = 1 if Dk received from Pi and Pk does not
match. Similar step is executed by Pk.

– Pj computes the indicator strings mjj = pjj ⊕ xj ,mkj = pkj ⊕ xj for its inputs. If Pk /∈
Cj , then send

(
OK,Dk, (ok, {o

mαkj
kα , o

xαij
k(2`+α)}α∈[`],mkj), ({o

mαjj
jα , o

xαij
j(2`+α)}α∈[`],mjj)

)
to Pi. Else, send nOK to Pi. Pk performs similar steps.

– (Local Computation) Pi sets Yj
i = ⊥ and flagj = 1 when (a) Pk sent nOK or (b) Dj sent by

Pj and Pk do not match. Otherwise, Pi sets Cdec
j = cdecj ∈ Dj and does:

◦ open Cj ← eOpen(eppj , cj , oj) with oj received from Pk. Set Ci = Pk if Cj = ⊥.

◦ open Xα
j = Open(ppj , c

mαjj
jα , o

mαjj
jα ), Xα

ij = Open(ppj , c
xαij
j(2`+α), o

xαij
j(2`+α)), for α ∈

[`], for the opening received from Pj and the commitments taken from Dj . Include Pj
in Ci if any of the opened input labels above is opened to ⊥.

◦ open Xα
k = Open(ppj , c

mαjk
j(`+α), o

mαjk
j(`+α)) and Xα

ik = Open(ppj , c
xαik
j(3`+α), o

xαik
j(3`+α))

for α ∈ [`], for the opening received from Pk and the commitments taken from Dj .
Include Pk in Ci if any of the opened input labels above is opened to ⊥.

◦ If Ci = ∅, set X = Xj |Xk|Xij |Xik, run Yj
i ← Ev(Cj ,X). Else set Yj

i = ⊥
Similar steps for Ck will be executed to compute Yk

i , populate Ci and update flagk.

Fig. 1: Protocol fairi
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The garblers output the key for 1, flag for its fellow garbler and the corrupt set. Notice
that, when certi is composed in the bigger protocol, Pi will be in a position to identify
the corrupt when the equality fails and the certificate is the inputs fed by the garblers.
The protocol appears in Figure 2.

certi()

Common Inputs: The circuit C(γj , γk) that outputs 1 if (γj = γk) and (0, γj , γk) otherwise.
For distinct i, j, k ∈ [3], Pi is assumed to be the evaluator and (Pj , Pk) as the garblers. We
assume i = (j + 1) mod 3, k = (j + 2) mod 3.

Primitives: A correct, authentic, privacy-free garbling scheme G = (Gb,En,Ev,De) that has
the property of soft decoding, a PRG G, a NICOM (Com,Open)

Output: A garbler Pl for l ∈ {j, k} outputs corrupt set Cl and keyi. Pi outputs
(certi, Ci, flagj , flagk). Garbler Pk additionally outputs flagj .

Round 1: Pj does the following:

– Choose a seed si ∈R {0, 1}κ for G and construct a garbled circuit (Ci, ei, di)← Gb(1κ, C).
Generate commitment on garbled circuit Ci as (ci, oi) ← Com(Ci) and on the encoding
information ei as (ci, oi) ← Com(ei) using randomness from G(si). Let Wi = {ci, ci}.
Send (si,Wi) to Pk andWi to Pi.

– (Local Computation by Pk) Pk adds Pj to Ck if (si,Wi) are inconsistent and is not as per
what an honest Pj should do. Pj and Pk output keyi equals to the key for output 1 of Ci.

Round 2:

– Pi sendsWi to Pk. Pk sets flagj = 1 ifWi received from Pi and Pj is not identical.
– Pj opens its encoded input Xj (corresponding to γj) to Pi by sending the opening of the

corresponding commitment in ci.
– If Pj ∈ Ck, Pk sends nOK to Pi. Else Pk sends Wi, opening for garbled circuit oi and its

encoded input Xk (for γk) to Pi.
– (Local Computation by Pi) If Pi does not receive identical Wi from Pj and Pk or receives

nOK from Pk, Pi sets certi = ⊥ and flagj = 1. Else, Pi uses the opening information sent
by Pj , Pk to retrieve Xj ,Xk. Pi adds Pl (l ∈ {j, k}) to Ci and sets certi = ⊥ if any of
the openings sent by Pl result in ⊥. Else, Pi runs Y ← Ev(Ci,Xj ,Xk). If sDe(Y) = 1,
then set certi = Y, else set certi = (γ′j , γ

′
k) where these two are decoded from Y.

Fig. 2: Protocol certi

Lemma 3. During certi, Pβ /∈ Cα holds for honest Pα, Pβ .

Proof. An honest Pα would include Pβ in Cα only if one of the following holds: (a)
Pβ sends inconsistent (sβ ,Wβ) to Pα. (b) Pβ’s opening of committed encoded input
or garbled circuit fails. It is straightforward to verify that the cases will never occur for
honest (Pβ , Pα). ut
Lemma 4. If an honest Pi has Ci = ∅ and flagj = flagk = 0, then, certi 6= ⊥.

Proof. The proof follows easily from the steps of the protocol.
ut
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3.3 Protocol fair

Building on the intuition laid out before, we only discuss input consistency that is taken
care in two steps: Inter-input consistency (across executions) and intra-input consis-
tency (within an execution). In the former, Pi’s input as an evaluator in fairi is tied with
its input committed as garblers for its own garbled circuits in fairj and fairk. In the
latter, the consistency of Pi’s input for both garbled circuits in fairj (and similarly in
fairk) is tackled. We discuss them one by one.

We tackle the former in a simple yet clever way without incurring any additional
overhead. We explain the technique for enforcing P1’s input consistency on input x1 as
an evaluator during fair1 and as a garbler during fair2, fair3 with respect to his GC C1.
Since the protocol is symmetric in terms of the roles of the parties, similar tricks are
adopted for P2 and P3. Let in the first round of fair1, P1 shares its input x1 by handing
x12 and x13 to P2 and P3 respectively. Now corresponding to C1 during fair2, P1 and
P3 who act as the garblers use x13 as the permutation vector p11 that defines the order
of the commitments of the bits of x1. Now input consistency of P1’s input is guaranteed
ifm11 transferred by P1 in fair2 is same as x12, P1’s share for P2 in fair1. For an honest
P1, the above will be true since m11 = p11 ⊕ x1 = x13 ⊕ x1 = x12. If the check fails,
then P2 identifies P1 as corrupt. This simple check forces P1 to use the same input
in both fair1 and fair2 (corresponding to C1). A similar trick is used to ensure input
consistency of the input of P1 across fair1 and fair3 (corresponding to C1) where P1 and
P2 who act as the garblers use x12 as the permutation vector p11 for the commitments
of the bits of x1. The evaluator P3 in fair3 checks if m11 transferred by P1 in fair3 is
same as x13 that P3 receives from P1 in fair1. While the above technique enforces the
consistency with respect to P1’s GC, unfortunately, the same technique cannot be used
to enforce P1’s input consistency with respect to C2 in fair3 (or fair2) since p21 cannot
be set to x12 which is available to P2 only at the end of first round. While, P2 needs to
prepare and broadcast the commitments to the encoding information in jumbled order
as per permutation string p21 in the first round itself. We handle it differently as below.

The consistency of Pi’s input for both garbled circuits in fairj (and similarly in
fairk) is tackled via ‘cheat-recovery mechanism’ [54]. We explain with respect to P1’s
input in fair3. P2 prepares a ciphertext (cheat recovery box) with the input keys of P1

corresponding to the mismatched input bit in the two garbled circuits, C1 and C2 in
fair3. This ciphertext encrypts the the input shares of garblers that P3 misses, namely,
x12 and x21. This would allow P3 to compute the function on clear inputs directly. To
ensure that the recovered missing shares are as distributed in fair1 and fair2, the shares
are not simply distributed but are committed via NICOM by the input owners and the
openings are encrypted by the holders. Since there is no way for an evaluator to detect
any mismatch in the inputs to and outputs from the two GCs as they are in encoded
form, we use encryption scheme with special correctness to enable the evaluator to
identify the relevant decryptions. Crucially, we depart from the usual way of creating
the cheat recovery boxes using conflicting encoded outputs. Based on whether the clear
or encoded output comes out of honest P3 in round 3, corrupt garbler P1 feeding two
different inputs to C1 and C2 can conclude whether its two different inputs lead to the
same output or not, breaching privacy. Note that the decoding information cannot be
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given via this cheat recovery box that uses conflicting encoded outputs as key, as that
would result in circularity.

Despite using the above fix, the mechanism as discussed above is susceptible to ‘se-
lective failure attack’, an attack well-known in the 2-party domain. While in the latter
domain, the attack is launched to breach the privacy of the evaluator’s input based on
whether it aborts or not. Here, a corrupt garbler can prepare the ciphertexts in an in-
correct way and can breach privacy of its honest co-garbler based on whether clear or
encoded output comes out of the evaluator. We elaborate the attack in fair3 considering
a corrupt P1 and single bit inputs. P1 is supposed to prepare two ciphertexts corre-
sponding to P2’s input bit using the following key combinations– (a) key for 0 in C1

and 1 in C2 and (b) vice-versa. Corrupt P1 may replace one of the ciphertexts using key
based on encoded input 0 of P2 in both the GCs. In case P2 indeed has input 0 (that he
would use consistently across the 2 GCs during fair3), then P3 would be able to decrypt
the ciphertext and would send clear output in Round 3. P1 can readily conclude that
P2’s input is 0. This attack is taken care via the usual technique of breaking each input
bit to s number of xor-shares, referred as ‘XOR-tree approach’ [55] (probe-resistance
matrix [55, 66] can also be used; we avoid it for simplicity). The security is achieved
except with probability 2−(s−1). Given that input consistency is enforced, at the end
of round 2, apart from the three states– (a) no corruption and no conflict detected (b)
corrupt identified (c) conflict detected, a party can be in yet another state. Namely, no
corruption and no conflict detected and the party is able to open a ciphertext and com-
pute f on clear. A corrupt party cannot be in this state since the honest parties would use
consistent inputs and therefore the corrupt would not get access to conflicting encoded
inputs that constitute the key of the ciphertexts. If any honest party is in this state, our
protocol results in all parties outputting this output. In Round 3, this party can send the
computed output along with the opening of the shares he recovered via the ciphertexts
as ‘proof’ to convince the honest party of the validity of the output. The protocol fair
appears in Figure 4.

We now prove the correctness of fair. The intuitive proof of fairness and formal
proof of security are presented in the full version [63].

Lemma 5. During fair, Pj /∈ Ci holds for honest Pi, Pj .

Proof. An honest Pi will not include Pj in its corrupt set in the sub-protocols
{fairα, certα}α∈[3] following Lemma 1, Lemma 3. Now we prove the statement in-
dividually investigating the three rounds of fair.

In Round 1 of fair, Pi includes Pj as corrupt only if (a) Pi, Pj are garblers and Pj
sets pjj 6= xji or (b) Pj sends ppj , cji, oji, xji to Pi such that Open(ppj , cji, oji) 6=
xji. None of them will be true for an honest Pj . In Round 2 of fair, Pi includes Pj as
corrupt only if (a) Pj is a garbler and Pi is an evaluator andmjj 6= xji or (b) Pi obtains
certi = (γ′j , γ

′
k) and detects Pj’s input γ′j in certi to be different from the information

sent by him. The former will not be true for an honest Pj . The latter also cannot hold for
honest Pj by correctness of the privacy-free garbling used. In the last round of fair, Pi
will identify Pj as corrupt, if it has flagk = 1 and yet receives certk which is same as
keyk from Pk. A corrupt Pk receives keyk only by handing out correct and consistent
common information to Pi and Pj until the end of Round 1. Namely, the following must
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Protocol fair()

Inputs: Party Pi has xi for i ∈ [3].
Output: y = f(x1, x2, x3) or ⊥ where the inputs and the function output belong to {0, 1}`.
Subprotocols: fairi for i ∈ [3] (Figure 1), certi for i ∈ [3] (Figure 2), SKE (Enc,Dec) with

‘special correctness’.

Round 1: For i ∈ [3] and for distinct indices j, k ∈ [3] \ {i}

– Each Pi computes an encoding of length `s corresponding to its input xi. For each bit b of
xi, the encoding b1, . . . bs is such that b = ⊕sα=1bα. Reusing the notation, we refer to this
encoding as Pi’s input xi and its length by `.

– Round 1 of certi is run.
– Round 1 of fairi are run with the following amendments: (1) The circuit in fairi is changed as

follows: each input wire is replaced by a gate whose input consists of s new input wires and
whose output is the exclusive-or of these wires. (2) Pj and Pk work with the permutation
strings pjj and pkk respectively as xjk and xkj .

– Pi samples ppi, generates (cij , oij) ← Com(ppi, xij), (cik, oik) ← Com(ppi, xik) and
sends {ppi, cij , cik} to Pj , Pk. Additionally, Pi sends oij , oik to Pj , Pk respectively.

– (Local Computation by Pi) Pi adds P` in Ci if Open(cli, oli) 6= xli. Pj adds Pk in Cj if: (a)
pkk not taken as xkj or (b) the check in fairi or certi fails. Pk adds Pj in Ck if: (a) pjj not
taken as xjk or (b) the check in fairi or certi fails.

Round 2: For i ∈ [3] and for distinct indices j, k ∈ [3] \ {i}:

– If Pi 6∈ Cj , Pj sends (ppi, cij , cik) to Pk. If Pi 6∈ Ck, Pk sends (ppi, cij , cik) to Pj . They set
flagi = 1 in case of mismatch or no communication.

– If Pi 6∈ Cj , Pj participates in certi as a garbler with input γj as {Dji ,D
k
i ,Wk, ppi, cij , cik}

where Dji ,D
k
i ,Wk and (ppi, cij , cik) was received from Pi during Round 1 of fairj , fairk,

certk (assuming k = (i+ 1) mod 3) and fair respectively. Similar step is taken by Pk.
– If certi = (γ′j , γ

′
k), Pi sets Ci = Pl if γ′l 6= {Dji ,D

k
i ,Wk, ppi, cij , cik} for l ∈ {j, k}.

– If Pi /∈ Cj , Pj participates in Round 2 of fairi. When Pk 6∈ Cj , Pj additionally sends the ci-
phertexts ctβjα for β ∈ {0, 1} and α ∈ [`] created as follows. Let {X0

l(`+α),X
1
l(`+α)},

denote the encoding information of co-garbler Pk’s input wire α corresponding to Cl

(l ∈ {j, k}). Then ctβjα = Enc
sk
β
α
(ojk, okj) for sk0

α = X0
j(`+α) ⊕ X1

k(`+α) and
sk1
α = X1

j(`+α) ⊕X0
k(`+α). Pk takes similar steps.

– (Local Computation by Pi) Include Pl in Ci if mll 6= xli for l ∈ {j, k}. If Ci = ∅, flagj =

0, flagk = 0, then use key X
mαjk
j(`+α) ⊕ X

mαkk
k(`+α) (α ∈ [`]) to decrypt the ciphertexts ct0jα

or ct1jα obtained from Pj . If the decryption succeeds, retrieve okj , ojk. Execute xkj ←
Open(ckj , okj) and xjk ← Open(cjk, ojk). If the opening succeeds, then evaluate f on
(xi, xji ⊕ xjk, xki ⊕ xkj) to obtain y. Similarly, steps are taken with respect to Pj’s input,

using the key X
mαjj
jα ⊕X

mαkj
kα to decrypt the ciphertexts ct0kα or ct1kα obtained from Pk.

Fig. 3: A Three-Round Fair 3PC protocol

be true for Pk to obtain keyk (except for the case when it breaks the authenticity of the
GC): (i) γi and γj for certk must be same and (ii) Pk must not be in the corrupt set of
any honest party at the end of Round 1. In this case, flagk cannot be 1. ut
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A party Pi is said to be in stα for α ∈ [4] if the following conditions are satisfied. Let
(Yi, C

dec
j , Cdec

k ), Odec
j and Odec

k denote the output of Pi in fairi, fairj and fairk, respectively.
Let certi, keyj , and keyk denotes the output of Pi in certi, certj and certk respectively.

(i) st1(output is already computed): If y and proofs (ojk, okj) are computed in Round 2.
(ii) st2 (no corruption and no conflict detected): If ((Ci = ∅) ∧ (flagj = 0) ∧ (flagk = 0))

(which implies Yi 6= ⊥ and certi 6= ⊥)
(iii) st3 (corruption detected): If (Ci 6= ∅)
(iv) st4 (conflict detected, but no corruption detected): If (flagj = 1) ∨ (flagk = 1)

Round 3: Each Pi for i ∈ [3] does the following based one of the four states that it belongs to.

– If in st1, then send y to Pj , Pk. Send ojk to Pj and okj to Pk as proofs.
– If in st2, then send (Yi, certi, O

dec
l ) to Pl for l ∈ {j, k}.

– If in st3, then send Odec
l to Pl for l ∈ {j, k} only if Pl 6∈ Ci.

– If in st4, then send zl = Enckeyl(O
dec
l ) to Pl only if flagl = 1. If flagj = 1 and certj

received from Pj is same as keyj , then set Ci = Pk. Similar steps are taken to check and
identify if Pj is corrupt. Update state from st4 to st3 if corrupt is identified.

– If in st1, then output y.
– If in {st2, st3, st4} and if any other party is identified to be in st1, namely if y is received

from Pj or Pk with oki or oji respectively such that Open(ppi, cli, oli) 6= ⊥ for l ∈ {j, k},
then output the received y.

– If in st2, then compute y as follows: Retrieve Odec
i from either zi (with certi as the key)

received from Pj or from direct communication of Pj . If d ← eOpen(eppk, C
dec
k , Odec

i ) is
not ⊥, then use d to compute y ← De(Yk

i , d). Similar steps are executed with respect to
Pk’s communication if y is not computed yet.

– If in st3, then output y ← De(Yi
l , d) where Yl is received from (honest) Pl 6∈ Ci and

decoding information d is known as garbler during fairl. Otherwise output y = ⊥.
– If in st4, output y = ⊥.

Fig. 4: A Three-Round Fair 3PC protocol

Lemma 6. No corrupt party can be in st1 by the end of Round 1, except with negligible
probability.

Proof. For a corrupt Pk, its honest garblers Pi and Pj creates the ciphertexts cts using
keys with opposite meaning for their respective inputs from their garbled circuits. Since
honest Pi and Pj use the same input for both the circuits, Pk will not have a key to
open any of the ciphertexts. The openings (oij , oji) are therefore protected due to the
security of the encryption scheme. Subsequently, Pk cannot compute y. ut

Definition 1. A party Pi is said to be ‘committed’ to a unique input xi, if Pj holds
(cij , cik, oij , xij) and Pk holds (cij , cik, oik, xik) such that: (a) xi = xij ⊕xik and (b)
cij opens to xij via oij and likewise, cik opens to xik via oik.

We next prove that a corrupt party must have committed its input if some honest
party is in st1 or st2. To prove correctness, the next few lemmas then show that an
honest party computes its output based on its own output or encoded output if it is in
st1 or st2 or relies on the output or encoded output of the other honest party. In all
cases, the output will correspond to the committed input of the corrupt party.
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Lemma 7. If an honest party is in {st1, st2}, then corrupt party must have committed
a unique input.

Proof. An honest Pi is in {st1, st2} only when Ci = ∅, flagj = 0, flagk = 0 hold at
the end of Round 2. Assume Pk is corrupt. Pk has not committed to a unique xk implies
either it has distributed different copies of commitments (cki, ckj) to the honest parties
or distributed incorrect opening information to some honest party. In the former case,
flagk will be set by Pi. In the latter case, at least one honest party will identify Pk to
be corrupt by the end of Round 1. If it is Pi, then Ci 6= ∅. Otherwise, Pj populates its
corrupt set with Pk, leading to Pi setting flagk = 1 in Round 2. ut

Lemma 8. If an honest party is in st1, then its output y corresponds to the unique
input committed by the corrupt party.

Proof. An honest Pi is in st1 only when Ci = ∅, flagj = 0, flagk = 0 hold at the end
of Round 2 and it computes y via decryption of the ciphertexts ct sent by either Pj or
Pk. Assume Pk is corrupt. By Lemma 7, Pk has committed to its input. The condition
flagj = 0 implies that Pk exchanges the commitments on the shares of Pj’s input,
namely {cji, cjk}, honestly. Now if Pi opens honest Pj’s ciphertext, then it unlocks
the opening information for the missing shares, namely (okj , ojk) corresponding to
common and agreed commitments (ckj , cjk). Using these it opens the missing shares
xkj ← Open(ckj , okj) and xjk ← Open(cjk, ojk) and finally computes output on
(xi, xji⊕xjk, xki⊕xkj). Next, we consider the case when Pi computes y by decrypting
a ct sent by corrupt Pk. In this case, no matter how the ciphertext is created, the binding
property of NICOM implies that Pk will not be able to open cjk, ckj to anything other
than xjk, xkj except with negligible probability. Thus, the output computed is still as
above and the claim holds. ut

Lemma 9. If an honest party is in st2, then its encoded output Y corresponds to the
unique input committed by the corrupt party.

Proof. An honest Pi is in st2 only when Ci = ∅, flagj = 0, flagk = 0 hold at the end
of Round 2. The conditions also imply that Pi has computed Yi successfully (due to
Lemma 2) and Pk has committed to its input (due to Lemma 7). Now we show that Yi

correspond to the unique input committed by the corrupt Pk. We first note that Pk must
have used the same input for both the circuits Cj and Ck in fairi. Otherwise one of the
ciphertexts prepared by honest Pj must have been opened and y would be computed,
implying Pi belongs to st1 and not in st2 as assumed. We are now left to show that the
input of Pk for its circuit Ck in fairi is the same as the one committed.

In fair, honest Pj would use permutation string pkk = xkj for permuting the com-
mitments inDk corresponding to xk. Therefore, one can conclude that the commitments
in Dk are constructed correctly and ordered as per xkj . Now the only way Pk can de-
commit x′k is by giving mkk = pkk⊕x′k. But in this case honest Pi would add Pk to Ci
as the check mkk = xki would fail (mkk = pkk ⊕ x′k 6= pkk ⊕ xk) and will be in st3
and not in st2 as assumed.

ut
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Lemma 10. If an honest party is in st2, then its output y corresponds to the unique
input committed by the corrupt party.

Proof. Note that an honest party Pi in st2 either uses y of another party in st1 or
computes output from its encoded output Yi. The proof for the former case goes as
follows. By Lemma 6, a corrupt Pk can never be in st1. The correctness of y computed
by an honest Pj follows directly from Lemma 8. For the latter case, Lemma 9 implies
that Yi corresponds to the unique input committed by the corrupt party. All that needs
to be ensured is that Pi gets the correct decoding information. The condition flagj =
flagk = 0 implies that the commitment to the decoding information is computed and
distributed correctly for both Cj and Ck. Now the binding property of eNICOM ensures
that the decoding information received from either Pj (for Ck) or Pk (for Cj) must be
correct implying correctness of y (by correctness of the garbling scheme). ut

Lemma 11. If an honest party is in st3 or st4, then its output y corresponds to the
unique input committed by the corrupt party.

Proof. An honest party Pi in st3 either uses y of another party in st1 or computes
output from encoded output Yj of Pj who it identifies as honest. For the latter case
note that an honest Pj will never be identified as corrupt by Pi, due to Lemma 5. The
claim now follows from Lemma 6, Lemma 8 and the fact that corrupt Pk cannot forge
the ‘proof’ oij (binding of NICOM) for the former case and from Lemma 9 and the fact
that it possesses correct decoding information as a garbler for Yj for the latter case. An
honest party Pi in st4 only uses y of another party in st1. The lemma follows in this
case via the same argument as before. ut

Theorem 1. Protocol fair is correct.

Proof. In order to prove the theorem, we show that if an honest party, say Pi outputs y
that is not ⊥, then it corresponds to x1, x2, x3 where xj is the input committed by Pj
(Definition 1). We note that an honest Pi belong to one among {st1, st2, st3, st4} at
the time of output computation. The proof now follows from Lemmas 7,8,10,11. ut

4 2-round 3PC with Unanimous Abort

This section presents a tight upper bound for 3PC achieving unanimous abort in the
setting with pair-wise private channels and a broadcast channel. The impossibility of
one-round protocol in the same setting follows from “residual function" attack [41].
Our lower bound result presented in the full version [63] rules out the possibility of
achieving unanimous abort in the absence of a broadcast channel in two rounds. This
protocol can be used to yield a round-optimal fair protocol with broadcast (lower bound
in Section 6.1) by application of the transformation of [45] that compiles a protocol
with unanimous abort to a fair protocol via evaluating the circuits that compute shares
(using error-correcting secret sharing) of the function output using the protocol with
unanimous abort and then uses an additional round for reconstruction of the output.

In an attempt to build a protocol with unanimous abort, we note that any protocol
with unanimous abort must be robust to any potential misbehaviour launched via the
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private communication in the second round. Simply because, there is no way to report
the abort to the other honest party who may have seen honest behaviour from the cor-
rupt party all along and has got the output, leading to selective abort. Our construction
achieves unanimity by leveraging the availability of the broadcast channel to abort when
a corrupt behaviour is identified either in the first round or in the broadcast communi-
cation in the second round, and behaving robustly otherwise. In summary, if the corrupt
party does not strike in the first round and in the broadcast communication of the second
round, then our construction achieves robustness.

Turning to the garbled circuit based constructions such as the two-round protocol
of [43] achieving selective abort or the composition of three copies of the sub-protocol
fairi of fair, we note that the second round private communication that involves en-
coding information for inputs is crucial for computing the output and cannot transit via
broadcast because of input privacy breach. A bit elaborately, the transfer of the encoding
information for the inputs of the garblers can be completed in the first round itself and
any inconsistency can be handled via unanimous abort in the second round. However,
a similar treatment for the encoding information of the shares of the evaluator seems
impossible as they are transferred to garblers only in the first round. We get past this
seemingly impossible task via a clever ‘two-part release mechanism’ for the encoding
information of the shares of the evaluator. Details follow.

Similar to protocol fair, we build our protocol ua upon three parallel executions of
a sub-protocol uai (i ∈ [3]), each comprising of two rounds and with each party Pi en-
acting the role of the evaluator once. With fairi as the starting point, each sub-protocol
uai allows the parties to reach agreement on whether the run was successful and the
evaluator got the output or not. A flag flagi is used as an indicator. The protocol ua then
decides on unanimous abort if at least one of the flags from the three executions uai for
i ∈ [3] is set to true. Otherwise, the parties must have got the output. Input consistency
checks ensure that the outputs are identical. Intra-execution input consistency is taken
care by cheat-recovery mechanism (similar and simplified version of what protocol fair
uses), while inter-execution input consistency is taken care by the same trick that we
use in our fair protocol. Now looking inside uai, the challenge goes back to finding
a mechanism for the honest evaluator to get the output when a corrupt party behaves
honestly in the first round and in the broadcast communication of the second round. In
other words, its private communication in the second round should not impact robust-
ness. This is where the ‘two-part release mechanism’ for the encoding information of
the shares of the evaluator kicks in. It is realized by tweaking the function to be eval-
uated as f(xj , xk, (zj ⊕ rj) ⊕ (zk ⊕ rk)) in the instance uai where Pi enacts the role
of the evaluator. Here rj , rk denote random pads chosen by the garblers Pj , Pk respec-
tively in the first round. The encoding information for these are released to Pi privately
in the first round itself. Any inconsistent behaviour in the first round is detected, the
flag is set and the the protocol exits with⊥ unanimously. Next, zj and zk are the offsets
of these random pads with the actual shares of Pi’s input and are available only at the
end of first round. The encoding information for these offsets and these offsets them-
selves are transferred via broadcast in the second round for public verification. As long
as the pads are privately communicated, the offsets do not affect privacy of the shares
of Pi’s input. Lastly, note that the encoding information for a garbler’s input for its own
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generated circuit can be transferred in the first round itself. This ensures that a corrupt
garbler misbehaves either in the first round or in the broadcast communication in the
second round or lets the evaluator get the output via its own GC. The formal description
and proof of security of ua appear in the full version [63].

5 3-round 3PC with Guaranteed Output Delivery

In this section, we present a three-round 3PC protocol, given access to pairwise-private
channels and a broadcast channel. The protocol is round-optimal following 3-round
lower bound for fair 3PC proven in Section 6.1. The necessity of the broadcast channel
for achieving guaranteed output delivery with strict honest majority follows from [23].

Our tryst starts with the known generic transformations that are relevant such as the
transformations from the unanimous abort to (identifiable) fair protocol [45] or iden-
tifiable fair to guaranteed output delivery [24]. However, these transformations being
non-round-preserving do not turn out to be useful. Turning a 2-round protocol offer-
ing unanimous (or even selective) abort with identifiability (when the honest parties
learn about the identity of the corrupt when deprived of the output) to a 3-round proto-
col with guaranteed output delivery in a black-box way show some promise. The third
round can be leveraged by the honest parties to exchange their inputs and compute out-
put on the clear. We face two obstacles with this approach. First, there is neither any
known 2-round construction for selective / unanimous abort with identifiability nor do
we see how to transform our unanimous abort protocol to one with identifiability in two
rounds. Second, when none of the parties (including the corrupt) receive output from
the selective / unanimous abort protocol and the honest parties compute it on the clear
in the third round by exchanging their inputs and taking a default value for the input of
the corrupt party, it is not clear how the corrupt party can obtain the same output (note
that the ideal functionality demands delivering the output to the adversary).

We get around the above issues by taking a non-blackbox approach and tweaking
uai and fairi to get yet another sub-protocol godi that achieves a form of local identi-
fiability. Namely, the evaluator Pi in godi either successfully computes the output or
identifies the corrupt party. As usual, our final protocol god is built upon three parallel
executions of godi (i ∈ [3]), each comprising of two rounds and with each party Pi
enacting the role of the evaluator once. Looking ahead, the local identifiability helps
in achieving guaranteed output delivery as follows. In a case when both honest parties
identify the corrupt party and the corrupt party received the output by the end of Round
2, the honest parties can exchange their inputs and reconstruct the corrupt party’s input
using the shares received during one of the executions of godi and compute the function
on clear inputs in the third round. Otherwise, the honest party who identifies the corrupt
can simply accept the output computed and forwarded by the other honest party. The
issue of the corrupt party getting the same output as that of the honest parties when it
fails to obtain any in its instance of godi is taken care as follows. First, the only reason
a corrupt party in our protocol does not receive its output in its instance of godi is due
to denial of committing its input. In this case it is detected early and the honest parties
exchange inputs in the second round itself so that at least one honest party computes
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the output using a default input of the corrupt party by the end of Round 2 and hands it
over to others in Round 3. The protocol and the proof appear in the full version [63].

6 Lower Bounds

In this paper, we present two lower bounds– (a) three rounds are necessary for achiev-
ing fairness in the presence of pair-wise private channels and a broadcast channel; (b)
three rounds are necessary for achieving unanimous abort in the presence of just pair-
wise private channels (and no broadcast). The second result holds even if broadcast
was allowed in the first round. Our results extend for any n and t with 3t ≥ n > 2t
via standard player-partitioning technique [57]. Our results imply the following. First,
selective abort is the best amongst the four notions (considered in this work) that we
can achieve in two rounds without broadcast (from (b)). Second, unanimous abort as
well as fairness require 3 rounds in the absence of broadcast (from (b)). Third, broad-
cast does not help to improve the round complexity of fairness (from (a)). Lastly,
guaranteed output delivery requires 3 rounds with broadcast (from (a)). The first lower
bound appears below. We prove the second lower bound in the full version [63].

6.1 The Impossibility of 2-round Fair 3PC

In this section, we show that it is impossible to construct a fair 2-round 3PC for general
functions. [39] presents a lower bound of three rounds assuming non-private point-to-
point channels and a broadcast channel (their proof crucially relies on the assumption
of non-private channels). [35] presents a three-round lower bound for fair MPC with
t ≥ 2 (arbitrary number of parties) in the same network setting as ours. Similar to the
lower bounds of [39] and [35] (for the function of conjunction of two input bits), our
lower bound result does not exploit the rushing nature of the adversary and hence holds
for non-rushing adversary as well. Finally, we observe that the impossibility of 2-round
3PC for the information-theoretic setting follows from the impossibility of 2-round 3-
party statistical VSS of [62] (since VSS is a special case of MPC). We now prove the
impossibility formally.

Theorem 2. There exist functions f such that no two-round fair 3PC protocol can com-
pute f , even in the honest majority setting and assuming access to pairwise-private and
broadcast channel.

Proof. Let P = {P1, P2, P3} denote the set of 3 parties and the adversary A may
corrupt any one of them. We prove the theorem by contradiction. We assume that there
exists a two-round fair 3PC protocol π that can compute f(x1, x2, x3) defined below
for Pi’s input xi:

f(x1, x2, x3) =

{
1 if x2 = x3 = 1

0 otherwise

At a high level, we discuss two adversarial strategies A1 and A2 of A. We consider
party Pi launching Ai in execution Σi (i ∈ [2]) of π. Both the executions are assumed
to be run for the same input tuple (x1, x2, x3) and the same random inputs (r1, r2, r3)
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of the three parties. (Same random inputs are considered for simplicity and without
loss of generality. The same arguments hold for distribution ensembles as well.) When
strategy A1 is launched in execution Σ1, we would claim that by correctness of π,
A corrupting P1 should learn the output y = f(x1, x2, x3). Here, we note that the
value of f(x1, x2, x3) depends only on the inputs of honest P2, P3 (i.e input values
x2, x3) and is thus well-defined. We refer to f(x1, x2, x3) as the value determined by
this particular combination of inputs (x2, x3) henceforth. Now, since A corrupting P1

learnt the output, due to fairness, P2 should learn the output too in Σ1. Next strategy
A2 is designed so that P2 in Σ2 can obtain the same view as in Σ1 and therefore it
gets the output too. Due to fairness, we can claim that P3 receives the output in Σ2. A
careful observation then lets us claim that P3 can, in fact, learn the output at the end of
Round 1 itself in π. Lastly, using the above observation, we show a strategy for P3 that
explicitly allows P3 to breach privacy.

We use the following notation: Let pri→j denote the pairwise communication from
Pi to Pj in round r and bri denote the broadcast by Pi in round r, where r ∈ [2], {i, j} ∈
[3]. Vi denotes the view of party Pi at the end of execution of π. Below we describe the
strategies A1 and A2.

A1: P1 behaves honestly during Round 1 of the protocol. In Round 2, P1 waits to
receive the messages from other parties, but does not communicate at all.

A2: P2 behaves honestly towards P3 in Round 1, i.e sends the messages p1
2→3, b

1
2 ac-

cording to the protocol specification. However P2 does not communicate to P1 in
Round 1. In Round 2, P2 waits to receive messages from P3, but does not commu-
nicate to the other parties.

Next we present the views of the parties in the two executions Σ1 and Σ2 in Table 1.
The communications that could potentially be different from the communications in an
honest execution (where all parties behave honestly) with the considered inputs and ran-
dom inputs of the parties are appended with ? (e.g. p2

1→3(?)). We now prove a sequence
of lemmas to complete our proof.

Lemma 12. A corrupt P1 launching A1 in Σ1 should learn the output y =
f(x1, x2, x3).

Proof. The proof follows easily. Since P1 behaved honestly during Round 1, it received
all the desired communication from honest P2 and P3 in Round 2 (refer to Table 1 for
the view of P1 inΣ1 in the end of Round 2). So it follows from the correctness property
that his view at the end of the protocol i.e V1 should enable P1 to learn the correct
function output f(x1, x2, x3). ut

Table 1: Views of P1, P2, P3 in Σ1 and Σ2

Σ1 Σ2

V1 V2 V3 V1 V2 V3

Initial Input (x1, r1) (x2, r2) (x3, r3) (x1, r1) (x2, r2) (x3, r3)

Round 1 p1
2→1, p1

3→1 p1
1→2, p1

3→2, p1
1→3, p1

2→3, –, p1
3→1, p1

1→2, p1
3→2, p1

1→3, p1
2→3,

b1
2, b

1
3 b1

1, b
1
3 b1

1, b
1
2 b1

2, b
1
3 b1

1, b
1
3 b1

1, b
1
2

Round 2 p2
2→1, p2

3→1, –, p2
3→2, –, p2

2→3, –, p2
3→1, p2

1→2(?), p2
3→2, –, p2

1→3(?),
b2
2, b

2
3 b2

3 b2
2 b2

3 b2
1(?), b

2
3 b2

1(?)
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Lemma 13. A corrupt P2 launching A2 in Σ2 should learn the output y.

Proof. We prove the lemma with the following two claims. First, the view of P2 in Σ2

subsumes the view of honest P2 in Σ1. Second, P2 learns the output in Σ1 due to the
fact that the corrupt P1 learns it and π is fair. We now prove our first claim. In Σ1, we
observe that P2 has received communication from both P1 and P3 in the first round,
and only from P3 in the second round. So V2 = {x2, r2, p1

1→2, b
1
1, p

1
3→2, b

1
3, p

2
3→2, b

2
3}

(refer to Table 1). We now analyze P2’s view in Σ2. Both P1 and P3 are honest and
must have sent {p1

1→2, b
1
1, p

1
3→2, b

1
3} according to the protocol specifications in Round

1. Since P3 received the expected messages from P2 in Round 1, P3 must have sent
{p2

3→2, b
2
3} in Round 2. Note that we can rule out the possibility of P3’s messages in

this round having been influenced by P1 possibly reporting P2’s misbehavior towards
P1. This holds since P3 would send the messages in the beginning of Round 2. We do
not make any assumption regarding P1’s communication to P2 in Round 2 since P1 has
not received the expected message from P2 in Round 1. Thus, overall, P2’s view V2

comprises of {x2, r2, p1
1→2, b

1
1, p

1
3→2, b

1
3, p

2
3→2, b

2
3} (refer to Table 1). Note that there

may also be some additional messages from P1 to P2 in Round 2 which can be ignored
by P2. These are marked with ‘(?)′ in Table 1. A careful look shows that the view of P2

in Σ2 subsumes the view of honest P2 in Σ1. This concludes our proof. ut

Lemma 14. P3 in Σ2 should learn the output y by the end of Round 1.

Proof. According to the previous lemma, P2 should learn the function output in Σ2.
Due to fairness property, it must hold that an honest P3 learns the output as well (same
as obtained by P2 i.e y with respect to x2). First, we note that as per strategy A2, P2

only communicates to P3 in Round 1. Second, we argue that the second round commu-
nication from P1 does not impact P3’s output computation as follows.

We observe that the function output depends only on (x2, x3). Clearly, Round 1
messages {p1

1→3, b
1
1} of P1 does not depend on x2. Next, since there is no private

communication to P1 from P2 as per strategyA2, the only information that can possibly
hold information on x2 and can impact the round 2 messages of P1 is b1

2. However, since
this is a broadcast message, P3 holds this by the end of Round 1 itself. ut

Lemma 15. A corrupt P3 violates the privacy property of π.

Proof. The adversary corrupting P3 participates in the protocol honestly by fixing in-
put x3 = 0. Since P3 can get the output from P2’s and P1’s round 1 communication
(Lemma 14), it must be true that P3 can evaluate the function f locally by plugging in
any value of x3. (Note that P2 and P1’s communication in round 1 are independent of
the communication of P3 in the same round.) Now a corrupt P3 can plug in x3 = 1
locally and learn x2 (via the output x2 ∧ x3). In the ideal world, corrupt P3 must learn
nothing beyond the output 0 as it has participated in the protocol with input 0. But in
the execution of π (in which P3 participated honestly with input x3 = 0), P3 has learnt
x2. This is a clear breach of privacy as P3 learns x2 regardless of his input.

ut
Hence, we have arrived at a contradiction, completing the proof of Theorem 2.

ut
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