
A New Public-Key Cryptosystem via Mersenne
Numbers

Divesh Aggarwal1 , Antoine Joux2 , Anupam Prakash3 , and Miklos Santha4

1 School of Computing and Centre for Quantum Technologies, National University of
Singapore, Singapore

2 Chaire de Cryptologie de la Fondation SU, Sorbonne Université, Institut de
Mathématiques de Jussieu-Paris Rive Gauche, INRIA, CNRS, Univ Paris Diderot,

Paris, France
3 School of Physical and Mathematical Sciences, Nanyang Technological University
and Centre for Quantum Technologies, National University of Singapore, Singapore
4 IRIF, Université Paris Diderot, CNRS, Paris, France; and Centre for Quantum

Technologies, National University of Singapore, Singapore.

Abstract. In this work, we propose a new public-key cryptosystem whose
security is based on the computational intractability of the following
problem: Given a Mersenne number p = 2n − 1, where n is a prime,
a positive integer h , and two n -bit integers T,R , decide whether their
exist n -bit integers F,G each of Hamming weight less than h such that
T = F ·R + G modulo p .

1 Introduction

1.1 Motivation

Since the seminal work of Diffie and Hellman [DH76] which presented the funda-
mentals of public-key cryptography, one of the most important goal of cryptogra-
phers has been to construct secure and practically efficient public-key cryptosys-
tems. Rivest, Shamir, and Adleman [RSA78] came up with the first practical
public-key cryptosystem based on the hardness of factoring integers, and it re-
mains the most popular scheme till date.

Shor [Sho97] gave a quantum algorithm that solves the abelian hidden sub-
group problem and as a result solves both discrete logarithms and factoring.
Back in 1994, this was not considered a real threat to the practical cryptographic
schemes since quantum computers were far from being a reality. However, given
the recent advances in quantum computing, there is serious effort in both the
industry and the scientific community to make information security systems re-
sistant to quantum computing. In fact, the National Institute of Standards and
Technology (NIST) is now beginning to prepare for the transition into quantum-
resistant cryptography and has announced a project where they are accepting
submissions for quantum-resistant public-key cryptographic algorithms [NIS17].

In the recent years, some presumably quantum-safe public-key cryptosystems
have been proposed in the literature. Perhaps the most promising among these
are those based on the hardness of lattice problems like Learning with Errors
(LWE) based cryptosystems [Reg09], Ring-LWE based cryptosystems [LPR10]
and NTRU [HPS98]. While these cryptosystems have so far resisted any classical
or quantum attacks, it cannot be excluded that such attacks are possible in the
future. In fact, there have been some, albeit unsuccessful, attempts at a quantum
algorithm solving the LWE problem [ES16]. In particular, there is no unifying
complexity-theoretic assumption (like NP-hardness) that relates the difficulty of
breaking all these cryptosystems. Thus, it is desirable to come up with promising
new proposals for public-key cryptosystems.

It is worthwhile to note that even though the concept of public-key cryp-
tography was introduced four decades ago, the number of existing public-key
cryptographic schemes whose hardness does not depend on the hardness of fac-
toring or finding short vectors in lattices is not very large [KLC+00, McE78,
LvTMW09, GWO+ 13, NS97]. This is not an exhaustive list but it illustrates
the various approaches that have been tried. The rarity of proposals for poten-
tially quantum safe public key cryptosystems further motivates the problem of
constructing such cryptosystems.

1.2 Our Cryptosystem

Our cryptosystem is based on arithmetic modulo so called Mersenne numbers,
i.e., numbers of the form p = 2n − 1, where n is a prime. These numbers have
an extremely useful property: For any number x modulo p , and y = 2z , where
z is a positive integer, x · y is a cyclic shift of x by z positions and thus the
Hamming weight of x is unchanged under multiplication by powers of 2. Our
encryption scheme is based on the simple observation that, given a uniformly
random n -bit string R , when we consider T = F · R + G (mod p), where the
binary representation of F and G modulo p has low Hamming weight, then T
looks pseudorandom, i.e., it is hard to obtain any non-trivial information about
F,G from R, T .

The public-key is chosen to be the pair (R, T), and the secret key is the string
F . The encryption scheme also requires an efficient error correcting code with
encoding function E : {0, 1}k → {0, 1}n and decoding function D : {0, 1}n →
{0, 1}k . In order to encrypt a message m ∈ {0, 1}k , the encryption algorithm
chooses three random numbers A,B1, B2 of low Hamming weight modulo p and
then outputs

C := (C1, C2) ,

where C1 = A · R + B1 , and C2 = (A · T + B2) ⊕ E(m) where ⊕ denotes the
bitwise XOR operation. Given the private key, one can compute

C∗2 := C1 · F = (A · T +B2)−A ·G−B2 +B1 · F .

Since A,B1, B2, F,G have low Hamming weight, the Hamming distance between
A · T + B2 and C∗2 is expected to be low, and so we get that D(C2 ⊕ C∗2) is
equal to to m with high probability. For more details on our scheme and the
underlying security assumption, we refer the reader to Section 4 and 5.

1.3 Related Work

The Mersenne cryptosystem can be seen as belonging to a family that started
with the Ntru cryptosystem and as been instantiated in many ways [HPS98,
Reg09, LPR10, MTSB13]. The common idea behind all these cryptosystems is
to work with elements in a ring which are hidden by adding some small noise.
This notion of smallest needs to be somewhat preserved under the arithmetic
operation. At the same time, it should be somewhat unnatural and not fully
compatible with the ring structure in order to lead to hard problems.

Our goal in designing the Mersenne cryptosystem was to find a very simple
instantiation of this paradigm based on the least complicated ring we could find.
This led us to consider numbers modulo a prime together with the Hamming
weight to measure smallest. In this context, it is natural to restrict ourselves to
Mersenne primes, since reduction modulo such a prime cannot increase Ham-
ming weights. Moreover, our cryptosystem relies on a conceptually simpler ring
of numbers modulo a prime and its description only requires very elementary
mathematics.

Our first proposal using this structure [AJPS17] only allowed us to encrypt
a single bit at a time. The security parameters in [AJPS17] were based on the
assumption that there is no attack on the cryptosystem that runs faster than
the trivial attack that runs in time

(
n
h

)
. Subsequent works showed that this

assumption was incorrect. In particular, [BCGN17] showed a non-trivial guess-
and-determine attack based on a low-dimension lattice reduction subroutine that
runs in time (2 + ε + o(1))2h for some small constant ε , and [dBDJdW17]

gave a meet-in-the-middle attack that runs in time O
((
n−1
h−1
)1/2)

on classical

computers and O
((
n−1
h−1
)1/3)

on quantum machines. While these attacks could

be circumvented by choosing the parameter h to be as large as the security
parameter, this would make our cryptosystem inefficient.

Fortunately, in the present proposal, we are able to overcome this difficulty.
We describe a variant that allows us to encrypt many bits at a time. This allows
in turn to choose much larger parameters which resist the attacks in [BCGN17,
dBDJdW17], even in their Groverized quantum form while still maintaining the
efficiency of our cryptosystem. Such quantum attacks would have complexity
larger than 2h where h is the Hamming weight we allow for low Hamming
weight numbers. This explains our choice of h to be equal to the desired quantum
security level.

Since it is well-known that a cryptosystem of this type can be easily vulnera-
ble to chosen-ciphertext attack, it is extremely important to bind them together

with a CCA-secure wrapper. We chose to present the system as a key encap-
sulation mechanism because this makes the design of the CCA wrapper very
simple.

1.4 Organization of the Paper

In section 2 we introduce some preliminaries about Mersenne primes and se-
curity definitions. In section 3 we provide a semantically secure basic bit by
bit encryption scheme. In section 4 we give a semantically secure blockwise en-
cryption scheme. In section 5, we prove the semantic security for the scheme
presented in section 4. In section 6 we discuss the known cryptanalytic attacks
against this scheme. In section 7 we give the final key encapulation scheme se-
cure against chosen ciphertext attacks in the random oracle model. In sections
8 and 9 we provide an instantiation for the error correcting codes used in our
encryption/key encapsulation schemes.

2 Preliminaries

Notations. For any distinguisher D that outputs a bit b ∈ {0, 1} , the distin-
guishing advantage to distinguish between two random variables X and Y is
defined as:

∆D(X ; Y) := |Pr[D(X) = 1]− Pr[D(Y) = 1]| .

The following lemma is well known and easy to see.

Lemma 1. Given a probabilistic polynomial time computable function f on two
random variables X and Y , if there is a probabilistic polynomial time distin-
guisher D that distinguishes between f(X) and f(Y) with advantage δ , then
there is a probabilistic polynomial time distinguisher D′ that distinguishes be-
tween X , and Y with advantage δ .

2.1 Mersenne Numbers and Mersenne Primes

Let n be a positive integer, and let p = 2n − 1. When n is a prime, p is called
a Mersenne number, and if 2n − 1 is itself a prime number, then it is called a
Mersenne prime. Note that if n is a composite number of the form n = k` , then
2k − 1 and 2` − 1 divide p , and hence p is not a prime. The smallest Mersenne
primes are

22 − 1, 23 − 1, 25 − 1, 27 − 1, 213 − 1, 217 − 1, . . .

We denote by Zp the ring of integers modulo p . We index binary strings
from right to left, that is for x ∈ {0, 1}n we write x as xn . . . x1 . The Hamming
weight of an n -bit string y is the total number of 1’s in y and is denoted by
Ham(y). Let seq : Zp → {0, 1}n be the map which to x ∈ Zp associates the

binary string seq(x) representing x . The map int : {0, 1}n → Zp sends a string
y into the integer represented by y modulo p . Clearly seq and int are inverse
functions between Zp and {0, 1}n \{1n} , and int(1n) = 0. We use this bijection
between Zp and {0, 1}n\{1n} to define addition and multiplication over {0, 1}n
in the natural way: for y, y′ ∈ {0, 1}n , let y + y′ = seq(int(y) + int(y′)), and
let y · y′ = seq(int(y) · int(y′)). It is easy to see that both operations remain
associative and commutative, and the distributivity of the multiplication over
the addition also holds. We also set (−1) ·y = −y = seq(−(int(y)). Observe that
addition is invariant by rotation, that is if rotk(y) denotes the circular rotation
of y by k positions to the left, then rotk(y + y′) = rotk(y) + rotk(y′).

Lemma 2. Let p = 2n − 1 . For all A,B ∈ {0, 1}n , we have

1. Ham(A+B) ≤ Ham(A) + Ham(B) .
2. Ham(A ·B) ≤ Ham(A) · Ham(B) .
3. If A 6= 0n then Ham(−A) = n− Ham(A) .

Proof. 1. If A = 1n the result is obviously true. When A 6= 1n , we prove the
result by induction on the Hamming weight of B . If B = 0n the statement
is obviously true.
For the induction step we first prove the claim when Ham(B) = 1. Let i
be the index on which B takes the value 1. Since addition is invariant by
rotation, we may assume that i = 1 and thus B = 0n−11. A can be written
as C01j for some 0 ≤ j ≤ n− 1, and A+B = C10j . Thus Ham(A+B) =
Ham(A)− j + 1 ≤ Ham(A) + 1.
Let Ham(B) = k > 1. Then we can decompose B as B1 + B2 , where
Ham(B1) = k−1 and Ham(B2) = 1. By the previous claim and the induction
hypothesis we get:

Ham(A+B) = Ham((A+B1)+B2) ≤ Ham(A+B1)+1 ≤ Ham(A)+(k−1)+1,

and the result follows.
2. If B = 0n the statement is obviously true. Otherwise, for some k ≥ 1, we

can decompose B as B1 + · · · + Bk , where each Bi has Hamming weight
1, for 1 ≤ i ≤ k . Let ji be the index of the position where Bi takes the
value 1. Then A · Bi = rotji−1(A). Thus Ham(A · Bi) = Ham(A), and by
distributivity we get A · B = A · B1 + · · ·+ A · Bk . The result then follows
from part (1).

3. If A 6= 0n then −A is the binary string obtained fromA by replacing 0’s
by 1’s and 1’s by 0’s.

ut

2.2 Security Definitions

Public-Key Encryption A public key encryption scheme comprises three algo-
rithms: the key generation algorithm KeyGen , the encryption algorithm Enc ,

and the decryption algorithm Dec . The KeyGen algorithm outputs a public-key
pk , and a secret key sk . The encryption algorithm Enc takes as input a mes-
sage m , and pk , and outputs a ciphertext C . The decryption algorithm takes
as input a ciphertext C and sk , and outputs a message m′ or a special symbol
⊥ indicating rejection. We say that the encryption scheme is 1− δ correct if for
all m , Pr[Dec(sk,Enc(pk,m)) = m] ≥ 1 − δ , where the probability is over the
randomness of pk, sk and the encryption algorithm.

We denote the security parameter by λ . All other parameters including key
lengths and ciphertext size are polynomial functions of λ .

Definition 1. The public-key encryption scheme

PKE = (KeyGen,Enc,Dec)

is said to be semantically secure if for any probabilistic polynomial time distin-
guisher and any pair of messages m0,m1 of equal length, given the public key
pk , the advantage for distinguishing C0 = Enc(pk,m0) and C1 = Enc(pk,m1) is

at most poly(|Ci|)
2λ

for some polynomial poly.

Definition 2. The public-key encryption scheme

PKE = (KeyGen,Enc,Dec)

is said to be secure under chosen ciphertext attacks if for any probabilistic poly-
nomial time distinguisher that is given access to an oracle that decrypts any given
ciphertext, the following holds: For any pair of messages m0,m1 of equal length,
given the public key pk , the advantage for distinguishing C0 = Enc(pk,m0) and

C1 = Enc(pk,m1) is at most poly(|Ci|)
2λ

for some polynomial poly under the
assumption that the distinguisher does not query the oracle with C0 or C1 .

Key Encapsulation Mechanism A key-encapsulation mechanism (KEM) com-
prises three algorithms: the key generation algorithm KeyGen , the encapsulation
algorithm Encaps , and the decapsulation algorithm Decaps , and a key space K .
The KeyGen algorithm outputs a public-key pk , and a secret key sk . The encap-
sulation algorithm Encaps takes as input a public key pk to produce a ciphertext
C and a key K ∈ K . The decapsulation algorithm Decaps takes as input a ci-
phertext C and sk , and outputs a key K ′ or a special symbol ⊥ indicating
rejection. We say that the KEM is (1− δ)-correct if

Pr[Decaps(sk, C) = K : (C,K)← Encaps(pk)] ≥ 1− δ ,

where the probability is over the randomness of pk, sk and the encapsulation
algorithm.

We denote the security parameter by λ . All other parameters including key
lengths and ciphertext size are polynomial functions of λ .

Definition 3. The key-encapsulation mechanism

KEM = (KeyGen,Encaps,Decaps)

is said to be semantically secure if for any probabilistic polynomial time distin-
guisher, given the public key pk , the advantage for distinguishing (C,K0) and
(C,K1), where (C,K0)← Encaps(pk) and K1 is uniform and independent of C

is at most poly(|C|,|K0|)
2λ

for some polynomial poly.

Definition 4. The key-encapsulation mechanism

KEM = (KeyGen,Encaps,Decaps)

is said to be secure under chosen ciphertext attacks if for any probabilistic poly-
nomial time distinguisher that is given access to the decapsulation oracle and
the public key pk , the advantage for distinguishing (C,K0) and (C,K1), where
(C,K0) ← Encaps(pk) and K1 is uniform and independent of C is at most
poly(|C|,|K0|)

2λ
for some polynomial poly under the assumption that the distin-

guisher does not query the oracle with C .

2.3 Security Assumptions

The semantic security of our encryption scheme is based on the following as-
sumption.

Definition 5. The Mersenne Low Hamming Combination Assumption states that
given an n -bit Mersenne prime p = 2n−1, and an integer h , the advantage of any
probabilistic polynomial time adversary running in time poly(n) in attempting
to distinguish between([

R1

R2

]
,

[
R1

R2

]
·A+

[
B1

B2

])
and

([
R1

R2

]
,

[
R3

R4

])
is at most poly(n)

2λ
, where R1, R2, R3, R4 are independent and uniformly random

n -bit strings, and A,B1, B2 , are independently chosen n -bit strings each having
Hamming weight h .

We note that the assumption has some striking similarity to the learning with
errors assumption by Regev [Reg09], where A corresponds to the secret, and
B1, B2 correspond to the small error. The Mersenne Low Hamming Combination
Assumption, in particular implies that one cannot obtain any useful information
about A,B from the pair (R1, A·R1+B). Notice that if the pair (R1, A·R1+B)
is assumed to be pseudorandom, then so is the pair (R1, A·(−R1)+B), and so one
cannot obtain any useful information about A,B from the pair (R1,−A·R1+B).
The Mersenne Low Hamming Ratio Assumption is a homogeneous version of this
assumption in the sense that we state that no useful information about A,B can
be obtained from (R1,−A ·R1 +B) given that −A ·R1 +B = 0. It is required
for the semantic security of the bit-by-bit encryption scheme that we describe
in the next section, and was introduced in a previous version of this paper.

Definition 6. The Mersenne Low Hamming Ratio Assumption states that given
an n-bit Mersenne prime p = 2n − 1 , and an integer h , the advantage of any
probabilistic polynomial time adversary running in time poly(n) in attempting to

distinguish between seq(int(A)
int(B)) and R is at most poly(n)

2λ
, where R is a uniformly

random n-bit string, and A,B , are independently chosen n-bit strings each
having Hamming weight h .

3 Basic bit-by-bit Encryption

In the following, we describe a basic encryption scheme to encrypt a single bit
b ∈ {0, 1} .

Key Generation.

– Given the security parameter λ , choose a Mersenne prime p = 2n − 1 and
an integer h such that

(
n
h

)
≥ 2λ and 4h2 < n .

– Choose F,G to be two independent n -bit strings chosen uniformly at ran-
dom from all n -bit strings of Hamming weight h .

– Set pk := H = seq(int(F)
int(G)), and sk := G .

Encryption. The encryption algorithm chooses two independent strings A,B
uniformly at random from all strings with Hamming weight h . A bit b is en-
crypted as

C = Enc(pk, b) := (−1)b (A ·H +B) .

Decryption. The decryption algorithm computes d = Ham(C · G). If d ≤ 2h2 ,
then output 0; if d ≥ n− 2h2 , then output 1. Else output ⊥ .

For the correctness of the decryption note that C ·G = (−1)b · (A ·F +B ·G)
which, by Lemma 2, has Hamming weight at most 2h2 if b = 0, and at least
n− 2h2 if b = 1.

The basic bit-by-bit encryption scheme can be viewed as a simple proposal
for a cryptosystem based on arithmetic modulo the Mersenne primes, however
it is not efficient with respect to ciphertext size. Since this is not our final pro-
posed encryption scheme, we do not analyze its security although it will easily
follow from the Mersenne Low Hamming Ratio and the Mersenne Low Hamming
Combination Assumption and appeared in a previous version of this paper. In
the next section, we describe a scheme for encrypting longer message blocks.

4 Our Main Semantically Secure Public-Key Cryptosystem

It is reasonable to choose the message block length to be the same as the security
parameter in practice. For this reason, we describe below a scheme for encrypting
a message block m ∈ {0, 1}λ .

Key Generation.

– Given the security parameter λ , choose a Mersenne prime p = 2n − 1 such
that h = λ and n > 10h2 .

– Let F,G to be two independent n -bit strings chosen uniformly at random
from all n -bit strings of Hamming weight h . Let R be a uniformly random
n -bit string.

– Set pk := (R,F ·R+G) := (R, T), and sk := F .

Encryption. The encryption algorithm chooses three strings A,B1, B2 indepen-
dently and uniformly at random from all strings with Hamming weight h . Let
(E ,D) be the encoding and decoding algorithms of an error correcting code that
we choose later. The message m ∈ {0, 1}λ is encrypted as,

Enc(pk,m) := (C1, C2) := (A ·R+B1, (A · T +B2)⊕ E(m)) .

Here E : {0, 1}λ → {0, 1}n is a suitably chosen error correcting code and ⊕
denotes the bitwise XOR operation.

Decryption. The decryption algorithm computes D((F · C1)⊕ C2).

In order to say that the scheme is (1−δ)-correct, we need to choose the error
correcting code such that Pr(C1,C2)←Enc(pk,m)[D((F · C1) ⊕ C2) = m] ≥ 1 − δ ,
where the probability is over the randomness of the encryption algorithm and
the choice of pk, sk . For concrete instantiations of error correcting codes that
satisfy this for a small enough δ , see Section 8.

5 Semantic Security of the Cryptosystem

In this section, we prove the semantic security of the PKE scheme in Section 4.

Theorem 1. The encrpytion scheme (Enc,Dec) described in Section 4 is seman-
tically secure under the Mersenne Low Hamming Combination Assumption.

Proof. In the following, let A,B1, B2, F,G,R,R
′, R′′, R′′′ be independently cho-

sen such that A,B1 , B2, F,G are chosen uniformly from all strings of Hamming
weight h , and R,R′, R′′, R′′′ are uniformly random strings. Let T = F ·R+G .
By the Mersenne Low Hamming Combination Assumption, for any probabilistic
polynomial time distinguisher D running in time poly(n),

∆D(R, T ; R,R′) ≤ poly(n)

2λ
.

Now, from Lemma 1, we have that for any probabilistic polynomial time distin-
guisher D′ running in time poly(n),

∆D′(R, T,A ·R+B1, A · T +B2;R,R′, A ·R+B1, A ·R′ +B2) ≤ poly(n)

2λ
.

Again, by the Mersenne Low Hamming Combination Assumption, we have that

∆D′(R,R′, A ·R+B1, A ·R′ +B2 ; R,R′, R′′, R′′′) ≤ poly(n)

2λ
.

Using the triangle inequality, we get that

∆D′(R, T,A ·R+B1, A · T +B2 ; R,R′, R′′, R′′′) ≤ 2 poly(n)

2λ
.

This implies that for any message m ,

∆D′(R, T,A ·R+B1, A · T +B2 ⊕ E(m) ; R,R′, R′′, R′′′) ≤ 2 poly(n)

2λ
,

since R,R′, R′′, R′′′ and R,R′, R′′, R′′′ ⊕ E(m) are identically distributed. This
implies the required semantic security. ut

6 Analysis of our Security Assumption

6.1 Attempts at Cryptanalysis

In this section, we mention the known approaches to break our security assump-
tion and thereby mention the conjectured security guarantee for our scheme.
For cryptanalysis, it is often more convenient to talk about search problems. We
introduce the following search problem whose solution would imply an attack on
our cryptosystem.

Definition 7 (Mersenne Low Hamming Combination Search Problem). For an
n-bit Mersenne number p = 2n − 1 and an integer h , given tuple (R,FR + G
(mod p)) where R is a uniformly random n-bit string and F,G have Hamming
weight h , find F,G .

For the remainder of the paper, we call this problem P . It is easy to see that if
one can efficiently solve the problem P , then one can break the assumption in
Definition 5, and hence the security of our cryptosystem. It is therefore important
to study the hardness of this problem.

Hamming Distance Distribution. Let R be a uniformly random n bit string
and Y = FR + G where F,G are chosen uniformly at random from n bit
strings with Hamming weight h . A basic test for the assumption that Y is
pseudorandom given R is to check that the distribution of Ham(R,R′) is close
to the distribution of Ham(R, T) where T is a uniformly random n bit string.

If R is a fixed string and X is a uniformly random n bit string, the random

variable fR(X) = Ham(X,R)−n/2√
n/4

is approximated by the standard normal random

variable N(0, 1). We generated R at random and then obtained samples Y =

FR +G where F,G are uniformly distributed over strings of Hamming weight√
n . A quantile-quantile plot of fR(Yi) against samples from N(0, 1) is close to

a straight line and does not show significant deviations from normality.

One could also perform more advanced statistical tests, such as the NIST
suite [RSN+01] to verify the pseudorandomness of Y given R . However, in the
context of cryptographic schemes, such tests only serve as sanity checks and it
is preferable to focus on dedicated cryptanalysis.

Weak key attack. Following the appearance of a preliminary version of this
paper, [BCGN17] found a weak key attack on the Mersenne Low Hamming

Ratio search problem where given H = seq(int(F)
int(G)) mod P with F,G having

low Hamming weight, the goal is to find F and G .

The weak key attack of [BCGN17] is based on rational reconstruction. If all
the bits of F and G are in the right half of the bits, then both F and G are
smaller than

√
P and they can easily be recovered using a continued fraction

expansion of H/P . The weak key attack also extends to the Mersenne Low
Hamming Combination search problem, we choose choose parameters such that
the success probability for this attack is negligible.

Generalization using LLL. The authors of the above weak attack also proposed
in [BCGN17] a generalization based on guessing a decomposition of F and G
into windows of bits such that in any window all the ’1’s are on the right.
Using such a decompostion and replacing the use of continued fraction by LLL
in relatively small dimension they can recover F and G from any compatible
window decomposition.

A careful analysis of this method and its cost is presented in [dBDJdW17]
and concludes that its running time is 2(2+ε)h for some small constant h . For
simplicity, we assume that the cost of this attack is 22h on a classical computer.

Even if this attack was developed for the homogeneous Mersenne Low Ham-
ming Ratio assumption, it is likely that it generalizes to the Mersenne Low
Hamming Combination Assumption. We thus assume that it is the case. To the
best of our knowledge, this is the most efficient known attack on our security
assumption and the security parameters proposed in Section 8 have been revised
to withstand it.

Quantum Speedup via Grover’s Algorithm. With access to a quantum computer,
one could use Grover’s algorithm [Gro96] to obtain a quadratic speedup over the
above attack.

Note that the attack performs a lattice reduction step for each guess of win-
dow decomposition and concludes that they are correct if the lattice reduction
step succeeds. The Groverized version of the algorithm would prepare a super-
position over possible guesses of window decompositions, use a unitary operator
that performs lattice reduction to mark the good guesses for window decomposi-
tion and then amplify the success probability using Grover’s search. This would

certainly need very sophisticated universal quantum computers and it may well
be infeasible for near term quantum devices. However, in view of this potential
quantum attack and potential cryptananalytic improvements, we take this at-
tack into account. With this constraint, our cryptosystem can only be secure if
we make sure that h is at least equal to the desired security level. For simplicity,
we just set h = λ and assume that the best possible attack on the Mersenne Low
Hamming Combination problem has complexity at least 2h to derive security
estimates in Section 8.

Meet in the middle attack. A recent work [dBDJdW17] gave a non-trivial meet-
in-the-middle attack that makes use of locality-sensitive hash functions. Its com-

plexity is O
((
n−1
h−1
)1/2)

on classical computers and O
((
n−1
h−1
)1/3)

on quantum

machines.

For our choice of parameters, this is much bigger than 2h and thus doesn’t
affect the security level.

Attacking the system if n is not a prime. We mention here that it seems quite
important to choose 2n−1 to be a prime for our cryptosystem. There is at least
a partial attack when n is not prime. Indeed if n0 divides n , then q = 2n0 − 1
divides p = 2n − 1, and also F,G have Hamming weight at most h modulo
q . Thus, given Y = FR + G mod q , one can try to guess the secret key G

modulo q , which can be done in
√(

n0

h

)
time using a quantum algorithm. This

also reveals F modulo q and we can likely use it to guess F,G modulo p much
faster than the attacks that work in the prime case.

6.2 Active attacks

Active attacks and/or decryption errors attacks are powerful tools that can be
used to attack our bit-by-bit encryption. We recall that the basic idea of such
attacks is to ask for the decryption of incorrectly formed ciphertext and use the
answers to recover information about the key.

For example, incorrect ciphertexts can be obtained by picking a random
bitstring, by modifying a valid one or encrypting in a non conformant way.
Here, we review the attack in the context of a single bit, but it is important to
note that the encryption of many bits remain vulnerable to such attacks, even
if plaintext redundancy in the style of OAEP paddings [Sho02] is added. We
show in Section 7 how to withstand such attacks using appropriate checks of
ciphertext validity.

For simplicity, assume that we have access to a decryption oracle. Forming
pseudo ciphertexts of the form A∗H + B∗ with A∗ and B∗ with low but not
conformant Hamming weights can leak information about the private key. In
particular, one might incrementally add ’1’ bits into B∗ (or A∗) until decryption
transitions from 0 to ⊥ . We did not concretely write down a full working attack
along this line, but it is clear that our encryption scheme would be vulnerable
to such attacks.

7 Mersenne Key Encapsulation Mechanism

Since we have seen in section 6.2 that the semantically secure cryptosystem
described in Section 4 cannot offer resistance to chosen-ciphertext attack, we
need to integrate it into a more complex scheme with this ability. A first approach
would be to use an existing generic transformation for this purpose. However,
this is not a simple matter, indeed, systems such as OAEP or REACT [OP01]
perform checks at the plaintext level and thus cannot protect against the attack
strategy of Section 6.2. The Naor-Yung paradigm [NY90,CHK10] would be more
suitable but the introduction of dual-encryption and non-interactive proofs is too
costly for our purpose.

In this section, we specify a full cryptosystem that achieves this level of
resistance using a transformation specifically designed for our encryption scheme.
We present our cryptosystem as a key encapsulation mechanism. It can be turned
into an public key encryption scheme using a standard transformation.

Let Enc,Dec be the encryption and decryption algorithms as defined in Sec-
tion 4. In addition to this, our transformation uses a random oracle H that
takes as input λ -bit strings, and outputs a uniformly random string that is long
enough to compute a λ -bit string, and three n -bit strings, each chosen uni-
formly over all strings of Hamming weight h , and such that all four strings are
independent. Let H0(k),H1(k),H2(k),H3(k) be the four such outputs obtained
from the random oracle on input k . As usual, every output is randomly selected
whenever a fresh query is asked.

Key Generation. The key generation is identical to the semantically secure cryp-
tosystem and produces pk := R, T := F · R + G , and sk := F where R is a
uniformly random n -bit string, and F,G are chosen uniformly at random from
n -bit strings of Hamming weight h .

Key Encapsulation. Given the public key pk = (R, T), the algorithm Encaps
proceeds as follows:

1. Pick a uniformly random λ -bit string K .
2. Let S = H0(K).
3. Let A = H1(K), B1 = H2(K), and B2 = H3(K).
4. Let C = (C1, C2), where C1 = A ·R+B1 , and C2 = E(K)⊕ (A · T +B2).
5. Output C, S .

Decapsulation. Given a ciphertext C = (C1, C2), and sk = F , the decapsulation
algorithm Decaps algorithm proceeds as follows:

1. Compute K ′ = D((F · C1)⊕ C2).
2. Let A′ = H1(K ′), B′1 = H2(K ′), and B2 = H3(K ′).
3. Let C ′ = (C ′1, C

′
2), where C ′1 = A′ ·R+B′1 , and C ′2 = E(K ′)⊕ (A′ ·T +B′2).

4. If C = C ′ , output H0(K ′), else output ⊥ .

A proof of the CCA security of our transformation is nearly identical to that
of [HHK17]. We include the proof below for completeness.

Theorem 2. Assume that H is a random oracle and that the scheme from Sec-
tion 4 is semantically secure. Then the above mentioned key encapsulation mech-
anism is secure against chosen-ciphertext attacks.

Proof. We need to show that chosen-ciphertext queries are not helping the ad-
versary, i.e. that they can be simulated without significantly degrading the ad-
versary’s advantage. Once this is done, the semantic security suffices to conclude
our result.

For this, we consider the behavior of the decapsulation oracle when receiving
a ciphertext C? = (C?1 , C

?
2). We want to conclude, that unless the ciphertext

was produced by a procedure functionally equivalent to the encapsulation spec-
ification, the decapsulation oracle outputs ⊥ with overwhelming probability.

The decapsulation oracle, on input C? = (C?1 , C
?
2) computes K? = D((F ·

C?1)⊕ C?2), and then calls the encapsulation algorithm with input K̃ to obtain

C̃ = (C̃1, C̃2). If C̃ = C? , then the oracle outputs H0(K̃), and the oracle outputs
⊥ otherwise.

If the random oracle was previously queried with the seed K̃ by the adver-
sary, then since the encapsulation procedure is a deterministic function of K̃ ,
the output of the decapsulation oracle could be efficiently simulated by the ad-
versary. On the other hand, if the random oracle was never queried with the key
K̃ , then we have that C̃1 = A · R + B1 , where A = H1(K̃) and B1 = H2(K̃).
Since H1,H2 are random oracles, A,B are assumed to be independent of ev-
erything else, and hence the probability that the decapsulation oracle does not
output ⊥ is at most

Pr[A ·R+B1 = C?1] = Pr[B1 = C?1 −A ·R] ≤ 1(
n
h

) .
ut

8 Instantiating error correcting Code in Our Scheme

In this section, we give a concrete choice of parameters, instantiate error cor-
recting codes in our scheme, and analyze the probability of decryption error.

We will set the security parameter to λ = 256. This is the one of the most
acceptable choices in the cryptographic community given the current computa-
tional powers.

As we discussed in Section 6, the best known efficient attack on our cryp-
tosystem succeeds runs in time O(22h). We assume, somewhat conservatively,

that even with future advancements in cryptanalysis of our scheme, the running
time cannot be improved beyond O(2h). Under this assumption, we set h to be
the security parameter λ . Thus, λ = h = 256. Also, in order to prevent against
unforeseen attacks that exploit the factorization of p , we choose p = 2n − 1 to
be a Mersenne prime.

8.1 Instantiation based on Deterministic Error-Correction Codes

We will need the following result. We prove this in Section 9.

Theorem 3. Let U be a random variable having uniform distribution on strings
of length n . For every n-bit string x of Hamming weight ∆ and for every ε > 0 ,

Pr[Ham(U,U + x) ≥ 2(1 + ε)∆] ≤ 2−2∆(ε−ln(1+ε)) .

We now bound the Hamming distance between F · (A ·R+B1) and A · (F ·
R+G) +B2 . Using Theorem 3, and Lemma 2, we get that for any ε ∈ (0, 1),

Pr[Ham(F · (A ·R+B1), F · (A ·R)) ≥ 2h2(1 + ε)] ≤ 2−2h
2(ε−ln(1+ε)) ,

and

Pr[Ham(A·(F ·R+G)+B2, F ·(A·R)) ≥ 2(h2+h)(1+ε)] ≤ 2−(2h
2+h)(ε−ln(1+ε)) .

Using union bound, and triangle inequality, we get that

Pr[Ham(F · (A ·R+B1), A · (F ·R+G) +B2) ≥ (4h2 + 2h)(1 + ε)]

is at most

2−(2h
2−1)(ε−ln(1+ε)) ≤ 2−(2h

2−1)(ε2/2−ε3/3) ≤ 2−(2h
2−1)(ε2/6) ,

where the second to last inequality follows from the Taylor series expansion of
ln(1 + ε).

This our scheme is 1− δ -correct if the error correction code (E ,D) corrects

up to (4h2 + 2h)(1 + ε) errors where ε is chosen such that 2−(2h
2−1)(ε2/6) < δ .

This implies that by choosing an appropriate error-correction code, we get
that for any δ > 0, and for n = ch2 , for a large enough constant c , our scheme
is 1− δ -correct. In particular, we can instantiate our scheme with n ≥ 2` − 1 =
221−1 = 32h2−1, and using Dual-BCH Codes [MS77], we can encode a message
of length k = 256, such that the parameter where t = dk/`e = 13, and the
scheme corrects up to at least

n

4
− (t− 1) · 2`/2

2
− 1 ≥ 8h2 − 40h

errors. Thus, choosing ε = 8h2−40h
4h2+2h −1 gives an instantiation of our scheme with

decryption error as low as 2−h
2/4 .

Notice that the bound on the Hamming weight of F · B1 , A · G , and also
the bound on the Hamming distance in Theorem 3 is not tight, and perhaps it
will be difficult to prove much tighter bounds. Moreover, the error distribution is
randomized, and exploiting this fact could perhaps lead to better error correction
as we discuss in the next section.

8.2 Instantiation based on Repetition Codes

In the previous section we considered dual-BCH codes which correct a certain
fraction of errors no matter how these errors are distributed. On the other hand
we observe that for our particular application, the error is “quite” random,
and even though this distribution is difficult to mathematically analyze, it is
reasonable to conjecture that the error pattern is somewhat similar to the model

where each bit is flipped with probability q < (4h2+2h)(1+ε)
n . As we stated in

the previous section, the bounds on the Hamming weight of F · B1 and A ·G ,
and also the bound in Theorem 3 are not tight, which means q will likely be

sufficiently smaller than 4h2+2h
n .

Thus if we choose n > 10h2 , and we encode each bit b of the message m ∈
{0, 1}k using a repetition code of length ρ (where k ·ρ < n) as bb · · · b ∈ {0ρ, 1ρ} ,
then we expect the number of bits flipped to be smaller than ρ/2 with very high
probability. Thus, we could decrypt correctly by looking at blocks of length ρ ,
and decode 1 if the number of 1s in this block of length ρ is more than ρ/2,
and is 0, otherwise.

We analyzed the error probability when we choose n = 756839, k = 256,
and ρ = 2048. At the present time, we are unable to provide a tight rigorous
analysis of the decryption error probability. In order to give a satisfactory bound,
we would need either to enlarge the parameters (as discussed in the previous
section) of the scheme again or to replace the very simple repetition encoding
that we are using by a more complex one. One very simple option would be
to combine the repetition encoding with a random permutation of the bits of
C2 which are used to mask the encoded value at encryption time. This random
permutation could be built from C1 using the XOF provided by NIST. However,
this would make the cryptosystem too slow and add an extra layer of complexity
that is really undesirable.

Thus, we propose a heuristic analysis of the decryption error probability.
This analysis is based on the distribution of the Hamming weights that are
encountered in the decryption blocks corresponding to a single bit. Since, with
our choice of parameters every bit is encoded into ρ = 2048 bits, we want to see
how often a bit might cross the Hamming weight 1024 boundary. It is easy to
equip the code and count the Hamming weights encountered during decryption.
We performed experiments involving 10000 of each key generation, encapsulation

and decapsulation in order to collect the distribution shown in Figure 1. We see
that the distribution looks like a superposition of two Gaussian distributions
one corresponding to encryptions of a 0 and one to encryptions of a 1. Our
heuristic assumption is that the probability of decryption failure is very close to
the one corresponding to these Gaussian distributions. More precisely, we fitted
a Gaussian G0 corresponding to zeroes by searching for best fitting values of p
and σ in:

G0(x) =
1

2σ
√

2π
e−

(x−p)2

2σ2 .

Note the extra 1/2 compared to a usual normal distribution. This is due to the
fact that half of the encrypted bits are zeroes and half are ones. By symmetry, the
Gaussian distribution corresponding to ones is simply G1(x) = G0(ρ − x). We
found that taking p = 499.6 and σ = 28.64 yields the very good approximation
shown on Figure 2 where the two Gaussian are superposed with the measured
data.

Fig. 1. Density distribution of Hamming Weights during decryption

As a consequence, the probability that a single bit crosses the 1024 boundary
is approximated by:

0.5 erfc(
1024− p
σ
√

2
) < 2−247.

Fig. 2. Density distribution with fitted Gaussians

Since the encrypted value is formed of 256-bits, the overall probability of de-
cryption failure can be heuristically upper bounded by 2−239.

8.3 Further efficiency improvements

If we need to use repetition codes, we need n to be sufficiently large, say larger
than 10h2 , in order for the decryption error to be small. If we choose a smaller
n (say n ≈ 4h2), and then use repetition codes and majority decoding as in the
previous section, we expect that the Hamming distance between the message
after decoding and the original message is small (but maybe non-zero). To get
around this issue, we propose to modify our encoding procedure as follows. We
encode a message m ∈ {0, 1}k to a codeword c1 ∈ {0, 1}n1 using some efficient
error correcting codes like BCH codes [MS77], and then encode c1 to obtain a
codeword c2 ∈ {0, 1}n2 with n2 ≤ n , using repetition codes, then the errors
remaining after majority decoding can be corrected by decoding the modified
BCH code. Notice that the choice of a smaller n does not alter the security of
the scheme, since the security of the scheme depends on the parameter h .

Again we cannot rigorously analyse the decryption error probability, but
we can obtain a heuristic analysis similar to the one in the previous section.
Concretely, we obtain the following parameters.

Encoding k = 256 bits, with n = 216091 . We can choose the next smaller
Mersenne prime p = 2216091−1. In this case, we use a BCH code that encodes k -
bit messages to n1 = 29−1 = 511 bit messages. Each of these n1 bits is encoded
using a repetition code which repeats each bit 422 times. We again performed
an experiment with 10000 key generation, encapsulation, and decapsulation and
observed that the distribution of the Hamming weight for each 422 bits looks like
a superposition of two Gaussian distributions one corresponding to encryptions
of a 0 and one to encryptions of a 1. In particular, the Gaussian-like distribution
corresponding to encryption of 1 has mean µ = 234.65, and variance σ2 =
132.47, and hence the probability of decoding a bit incorrectly under the heuristic
assumption is

0.5 erfc(
234.65− 211

σ
√

2
) < 0.02 .

The BCH code corrects up to b 511−2569 c = 28 errors [MS77]. Thus, assuming
that the Hamming weight of each block of 422 bits is distributed independently,
the probability that there is a decapsulation error is at most

511∑
i=29

(
511

i

)
· 0.02i · 0.98511−i ,

which can be estimated to be at most 2−25 .

Encoding k = 256 bits, with n = 86243 , and h = 128 . We cannot choose
n = 86243 if h = 256, since n must be significantly larger than h2 for the scheme
to work. However, if we are willing to relax the security requirement to 128-bit
security, then we can choose a much smaller Mersenne prime, and the scheme
is extremely efficient. In particular, we can choose the Mersenne prime p =
286243−1. Again, the BCH code encodes k -bit messages to n1 = 29−1 = 511 bit
messages. Each of these n1 bits is encoded using a repetition code which repeats
each bit 168 times. We again performed experiment with 10000 key generation,
encapsulation, and decapsulation and again observed that the distribution of the
Hamming weight for each 168 bits looks like a superposition of two Gaussian
distributions one corresponding to encryptions of a 0 and one to encryptions of
a 1. The mean and variance of this distribution are µ = 104.55, and σ2 = 68.91,
respectively, and hence the probability of decoding a bit incorrectly under the
heuristic assumption is

0.5 erfc(
234.65− 211

σ
√

2
) < 0.005 .

Thus, assuming that the Hamming weight of each block of 168 bits is distributed
independently, the probability that there is a decapsulation error is at most

511∑
i=29

(
511

i

)
· 0.005i · 0.995511−i ,

which can be estimated to be at most 2−60 .

9 Proof of Theorem 3

Let x be an arbitrary n -bit string of Hamming weight ∆ , for some positive
integer ∆ . We can decompose x as x1 + . . . x∆ where for all 1 ≤ i ≤ ∆ ,
the string xi has Hamming distance 1 whose single 1 bit is in position ji , and
j1 < . . . < j∆ . Let U = U0 be the random variable which takes an n -bit binary
string with uniform distribution. For 1 ≤ i ≤ ∆ , we define the random variables
U i = U i−1 + xi and Yi = Ham(U,U i) − Ham(U,U i−1). The main result in
this section is an upper bound the tail of the random variable measuring the
Hamming distance of U and U + x , that is U and U∆ .

Theorem 4. Let U be a random variable having uniform distribution on strings
of length n . For every n-bit string x of Hamming weight ∆ and for every ε > 0 ,

Pr[Ham(U,U + x) ≥ 2(1 + ε)∆] ≤ 2−2∆(ε−ln(1+ε)) .

Observe from the Taylor series ln(1 + ε) = ε − ε2

2 + ε3

3 − . . . that, for small ε ,

we can well approximate the right hand side of the above inequality by 2−∆ε
2

.

Proof. The string Uh is constructed from U in ∆ steps, where in every step we
add a new string of Hamming weight 1 to the string obtained in the previous
steps. Our first lemma bounds the tail of the random variable measuring the
increase in the Hamming distance in one step.

Lemma 3. For every n-bit string x of Hamming weight ∆ , and for all integers
s, y1, . . . , y∆−1 , we have

Pr[Y∆ ≥ s|Y1 = y1, . . . , Y∆−1 = y∆−1] ≤ min{1, 2−(s−1)}.

Proof. Observe that for s ≤ 1 the statement is trivial, therefore we only con-
sider s ≥ 2. For every r ≥ s , and for every ∆ , we well determine Pr[Y∆ =
r|Y1, . . . , Y∆−1|Y1 = y1, . . . , Y∆−1 = y∆−1], and then we will sum up these val-
ues. Let Z∆−1 denote the event Y1 = y1, . . . , Y∆−1 = y∆−1 .

Since addition, Hamming distance and the uniform distribution are invariant
under rotation, we can suppose without generality that x1 = 1. Under the condi-
tion that U and x don’t have a 1 in the same position, Y∆ = 1 with probability
1, and the statement follows. Therefore we can work under the condition that U
and x have a common 1, and we can suppose, again without loss of generality,
that U1 = 1.

First we consider the case ∆ = 1. For 2 ≤ r ≤ n , the random variable Y1 is
r when Ur = 0 and Ur−1 = . . . = U2 = 1. Thus Pr[Y1 = r] = 2−r+1.

We suppose now that ∆ ≥ 2. We say that i ≤ ∆ is a wrap-around step if
U i−1n = 1 and U in = 0. Observe that in that case U i−11 and U i1 are different.
We define the random variable t∆ as n+ 1 if i is a wrap-around step for some

1 ≤ i ≤ ∆ − 1. Otherwise, let t∆ be the smallest integer such that all but the
first (from right) t∆ bits are the same in U and U∆−1 . Since the single 1 bit
in x∆−1 is in position j∆−1 , it follows from the definition that t∆ ≥ j∆−1 , and
that U∆−1t∆−1 = . . . = U∆−1j∆−1

= 0. In addition, if t∆ ≤ n then U∆−1t∆ = 1.

Case 1: j∆ ≤ t∆ − 1. Since j∆ > j∆−1 , we have then U∆−1j∆
= 0. Therefore

U∆−1 and U∆ differ only in one position, implying Y∆ is never more than 1.

Case 2: j∆ ≥ t∆ . Then t∆ ≤ n and therefore none of the previous steps was
a wrap-around step. Thus U∆−11 = . . . = U1

1 = Ut∆ = 0 and U∆−1t∆ = 1.

Step ∆ is a wrap-around step when U∆−1j∆
= . . . = U∆−1n = 1. When

j∆ > t∆ , this is equivalent to Uj∆ = . . . = Un = 1, and happens with probability
2−(n−j∆+1) . In that case U∆−1 and U∆ differ in positions 1, j∆ . . . , n . Among
these positions U∆ and U differ at j∆, . . . , n but U∆1 = U1 = 1, and therefore
Y∆ = n − j∆ . When j∆ = t∆ , this is equivalent to Uj∆+1 = . . . = Un = 1,
and happens with probability 2−(n−j∆) . In that case U∆−1 and U∆ differ in
positions 1, j∆ . . . , n . Among these positions U∆ and U differ at j∆ + 1, . . . , n
but U∆1 = U1 = 1, and therefore Y∆ = n− j∆ − 1.

Step ∆ is not a wrap-around step when U∆−1` = 0 and U∆−1j∆
= . . . =

U∆−1`−1 = 1, for some j∆ ≤ ` ≤ n . This never happens when j∆ = n . When

t∆ < j∆ < n , this is equivalent to U` = 0 and U∆−1j∆
= . . . = U∆−1`−1 =

1, which happens with probability 2−(`−j∆+1) . In that case U∆−1 and U∆

differ in positions j∆, . . . , ` , where U∆−1 coincides with U and U∆ differs from
U , implying Y∆ = ` − j∆ + 1. When j∆ = t∆ , ` must be at least j∆ + 1,
and the condition is equivalent to U` = 0 and U∆−1j∆+1 = . . . = U∆−1`−1 = 1,

which happens with probability 2−(`−j∆) . In that case U∆−1 and U∆ differ in
positions j∆ + 1, . . . , ` , where U∆−1 coincides with U and U∆ differs from U ,
implying Y∆ = `− j∆ .

All together, Pr[Y∆ = r|Z∆−1] 6= 0 in the following cases. When j∆ > t∆ ,
we have Pr[Y∆ = r|Z∆−1] = 2−r for r ∈ {2, . . . n − j∆ − 1, n − j∆ + 1} and
Pr[Y∆ = n − j∆] = 2−(n−j∆+1) + 2−(n−j∆) . When j∆ = t∆ , we have Pr[Y∆ =
r|Z∆−1] = 2−r for r ∈ {2, . . . n−j∆−2, n−j∆} and Pr[Y∆ = n−j∆−1|Z∆−1] =
2−(n−j∆)+2−(n−j∆−1) . The statement follows by summing up these probabilities
for r ≥ s . ut

Observe that Ham(U,U + x) = Y1 + . . . + Y∆ . In order to bound the tail
of Y1 + . . . + Y∆ , we introduce the independent random variables X1, . . . X∆ ,
where Xi is a geometric random variable with success probability 1

2 , for each
1 ≤ i ≤ ∆ . This means that by definition, for every positive integer r , we have
Pr[Xi = r] = 2−r . The definition immediately implies that for every integer s ,
we also have Pr[Xi ≥ s] = min{1, 2−(s−1)} . Our next lemma states that the tail
of Y1 + . . .+ Y∆ can be upper bounded by the tail of X1 + . . .+X∆ .

Lemma 4. For every n-bit string x of Hamming weight ∆ , for every integer s ,

Pr[Y1 + . . .+ Y∆ ≥ s] ≤ Pr[X1 + . . .+X∆ ≥ s].

Proof. We prove it by induction on ∆ . When ∆ = 1, from Lemma 3 we have

Pr[Y1 ≥ s] ≤ min{1, 2−(s−1)} = Pr[X1 ≥ s].

When ∆ ≥ 2, we have the following series of (in)equalities:

Pr[

∆∑
i=1

Yi ≥ s] ≤
∑

y1,...,y∆−1

Pr[Y1 = y1, . . . , Y∆−1 = y∆−1] Pr[X∆ ≥ s−
∆−1∑
i=1

yi]

= Pr[

∆−1∑
i=1

Yi +X∆ ≥ s]

=
∑
y

Pr[

∆−1∑
i=1

Yi ≥ y] Pr[X∆ = s− y]

≤
∑
y

Pr[

∆−1∑
i=1

Xi ≥ y] Pr[X∆ = s− y]

= Pr[

∆∑
i=1

Xi ≥ s].

The first inequality follows from Lemma 3 and the second inequality from the
inductive hypothesis. For the third equality we have used that X∆ is independent
from the random variables Yi . ut

Our final lemma is a special case of Theorem 2.3 in the artice [Jan17] on tail
bounds for sums of geometric and exponential variables.

Lemma 5. [Jan17] Let X1, . . . X∆ be independent geometric random variables
with success probability 1

2 , and let ε > 0 . Then

Pr[

∆∑
i=1

Xi ≥ 2(1 + ε)∆] ≤ 2−2∆(ε−ln(1+ε)).

Putting together Lemmas 4 and 5, we immediately obtain our bound on the
Hamming distance of U and U∆ , which concludes the proof. ut

10 Conclusion

In this paper, we propose a simple new public-key encryption scheme. As with
other public-key cryptosystems, the security of our cryptosystem relies on un-
proven assumptions mentioned in Definition 5. In Section 6.1, we summarized the
known cryptanalytic attacks against this scheme. The proposed cryptosystem is
based on a relatively new assumption, and it will require more cryptanalytic
effort before one can be reasonably confident about the security assumption.

Acknowledgments

This research was partially funded by the Singapore Ministry of Education and
the National Research Foundation, also through the Tier 3 Grant “Random
numbers from quantum processes,” MOE2012-T3-1-009. This work has been
supported in part by the European Union’s H2020 Programme under grant
agreement number ERC-669891 and the French ANR Blanc program under con-
tract ANR-12-BS02-005 (RDAM project). The second author is grateful to CQT
where the work has started during his visit.

References

[AJPS17] Divesh Aggarwal, Antoine Joux, Anupam Prakash, and Miklos Santha. A
new public-key cryptosystem via mersenne numbers. Cryptology ePrint
Archive, Report 2017/481, version:20170530.072202, 2017.

[BCGN17] Marc Beunardeau, Aisling Connolly, Rémi Géraud, and David Naccache.
On the hardness of the Mersenne Low Hamming Ratio assumption. Tech-
nical report, Cryptology ePrint Archive, 2017/522, 2017.

[CHK10] Ronald Cramer, Dennis Hofheinz, and Eike Kiltz. A twist on the Naor-
Yung paradigm and its application to efficient CCA-secure encryption
from hard search problems. In Theory of Cryptography, 7th Theory of
Cryptography Conference, TCC 2010, Zurich, Switzerland, February 9-
11, 2010. Proceedings, pages 146–164, 2010.

[dBDJdW17] Koen de Boer, Léo Ducas, Stacey Jeffery, and Ronald de Wolf. At-
tacks on the ajps mersenne-based cryptosystem. Technical report, Cryp-
tology ePrint Archive, Report 2017/1171, 2017. https://eprint. iacr.
org/2017/1171, 2017.

[DH76] Whitfield Diffie and Martin Hellman. New directions in cryptography.
IEEE transactions on Information Theory, 22(6):644–654, 1976.

[ES16] Lior Eldar and Peter W Shor. An efficient quantum algorithm
for a variant of the closest lattice-vector problem. arXiv preprint
arXiv:1611.06999, 2016.

[Gro96] Lov K Grover. A fast quantum mechanical algorithm for database search.
Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing, pages 212–219, 1996.

[GWO+ 13] Lize Gu, Licheng Wang, Kaoru Ota, Mianxiong Dong, Zhenfu Cao, and
Yixian Yang. New public key cryptosystems based on non-abelian factor-
ization problems. Security and Communication Networks, 6(7):912–922,
2013.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular anal-
ysis of the fujisaki-okamoto transformation. In Theory of Cryptography
Conference, pages 341–371. Springer, 2017.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph Silverman. Ntru: A ring-based
public key cryptosystem. Algorithmic number theory, pages 267–288,
1998.

[Jan17] Svante Janson. Tail bounds for sums of geometric and exponential vari-
ables. arXiv preprint arXiv:1709.08157, 2017.

[KLC+ 00] Ki Hyoung Ko, Sang Jin Lee, Jung Hee Cheon, Jae Woo Han, Ju-sung
Kang, and Choonsik Park. New public-key cryptosystem using braid
groups. In Annual International Cryptology Conference, pages 166–183.
Springer, 2000.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 1–23.
Springer, 2010.

[LvTMW09] Wolfgang Lempken, Trung van Tran, Spyros S. Magliveras, and Wandi
Wei. A public key cryptosystem based on non-abelian finite groups. Jour-
nal of Cryptology, 22(2):62–74, 2009.

[McE78] Robert J McEliece. A public-key cryptosystem based on algebraic coding
theory. Coding Thv, 4244:114–116, 1978.

[MS77] Florence Jessie MacWilliams and Neil James Alexander Sloane. The
theory of error-correcting codes. Elsevier, 1977.

[MTSB13] Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo SLM
Barreto. Mdpc-mceliece: New mceliece variants from moderate den-
sity parity-check codes. In Information Theory Proceedings (ISIT), 2013
IEEE International Symposium on, pages 2069–2073. IEEE, 2013.

[NIS17] NIST. Post quantum crypto project.
http://csrc.nist.gov/groups/ST/post-quantum-crypto/, 2017. Accessed:
2017-05-19.

[NS97] David Naccache and Jacques Stern. A new public key cryptosystem.
In EUROCRYPT 1997, Lecture Notes in Computer Science 1233, pages
27–36, 1997.

[NY90] M. Naor and M. Yung. Public-key cryptosystems provably secure against
chosen ciphertext attacks. In Proceedings of the Twenty-second Annual
ACM Symposium on Theory of Computing, STOC ’90, pages 427–437,
New York, NY, USA, 1990. ACM.

[OP01] Tatsuaki Okamoto and David Pointcheval. REACT: rapid enhanced-
security asymmetric cryptosystem transform. In Topics in Cryptology -
CT-RSA 2001, The Cryptographer’s Track at RSA Conference 2001, San
Francisco, CA, USA, April 8-12, 2001, Proceedings, pages 159–175, 2001.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. Journal of the ACM, 56(6):Art. 34, 40, 2009.

[RSA78] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for ob-
taining digital signatures and public-key cryptosystems. Communications
of the ACM, 21(2):120–126, 1978.

[RSN+ 01] Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, and Elaine
Barker. A statistical test suite for random and pseudorandom number
generators for cryptographic applications. Technical report, DTIC Doc-
ument, 2001.

[Sho97] Peter W Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM journal on computing,
26(5):1484–1509, 1997.

[Sho02] Victor Shoup. OAEP reconsidered. J. Cryptology, 15(4):223–249, 2002.

