
An Optimal Distributed Discrete Log Protocol
with Applications to Homomorphic Secret

Sharing

Itai Dinur1, Nathan Keller2, and Ohad Klein2

1 Department of Computer Science, Ben-Gurion University, Israel
2 Department of Mathematics, Bar-Ilan University, Israel

Abstract. The distributed discrete logarithm (DDL) problem was in-
troduced by Boyle et al. at CRYPTO 2016. A protocol solving this prob-
lem was the main tool used in the share conversion procedure of their
homomorphic secret sharing (HSS) scheme which allows non-interactive
evaluation of branching programs among two parties over shares of secret
inputs.
Let g be a generator of a multiplicative group G. Given a random group
element gx and an unknown integer b ∈ [−M,M] for a small M , two
parties A and B (that cannot communicate) successfully solve DDL if
A(gx) − B(gx+b) = b. Otherwise, the parties err. In the DDL protocol
of Boyle et al., A and B run in time T and have error probability that
is roughly linear in M/T . Since it has a significant impact on the HSS
scheme’s performance, a major open problem raised by Boyle et al. was
to reduce the error probability as a function of T .
In this paper we devise a new DDL protocol that substantially reduces
the error probability to O(M · T−2). Our new protocol improves the
asymptotic evaluation time complexity of the HSS scheme by Boyle et
al. on branching programs of size S from O(S2) to O(S3/2). We further
show that our protocol is optimal up to a constant factor for all relevant
cryptographic group families, unless one can solve the discrete logarithm
problem in a short interval of length R in time o(

√
R).

Our DDL protocol is based on a new type of random walk that is com-
posed of several iterations in which the expected step length gradually
increases. We believe that this random walk is of independent interest
and will find additional applications.
Keywords: Homomorphic secret sharing, share conversion, fully homo-
morphic encryption, discrete logarithm, discrete logarithm in a short
interval, random walk.

1 Introduction

Homomorphic Secret Sharing Homomorphic secret sharing (HSS) is a prac-
tical alternative approach to fully homomorphic encryption (FHE) [12, 17] that
provides some of its functionalities. It was introduced by Boyle, Gilboa and
Ishai [5] at CRYPTO 2016 and further studied and extended in [4, 6, 7, 10]. The

main advantage of HSS over traditional secure multiparty computation proto-
cols [1, 8, 20] is that, similarly to FHE, its communication complexity is smaller
than the circuit size of the computed function.

HSS allows homomorphic evaluation to be distributed among two parties who
do not interact with each other. A (2-party) HSS scheme randomly splits an input
w into a pair of shares (w0, w1) such that: (1) each share wi computationally hides
w, and (2) there exists a polynomial-time local evaluation algorithm Eval such
that for any program P from a given class (e.g., a boolean circuit or a branching
program), the output P (w) can be efficiently reconstructed from Eval(w0, P)
and Eval(w1, P).

The main result of [5] is an HSS scheme for branching programs under the De-
cisional Diffie-Hellman (DDH) assumption that satisfies P (w) = Eval(w0, P) +
Eval(w1, P). It was later optimized in [4, 6], where the security of the optimized
variants relies on other discrete log style assumptions.

Let G be a multiplicative cyclic group of prime order N in which the discrete
log problem is (presumably) hard and let g be a generator of this group. The
scheme of [5] allows the parties to locally multiply an encrypted (small) input
w ∈ Z with an additively secret-shared (small) value y ∈ Z, such that the
result z = wy is shared between the parties. The problem is that at this stage
gz is multiplicatively shared by the parties, so they cannot multiply z with
a new encrypted input w′. Perhaps the most innovative idea of [5] allows the
parties to convert multiplicative shares of gz into additive shares of z without any
interaction via a share conversion procedure. Once the parties have an additive
sharing of z, they can proceed to add it to other additive shares. These operations
allow to evaluate restricted multiplication straight-line (RMS) programs which
can emulate any branching program of size S using O(S) instructions.

The share conversion procedure of [5] is not perfect in the sense that the
parties may err. More specifically, the parties fail to compute correct additive
shares of z with some error probability δ that depends on the running time T of
the parties and on a small integer M that bounds the intermediate computation
values. As share conversion is performed numerous times during the execution
of Eval, its total error probability accumulates and becomes roughly δ ·S, where
S is the number of multiplications performed by the RMS program P . Thus, for
the total error probability to be constant one has to set the running time T of
the parties in the share conversion procedure such that δ ≈ 1/S. Consequently,
the running time to error tradeoff has a significant impact on the performance
of the HSS scheme.

Since the main motivation behind HSS is to provide a practical alternative
to FHE, one of the main open problems posed in [5] was to improve the running
time to error tradeoff of the share conversion procedure. Progress on this open
problem was made in the followup works [4, 6] which significantly improved the
practicality of the HSS scheme. Despite this progress, the asymptotic running
time to error tradeoff of the share conversion procedure was not substantially
improved and the running time T in all the schemes grows (roughly) linearly
with the inverse error probability 1/δ (or as M/δ in general). Thus, to obtain

2

δ ≈ 1/S, one has to set T ≈ S, and since the total number of multiplications in
P is S, the total running time becomes O(S2).

The Distributed Discrete Log Problem The focus of this paper is on the
“distributed discrete log” (DDL) problem which the parties collectively solve in
the share conversion procedure. We now describe the DDL problem and abstract
away the HSS details for simplicity. The DDL problem involves two parties A and
B. The input of A consists of a group element gx, were x is chosen uniformly
at random from ZN . The input of B consists of gx+b, where b ∈ [−M,M] is
an unknown uniformly chosen integer in the interval (for a small fixed integer
parameter M). The algorithms A,B are restricted by a parameter T which
bounds the number of group operations they are allowed to compute.3 After
executing its algorithm, each party outputs an integer. The parties successfully
solve the DDL instance if A(gx)−B(gx+b) = b. We stress that A and B are not
allowed to communicate.4

If gz is multiplicatively shared by A (party 0) and B (party 1), then gz0 ·gz1 =
gz. In the share conversion procedure party A runs A(g−z0) while party B runs
B(gz1). Assuming they correctly solve DDL for |z| ≤ M , we have A(g−z0) −
B(gz1) = z1 + z0 = z, namely, A(g−z0) and −B(gz1) are additive shares of z as
required.

It is convenient to view the DDL problem as a synchronization problem: A
and B try to agree or synchronize on a group element with a known offset in
the exponent from their input. If they manage to do so, the parties solve DDL
by outputting this offset. For example, if both parties synchronize on gy, then
A(gx) = y− x while B(gx+b) = y− (x+ b), so A(gx)−B(gx+b) = b as required.
In particular, if both A and B can solve the discrete logarithm problem for their
input (i.e., compute x and x+ b, respectively), then they can synchronize on the
generator g by outputting A(gx) = 1− x and B(gx+b) = 1− (x+ b). Of course,
this would violate the security of the HSS scheme, implying that the discrete
logarithm problem in G should be hard and A,B have to find other means to
succeed.

Our Goals The goal of this paper is to devise algorithms for A and B (i.e.,
a DDL protocol) that maximize their success probability (taken over the ran-
domness of x, b), or equivalently, minimize their error probability δ given T . Our

3 In all algorithms presented in this paper, the bulk of computation involves performing
group operations, hence this is a reasonable complexity measure. Alternatively, the
parameter T may bound the complexity of A,B in some reasonable computational
model.

4 We note that in the applications of [4–6], the distribution of b ∈ [−M,M] is arbitrary.
However (as we show in Lemma 13), our choice to define and analyze DDL for
the uniform distribution of b ∈ [−M,M] is technically justified since the uniform
distribution is the hardest for DDL: algorithms for A,B that solve DDL with an
error probability δ for the uniform distribution, also solve DDL with with an error
probability O(δ) for any distribution of b ∈ [−M,M].

3

point of reference is the DDL protocol of [6] (which is a refined version of the
original DDL protocol [5]) that achieves a linear tradeoff between the parameter
T and error probability δ. More precisely, given that A,B are allowed T group
operations, the DDL error probability is roughly M/T . In fact, there are sev-
eral closely related protocols devised in [4–6] which give similar linear tradeoffs
between the parameter T and error probability δ.

Yet another goal of this paper is to better understand the limitations of
DDL protocols. More specifically, we aim to prove lower bounds on the error
probability of DDL protocols by reducing a well-studied computational problem
on groups to DDL. In particular, we are interested in the discrete log in an
interval (DLI) problem, where the input consists of a group element in a known
interval of length R and the goal is to compute its discrete log.

DLI has been the subject of intensive study in cryptanalysis and the best
known algorithms for it are adaptations of the classical baby-step giant-step
algorithm and the memory-efficient variant of Pollard [15] (see [11, 16] for ad-
ditional extensions). These algorithms are based on collision finding and have
complexity of about

√
R. They are the best known in concrete prime-order group

families (in which discrete log is hard) up to large values of the interval R. In
particular, for elliptic curve groups, the best known DLI algorithm has complex-
ity of about

√
R where R is as large as the size of the group N (which gives

the standard discrete logarithm problem). For some other groups (such as prime
order subgroups of Z∗p), the best known complexity is about

√
R, where R can be

up to subexponential in logN (as discrete log can be solved in subexponential
complexity in these groups [13, 14]). We note that besides its relevance in crypt-
analysis, DLI is solved as part of the decryption process of some cryptosystems
(notably in the cryptosystem by Boneh, Goh and Nissim [3]).

An alternative approach to establishing error probability lower bounds for
DDL is to use the generic group model (GGM), introduced by Shoup [18]. In
GGM, an algorithm is not allowed direct access to the bit representation of
the group elements, but can only obtain randomized encodings of the elements,
available via oracle queries. The generic group model is a standard model for
proving computational lower bounds on certain (presumably hard) problems on
groups and thus establishing confidence in their hardness. Although the bounds
obtained in GGM are relevant to a restricted class of algorithms, it is essen-
tially the only model in which meaningful lower bounds are known for some
computational problems on groups (such as discrete log). Moreover, for sev-
eral problems (such as discrete log computation in some elliptic curve groups),
generic algorithms are essentially the best algorithms known. The downside of
this alternative proof approach is that it does not directly relate DDL to any
hard problem in a group family, but rather establishes a lower bound proof in
an abstract model.

Our Contribution The main result of this work is closing the gap for DDL
in many concrete group families by presenting upper and lower bounds that are
tight (within a constant factor) based on the hardness of DLI in these families.

4

We first develop an improved DDL protocol that is applicable in any group G and
achieves a quadratic tradeoff between the parameter T and the error probability,
namely δ = O(M/T 2). This is a substantial improvement over the linear tradeoff
δ = O(M/T) obtained in [4–6]. Therefore, when executing Eval on an RMS
program P with multiplicative complexity S, one can set T = O(S1/2) to obtain
δ = O(1/S) and the total running time is reduced fromO(S2) in [4–6] toO(S3/2).
This result directly improves upon the computational complexity of some of the
HSS applications given in [4–6]. For example, in private information retrieval [9]
(PIR), a client privately searches a database distributed among several servers
for the existence of a document satisfying a predicate P . The 1-round 2-server
PIR scheme of [5] supports general searches expressed as branching programs of
size S applied to each document. The computational complexity per document
in the scheme of Boyle et al. is O(S2) and our result reduces this complexity to
O(S3/2).

On the practical side, we fully verified our protocol by extensive experiments.
We hope that it will render HSS practical for new applications.

Our DDL protocol uses a new type of (pseudo) random walk composed of
several iterations. Each one of these iterations resembles Pollard’s “kangaroo”
random walk algorithm for solving DLI using limited memory [15]. However
DDL is different from DLI as the parties cannot communicate and seek to mini-
mize their error probability (rather than make it constant). This leads to a more
complex iterative algorithm, where the parties carefully distribute their time
complexity T among several random walks iterations. These iterations use in-
creasingly longer step lengths that gradually reduce the error probability towards
O(M/T 2).

The new random walk maximizes the probability that parties with close
inputs agree (or synchronize) on a common output without communicating. We
believe that this random walk is of independent interest and will find additional
applications beyond homomorphic secret sharing schemes and cryptography in
general.

After presenting our DDL protocol, we focus on lower bounds and show
that any DDL protocol for a family of groups must have error probability of
δ = Ω(M/T 2), unless DLI (with interval of length R) can be solved in time T ′ ≈
T = o(

√
R) in this family. This is currently not achievable for small (polynomial)

T in standard cryptographic groups (for which the group-based HSS scheme is
deemed to be secure).

Finally, we analyze DDL protocols in the generic group model. In this model,
our DDL protocol is adaptive, as the oracle queries of A and B depend on
the answers to their previous queries. This stands in contrast to the protocols
of [4–6] in GGM, whose oracle queries are fixed in advance (or selected with
high probability from a pre-fixed set of size O(T)). It is therefore natural to
ask whether adaptivity is necessary to obtain optimal DDL protocols in GGM.
Interestingly, we prove that the answer is positive. In fact, we show that the
linear tradeoff obtained in [4–6] is essentially the best possible for non-adaptive
DDL protocols in GGM.

5

Paper Organization The rest of the paper is organized as follows. We describe
preliminaries in Section 2 and present an overview of our new protocol and
related work in Section 3. Our new DDL protocol is analyzed in Section 4. We
prove lower bounds on the DDL error probability in concrete group families in
Section 5 and finally prove lower bounds on non-adaptive algorithms in GGM
in Section 6.

2 Preliminaries

In this section we describe the preliminaries required for this work. First we
introduce notation that we use throughout the paper and then we present and
analyze the DDL algorithm of [5], which will serve as a basis for our algorithms.

2.1 Notation for the Distributed Discrete Log Problem

Recall that the parties A and B successfully solve the DDL instance if A(gx)−
B(gx+b) = b. To simplify our notation, we typically do not explicitly write the
parameters G, g,N,M, T in the description of A,B, although some of them will
appear in the analysis. We are interested in the success (or error) probability of
A and B, taken over the randomness of x, b (and possibly over the randomness of
A,B). We denote by err(A,B, x, b, T) the error event A(gx)−B(gx+b) 6= b, and
by Prerr(A,B, [M1,M2], T) its probability Pr

x,b
[err(A,B, x, b, T)], where x ∈ ZN

and b ∈ [M1,M2] are uniform (typically, we are interested in M2 = −M1 = M).
We also denote by suc(A,B, x, b, T) the complementary success event A(gx) −
B(gx+b) = b.

When both parties perform the same algorithm A, we shorten the notation
into err(A, x, b, T), Prerr(A, [M1,M2], T), and suc(A, x, b, T), respectively. If the
parameters A,B, x, b, T are apparent from the context, we sometimes use err
and suc instead of err(A,B, x, b, T) and suc(A,B, x, b, T), respectively. As men-
tioned above, A and B can be randomized algorithms and in this case the success
(and error) probabilities are taken over their randomness as well. However, to
simplify our notation we will typically not refer to this randomness explicitly.

We note that the DDL problem considered in [4–6] is slightly different, as
A,B are allowed to perform up to T group operations in expectation. In this
alternative definition, one can construct DDL protocols that are more efficient
than ours by a small constant factor, while our lower bounds remain the same
(again, up to a constant factor).

In the description and analysis of the DDL algorithms, we make frequent use
of group elements of the form gx+j . For sake of simplicity, we denote gj := gx+j .
In addition, we usually assume b ≥ 0, as otherwise we can simply exchange the
names of the parties A and B when they use the same algorithm. Finally, we
refer to a group operation whose output is h as a query to h.

6

2.2 The Basic DDL Algorithm

Let φ : G → [0, N − 1] be a pseudo-random function (PRF) that maps group
elements to integers. Our protocols evaluate φ on O(T) group elements for
T � N1/2. We assume throughout the analysis that φ behaves as a truly random
permutation on the evaluated group elements, and in particular, we do not en-
counter collisions in φ (i.e., for arbitrary h 6= h′, φ(h) 6= φ(h′)). Our probabilistic
calculations are taken over the choice of φ, even though we do not indicate this
explicitly for simplicity.5

We describe the min-based DDL algorithm of [5] in Algorithm 1 and refer
to it as the basic DDL algorithm. The algorithm is executed by both A and B.
When applied to g0 = gx, the algorithm scans the T values g0, g1, . . . , gT−1 and
chooses the index imin for which φ(gi) is minimal. The output of the algorithm
is BasicT (gx) = (imin, gmin). Note that the algorithm depends also on G, g;
however, we do not mention them explicitly in the notation. Furthermore, the
output gmin will only be relevant later, when we use this algorithm as a sub-
procedure. For the sake of analysis, we slightly abuse notation below and refer
to imin as the (only) output of BasicT (gx).

The motivation behind the algorithm is apparent: if partyA applies BasicT (gx)
and party B applies BasicT (gx+b), where b� T , then the lists of values scanned
by the two algorithms (i.e., g0, g1, . . . , gT−1 and gb, gb+1, . . . , gb+T−1) contain
many common values, and thus, with a high probability the minimum is one of
the common values, resulting in success of the algorithm.

2.3 Analysis of the Basic DDL Algorithm

Error probability. The following lemma calculates the error probability of the
basic DDL algorithm, as a function of |b| and T .

Lemma 1. The error probability of the basic DDL algorithm is

Pr
x

[err(BasicT , x, b, T)] = Pr[(BasicT (gx)− BasicT (gx+b) 6= b)] = 2|b|/(|b|+ T).

Proof. We assume b ≥ 0, as otherwise we exchange the names of A and B.
Since both A and B use Algorithm 1, then A computes the function φ on
g0, g1, . . . , gT−1, while B computes this function on gb, gb+1, . . . , gb+T−1. If the
minimum value of φ for each party is obtained on an element gmin = gx · gimin

which is queried by both, then we have BasicT (gx) = imin and BasicT (gx+b) =
imin − b, implying that BasicT (gx) − BasicT (gx+b) = b and the parties are
successful. Similarly, they fail when the minimal value of φ on the elements

5 The function φ (and additional pseudo-random functions defined in this paper) can
be implemented by a keyed MAC, where the key is pre-distributed to A and B. Thus,
our probabilistic calculations should be formally taken over the choice of the key.
They should include an error term that accounts for the distinguishing advantage
of an efficient adversary (A or B in our case) that attempts to distinguish the PRF
from a truly random permutation. However, for an appropriately chosen PRF, the
distinguishing advantage is negligible and we ignore it for the sake of simplicity.

7

Algorithm 1: BasicT (gx)

1 begin
2 h′ ← gx, i← 0, min←∞;
3 while i < T do
4 y ← φ(h′);
5 if y < min then
6 gmin ← h′;
7 imin ← i, min← y;

8 end
9 h′ ← h′ · g;

10 i← i+ 1;

11 end
12 Output (imin, gmin);

13 end

g0, g1, . . . , gb+T−1 is obtained on an element computed only by one party, namely
on one of the 2b elements gx ·gi for 0 ≤ i < b or T ≤ i < b+T . Assuming that the
output of φ on each element is uniform and the outputs are distinct, this occurs
with probability 2b/(b + T). Hence Pr

x
[err(BasicT , x, b, T)] = 2|b|/(|b| + T), as

asserted. �

The output difference in case of failure. An important quantity that plays a role
in our improved protocol is the output difference of the parties in case they fail
to synchronize on the same element gmin (i.e., their output difference is not b).
The following lemma calculates the expectation of this difference, as function of
|b| and T .

Lemma 2.

E
[∣∣BasicT (gx)− BasicT (gx+b)− b

∣∣ ∣∣ err
]

= (|b|+ T)/2.

Proof. We assume b ≥ 0. As written above, A computes the function φ on
g0, . . . , gT−1, and B computes this function on gb, . . . , gb+T−1. The ordering of
the values φ(g0), . . . , φ(gb+T−1) is uniform, and so the permutation π satisfying
φ(gπ(0)) < φ(gπ(1)) < . . . < φ(gπ(b+T−1)) is uniformly random in the permu-
tation group of {0, 1, . . . , b + T − 1}. The event err is equivalent to the event
π(0) /∈ [b, T − 1]. Without loss of generality let us restrict ourselves to the event
π(0) < b, i.e. A encounters the minimal group element, and B does not; the other
possibility π(0) ≥ T is symmetric with respect to reflection. Clearly, π(0), which
equals BasicT (gx), is uniformly random in [0, b− 1]. Moreover, BasicT (gx+b) + b
is π (min {i |π(i) > b}) which uniformly distributes in [b, b+T−1]. Hence the ex-
pected final distance between the parties is (2b+T+1)/2−(b+1)/2 = (b+T)/2.
�

8

3 Overview of our New Protocol and Related Work

3.1 The New DDL Protocol

For the sake of simplicity, we assume in this overview that M = 1, hence |b| ≤ 1.
The starting point of our new DDL protocol is Algorithm 1. It makes T queries
(i.e., group operations) and fails with probability of roughly 2/T according to
Lemma 1. Let us assume that we run this algorithm with only T/2 queries, which
increases the error probability by a factor of 2 to about 4/T . On the other hand,
we still have a budget of T/2 queries and we can exploit them to reduce the
error probability. Interestingly, simply proceeding to calculate more consecutive
group elements is not an optimal way to exploit the remaining budget.

After the first T/2 queries, we say that A (or B) is placed at group element
gy if φ(gy) is the minimal value in its computed set of size T/2. Assume that A
and B fail to synchronize on the same group element after the first T/2 queries
(which occurs with probability of roughly 4/T). Then, by Lemma 2, A and B
are placed at elements which are at distance of about T/4, i.e., if A is placed at
gy and B is placed at gz, then |y−z| ≈ T/4. Our main idea is to use a somewhat
different procedure in order to try to synchronize A and B in case they fail to
do so after the first T/2 queries, while keeping A and B synchronized if they
already are.

The next procedure employed by both A and B is a (pseudo) random walk
starting from their initial position, whose step length is uniformly distributed in
[1, L − 1], where L ≈

√
T . The step length at group element gy is determined

by ψL−1(gy), where ψL−1 is a pseudo-random function independent of φ that
outputs a uniform integer in [1, L− 1].6 Assume that after the first T/2 queries,
B is placed at distance of about T/4 in front of A. Then A will pass B’s initial
position after about

√
T/2 steps and simple probabilistic analysis shows that A

will land on one of B’s steps after an additional expected number of about
√
T/2

steps. From this point, the walks coincide for the remaining T/2 −
√
T steps.

Similarly to Algorithm 1, each party outputs the offset of the minimal φ(gy)
value visited during its walk. Since both A and B use the same deterministic
algorithm, they remain synchronized if they already are at the beginning of the
walks. On the other hand, if they are not initially synchronized, their walks
are expected to coincide on T/2−

√
T elements, and hence the probability that

they remain unsynchronized is roughly
√
T/(T/2) = 2 · T−1/2. Thus, the error

probability at this stage is about 4 · T−1 · 2 · T−1/2 = 8 · T−3/2, which already
significantly improves upon the 2 ·T−1 error probability of Algorithm 1 for large
T .

However, we can still do better. For the sake of simplicity, let us completely
ignore constant factors in rest of this rough analysis. Note that we may reserve
an additional number of O(T) queries to be used in another random walk by
shortening the first two random walks, without affecting the failure probability

6 Our analysis assumes that ψL−1 is a truly random function and our probabilistic
calculations are taken over the choice of ψL−1.

9

significantly. Hence, assume that the parties fail to synchronize after the ran-
dom walk (which occurs with probability of about T−3/2) and that we still have
enough available queries for another random walk with O(T) steps. Since each
party covers a distance of about T 3/2 during its walk, then the expected dis-
tance between the parties in case of failure is roughly T 3/2. We can now perform
another random walk with expected step length of T 3/4 (hence the walks are
expected to coincide after about T 3/4 steps), reducing the error probability to
about T−3/2 · (T 3/4 ·T−1) = T−7/4. This further increases the expected distance
between A and B in case of failure to approximately T 7/4. We continue execut-
ing random walk iterations with a carefully chosen step length (distributing a
budget of O(T) queries among them). After i random walk iterations, the error

probability is reduced to about T−2+2−i

(and the expected distance between

the parties is roughly T 2−2−i

). Choosing i ≈ log log T gives an optimal error
probability of about T−2+1/ log T = O(T−2).

Our new DDL protocol is presented in algorithms 2 and 3. Algorithm 2 de-
scribes a single iteration of the random walk, parameterized by (L, T) which
determine the maximal step length and the number of steps, respectively.7 Al-
gorithm 3 describes the full protocol which is composed of application of the
basic DDL algorithm (using t0 < T queries, reserving queries for the subsequent
random walks), and then I additional random walks, where the i’th random
walk is parameterized by (Li, ti) which determine its maximal step length and
number of steps. Between each two iterations in Step 6, both parties are moved
forward by a large (deterministic) number of steps, in order to guarantee inde-
pendence between the iterations (the computation time used to perform these
calculations is negligible compared to T). We are free to choose the parameters

I, {Li, ti}, as long as
∑I
i=0 ti = T is satisfied.

The very rough analysis presented above assumes that we have about T
queries in each of the log log T iterations, whereas we are only allowed T queries
overall. Moreover, it does not accurately calculate the error probability and
the distance between the parties in case of failure in each iteration. Taking all
of these into account in an accurate analysis results in an error probability of
Ω(log T ·T−2). Surprisingly, we can still achieve an error probability of O(T−2).
This is done by a fine tuning of the parameters which distribute the number of
queries among the iterations and select the step length of each random walk. In
particular, it is not optimal to independently optimize the step length of each
iteration and one has to analyze the subtle dependencies between the iterations
in order to achieve an error probability of O(T−2).

As the fine tuning of the parameters is rather involved, in addition to the
theoretical analysis we verified the failure probability by extensive experiments.

7 We assume that the algorithm uses a table containing the pre-computed values
g, g2, . . . , gL−1. Otherwise, it has to compute gzi+1 on-the-fly in Step 10, which
results in a multiplicative penalty of O(log(T)) on the number of group operations.
Of course, it is also possible to obtain a time-memory tradeoff here.

10

Algorithm 2: RandWL,T (h)

1 begin
2 h′ ← h, i← 0, min←∞, d0 ← 0;
3 while i < T do
4 y ← φ(h′);
5 if y < min then
6 hmin ← h′;
7 dmin ← di, min← y;

8 end
9 zi+1 ← ψL−1(h′);

10 h′ ← h′ · gzi+1 ;
11 di+1 ← di + zi+1;
12 i← i+ 1;

13 end
14 Output (dmin, hmin);

15 end

Algorithm 3: IteratedRandWI,t0,{(Li,ti)Ii=1}(h)

1 begin
2 (c0, h0)← Basict0(h);
3 p0 ← c0;
4 i← 1;
5 while i ≤ I do

6 h′i−1 ← hi−1 · g
∑

j<i tjLj ;
7 (ci, hi)← RandWLi,ti(h

′
i−1);

8 pi ← pi−1 + ci;
9 i← i+ 1;

10 end
11 Output pI ;

12 end

3.2 Related Work

The most closely related work to our DDL algorithm is Pollard’s “kangaroo”
method for solving the discrete logarithm problem in an interval using limited
memory (see [15] and [11, 16] for further analysis and extensions). The kangaroo
method launches two random walks (kangaroos), one from the input h = gx

(where x the unknown discrete log) and one from gy, where y is a known value
in an interval of a fixed size R around x. The algorithm is optimized such that the
walks meet at a “distinguished point”, which reveals x. The kangaroo method
thus resembles a single random walk iteration of our DDL algorithm.

On the other hand, there are fundamental differences between the standard
DLI and DDL. These differences result in the iterative structure of our algorithm
that differs from Pollard’s method. First, in contrast to the DLI problem, in DDL

11

A and B cannot communicate and never know if they succeed to synchronize.
Hence, the parties cannot abort the computation at any time. Second, the goal
in DDL is to minimize the error probability, whereas achieving a constant error
probability (as in standard DLI) is unsatisfactory. To demonstrate the effect of
these differences, observe that solving the discrete log problem in an interval of
size 3 can be trivially done with probability 1 using 3 group operations. On the
other hand, our algorithm for solving DDL for M = 1 is much more complicated
and achieves an error probability of about T−2 using T group operations (which
is essentially optimal for many concrete group families).

Yet another difference between DLI and DDL is that in DLI the boundaries
of the interval of the input h are known, whereas in DDL the input of each
party is completely uniform. The knowledge of the interval boundaries in DLI
allows to shift it to the origin (using the self-reducibility property of discrete log)
and efficiently use preprocessing (with a limited amount of storage) to speed up
the online computation [2]. On the other hand, it is not clear how to efficiently
exploit preprocessing in DDL.

4 The New Distributed Discrete Log Protocol

In this section we study our new DDL protocol in more detail. In Section 4.1
we focus on a single iteration of our DDL protocol (i.e., a single random walk
iteration) and analyze its failure probability and the expected distance between
its outputs in case of a failure. In Section 4.2 we briefly analyze the complete
protocol. Some parts of the analysis are quite involved and presented in the
extended version of this paper. This includes the proofs of lemmas 5, 8, 9 and
Theorem 1.

The experimental verification of the protocol is presented in Section 4.3.
We also describe some practical considerations regarding the protocol in the
extended version of this paper.

4.1 A Single Iteration of our DDL Protocol – the Random Walk
DDL Algorithm

Recall that in Algorithm 2 applied with parameters (L, T), both parties perform
a random walk of T steps of the form gy → gy+ai , where the length ai of each step
is determined by a (pseudo) random function ψL−1 : G→ {1, 2, . . . , L−1} which
guarantees that the step length is uniformly distributed in the range [1, L− 1].
Each party then chooses among the elements of G visited by its walk, the element
hmin for which φ(hmin) is minimal (as in the basic DDL algorithm).8

Once the parties synchronize in a given iteration, they remain synchronized
in the subsequent ones as each iteration is deterministic. Thus, an application

8 We assume in our analysis that during the application of the whole protocol by a
single party, each function φ, ψL−1 is not evaluated twice on the same input. These
constrains are satisfied since |G| = N is much larger than T (e.g., |G| > cT 2 for a
sufficiently large constant c).

12

of Algorithm 2 is “relevant” only if the two parties failed to synchronize in the
previous iterations. In this case, the initial distance b between the parties is the
difference between their outputs in the previous iteration. We shall compute the
probability of failure as a function of b (which allows us to treat b as a constant
throughout the analysis), and then substitute the expectation of b – computed
in the analysis of the previous step – into the computation. In particular, as the
expected distance between the outputs in case of failure of the basic DDL algo-
rithm was computed in Lemma 2, we will be able to substitute it as E[|b|] into
the computation of the failure probability of the second iteration of our DDL
protocol. At the same time, in addition to the failure probability we shall com-
pute the expected distance between the outputs in case of failure of Algorithm 2
in order to be able to link the examined iteration to the subsequent one.

Additional Notation In our analysis we use some auxiliary notation. Without
loss of generality, we assume that b ≥ 0 (namely, B is located at distance b in
front of A). We let SA be the number of steps of A until its walk lands on
an element visited by B (i.e., the number of queries made by A strictly before
the first element of A that is included in B’s path). If this never occurs, we
let SA = T . Similarly, we define SB as the number of steps of B until its walk
lands on an element visited by A. Clearly, the walks of A and B coincide for
T −max(SA, SB) steps.

We define UA as the number of steps A performs until it is within reach
of a single step from the starting point of B. Namely, UA = min{i | dAi >
b − L}, where dAi is the variable di in Algorithm 2 applied by A. In addition,
we let VA, VB denote the numbers of steps performed by A and B, respectively,
starting from the point where A is within reach of a single step from the starting
point of B, until the walks collide or one of them ends. Furthermore, we denote
Vm = max{VA, VB}. Notice that SA = UA + VA and SB = VB , and hence

max(SA, SB) ≤ UA + Vm. (1)

Below, we evaluate the expectations of the random variables UA, Vm in order to
bound the error probability of synchronization based on Algorithm 2.

Finally, while RandWL,T (h) has two outputs, we slightly abuse notation and
refer to dmin as the (only) output of RandWL,T (h) since only this output is
relevant for this analysis.

The Failure Probability of Algorithm 2 First, we bound the expected
number of steps performed by A until it reaches the starting point of B.

Lemma 3. E[UA] < 2b/L.

Proof. By the definition of UA, we have dAUA
< b. Consider the martingale d′i =

dAi − iL/2 (which is indeed a martingale, as ψL−1(h′) computed in the algorithm
are independent and have expectation L/2). The classical Doob’s martingale
theorem yields

0 = d′0 = E[d′UA
] = E[dAUA

]− LE[UA]/2.

13

As dUA
< b, we deduce E[UA] < 2b/L. �

Our next lemma bounds the expectation of SA+SB , that is, the total number
of steps performed by the two walks together before they meet.

Lemma 4. Suppose the initial distance between the parties, b, satisfies 0 < b <
L. Then E[SA + SB] ≤ L− 1.

Proof. For ease of computation, we do not trim SA and SB with T . Of course, this
can only make the upper bound larger. One easily sees that E[SA +SB] is finite
and depends only on b (and the parameter L). Write Eb for this expectation. We
have E0 = 0, and by dividing into cases according to the result of a single step
of A, we obtain

Eb = 1 +
1

L− 1
(Eb−1 + Eb−2 + . . .+ E1 + E0 + E1 + . . .+ EL−1−b) .

A valid solution for this system of linear equations is Eb = L−1 for all 0 < b < L.
This is actually the only solution, since the matrix corresponding to this system
is strictly diagonally dominant, and thus is invertible by the Levy-Desplanques
theorem. Therefore, E[SA + SB] = L− 1, independently of b. �

The next lemma bounds the maximum between the numbers of steps per-
formed by A and B between the time A “almost” reached the starting point of
B and the meeting of the walks.

Lemma 5. E[Vm] ≤ (L− 1)/2 +
√

8(L− 1).

The proof of the lemma is a lengthy technical argument, which mainly uses
Lemma 4 and Doob’s martingale theorem.

Now we are ready to estimate the failure probability of Algorithm 2.

Lemma 6. Let R = 2b/L+ L/2 +
√

8L for 0 < b < L. The error probability of
the random walk DDL algorithm satisfies

Pr
x

[err(RandW, x, b, T)] = Pr[(RandWL,T (gx)−RandWL,T (gx+b) 6= b)] ≤ 2R/(T+R).

Proof. The walks of A and B coincide for T − max(SA, SB) steps. Notice that
we have,

E[max(SA, SB)] ≤ E[UA + Vm] ≤ L/2 + 2b/L+
√

8L = R, (2)

where the first inequality uses (1) and the second inequality uses lemmas 3
and 5. Similarly to the basic DDL algorithm (Lemma 1), the error probability
(assuming that the output of φ on each element is uniformly random) is

Pr
x

[err(RandW, x, b, T)] = E[2 max(SA, SB)/(T + max(SA, SB))]

≤ E[2 max(SA, SB)]

T + E[max(SA, SB)]
≤ 2R

T +R
,

where the first inequality is Jensen’s inequality applied to the increasing concave
function x 7→ 2x/(T + x) in the domain x > 0, and the second inequality uses
the monotonicity of the function x 7→ 2x/(T + x) and Equation (2). �

14

The Output Difference in Case of Failure Similarly to Lemma 2 which
bounded the expected difference of outputs in case of failure for the basic DDL
algorithm, we bound the analogous quantity for Algorithm 2. In order to achieve
this result, we need a “conditional” version of the classical Azuma martingale
inequality.

Lemma 7 (Azuma’s inequality). Let X0, X1, . . . , Xn be a martingale with
|Xi −Xi−1| ≤ V . Then for any t ≥ 0,

Pr
[
|Xn −X0| ≥ V · t

√
n
]
≤ 2 exp(−t2/2).

Lemma 8. Let X1, . . . , Xn be independent random variables with |Xi−E[Xi]| ≤
V and let E be an event. Then

E

 n
max
k=1

∣∣∣∣∣∣
∑
i≤k

(Xi − E[Xi])

∣∣∣∣∣∣
∣∣∣∣∣∣ E
 ≤ V√8n log(2/Pr[E]).

To understand the intuition behind the lemma, consider the sum of indepen-
dent {1,−1} random variables {Xi}ni=1. By Chernoff’s inequality, Pr[|

∑
Xi| >

t
√
n] < e−t

2/2. However, if we condition on the event E = {
∑
Xi = n}, then we

have Pr[|
∑
Xi| > t

√
n|E] = 1 for all t <

√
n. On the other hand, the probability

of the event E is extremely small. We claim that if one is allowed to condition
only on events with not-so-small probability, then all sums |

∑k
i=1Xi| are not

much larger than the Chernoff bound, which applies without the conditioning.
Our lemma is the martingale version of this intuition.

Finally, we show that either the error probability is “very small” (and so
there is no need to continue the random walk iterations), or we can bound the
distance between the outputs in case of failure.

Lemma 9. If Prerr(RandWL,T , [1, 1], T) ≥ ε, then for 0 < b < L and h1 ∈ G

E
[∣∣RandWL,T (h1)− RandWL,T (h1 · gb)− b

∣∣ ∣∣ err
]

≤ b+ TL/4 + L
√

32T log(2/ε).
(3)

The proof of the lemma is a somewhat lengthy technical argument which mainly
uses Lemma 8.

4.2 The Iterated Random Walk DDL Algorithm

As described in Section 3, our full DDL protocol (i.e., Algorithm 3) runs itera-
tively several stages of Algorithm 2. It depends on a set of parameters: I, which
is the number of iterations in the algorithm (on top of the basic DLL algorithm),
(ti)

I
i=0, which represent the number of queries in each of the I+1 iterations, and

(Li)
I
i=1, which determine the (maximal) sizes of steps performed in each random

walk iteration.
Given a set of parameters, lemmas 6 and 9 allow us to compute the failure

probability of IteratedRandW under that set of parameters. A “naive” choice of

15

parameters leads to a failure probability of O(T−2 log T). However, we show in
the following theorem that the parameters can be chosen in such a way that the
failure probability becomes O(T−2).

Theorem 1. There exists a parameter set PS for which the error probability of
the iterated random walk DDL algorithm is

Prerr(IteratedRandWPS , [1, 1], T)

= Pr[IteratedRandWPS(gx)− IteratedRandWPS(gx+1) 6= 1]

≤ 210.2+o(1)/T 2.

We give concrete choices of parameters and experimentally obtained values of
the error probability for various values of T (that take into consideration the
low-order terms) in the extended version of this paper.

A simple distance extension argument (see Section 5.5, Lemma 14) allows us
to obtain a similar result for larger distances between the starting points.

Corollary 1. Consider Algorithm 3 with the parameter set PS chosen in The-
orem 1. Then for any distribution of the initial distance b that has expectation
E[|b|], the error probability of Algorithm 3 is at most O(E |b|/T 2). In particular,
Prerr(IteratedRandWPS , [−M,M], T) = O(M/T 2).

We note that when E[|b|] � 1, it is more efficient to start the sequence of
iterations directly with a random walk of expected step length of roughly

√
E[|b|]

(instead of starting it with Algorithm 1). This reduces the error probability by
a constant factor.

Dependency of Iterations and Parameter Selection In Section 3, we noted
that in order to minimize the error probability of the protocol it is necessary to
consider the dependencies between the different iterations, rather than optimiz-
ing their error probability independently. We demonstrate this here by analyzing
only two iterations of Algorithm 2. We first simplify the formulas in lemmas 6
and 9 by ignoring low-order terms.

Lemma 6 asserts that the error probability of each iteration is 2R/(T + R),
where R ≈ 2b/L + L/2 (ignoring low-order terms). We can lower bound this
probability by 2R/T ≈ (4b + L2)/2TL. Lemma 9 asserts that the expected
distance between the parties in case of error is at most b+ TL/4 (ignoring low-
order terms). Since L is roughly

√
b and b < T 2 at any iteration (as noted in

Section 3), then we estimate the expected distance as TL/4.

Let us assume that after iteration i−1 the parties are at distance bi (which is
a random variable). Assume we are allowed T ′ queries in the next two iterations,
where in iteration i we use step length parameter Li and query parameter ti.
After this iteration, the expected distance between the parties is bi+1, which
we estimated above as tiLi/4. Similarly, in iteration i + 1 we use parameters
Li+1 and ti+1 (under the restriction that ti + ti+1 = T ′). Thus, the estimated

16

error probability of the two iterations (assuming that the previous ones failed to
synchronize) is

4bi + L2
i

2tiLi
·

4bi+1 + L2
i+1

2ti+1Li+1
.

To simplify this expression, for parameters α, β write Li = α
√
bi and Li+1 =

β
√
bi+1 ≈ β/2 ·

√
tiLi. Then, the error probability expression simplifies to

b
3/4
i

8
· (4 + α2)(4 + β2)

α1/2β · t1/2i ti+1

.

It remains to minimize this expression by appropriately selecting α, β, ti, ti+1

(such that ti + ti+1 = T ′). Taking partial derivatives, it is clear that the global
minimum is obtained by selecting different parameters for the two iterations,
namely, the values of α, ti for iteration i are different from β, ti+1 for iteration
i+1. In other words, in order to minimize the error probability it is necessary to
solve the global optimization problem rather than optimize the error probability
of each iteration independently.

4.3 Experimental verification

In order to evaluate Algorithm 3 in practice, we programmed a simulator which
simulates IteratedRandWPS(gx) and IteratedRandWPS(gx+1), and empirically
approximates Pr[err] as the percentage of pairs of simulations which disagree.
The parameters for these simulations were chosen using a numerical optimizer
based on the analysis above. The results are given in Table 1.9 Since performing
full simulations is too expensive for large values of T , we had to use three opti-
mizations that do not affect the simulator’s reliability. These are detailed in the
extended version of this paper.

5 Error Probability Lower Bounds in Concrete Group
Families

5.1 Overview of the Lower Bound Proof

We outline the main ideas of the lower bound proof in concrete family groups.
For the sake of simplicity, we only consider DDL with M = 1 in this overview
(whereas the proof considers general M).

9 We note that according to the proof of Theorem 1 (given in the extended version of
this paper), I can be taken to be any value between log log(T)+ω(1) and o(

√
log(T)),

without a significant effect on the provable performance of the algorithm. On the
other hand, according to Table 1, I seems to grow more sharply. However, the re-
striction of I = o(

√
log(T)) is merely an artifact of the proof and the optimal value

of I could be asymptotically larger. Furthermore, the sharp increase of the values
of I in Table 1 could be attributed to low-order terms that have a more noticeable
effect for small T values.

17

T I
∼ log2(tk)

∼ log2(Lk)

T 2 · Pr[err]

σ (SD)

T 2 · Pr[err]

σ (SD)

213 5
6.0, 8.6, 9.6, 10.4, 11.1, 11.7

1.6, 3.6, 5.6, 7.5, 9.4

334

2

336.6

0.3

216 6
7.1, 10.3, 11.6, 12.5, 13.3, 14.1, 14.7

1.6, 3.9, 6.2, 8.3, 10.3, 12.2

390

10

382.5

1

219 7
7.0, 10.3, 12.6, 13.7, 14.7, 15.5, 16.3, 17.1, 17.7

1.6, 2.8, 5.2, 7.4, 9.6, 11.5, 13.4, 15.2

391

25

394

2

222 8
8.2, 12.6, 15.1, 16.4, 17.5, 18.5, 19.3, 20.1, 20.7

1.6, 3.7, 6.7, 9.4, 11.8, 14.1, 16.2, 18.1

—

—

420

4

225 9
8.4, 13.0, 16.5, 18.0, 19.3, 20.5, 21.5, 22.3, 23.1, 23.8

1.6, 3.2, 6.4, 9.4, 12.2, 14.7, 17.0, 19.1, 21.1

—

—

427

10

The fourth column gives the result of simulations without the third optimization
(detailed in the extended version of this paper), and the last column uses that

optimization.

Table 1. Experimental Results

We first prove in Lemma 10 that in a DDL protocol, using different algo-
rithms for A,B cannot give a significant advantage in the error probability. As
a result, we can assume that both A and B use A’s algorithm, which simplifies
the analysis.

Let us assume that we can solve DDL with error probability δ � 1 in time T
for M = 1. Our main reduction shows how to use A’s algorithm to solve DLI in
an interval of length about R ≈ 1/δ in time less than 4T with probability 1/2. If
we assume that in a specific family of groups, DLI in an interval of length c · T 2

(for a sufficiently large constant c) cannot be solved in complexity lower than
4T with probability 1/2,10 we must have R ≈ 1/δ < c ·T 2 or δ = Ω(T−2), which
gives our main lower bound for the case of M = 1. It is important to stress that
A is a DDL algorithm for M = 1 that is not explicitly given the DLI interval
length parameter R. Yet the reduction below will apply A’s algorithm to solve
DLI with parameter R in a black-box manner.

Recall that a DLI algorithm obtains as input a group element h = gx, where
x is in a known interval of length R ≈ 1/δ. By the self-reducibility of discrete
log, we can assume that h is a uniform group element (i.e., we can multiply the
input by a randomly chosen group element). Our reduction picks a point gz in
the interval (for a known z) and runs A on inputs gx and gz, where |x− z| ≤ R.
We hope that A(gx)−A(gz) = z−x and thus we return z−(A(gx)−A(gz)) = x.

10 We consider only uniform algorithms that can be applied to families of groups (such
as elliptic curve groups) and not non-uniform algorithms that are specialized to a
specific group G. Indeed, in the non-uniform model, there exist algorithms that solve
DLI in an interval of length R in time o(

√
R) for any specific group (see, e.g., [2]).

18

Clearly, the DLI algorithm runs in time less than 4T and it remains to upper
bound its error probability by 1/2. In other words, we need to upper bound
the probability of A(gx)− A(gz) 6= z − x by 1/2. We know that the DDL error
probability is δ for M = 1, namely, if |x− z| ≤ 1, then the required probability
is11 δ. Next, assume that z = x + 2. Then, if A(gx) − A(gx+2) 6= 2 this implies
that either A(gx) − A(gx+1) 6= 1 or A(gx+1) − A(gx+2) 6= 1 (or both). Since
the probability of each of these two events is δ, we can use a union bound to
upper bound the probability that A(gx) − A(gx+2) 6= 2 by 2δ. Using a similar
argument (which we refer to as distance extension, formalized in Lemma 14),
we can upper bound the probability of the event A(gx) − A(gz) 6= z − x for
|x− z| ≤ R by O(R · δ) and for R = O(1/δ), this gives error probability 1/2, as
required. Note that the same algorithm A is used for any distance |x − z| ≤ R
(which is unknown in advance) and conditioning on this distance is only done
for the sake of analysis.

5.2 The Single Algorithm Distributed Discrete Log Problem

We now define the single algorithm DDL problem, which is the same problem
as general DDL with the restriction that the algorithms of the parties are the
same (i.e., both parties use A’s algorithm). Denote by err(A, x, b, T) the event
A(gx) − A(gx+b) 6= b and by Prerr(A, [M1,M2], T) its probability (over x ∈
ZN , b ∈ [M1,M2]). Obviously, the optimal 2-party DDL error probability is a
lower bound on the optimal single algorithm DDL error probability. In this
section, we prove that the bound in the other direction holds as well up to a
constant factor in case M2 = −M1 = M .12

Lemma 10. Prerr(A,B, [−M,M], T) ≥ 1/8 · Prerr(A, [−M,M], T).

Proof. Note that if A(gx+b1)−A(gx+b2) 6= b2− b1, then A(gx+b1)−B(gx) 6= −b1
or A(gx+b2)−B(gx) 6= −b2 (or both). Therefore, for uniform b1, b2 ∈ [−M,M],

Pr
x,b1,b2

[err(A, x+ b1, b2 − b1, T)] = Pr
x,b1,b2

[A(gx+b1)−A(gx+b2) 6= b2 − b1]

≤ Pr
x,b1,b2

[(A(gx+b1)−B(gx) 6= −b1) ∪ (A(gx+b2)−B(gx) 6= −b2)]

≤ Pr
x,b1

[A(gx+b1)−B(gx) 6= −b1] + Pr
x,b2

[A(gx+b2)−B(gx) 6= −b2]

= 2 · Prerr(A,B, [−M,M], T)

It remains to relate Prerr(A, [−M,M], T) to Pr
x,b1,b2

[err(A, x+ b1, b2− b1, T)].

Denote the event |b2 − b1| ≤ M by E and note that Pr
b1,b2

[E] ≥ 1/2. Conditioned

on E , if b2 − b1 was uniform in [−M,M], then we would have Pr
x,b1,b2

[err(A, x +

11 More accurately, it is O(δ), as δ is the average error probability in the interval [−1, 1].
12 It is also possible to prove a similar bound in case the interval [M1,M2] is not

symmetric around the origin.

19

b1, b2 − b1, T) | E] = Prerr(A, [−M,M], T). Although it is not uniform, b2 − b1 is
almost uniform in the sense that for each i ∈ [−M,M], we have Pr

b1,b2
[b2 − b1 =

i] ≥ Pr
b1,b2

[b2 − b1 = M] ≥ (M + 1)/(4M2) and Pr
b1,b2

[b2 − b1 = i] ≤ Pr
b1,b2

[b2 − b1 =

0] ≤ (2M + 1)/(4M2). As the minimal and maximal probabilities assigned to
|b2 − b1| in [−M,M] are within a factor of 2,

Pr
x,b1,b2

[err(A, x+ b1, b2 − b1, T) | E] ≥ 1/2 · Prerr(A, [−M,M], T)

and

Pr
x,b1,b2

[err(A, x+ b1, b2 − b1, T)]

≥ Pr
x,b1,b2

[err(A, x+ b1, b2 − b1, T) | E] · Pr
b1,b2

[E] ≥ 1/4 · Prerr(A, [−M,M], T).

Finally,

Prerr(A,B, [−M,M], T) ≥ 1/2 · Pr
x,b1,b2

[err(A, x+ b1, b2 − b1, T)]

≥ 1/8 · Prerr(A, [−M,M], T),

concluding the proof. �
The consequence of the lemma is that for the sake of proving lower bounds on

the error probability, we can restrict our attention to A’s algorithm by analyzing
Prerr(A, [−M,M], T). The lemma immediately gives us the same lower bound
on Prerr(A,B, [−M,M], T), up to a constant factor.

Furthermore, note that by symmetry we have Prerr(A,B, [−M,M], T) ≥
1/8 · Prerr(B, [−M,M], T), hence the general DDL error probability is lower
bounded by the maximal error probability of the (single) algorithms of the two
parties (up to constant factors). Therefore, running different algorithms for the
two parties cannot give a much better result than simply having both players
run the best algorithm in the single algorithm setting.

5.3 Limitation on Randomness

The effect of the internal randomness of a DDL algorithm A on its outcome
is quantified by Prerr(A, [0, 0], T). This quantity measures the probability that
two different executions of A on the same input differ, where the probability is
taken over A’s input gx and its internal randomness. We prove that A’s internal
randomness cannot significantly influence its outcome.

Lemma 11. Assume Prerr(A, [−M,M], T) = δ. Then Prerr(A, [0, 0], T) ≤ 2δ.

Proof. To be more explicit, we denote by A(r, gx) the execution of A with a
randomness string r. Assume we fix the output of A(r, gx+b) for some b ∈

20

[−M,M] and randomness string r. Then, if A(r1, g
x) 6= A(r2, g

x) for r1, r2,
either A(r1, g

x)−A(r, gx+b) 6= b or A(r2, g
x)−A(r, gx+b) 6= b (or both). Hence,

Prerr(A, [0, 0], T)

= Pr
r1,r2,x

[A(r1, g
x) 6= A(r2, g

x)]

≤ Pr
r1,r2,r,x,b

[(A(r1, g
x)−A(r, gx+b) 6= b) ∪ (A(r2, g

x)−A(r, gx+b) 6= b)]

≤ Pr
r1,r,x,b

[A(r1, g
x)−A(r, gx+b) 6= b] + Pr

r2,r,x,b
[A(r2, g

x)−A(r, gx+b) 6= b]

= 2δ.

�

5.4 Symmetry

We prove the following symmetric property.

Lemma 12. For M2 ≥M1, Prerr(A, [M1,M2], T) = Prerr(A, [−M2,−M1], T).

Proof. It is sufficient to prove that for any positive integer b, Prerr(A, [b, b], T) =
Prerr(A, [−b,−b], T). This indeed holds, since err(A, x, b, T) and err(A, x +
b,−b, T) are identical events, Prerr(A, [b, b], T) = Pr

x
[err(A, x, b, T)] = Pr

x
[err(A, x+

b,−b, T)] = Prerr(A, [−b,−b], T). �

5.5 Distance Extension

In this section, we show that the distance parameter M of any DDL algorithm
A can be extended at the expense of a linear loss in the error probability.

First, we prove the following lemma which reduces the error probability of
Prerr(A, [−M,M], T) to each one of the indices in the interval. As mentioned
in the Introduction (see Footnote 4), it proves that a DDL algorithm with error
probability δ for uniform b ∈ [−M,M] also solves DDL with with an error
probability O(δ) for any distribution on b ∈ [−M,M].

Lemma 13. Assume that Prerr(A, [−M,M], T) = δ. Then, for every b ∈ [−M,M],
Prerr(A, [b, b], T) ≤ 4δ.

Proof. We first assume that b ∈ [1,M] and let i ∈ [−M,M − b]. Clearly, if
gx is a uniform group element, then so is gx+i. Therefore, Prerr(A, [b, b], T) =
Pr
x

[err(A, x + i, b, T)]. Furthermore, if the event err(A, x + i, b, T) occurs, then

A(gx+i) − A(gx+i+b) 6= b implying that at least one of the events A(gx) −
A(gx+i+b) 6= i+b andA(gx)−A(gx+i) 6= imust occur. Consequently, Prerr(A, [b, b], T)
(the error probability associated with index b) is upper bounded by Prerr(A, [i+

21

b, i + b], T) + Prerr(A, [i, i], T) (the sum of error probabilities associated with
indices i and i+ b). Formally,

Prerr(A, [b, b], T) = Pr
x

[err(A, x+ i, b, T)]

≤ Pr
x

[err(A, x, i+ b, T) ∪ err(A, x, i, T)]

≤ Pr
x

[err(A, x, i+ b, T)] + Pr
x

[err(A, x, i, T)]

= Prerr(A, [i+ b, i+ b], T) + Prerr(A, [i, i], T).

We map the indices in [−M,M] into disjoint pairs of the form i, i + b (this
implies that i ∈ [−M,M − b]). We can obtain at least b(2M − b + 1)/2c such
pairs, which is at least (M + 1)/2 for b ∈ [1,M − 1]. On the other hand, for
b = M , the number of pairs is M ≥ (M + 1)/2. We apply the above inequality
to each of the pairs:

δ = Prerr(A, [−M,M], T)

= 1/(2M + 1) ·
M∑

i=−M
Prerr(A, [i, i], T)

≥ 1/(2M + 1) · (M + 1)/2 · Prerr(A, [b, b], T)

≥ Prerr(A, [b, b], T)/4.

Thus, Prerr(A, [b, b], T) ≤ 4δ for b ∈ [1,M].
The proof for b ∈ [−M,−1] follows by symmetry (Lemma 12). Finally, for

b = 0, we have Prerr(A, [0, 0], T) ≤ 2δ by Lemma 11. �

Lemma 14. Let Prerr(A, [−M,M], T) = δ. Then for any β > 1,

Prerr(A, [−βM, βM], T) ≤ 8β · δ.

For the sake of simplicity we assume that βM is an integer (otherwise, we
only consider integer values in [−βM, βM]).
Proof. First, we analyze Prerr(A, [1, βM], T). Let b ∈ [1, βM] and divide it by
M , writing b = b1 ·M + b2, for integers b1 ≤ β and b2 ∈ [0,M). We examine the
following b1 + 1 success events:

E1 :suc(A, x,M, T)

E2 :suc(A, x+M,M,T)

. . .

Eb1 :suc(A, x+ (b1 − 1)M,M,T)

Eb1+1 :suc(A, x+ b1M, b2, T)

Observe that if all b1+1 events hold (i.e. ∩b1+1
i=1 Ei), then A(gx)−A(gx+b1M+b2) =

A(x)−A(gx+b) = b, i.e., suc(A, x, b, T) holds.

22

By Lemma 13, Pr
x

[Ēi] ≤ 4δ holds for each i ∈ 1, 2, . . . , b1, while Pr
x,b

[Ēb1+1] ≤ 4δ

holds as well by the same lemma. Hence,

1− Prerr(A, [1, βM], T) ≥ Pr
x,b

[∩b1+1
i=1 Ei] = 1− Pr

x,b
[∪b1+1
i=1 Ēi]

≥ 1−
b1+1∑
i=1

Pr
x,b

[Ēi] ≥ 1− (b1 + 1)4δ ≥ 1− (β + 1)4δ ≥ 1− 8β · δ.

Therefore, Prerr(A, [1, βM], T) ≤ 8β · δ. By symmetry (Lemma 12), we
have Prerr(A, [−βM,−1], T) ≤ 8β · δ as well. Since Prerr(A, [0, 0], T) ≤ 2δ by
Lemma 11, we conclude that Prerr(A, [−βM, βM], T) ≤ 8β · δ, as claimed. �

Remark 1. An open question of [5] asked whether the DDL error probability
can be eliminated completely. If we apply the above lemma with no error (i.e.,
Prerr(A, [−M,M], T) = δ = 0), we obtain Prerr(A, [−βM, βM], T) = 0, im-
plying that the two parties (running A’s algorithm) never err for any distance.
This allows the parties to collectively solve the discrete log problem in G with
probability 1 (a similar reduction will be formally presented in Algorithm 4),
thus violating the security assumption of the underlying HSS scheme. Namely,
the DDL error probability cannot be eliminated (in fact it is easy to show that
it must be superpolynomial in 1/N), answering negatively the open question of
Boyle et al.

5.6 Reduction from Discrete Log in an Interval to Distributed
Discrete Log

Recall that the discrete log problem in an interval (DLI) is parametrized by an
interval length R for a cyclic multiplicative group G of size N with generator g.
The input to the problem is a group element h = gx, where13 x ∈ [0, R− 1] and
the goal is to recover x with high probability (which is at least a constant).

The following lemma reduces the DLI problem to DDL.

Lemma 15. For a family of groups, assume that Prerr(A, [−M,M], T) = δ,
where T ≥ logN and δ < 1/32. Then discrete log in an interval of length
R = M/(32δ) can be solved in complexity 4T with probability 1/2.

Proof. Consider Algorithm 4 for solving DLI on input h = gx for x ∈ [0, R− 1].
For the sake of simplicity we assume that R is even.

The algorithm computes h · gy and gy+(R/2), which can be carried out by
performing 2 logN group operations using the square-and-multiply algorithm.
It further invokes A twice in complexity 2T and therefore its total complexity is
2T + 2 logN ≤ 4T (since T ≥ logN).

13 Alternatively, x could be in any fixed interval of length R. The exact interval is
not important as one can easily reduce the problem in a given interval to any other
interval.

23

Algorithm 4: DLI(h)

1 begin
2 y ←−

R
ZN ;

3 d1 ← A(h · gy);

4 d2 ← A(gy+(R/2));
5 Output (R/2)− (d1 − d2);

6 end

It remains to upper bound the error probability of the algorithm by 1/2. The
algorithm succeeds to return x if (R/2)−(d1−d2) = x, namely d1−d2 = (R/2)−x
or equivalently A(gy+x) − A(gy+(R/2)) = (R/2) − x. Since y ∈ ZN is uniform,
then gy+x is a uniform group element. Moreover, since x ∈ [0, R − 1], then
(R/2)− x ∈ [−R/2, R/2]. Therefore, by Lemma 13, the error probability of the
algorithm is at most

4 · Prerr(A, [−R/2, R/2], T) ≤ 4 · 8 ·R/(2M) · Prerr(A, [−M,M], T)

= 16 ·R/M · δ = 1/2,

where the first inequality is due to Lemma 14. Note that we use Lemma 13 (and
pay a factor of 4 in the error probability), as x ∈ [0, R − 1] may be selected by
an adversary (whereas Prerr(A, [−R/2, R/2], T) averages the error probability).
�

Theorem 2 is a simple corollary of Lemma 15.

Theorem 2. For a specific family of groups, assume there exists a constant c
such that for any group in the family of size N , DLI in an interval of length
at least c · T 2 cannot be solved in complexity 4T with probability at least 1/2
(where logN ≤ T < B for a bound B). Moreover, assume that there is a DDL
protocol A for this family with time complexity parameter T , maximal distance
parameter M and error probability Prerr(A, [−M,M], T) = δ for δ < 1/32. Then
δ = Ω(M · T−2).

We note that the bound B depends on N according to the concrete group
family. For example, for some subgroups of Z∗p, B is subexponential in logN .
Proof. By Lemma 15, discrete log in an interval of length R = M/(32δ) can
be solved in complexity 4T with probability 1/2. By our assumption, R =
M/(32δ) < c · T 2 implying that δ = Ω(M · T−2) as claimed. �

6 Error Probability Lower Bounds for Non-Adaptive
Algorithms in the Generic Group Model

In this section, we prove lower bounds on DDL algorithms in the generic group
model (GGM), focusing on non-adaptive algorithms. We first review the generic

24

group model (GGM) we consider (which is slightly different than the one pro-
posed by Shoup [18]) and formulate DDL in this model. This formulation is given
for the additive group ZN , which is isomorphic to the multiplicative group G of
size N . We note that the proofs of most of the statements in this section are
given in the extended version of this paper.

6.1 Distributed Discrete Log in the Generic Group Model

Let ZN be the additive group of integers, and let S be a set of bit strings of
cardinality at least N . An encoding function of ZN on S is an injective map
σ : ZN → S.

A generic algorithm A for ZN on S for the discrete logarithm problem is a
probabilistic algorithm that takes as input an encoding list of size 2, σ(1), σ(x),
namely, the encodings of a generator of ZN and a uniform x ∈ ZN , where σ
is an encoding function of ZN on S. Throughout its execution, A continues to
maintain the encoding list, and is allowed to extend it using oracle queries. An
oracle query in our model specifies two indices i, j ∈ ZN . The oracle computes
σ(i·x+j) and the returned bit string is appended to the encoding list. A succeeds
to solve the discrete log problem if A(σ; 1, x) = x, and its success probability
is taken over the uniform choices of σ : ZN → S and x ∈ ZN (and perhaps
additional randomness of its own coin tosses). We measure the complexity of
A according to the number of oracle queries it makes. The following success
probability upper bound was proved in [18].

Theorem 3 ([18]). If a generic discrete log algorithm A is allowed T oracle
queries, then Pr

σ,x
[A(σ; 1, x) = x] = O(T 2/N), assuming that N is prime.

We note that our GGM formulation is slightly stronger than the one of [18],
where the queries ofA are limited to linear combinations with coefficients of±1 of
elements in its encoding list. Since any query (i, j) can be issued in Shoup’s orig-
inal GGM after at most O(logN) queries using the double-and-add algorithm,
a stronger GGM algorithm can be simulated by a standard one by increasing
the query complexity by a multiplicative factor of logN . However, by following
its original proof in [18], it is easy to verify that Theorem 3 actually holds with
no modification in our stronger GGM. Obviously, any algorithm in the original
GGM is also an algorithm in the stronger GGM. Therefore, any lower bounds
we obtain in the stronger GGM also apply in the original GGM.

We now describe the basic game of distributed discrete log in GGM. Ob-
viously, all the results of Section 5 also hold in the generic group model. In
particular, by Lemma 10 it is sufficient to consider single algorithm DDL to
obtain general DDL lower bounds.

A party (algorithm) A is given as input σ(1) and the encoding of an additional
group element σ(x) for x ∈ ZN , selected uniformly at random. Algorithm A is
allowed to make T oracle queries. After obtaining the answers from the oracle,
A returns an integer value. Two parties (both running A’s algorithm) win the

25

DDL game in GGM if

A(σ; 1, x)−A(σ; 1, x+ b) = b,

otherwise, they lose the game, or err.
We are interested in proving lower bounds on the DDL error probability as

a function of T , namely

Pr
σ,x,b

[A(σ; 1, x)−A(σ; 1, x+ b) 6= b].

Analogously to our notation for multiplicative groups, we denote by err(A, σ, x, b, T)
the error event A(σ; 1, x)−A(σ; 1, x+ b) 6= b, and by Prerr(A, σ, [M1,M2], T) its
probability Pr

σ,x,b
[err(A, σ, x, b, T)], where b ∈ [M1,M2] is a uniform integer. We

further denote by suc(A, σ, x, b, T) the complementary success event.

6.2 An Error Probability Lower Bound for Arbitrary Generic
Algorithms

The following theorem gives a DDL error probability lower bound in GGM. The
theorem is a somewhat weaker statement than Theorem 2 (which has implica-
tions in concrete group families).

Theorem 4. For any generic DDL algorithm A, Prerr(A, σ, [−M,M], T) =
Ω(M · T−2), given that M = O(T 2), T = o(

√
N), and N is prime.

We omit the proof, as it is similar to the one of Theorem 2. It applies a
reduction to discrete log, while using Theorem 3 to obtain the error probability
lower bound. Alternatively, one could obtain a hardness result for DLI in GGM
(extending Theorem 3 to smaller intervals) and apply Theorem 2 directly.

6.3 An Error Probability Lower Bound for Non-Adaptive Generic
Algorithms

In this section, we prove a lower bound on the DDL error probability of non-
adaptive generic algorithms, whose oracle queries {(i1, j1), (i2, j2), . . . , (iT , jT)}
are fixed in advance and do not depend on previous answers.

We will prove the following lower bound:

Theorem 5. Any non-adaptive DDL algorithm A satisfies Prerr(A, σ, [−1, 1], T) =
Ω(1/T), given that T = o(N1/2), and N is prime.

Overview of the Lower Bound Proof on Non-Adaptive Algorithms in
the Generic Group Model Let us first consider the class of algorithms that
make T consecutive oracle queries to group elements (such as Algorithm 1 and
the ones of [4–6] in general). Consider the executions A(σ; 1, x) and A(σ; 1, x+
T), which query 2T disjoint group elements. In GGM, algorithm executions

26

that query disjoint elements are essentially independent (as each group element
is associated with a random string), which implies that the probability that
A(σ; 1, x) − A(σ; 1, x + T) 6= T is at least 1/2. Recall that we are interested in
the probability that A(σ; 1, x)−A(σ; 1, x+ 1) 6= 1 and it can be lower bounded
by Ω(T−1) using distance extension (Lemma 14). A similar lower bound applies
if A only queries group elements in a short interval of length O(T).14

Of course, we are interested in proving the Ω(T−1) lower bound for arbitrary
non-adaptive algorithms. The main idea that allows us to achieve this is to define
a transformation that takes an arbitrary non-adaptive algorithm A′ and maps
its T queries to a small interval of size O(T), obtaining a new algorithm A (for
which the error lower bound Ω(T−1) holds). We require that the query mapping
preserves the error probability of A′, thus proving that the error probability
lower bound Ω(T−1) above also applies to non-adaptive algorithms in general.
In order to preserve the error probability of A′, the mapping will ensure that
the joint input distribution of A′(σ; 1, x) and A′(σ; 1, x + 1) is equal to that
of A(σ; 1, x) and A(σ; 1, x + 1). In the generic group model, this means that
the mapping should preserve joint queries, namely, satisfy the condition that
query i of A′(σ; 1, x) and query j of A′(σ; 1, x + 1) evaluate the same group
element if and only if query i of A(σ; 1, x) and query j of A(σ; 1, x+ 1) evaluate
the same group element.15 Based on this observation, it is possible to define
an appropriate query mapping and complete the proof, since for non-adaptive
algorithms we know in advance (independently of σ) if query i of A′(σ; 1, x) and
and query j of A′(σ; 1, x+ 1) evaluate the same group element.

Additional Notation We begin by defining additional notation. Given a query
(i, j), denote its evaluation on x as (i, j)[x] = ix + j. Thus, its oracle answer is
σ(ix+j). We denote byQ(A(σ; 1, x)) the query set ofA(σ; 1, x), excluding queries
(i, j) for which i = 0 (which we call constant queries). Denote by QE(A(σ; 1, x))
the set of evaluations of all (non-constant) queries Q(A(σ; 1, x)).

We further denote by Q(A) the set containing all of the potential (non-
constant) queries of A on any input x and encoding σ. Note that for non-adaptive
algorithms, |Q(A)| ≤ T and any adaptive algorithm A′ can be simulated by a

non-adaptive algorithm that makes T ′
def
== |Q(A′)| queries.

For the rest of this section, we focus on non-adaptive algorithms. For such
algorithms, we can write QE(A, x) (instead of QE(A(σ; 1, x))), as the query
evaluations are independent of σ.

Restricted Queries We examine pairs of executions A(σ; 1, x) and A(σ; 1, x+b)
for some b ∈ [−M,M]. For such a pair, we define a (non-trivial) collision as the
event that two queries issued by these executions (i, j) and (i′, j′) with i 6= i′

14 Our actual proof is slightly more general than outlined here and uses the notion of
query chains.

15 Our proof relaxes this strong condition, and requires that it holds unless a low-
probability event (called a collision) occurs.

27

have the same evaluation. The actual evaluations depend on which algorithm
issued the queries and there are 4 cases, e.g., ix+ j mod N = i′x+ j′ mod N if
A(σ; 1, x) issued both and ix+j mod N = i′(x+b)+j′ mod N if A(σ; 1, x) issued
(i, j) and A(σ; 1, x+b) issued (i′, j′), etc. In each of these 4 cases, both algorithms
can exploit the collision to jointly solve the discrete logarithm problem using at
most 2T queries (e.g., in the first case above, x = (j′ − j) · (i − i′)−1 mod N).
According to Theorem 3, the probability of this event is O(T 2/N) = o(1) (by
our assumption T = o(N1/2)), which is negligible. In the following we generally
denote collision events by COL.

Most of the analysis below will be conditioned on the event COL (whose
probability is 1− o(1)), but we will omit this explicit conditioning for simplicity,
while ignoring a negligible factor in the probability calculation.

Lemma 16. Assume that T = o(N1/2). Then, any non-adaptive algorithm A′

with Prerr(A
′, σ, [−M,M], T) = δ can be transformed into a non-adaptive query-

restricted algorithm A with Prerr(A, σ, [−M,M], T) ≤ δ · (1 + o(1)) such that A
only issues restricted queries of the form (i, j) with i ∈ {0, 1}.

Query Disjoint Indices We say that a non-adaptive DDL algorithm A has
a query disjoint index b if QE(A, x) ∩ QE(A, x + b) = ∅ for any x ∈ ZN . We
note that A can have many query disjoint indices. We prove the following error
probability lower bound on algorithms with a (small) query disjoint index.

Lemma 17. Any non-adaptive algorithm which is query disjoint on index b ≥ 1
satisfies Prerr(A, σ, [−1, 1], T) = Ω(1/b).

Query Chains Given a query (1, j), we refer to the value j as a query offset.
For a non-adaptive algorithm A, we define a query chain of length c as a sequence
of c+ 1 query offsets j, j + 1, j + 2, . . . , j + c such that for each k ∈ {0, 1, . . . , c},
(1, j + k) ∈ Q(A), while (1, j + c + 1) /∈ Q(A) and (1, j − 1) /∈ Q(A) (i.e., the
sequence is maximal).

Denote the length of the longest query chain of A by C(A).

Lemma 18. Any non-adaptive query-restricted algorithm A satisfies

Prerr(A, σ, [−1, 1], T) ≥ Ω(1/C(A)).

Proof (of Theorem 5). The theorem is a simple corollary of lemmas 16 and 18.
Given a non-adaptive algorithm A, transform it into a query-restricted algo-
rithm A′ using Lemma 16, with a multiplicative loss of 1 + o(1) in error proba-
bility. Clearly, C(A′) ≤ T , hence by Lemma 18 we have Prerr(A, σ, [−1, 1], T) ≥
Prerr(A

′, σ, [−1, 1], T) · 1/(1 + o(1)) = Ω(1/C(A′)) = Ω(1/T), concluding the
proof. �

28

A Generalization of Theorem 5 The theorem above does not completely ren-
der non-adaptive algorithms as inefficient since (for example) it does not rule out
the possibility that Prerr(A, σ, [−T, T], T) = O(1/T) (which is optimal accord-
ing to Theorem 4). However, the following theorem states the this is impossible
and non-adaptive algorithms have a linear query-error tradeoff at best.

Theorem 6. For all 1 ≤ M ≤ T , any non-adaptive generic DDL algorithm A
satisfies Prerr(A, σ, [−M,M], T) = Ω(M/T) given that T = o(N1/2) and N is
prime. In particular, for M = T , Prerr(A, σ, [−T, T], T) = Ω(1).

Note that Theorem 5 is a special case of the one above, obtained for M = 1.
The proof of Theorem 6 uses Fourier analysis and is given in the extended version
of this paper.

Acknowledgements The authors would like to thanks Elette Boyle, Niv Gilboa,
Yuval Ishai and Yehuda Lindell for discussions and helpful suggestions regarding
this work.
This research was supported by the European Research Council under the ERC
starting grant agreement n. 757731 (LightCrypt) and by the BIU Center for
Research in Applied Cryptography and Cyber Security in conjunction with the
Israel National Cyber Bureau in the Prime Minister’s Office.
The first author was additionally supported by the Israeli Science Foundation
through grant No. 573/16.

References

1. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation (Extended Abstract). In
Simon [19], pages 1–10.

2. D. J. Bernstein and T. Lange. Computing Small Discrete Logarithms Faster. In
S. D. Galbraith and M. Nandi, editors, Progress in Cryptology - INDOCRYPT
2012, 13th International Conference on Cryptology in India, Kolkata, India, De-
cember 9-12, 2012. Proceedings, volume 7668 of Lecture Notes in Computer Science,
pages 317–338. Springer, 2012.

3. D. Boneh, E. Goh, and K. Nissim. Evaluating 2-DNF Formulas on Ciphertexts.
In J. Kilian, editor, Theory of Cryptography, Second Theory of Cryptography Con-
ference, TCC 2005, Cambridge, MA, USA, February 10-12, 2005, Proceedings,
volume 3378 of Lecture Notes in Computer Science, pages 325–341. Springer, 2005.

4. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, and M. Orrù. Homomorphic Secret
Sharing: Optimizations and Applications. In B. M. Thuraisingham, D. Evans,
T. Malkin, and D. Xu, editors, Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2017, Dallas, TX, USA, October
30 - November 03, 2017, pages 2105–2122. ACM, 2017.

5. E. Boyle, N. Gilboa, and Y. Ishai. Breaking the Circuit Size Barrier for Secure
Computation Under DDH. In M. Robshaw and J. Katz, editors, Advances in
Cryptology - CRYPTO 2016 - 36th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part I, volume 9814
of Lecture Notes in Computer Science, pages 509–539. Springer, 2016.

29

6. E. Boyle, N. Gilboa, and Y. Ishai. Group-Based Secure Computation: Optimizing
Rounds, Communication, and Computation. In J. Coron and J. B. Nielsen, editors,
Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Paris, France,
April 30 - May 4, 2017, Proceedings, Part II, volume 10211 of Lecture Notes in
Computer Science, pages 163–193, 2017.

7. E. Boyle, N. Gilboa, Y. Ishai, H. Lin, and S. Tessaro. Foundations of Homo-
morphic Secret Sharing. In A. R. Karlin, editor, 9th Innovations in Theoretical
Computer Science Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA,
USA, volume 94 of LIPIcs, pages 21:1–21:21. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2018.

8. D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty Unconditionally Secure Pro-
tocols (Extended Abstract). In Simon [19], pages 11–19.

9. B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Private Information Re-
trieval. J. ACM, 45(6):965–981, 1998.

10. N. Fazio, R. Gennaro, T. Jafarikhah, and W. E. S. III. Homomorphic Secret Shar-
ing from Paillier Encryption. In T. Okamoto, Y. Yu, M. H. Au, and Y. Li, editors,
Provable Security - 11th International Conference, ProvSec 2017, Xi’an, China,
October 23-25, 2017, Proceedings, volume 10592 of Lecture Notes in Computer
Science, pages 381–399. Springer, 2017.

11. S. D. Galbraith, J. M. Pollard, and R. S. Ruprai. Computing discrete logarithms
in an interval. Math. Comput., 82(282):1181–1195, 2013.

12. C. Gentry. Fully homomorphic encryption using ideal lattices. In M. Mitzenmacher,
editor, Proceedings of the 41st Annual ACM Symposium on Theory of Computing,
STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 169–178. ACM,
2009.

13. D. M. Gordon. Discrete Logarithms in GF(P) Using the Number Field Sieve.
SIAM J. Discrete Math., 6(1):124–138, 1993.

14. A. K. Lenstra and H. W. Lenstra. The Development of the Number Field Sieve.
Number 1554 in Lecture Notes in Mathematics. Springer, 1993.

15. J. M. Pollard. Monte Carlo methods for index computation (modp). Math. Com-
put., 32(143):918–924, 1978.

16. J. M. Pollard. Kangaroos, Monopoly and Discrete Logarithms. J. Cryptology,
13(4):437–447, 2000.

17. R. L. Rivest, L. Adleman, and M. L. Dertouzos. On Data Banks and Privacy
Homomorphisms. Foundations of Secure Computation, pages 169–179, 1978.

18. V. Shoup. Lower Bounds for Discrete Logarithms and Related Problems. In
W. Fumy, editor, Advances in Cryptology - EUROCRYPT ’97, International Con-
ference on the Theory and Application of Cryptographic Techniques, Konstanz,
Germany, May 11-15, 1997, Proceeding, volume 1233 of Lecture Notes in Com-
puter Science, pages 256–266. Springer, 1997.

19. J. Simon, editor. Proceedings of the 20th Annual ACM Symposium on Theory of
Computing, May 2-4, 1988, Chicago, Illinois, USA. ACM, 1988.

20. A. C. Yao. Protocols for Secure Computations (Extended Abstract). In 23rd
Annual Symposium on Foundations of Computer Science, Chicago, Illinois, USA,
3-5 November 1982, pages 160–164. IEEE Computer Society, 1982.

30

