
Generic Attacks against
Beyond-Birthday-Bound MACs

Gaëtan Leurent1, Mridul Nandi2, and Ferdinand Sibleyras1

1 Inria, France
{gaetan.leurent,ferdinand.sibleyras}@inria.fr

2 Indian Statistical Institute, Kolkata
mridul.nandi@gmail.com

Abstract. In this work, we study the security of several recent MAC
constructions with provable security beyond the birthday bound. We con-
sider block-cipher based constructions with a double-block internal state,
such as SUM-ECBC, PMAC+, 3kf9, GCM-SIV2, and some variants (LightMAC+,
1kPMAC+). All these MACs have a security proof up to 22n/3 queries, but
there are no known attacks with less than 2n queries.
We describe a new cryptanalysis technique for double-block MACs based
on finding quadruples of messages with four pairwise collisions in halves
of the state. We show how to detect such quadruples in SUM-ECBC, PMAC+,
3kf9, GCM-SIV2 and their variants with O(23n/4) queries, and how to
build a forgery attack with the same query complexity. The time com-
plexity of these attacks is above 2n, but it shows that the schemes do not
reach full security in the information theoretic model. Surprisingly, our
attack on LightMAC+ also invalidates a recent security proof by Naito.
Moreover, we give a variant of the attack against SUM-ECBC and GCM-SIV2
with time and data complexity Õ(26n/7). As far as we know, this is the
first attack with complexity below 2n against a deterministic beyond-
birthday-bound secure MAC.
As a side result, we also give a birthday attack against 1kf9, a single-key
variant of 3kf9 that was withdrawn due to issues with the proof.

Keywords: Modes of operation, Cryptanalysis, Message Authentica-
tion Codes, Beyond-Birthday-Bound security

1 Introduction

Message authentication codes (or MACs) ensure the authenticity of messages in
the secret-key setting. They are a core element of real-world security protocols
such as TLS, SSH, or IPSEC. A MAC takes a message (and optionally a nonce)
and a secret key to generate a tag that is sent with the message. Traditionally,
they are classified into three types: deterministic, nonce-based, and probabilistic.

Deterministic MAC designs are the most popular, with widely used construc-
tions based on block-cipher (CBC-MAC [13,4], OMAC [18], PMAC [5], LightMAC [29],
. . . ) and hash functions (HMAC [2], NMAC [2], NI-MAC [1], . . . ). However, there is a
generic forgery attack against all deterministic iterated MACs, using collisions in

1



the internal state, due to Preneel and van Oorschot [37]. Therefore, these MACs
only achieve security up to the birthday bound, i.e. when the number of queries
by the adversary is bounded by 2n/2, with n the state size. This is equivalently
called n/2-bit security.

One way to increase the security is to use a nonce, a unique value provided
by the user (in practice, the nonce is usually a counter). This approach has been
pioneered by Wegman and Carter [41] based on an earlier work by Gilbert et
al. [15]. Later a few follow ups like EDM and EWCDM [7], and Dual EDM [30] have
been proposed to achieve beyond birthday security.

Alternatively, a probabilistic MAC uses a random coin for the extra value,
which is usually called a salt, and must be transmitted with the MAC. Proba-
bilistic MACs have the advantage that they can stay secure when called with
the same input twice, and don’t require a state to keep the nonce unique. Some
popular probabilistic MAC constructions are XMACR [3], RMAC [22] and EHtM [31].
In particular, RMAC and EHtM have security beyond the birthday bound.

However, deterministic MACs are easier to use in practice, and there has been
an important research effort to build deterministic MAC with security beyond
the birthday bound, using an internal state larger than the primitive size. In
particular, several constructions use a 2n-bit internal state so that collisions in
the state are only expected after 2n queries. Yasuda first proposed SUM-ECBC [42],
a beyond birthday bound (BBB) secure deterministic MAC that achieves 2n/3-
bit security. However, this construction has rate 1/2 and later Yasuda himself
proposed one of the most popular BBB secure MAC PMAC+ [43] achieving rate 1.
Later several other constructions like 3kf9 [44], LightMAC+ [33], GCM-SIV2 [20],
and single key PMAC+ [9] have been proposed. Interestingly, all the above designs
share a common structure: a double-block universal hash function outputs a 2n-
bit hash value (seen as two n-bit halves), and a finalization function generates the
tag by XORing encrypted values of the two n-bit hash values. This structure has
been called double-block-hash-then-sum, and it will be the focus of our paper.

More recently, variants of PMAC+ based on tweakable block-cipher have also
been proposed, such as PMAC_TBC [32], PMACx [27], ZMAC [21], and ZMAC+[28].

Our results. We focus on the security of deterministic block-cipher based
MACs with security beyond the birthday bound and double-block hash con-
struction. Several previous works have been focused on security proofs, showing
that they are secure up to 22n/3 queries [43,44,20,9,42,33]. For most of these con-
structions, the advantage of an adversary making q short queries is bounded by
O(q3/22n). Recently, Naito [34] gave an improved security proof for LighMAC+,
with advantage at most O(q2

t qv/22n), with qt MAC queries and qv verification
queries. In particular, this would prove security up to 2n when the adversary
can only do a single verification query.

In this work, we take the opposite approach and look for generic attacks
against these modes. We use a cryptanalysis technique that can be seen as a
generalisation of the collision attack of Preneel and van Oorschot [37]. Instead
of looking for a pair of messages so that the full state collides, we look for a
quadruple of messages, which can be seen either as two pairs colliding on the first



Table 1. Summary of the security for studied modes and our main results. q is the
number of queries, ` is maximum size of a query, σ is total number of processed blocks.
The expected lower bound and attack complexity is in number of constant length
queries (` = O(1)). We use “U” for universal forgeries, and “E” for existential forgeries.

Mode Provable security bounds Attacks (this work)

Advantage Queries Queries Time Type

SUM-ECBC [42] O( q
3`3

22n ) Ω(22n/3) O(23n/4) Õ(23n/2) U
O(26n/7) Õ(26n/7) U

GCM-SIV2 [20] O( q
3`2

22n ) Ω(22n/3) O(23n/4) Õ(23n/2) U
O(26n/7) Õ(26n/7) U

PMAC+ [43] O( q
3`3

22n ) Ω(22n/3) O(23n/4) Õ(23n/2) E
LightMAC+ [33] O( q3

22n ) Ω(22n/3) O(23n/4) Õ(23n/2) E
1kPMAC+ [9] O( σ

2n + qσ2

22n ) Ω(22n/3) O(23n/4) Õ(23n/2) E

3kf9 [44] O( q
3`3

22n + q`
2n ) Ω(22n/3) O( 4√n · 23n/4) Õ(25n/4) U

1kf9 [8] O( q`
2

2n + q3`4

22n + q4`4

23n + q4`6

24n ) Ω(22n/3) O(2n/2) Õ(2n/2) U

half of the state, or two pairs colliding on the second half. Since the finalization
function combines the halves with a sum, we can detect such a quadruple because
the corresponding MACs sum to zero, and can usually amplify this filtering.
Moreover, when the message are well constructed, the relations defining the four
collisions create a linear system of rank only three, so that we expect one good
quadruple out of 23n. Therefore, we only need four lists of 23n/4 queries, and we
expect one good quadruple out of the 23n choices in the four lists.

Table 1 shows a summary of our main results and how they compare with
their respective provable security claims. In particular, we have forgeries attacks
with O(23n/4) MAC queries against SUM-ECBC, GCM-SIV2, PMAC+, LightMAC+,
1kPMAC+, and 3kf9. As far as we know, these are the first attacks with less than
2n queries against these constructions. Our attack against LighMAC+ contradicts
the recent security bound for LighMAC+ [34], because we have an attack with
O(23n/4) MAC queries, and a single verification query. The other attacks do
not contradict the security proofs, but they make an important step towards
understanding the actually security of these modes: we now have a lower bound
of 22n/3 queries from the proofs, and an upper bound of 23n/4 from our attacks.

The attacks have a complexity of 23n/4 in the information theoretic model
(the model used for most MAC security proofs), but we note that an attacker
needs more than 2n operations to create a forgery. However, we have found
a variant of our attack against SUM-ECBC and GCM-SIV2 with total complexity
below 2n, using O(26n/7) queries and Õ(26n/7) operations.

We have also found an attack with only O(2n/2) queries and Õ(2n/2) oper-
ations against 1kf9 [8], a single key variant of 3kf9 with claimed security up
to 22n/3 queries. 1kf9 has been withdrawn due to issues with its security proof,
but no attack was known previously.



Related works. There has been extensive work on security proofs for modes
of operations, with a recent focus on security beyond the birthday bound. An
interesting example is the encryption mode CENC by Iwata [17]: the initial proof
was only up to 22n/3 queries, but a later proof showed that it actually remains
secure close to 2n queries [19]. Our results show that in the case of double-block-
hash-then-sum MACs, the security is lower than n-bit security.

Similarly, the initial proof of the randomized MAC EHtM only gave security
up to 22n/3, but a later proof showed security up to 23n/4 [11]. This result also
includes a matching attack, using a technique similar to ours based on looking
for quadruples. However in the case of EHtM the attacker can observe part of the
state, which allows him to find a right quadruple in O(23n/4) time and memory.
In our case we can’t observe the internal state at all, thus we need to use different
tricks tailored to each construction in order to amplify the filtering and avoid
the many false-positives. In particular, this significantly increases the time and
memory complexity.

There has also been intensive work on generic attacks to complement the
security proof results. After the generic collision attack of Preneel and van
Oorschot [37], more advanced attacks against MACs have been described, with
stronger outcomes than existential forgeries, starting with a key-recovery attack
against the envelop MAC by the same authors [38]. In particular, a series of
attacks against hash-based MACs [26,36,16,10] led to universal forgery attacks
against long challenges, and key-recovery attacks when the hash function has
an internal checksum (like the GOST family). Against PMAC, Lee et al. showed
a universal forgery attack in 2006 [25]. Later, Fuhr, Leurent and Suder gave a
key-recovery attack against the PMAC variant used in AEZv3 [14]. Issues with GCM
authentication with truncated tags were also pointed out by Ferguson [12]. These
attacks don’t contradict the security proofs of the schemes, but they are impor-
tant results to understand the security degradation after the birthday bound.

Organization of the paper. We first explain our attack technique using
quadruples of messages in Section 2, and give three concrete attacks using this
technique: an attack against SUM-ECBC and GCM-SIV2 in Section 3, an attack
against PMAC+ and related constructions in Section 4, and an attack against
3kf9 in Section 5. Finally, we show a variant of the technique using special
properties of the single-key constructions of [8,9] in Section 6.

Notations. We denote the concatenation of messages blocks x and y as x ‖ y.
When x and y fit together in one block, we use x|y to denote their concatenation.
We use L[i] to denote element i of list L, x[i] to denote bit i of x, and x[i:j] to
denote bits i to j − 1. Finally, we use a curly brace for systems of equations.

2 Generic Attack against double-block-hash MACs

We first explain our attacks in a generic way, and leave the specific details to
later sections focused on concrete MAC constructions.



We consider MACs where the 2n-bit internal state is divided in two n-bit
parts, that we denote Σ and Θ, and the final MAC is computed as:

MAC(M) = E
(
Σ(M)

)
⊕ E′

(
Θ(M)

)
,

where E and E′ denote the block cipher with potentially different keys. The
functions Σ and Θ can be seen as two n-bit universal hash functions computed
on the message, hence the name double-block-hash-then-sum MAC.

Our attacks exploit the fact that the two halves are combined with a sum,
where one side depends only on Σ, and the other side depends only on Θ.
They do not seem applicable to constructions with more intricate finalization
functions, such as LightMAC+2 [33], or the tweakable block-cipher based con-
structions PMAC_TBC [32], PMACx [27], ZMAC [21], or ZMAC+[28].

2.1 Using Quadruples

Our strategy consists in looking for a quadruple of messages (X,Y, Z, T ) such
that pairs of values collide for one half of the state. More precisely, we look for
quadruples satisfying a relation R(X,Y, Z, T ) defined as:

R(X,Y, Z, T ) :=


Σ(X) = Σ(Y )
Θ(Y ) = Θ(Z)
Σ(Z) = Σ(T )
Θ(T ) = Θ(X)

In particular, since the MAC is computed as MAC(M) = E
(
Σ(M)

)
⊕E′

(
Θ(M)

)
,

it follows that:

R(X,Y, Z, T ) =⇒ MAC(X)⊕MAC(Y )⊕MAC(Z)⊕MAC(T ) = 0. (1)

In addition, if the messages X,Y, Z, T are well constructed, the relation R re-
duces to a linear system of rank only three, i.e.[

Σ(X) = Σ(Y ) and Θ(Y ) = Θ(Z) and Σ(Z) = Σ(T )
]

=⇒ Θ(T ) = Θ(X).

Therefore, we expect to find one quadruple satisfying the relation out of 23n,
and we can construct 23n quadruples with just 4× 23n/4 queries. This gives an
attack with data complexity O(23n/4).

In practice, we consider lists of 23n/4 messages, generated with two mes-
sage injection functions φ and ψ. These functions are different in every attack,
but they mostly correspond to adding two distinct prefixes, as in the following
example:

φ(i) = 0 ‖ i ψ(i) = 1 ‖ i
X = φ(x) = 0 ‖ x Y = ψ(y) = 1 ‖ y
Z = φ(z) = 0 ‖ z T = ψ(t) = 1 ‖ t,



In particular, the pairs (X,Y ), (Y,Z), (Z, T ) and (T,X) that we consider always
contain a message built with φ and message built with ψ. Therefore, we will have
the required collisions in Σ or Θ if the difference introduced in the half-state by
the second block cancels the difference found after processing the first block.

This type of attack has some similarities with a higher order differential at-
tack. Indeed, in the easiest case (e. g. our attack against SUM-ECBC), the relation
R can be written asR(x, y, z, t) ⇐⇒

[
x⊕y = z⊕t = ∆1 and x⊕t = y⊕z = ∆3

]
for some secret values ∆1 and ∆3. This idea of looking for quadruples is also
very similar to the attack on EHtM [11], but the full attack will turn out quite
different. Indeed, in the case of EHtM, the attacker can observe the salt R which
represent half of the 2n-bit internal state. Here this would be the equivalent of
observing Σ(m) for all processed messages m. This is clearly not possible for the
studied constructions and we need something more to discriminate and find a
good quadruple that satisfies R.

2.2 Detecting Quadruples: Generalized Birthday Algorithms

To finish the attack we usually need to locate one good quadruple. The relation
MAC(X) ⊕MAC(Y ) ⊕MAC(Z) ⊕MAC(T ) = 0 in itself is too weak because
we expect one quadruple out of 2n to satisfy it randomly, but we can usually
amplify the filtering using related quadruples that satisfy R simultaneously (the
exact details depend on the MAC construction).

In most of our attacks, we can express the search for a quadruple as an in-
stance of the 4-sum problem, and solve it using variants of Wagner’s generalized
birthday algorithm [40]. This reduces the time complexity of the attacks (com-
pared to a naive search), and provides trade-offs between the query, memory and
time complexities.

More precisely, our problem can be stated as follow:
Definition 1 (4-sum problem). Given four lists L1, L2, L3, L4 of 2s elements,
with on average 2p quadruples (x, y, z, t) ∈ L1 ×L2 ×L3 ×L4 such that x⊕ y ⊕
z ⊕ t = 0, find one of them.
Note that if the lists contain random n-bit words, we expect to have 2p = 24s−n

solutions, but in some of our instances there are more solutions because of the
structure of the lists.

We denote the join operator as ./; it computes the pairwise sum of two lists,
and keeps the initial values attached to the sum. In addition, the join operator
with filtering ./αt only keeps values such that the t least significant bits of the
sum agree with the value α:

A ./ B = {(a⊕ b, a, b) : (a, b) ∈ A×B}
A ./αt B =

{
(a⊕ b, a, b) : (a, b) ∈ A×B, a[0:t] ⊕ b[0:t] = α

}
In particular, we have ./ = ./0

0. We also denote as ./∞ the joint operator with
filtering over the full input values. The filtered joint operator is the basis of
Wagner’s algorithm, and it can be computed in almost linear time by sorting
the two input lists, and stepping through them simultaneously.



L1 L2 L3 L4

./αs

Lα12

./αs

Lα34

./∞

for α ∈ {0, 1}s do
Lα12 ← L1 ./

α
s L2

Lα34 ← L3 ./
α
s L4

L← Lα12 ./∞ Lα34
if L 6= ∅ then

(0, (x, y), (z, t))← L[0]
return (x, y, z, t)

end if
end for
return ⊥

Fig. 1. Generalized Birthday algorithm to find good quadruples.

Direct algorithm. While a naive algorithm for our 4-sum instances would take
time 24s to examine all quadruples, there is a simple improvement with time and
memory Õ(22s). First, the attacker builds L12 = L1 ./ L2 and L34 = L3 ./ L4.
Then, he looks for a collision between the first component of L12 and L34. A
collision directly yields a solution. This always finds a solution if it exists in
Õ(22s) operations but it also takes O(22s) memory.

Memory efficient algorithm. We can reduce the memory complexity of the
algorithm if we avoid constructing the full lists L12 and L34. An algorithm with
low memory complexity was first described by Chose et al. [6], but we use the
description given by Wagner in the full version of [40].

Instead of building the full lists L12 and L34, we filter values such that s least
significant bits differ by some fixed value α. This reduces the expected size of
the lists to only 2s: E[|Lα34|] = E[|Lα12|] = |L1| · |L2|/2s = 2s. If this algorithm is
repeated for every s-bit value α, it will eventually find all solutions.

Actually, one run of the algorithm detects the solutions whose least significant
bits of x ⊕ y are equal to α. If there are 2p solutions in total, there is one such
solution with probability 2p−s, and this algorithm will find the first solution after
trying 2s−p values of α on average. Therefore, the expected time complexity of
the algorithm given by Figure 1 is only Õ(22s−p).

Related work. In a 2016 work, Nikolic and Sasaki [35] investigate the 4-sum
where we need to find 4 different inputs x, y, z, t to a function f such that
f(x)⊕f(y)⊕f(z)⊕f(t) = 0. They also mention that their algorithm is adaptable
to pairwise identical functions, i. e. f(x)⊕ g(y)⊕ f(z)⊕ g(t) = 0.

Most of our attacks can be written in this way; concretely, they are equiv-
alent to instances of random functions with 3n-bit outputs. In this setting our
algorithm takes time Õ(23n/2) and memory O(23n/4), while Nikolic and Sasaki’s
work can reach Õ(29n/8) time and O(23n/4) memory. Unfortunately, their algo-
rithm requires Õ(29n/8) queries to the functions; this would translate to Õ(29n/8)
queries to the MAC, which is not interesting in our context.



m1

E1

m1

E3

m2

E1

m2

E3

m`−1

E1

...

m`−1

E3

...

m`

E1

m`

E3

E2

E4

MAC(m)

Σ

Θ

Fig. 2. Diagram for SUM-ECBC with a `−block message.

3 Attacking SUM-ECBC-like constructions

We start with attacks against SUM-ECBC [42] and GCM-SIV2 [20]; while the con-
structions are quite different, they have a similar structure and the same attacks
can be used in both cases. We give a universal forgery attack with O(23n/4)
queries and Õ(23n/2) operations (using memory O(23n/4)), and a variant with
total complexity below 2n, with O(26n/7) queries and Õ(26n/7) operations.

3.1 Attacking SUM-ECBC

SUM-ECBC was designed by Yasuda in 2010 [42], inspired by MAC constructions
summing two CBC-MACs in the ISO 9797-1 standard. The scheme uses a block
cipher keyed with four independent keys, denoted as E1, E2, E3, E4. The mes-
sage M is first padded with 10∗ padding, and divided into n-bit blocks. In the
following we ignore the padding and consider the padded message as the input:
this makes our description easier, and any padded message whose last block is
non-zero can be “un-padded” to generate a valid input message. The construc-
tion is defined as follows (see also Figure 2):

Σ(M) = σ` σ0 = 0 σi = E1(σi−1 ⊕mi)
Θ(M) = θ` θ0 = 0 θi = E3(θi−1 ⊕mi)

MAC(M) = E2(Σ(M))⊕ E4(Θ(M))



Attack. Following the framework of Section 2, we consider quadruple of mes-
sages, built with two message injection functions:

φ(i) = 0 ‖ i ψ(i) = 1 ‖ i

In particular, we have

MAC(φ(i)) = E2

(
E1
(
i⊕ E1(0)

)︸ ︷︷ ︸
Σ0(i)

)
⊕ E4

(
E3
(
i⊕ E3(0)

)︸ ︷︷ ︸
Θ0(i)

)
MAC(ψ(i)) = E2

(
E1
(
i⊕ E1(1)

)︸ ︷︷ ︸
Σ1(i)

)
⊕ E4

(
E3
(
i⊕ E3(1)

)︸ ︷︷ ︸
Θ1(i)

)
Next, we build quadruples of messages X,Y, Z, T with

X = φ(x) Y = ψ(y) Z = φ(z) T = ψ(t),

and we look for a quadruple with partial state collisions for the underlying pairs,
i. e. a quadruple following the relation:

R(x, y, z, t) :=


Σ0(x) = Σ1(y)
Σ0(z) = Σ1(t)
Θ0(z) = Θ1(y)
Θ0(x) = Θ1(t).

We have

R(x, y, z, t)⇔


x⊕ E1(0) = y ⊕ E1(1)
z ⊕ E3(0) = y ⊕ E3(1)
z ⊕ E1(0) = t⊕ E1(1)
x⊕ E3(0) = t⊕ E3(1)

⇔


x⊕ y ⊕ z ⊕ t = 0
x⊕ y = E1(0)⊕ E1(1)
x⊕ t = E3(0)⊕ E3(1)

As promised in Section 2, R defines a 3n−bit relation. We can easily observe
when x ⊕ y ⊕ z ⊕ t = 0, and we can also detect the relation on the sum of the
MACs following Equation (1):

R(x, y, z, t)⇒ MAC(φ(x))⊕MAC(ψ(y))⊕MAC(φ(z))⊕MAC(ψ(t)) = 0

Moreover, we observe that R(x, y, z, t) is satisfied if and only if R(x ⊕ c, y ⊕
c, z⊕ c, t⊕ c) is satisfied for any constant c. We use this relation to build several
quadruples that satisfy R simultaneously:

R(x, y, z, t) ⇐⇒ ∀c, R(x⊕ c, y ⊕ c, z ⊕ c, t⊕ c) (2)

This leads to an attack withO(23n/4) queries: we consider four sets X ,Y,Z, T
of 23n/4 values, and we look for a quadruple (x, y, z, t) ∈ X × Y × Z × T with:
x⊕ y ⊕ z ⊕ t = 0
MAC(φ(x))⊕MAC(ψ(y))⊕MAC(φ(z))⊕MAC(ψ(t)) = 0
MAC(φ(x⊕ 1))⊕MAC(ψ(y ⊕ 1))⊕MAC(φ(z ⊕ 1))⊕MAC(ψ(t⊕ 1)) = 0.

(3)



Because we need a fair distribution of values x ⊕ y and x ⊕ t to find the good
quadruple we build the sets as:

X =
{
x ∈ {0, 1}n : x[0:n/4] = 0

}
Y =

{
x ∈ {0, 1}n : x[n/4:n/2] = 0

}
Z =

{
x ∈ {0, 1}n : x[n/2:3n/4] = 0

}
T =

{
x ∈ {0, 1}n : x[3n/4:n] = 0

}
With this construction, there is exactly one quadruple (x, y, z, t) ∈ X×Y×Z×T
that respects R, given by:

x = v1|w2|u3|0 y = w1|v2|0|u4 z = u1|0|v3|w4 t = 0|u2|w3|v4,

where:

E1(0)⊕ E1(1) =: u1|u2|u3|u4

E3(0)⊕ E3(1) =: v1|v2|v3|v4

E1(0)⊕ E1(1)⊕ E3(0)⊕ E3(1) =: w1|w2|w3|w4.

We expect on average one random quadruple satisfying (3) (with 23n potential
quadruples, and a 3n-bit filtering), in addition to the quadruple satisfying R.
The correct quadruple can easily be checked with a few extra queries.

In practice, we use the generalized birthday algorithms of Section 2.2 in order
to optimize the complexity of the attack. We consider four lists:

L1 = {x ‖MAC(φ(x)) ‖MAC(φ(x⊕ 1)) : x ∈ X}
L2 = {y ‖MAC(ψ(y)) ‖MAC(ψ(y ⊕ 1)) : y ∈ Y}
L3 = {z ‖MAC(φ(z)) ‖MAC(φ(z ⊕ 1)) : z ∈ Z}
L4 = {t ‖MAC(ψ(t)) ‖MAC(ψ(t ⊕ 1)) : t ∈ T }

Notice that we can build those lists with 5 ·23n/4 queries as, by construction, for
any element i of Y,Z, T the element (i⊕1) also belongs to Y,Z, T , respectively.
We use the algorithm of Section 2.2 to find (x, y, z, t) ∈ X × Y × Z × T such
that L1[x]⊕L2[y]⊕L3[z]⊕L4[t] = 0 with Õ(23n/2) operations, using a memory
of size O(23n/4). After finding a collision, we verify that it is not a false positive
by testing the relation for another value c. As there are on average O(1) random
quadruples the attack is indeed using a total of 5 · 23n/4 + O(1) = O(23n/4)
queries.

Universal Forgeries. This attack can be extended to a universal forgery. In-
deed, the fixed prefix 0 and 1 can be replaced by v and v ⊕ 1 for any block v,
and when we identify a right quadruple (x, y, z, t) we deduce the value ∆1 =
E1(v)⊕E1(v⊕ 1) and ∆3 = E3(v)⊕E3(v⊕ 1). There is also a length extension
property: if (x, y, z, t) is a right quadruple, then MAC(v ‖ x ‖ s)⊕MAC(v ⊕ 1 ‖
y ‖ s)⊕MAC(v ‖ z ‖ s)⊕MAC(v ⊕ 1 ‖ t ‖ s) = 0 for any suffix s.

Therefore if we want to forge a MAC for any message m of size ` ≥ 2 blocks
we parse it as m = v‖w‖s (where s has zero, one, or several blocks) and perform



the attack to recover ∆1 and ∆3. Then we can forge using the previous relation,
and Equation (2):

MAC(v ‖ w ‖ s) = MAC(v ⊕ 1 ‖ w ⊕∆1 ‖ s)⊕MAC(v ‖ w ⊕∆3 ‖ s)
⊕MAC(v ⊕ 1 ‖ w ⊕∆1 ⊕∆3 ‖ s)

Optimizing the time complexity. Equation (2) can also be used to reduce
the time complexity below 2n, at the cost of more oracle queries. Indeed, if we
consider a subset C of {0, 1}n, we have:

R(x, y, z, t)⇔ ∀c ∈ C,R(x⊕ c, y ⊕ c, z ⊕ c, t⊕ c)
⇒ ∀c ∈ C, MAC(φ(x⊕ c))⊕MAC(ψ(y ⊕ c))

⊕MAC(φ(z ⊕ c))⊕MAC(ψ(t⊕ c)) = 0
⇒
⊕

c∈CMAC(φ(x⊕ c))⊕
⊕

c∈CMAC(ψ(y ⊕ c))
⊕
⊕

c∈CMAC(φ(z ⊕ c))⊕
⊕

c∈CMAC(ψ(t⊕ c)) = 0 (4)

If we select C as a linear subspace, then the last expression does not depend
on the full (x, y, z, t), but only on their projection on the orthogonal of C. Con-
cretely, we use C =

{
x : x[3n/7:n] = 0

}
=
{
x : x < 23n/7}, so that the value⊕

c∈CMAC(φ(x⊕ c)) is independent of bits 0 to 3n/7− 1 of x.
Therefore, we consider the rewritten MAC function

MAC′(v ‖ w) =
⊕

c∈CMAC(v ‖ w ⊕ c),

the following message injections, with a 4n/7-bit input

φ′(i) = 0 ‖ i|0 ψ′(i) = 1 ‖ i|0,

and a reduced relation over 4n/7-bit values:

R′(x, y, z, t) :=


x⊕ y = (E1(0)⊕ E1(1))[3n/7:n]

y ⊕ z = (E3(0)⊕ E3(1))[3n/7:n]

z ⊕ t = (E1(0)⊕ E1(1))[3n/7:n]

t⊕ x = (E3(0)⊕ E3(1))[3n/7:n]

⇔


x⊕ y ⊕ z ⊕ t = 0
x⊕ y = (E1(0)⊕ E1(1))[3n/7:n]

x⊕ t = (E3(0)⊕ E3(1))[3n/7:n]

Thanks to Equation 4, we still have:

R′(x, y, z, t)⇒ MAC′(φ′(x))⊕MAC′(ψ′(y))⊕MAC′(φ′(z))⊕MAC′(ψ′(t)) = 0

Since the relation R′ is now only a 12n/7-bit condition, we can use shorter lists
than before, with just 23n/7 elements. We can also increase the filtering using



the same trick as previously, considering the following lists:

L′1 =
{
x ‖MAC′(φ′(x)) ‖MAC′(φ′(x⊕ 1)) : x ∈ {0, 1}4n/7, x[0:n/7] = 0

}
L′2 =

{
y ‖MAC′(ψ′(y)) ‖MAC′(ψ′(y ⊕ 1)) : y ∈ {0, 1}4n/7, y[n/7:2n/7] = 0

}
L′3 =

{
z ‖MAC′(φ′(z)) ‖MAC′(φ′(z ⊕ 1)) : z ∈ {0, 1}4n/7, z[2n/7:3n/7] = 0

}
L′4 =

{
t ‖MAC′(ψ′(t)) ‖MAC′(ψ′(t ⊕ 1)) : t ∈ {0, 1}4n/7, t[3n/7:4n/7] = 0

}
Finally, using the algorithm of Section 2.2 with s = 3n/7 and p = 0, we

can locate a right quadruple using Õ(26n/7) queries, Õ(26n/7) operations, and
O(23n/7) memory. This recovers only 4n/7 bits of E1(0) ⊕ E1(1) and E3(0) ⊕
E3(1), but we can easily recover the remaining bits, either by brute force, or by
repeating the attack with a different set C.

3.2 Attacking GCM-SIV2

GCM-SIV2 is an authenticated encryption mode designed by Iwata and Mine-
matsu [20] as a double-block-hash version of GCM-SIV (in the following, we con-
sider GCM-SIV2 with GHASH as the underlying universal hash function). For sim-
plicity, we focus on the authentication part of GCM-SIV2, using inputs with a
non-empty associated data, and an empty message. In this case, GCM-SIV2 be-
comes a nonce-based MAC. The message M (considered as associated data for
the mode) is zero-padded, divided into n-bit blocks, and the length is appended
in an extra block. Then the construction is defined as follows, with � a finite
field multiplication (see also Figure 3):

Σ(N,M) = N ⊕ `�H1 ⊕
⊕`

i=1 mi �H`+2−i
1

Θ(N,M) = N ⊕ `�H2 ⊕
⊕`

i=1 mi �H`+2−i
2

MAC(N,M) = E1(Σ(M))⊕ E2(Θ(M))
∥∥∥ E3(Σ(M))⊕ E4(Θ(M))

Attack. The structure of the authentication part of GCM-SIV2 is essentially the
same as the structure of SUM-ECBC, where the block cipher calls E1 and E3 are
replaced by multiplication by H1 and H2. The finalization function has a 2n-bit
output MAC1,MAC2, but quadruples following R will collide on both outputs.
Thus, we can essentially repeat the SUM-ECBC attack, but there is an important
difference: GCM-SIV2 is a nonce-based MAC, rather than a deterministic one.
Therefore, all queries must include a nonce N , and we should not query two
different messages with the same nonce. We adapt the previous attack using
message injection functions that output both a nonce and a message, so that we
use two fixed messages, 0 and 1, with variable nonces:

φ(i) = (i, 0) ψ(i) = (i, 1)



m1 m2 ... m` ` N

...

...

H1

H2

H1

H2

H1

H2

H1

H2

E1

E3

E2

E4

Σ

Θ

MAC1(m)

MAC2(m)

Fig. 3. Diagram for authentication in GCM-SIV2 using GHASH with a `-block message, a
nonce N , hash keys H1 and H2.

MAC(φ(i)) = E1
(
i⊕H1︸ ︷︷ ︸
Σ0(i)

)
⊕ E2

(
i⊕H2︸ ︷︷ ︸
Θ0(i)

) ∥∥∥ E3
(
Σ0(i)

)
⊕ E4

(
Θ0(i)

)
MAC(ψ(i)) = E1

(
i⊕H1 ⊕H2

1︸ ︷︷ ︸
Σ1(i)

)
⊕ E2

(
i⊕H2 ⊕H2

2︸ ︷︷ ︸
Θ1(i)

) ∥∥∥ E3
(
Σ1(i)

)
⊕ E4

(
Θ1(i)

)
.

We consider quadruples of nonce/messages X,Y, Z, T with

X = φ(x) Y = ψ(y) Z = φ(z) T = ψ(t),

and we have the same kind of relations as in the previous attack:

R(x, y, z, t) :=


Σ0(x) = Σ1(y)
Σ0(z) = Σ1(t)
Θ0(z) = Θ1(y)
Θ0(x) = Θ1(t).

⇔


x⊕ y ⊕ z ⊕ t = 0
x⊕ y = H2

1
x⊕ t = H2

2

⇒ MAC(φ(x))⊕MAC(ψ(y))⊕MAC(φ(z))⊕MAC(ψ(t)) = 0

Since the MAC output is 2n-bit long, we can directly build an attack with
O(23n/4) queries: we consider four distinct sets X ,Y,Z, T of 23n/4 values, and
we look for a quadruple (x, y, z, t) ∈ X × Y × Z × T , such that{

x⊕ y ⊕ z ⊕ t = 0
MAC(φ(x))⊕MAC(ψ(y))⊕MAC(φ(z))⊕MAC(ψ(t)) = 0

(5)

we expect to find one good quadruple that respectsR along withO(1) quadruples
that randomly satisfy the observable filter (5). This leads to an attack with
O(23n/4) queries and time Õ(23n/2). Since we recover H1 and H2 (from H2

1 =
x ⊕ y and H2

2 = x ⊕ t), we can do universal forgeries. In addition, we can also
easily adapt the attack with O(26n/7) queries and time Õ(26n/7).



4 Attacking PMAC-like constructions

We now describe attacks against PMAC+ [43] and related constructions: 1kMAC+ [9],
and LightMAC+ [33]. We have an existential forgery attack with O(23n/4) queries
and Õ(23n/2) operations (using memory O(23n/4)), with a range of time-memory
trade-offs with O(2t) queries, with 3n/4 < t < n, and Õ(23n−2t) operations
(using memory O(2t)).

4.1 Attacking PMAC+

PMAC+ was designed by Yasuda in 2011 [43], as a variant of PMAC [5] with a larger
internal state. The scheme internally uses a tweakable block cipher construction
inspired by the XE construction [39], that we denote as Ẽi. The message M is
first padded with 10∗ padding, and divided into n-bit blocks, but for simplicity
we ignore the padding in our description. The construction is shown in Figure 43:

Σ(M) =
⊕`

i=1 Ẽi(mi) Ẽi(x) = E1(x⊕ 2i �∆0 ⊕ 22i �∆1)

Θ(M) =
⊕`

i=1 2`−i � Ẽi(mi) ∆0 = E1(0) ∆1 = E1(1)
MAC(M) = E2(Σ(M))⊕ E3(Θ(M))

Attack. As in the previous attack, we use message injection functions with two
different prefixes, but we include an extra block u to define related quadruples:

φu(i) = u ‖ 0 ‖ i ψu(i) = u ‖ 1 ‖ i

MAC(φu(i)) = E2

(
Ẽ1(u)⊕ Ẽ2(0)⊕ Ẽ3(i)︸ ︷︷ ︸

Σu,0(i)

)
⊕ E3

(
4Ẽ1(u)⊕ 2Ẽ2(0)⊕ Ẽ3(i)︸ ︷︷ ︸

Θu,0(i)

)
MAC(ψu(i)) = E2

(
Ẽ1(u)⊕ Ẽ2(1)⊕ Ẽ3(i)︸ ︷︷ ︸

Σu,1(i)

)
⊕ E3

(
4Ẽ1(u)⊕ 2Ẽ2(1)⊕ Ẽ3(i)︸ ︷︷ ︸

Θu,1(i)

)
.

Next, we build quadruples of messages X,Y, Z, T with

X = φu(x) Y = ψu(y) Z = φu(z) T = ψu(t),

and we look for a quadruple with partial state collisions for the underlying pairs,
i. e. a quadruple following the relation:

R(x, y, z, t) :=


Σu,0(x) = Σu,1(y)
Σu,0(z) = Σu,1(t)
Θu,0(z) = Θu,1(y)
Θu,0(x) = Θu,1(t).

3 The algorithm and the figure given in [43] differ in the coefficients used to compute Θ.
We use the algorithmic description because it matches later PMAC+ variants, but the
attack can easily be adapted to the other case.



m1

2 ·∆0

22 ·∆1

E1

Ẽ1

0

0

2`−1

m2

22 ·∆0

24 ·∆1

E1

Ẽ2

2`−2

...

...

...

m`

2` ·∆0

22` ·∆1

E1

Ẽ`

20

E2

E3

Σ

Θ

MAC(m)

Fig. 4. Diagram for PMAC+ with a `-block message where ∆0 = E1(0) and ∆1 = E1(1).

We have

R(x, y, z, t)⇔


Ẽ3(x)⊕ Ẽ2(0) = Ẽ3(y)⊕ Ẽ2(1)
Ẽ3(z)⊕ Ẽ2(0) = Ẽ3(t)⊕ Ẽ2(1)
Ẽ3(y)⊕ 2Ẽ2(1) = Ẽ3(z)⊕ 2Ẽ2(0)
Ẽ3(t)⊕ 2Ẽ2(1) = Ẽ3(x)⊕ 2Ẽ2(0)

⇔


Ẽ3(x)⊕ Ẽ3(y)⊕ Ẽ3(z)⊕ Ẽ3(t) = 0
Ẽ3(x)⊕ Ẽ3(y) = Ẽ2(0)⊕ Ẽ2(1)
Ẽ3(t)⊕ Ẽ3(x) = 2Ẽ2(0)⊕ 2Ẽ2(1)

Again, R defines a 3n−bit relation, and we can detect it through the sum of the
MACs following Equation (1):

R(x, y, z, t)⇒ MAC(φu(x))⊕MAC(ψu(y))⊕MAC(φu(z))⊕MAC(ψu(t)) = 0

In addition, the relation R is independent of the value u, so that we can easily
build several quadruples that satisfy R simultaneously. This leads to an attack
with O(23n/4) queries: we consider four sets X ,Y,Z, T of 23n/4 random values,
and we look for a quadruple (x, y, z, t) ∈ X × Y × Z × T , such that

∀u ∈ {0, 1, 2}, MAC(φu(x))⊕MAC(ψu(y))⊕MAC(φu(z))⊕MAC(ψu(t)) = 0



We expect on average one random quadruple (with 23n potential quadruples,
and a 3n-bit filtering), and one quadruple satisfying R (also a 3n-bit condition).
The correct quadruple can easily be checked with a few extra queries.

In practice, we use the generalized birthday algorithms of Section 2.2 in order
to optimize the complexity of the attack. We consider four lists:

L1 = {MAC(φ0(x)) ‖MAC(φ1(x)) ‖MAC(φ2(x)) : x ∈ X}
L2 = {MAC(ψ0(y)) ‖MAC(ψ1(y)) ‖MAC(ψ2(y)) : y ∈ Y}
L3 = {MAC(φ0(z)) ‖MAC(φ1(z)) ‖MAC(φ2(z)) : z ∈ Z}
L4 = {MAC(ψ0(t)) ‖MAC(ψ1(t)) ‖MAC(ψ2(t)) : t ∈ T }

and we look for a quadruple (x, y, z, t) ∈ X ×Y×Z×T such that L1[x]⊕L2[y]⊕
L3[z] ⊕ L4[t] = 0. This can be done with Õ(23n/2) operations, using a memory
of size O(23n/4). Finally, once a quadruple (x, y, z, t) satisfying R(x, y, z, t) has
been detected, it can be used to generate forgeries. Indeed, we can predict the
MAC of a new message by making three new queries using Equation (1):

∀u, MAC(φu(x)) = MAC(ψu(y))⊕MAC(ψu(z))⊕MAC(φu(t))

Time-Query Trade-offs. As opposed to the SUM-ECBC attack, we don’t have
an analogue to Equation (2) that can be used to reduce the time complexity.
However, the time complexity of the algorithm can be slightly reduced when
using more than O(23n/4) queries. If we consider sets X ,Y,Z, T of size 2t with
3n/4 < t < n, the resulting 4-sum is slightly easier, because there are 24t−3n

expected solutions. Using the algorithm of section 2.2, this can be solved in time
Õ(23n−2t), using a memory of size O(2t).

4.2 Attacking LightMAC+

LightMAC+ was designed by Naito [33] using ideas from PMAC+ [43] and LightMAC [29].
If we consider it as based on a tweakable block cipher Ẽ, it follows the same
structure as PMAC+ (see Figure 5), but Ẽ takes a message block smaller than n
bits:

Σ(M) =
⊕`

i=1 Ẽi(mi) Ẽi(x) = E1(i|x)

Θ(M) =
⊕`

i=1 2`−i � Ẽi(mi)
MAC(M) = E2(Σ(M))⊕ E3(Θ(M))

Since the structure of LightMAC+ is the same as the structure of PMAC+, we
can use the same attack. The only difference from our point of view is that the
message blocks are shorter than the block-size. As long as one message block is
big enough to fit 23n/4 different values, our attack will succeed.

This attack violates the improved security proof recently published at CT-
RSA [34], with a security bound of O(q2

t qv/22n) (with qt MAC queries and qv
verification queries). Indeed, our attack reaches a constant success probability
with qt = O(23n/4) and qv = 1. We have shared our attack with Naito and he
agreed that his proof is flawed.



0|m1

(1)z|0

E1

0

0

2`−1

Ẽ1

0|m2

(2)z|0

E1

2`−2

Ẽ2

...

...

...

0|m`

(`)z|0

E1

Ẽ`

E2

E3

Σ

Θ

MAC(m)

Fig. 5. Diagram for LightMAC+ with (n− z)-bit blocks of a `-block message where (v)z
is the value v written over z bits.

4.3 Attacking 1kPMAC+

1kPMAC+ is a single-key variant of PMAC+ [43] designed by Datta, Dutta, Nandi,
Paul and Zhang [9], shown in Figure 8.

Since the structure of 1kPMAC+ is the same as the structure of PMAC+, we can
use the same attack. Alternatively, we can take advantage of the fix functions
to mount a more straightforward attack, as shown in Section 6.

5 Attacking f9-like constructions

Our third attack is applicable to 3kf9 [44] and similar constructions. We have
a universal forgery attack with O(23n/4) queries and Õ(25n/4) operations using
memory O(2n), with a possible time-memory trade-offs.

5.1 Attacking 3kf9

3kf9 [44], designed by Xhang, Wu, Sui and Wang, is a three-key variant of the
f9 mode used in 3G telephony. While the original f9 does not have security
beyond the birthday bound [24], 3kf9 is secure up to 22n/3 queries. We describe
3kf9 in Figure 6:

Σ(M) = σ` σ0 = 0 σi = E1(σi−1 ⊕mi)

Θ(M) =
⊕`

i=1 σi

MAC(M) = E2(Σ(M))⊕ E3(Θ(M))



Attack. Our attack follows the same structure as the previous attacks. We start
with messages of the form:

φ(i) = 0 ‖ i ψ(i) = 1 ‖ i,

and the corresponding MACs:

MAC(φ(i)) = E2

(
E1
(
x⊕ E1(0)

)︸ ︷︷ ︸
Σ0(x)

)
⊕ E3

(
E1
(
x⊕ E1(0)

)
⊕ E1

(
0
)︸ ︷︷ ︸

Θ0(x)

)
MAC(ψ(i)) = E2

(
E1
(
x⊕ E1(1)

)︸ ︷︷ ︸
Σ1(x)

)
⊕ E3

(
E1
(
x⊕ E1(1)

)
⊕ E1

(
1
)︸ ︷︷ ︸

Θ1(x)

)
.

We use quadruples of messages X,Y, Z, T with

X = φ(x) Y = ψ(y) Z = φ(z) T = ψ(t),

and we look for a quadruple with partial state collisions for the underlying pairs,
i. e. a quadruple following the relation:

R(x, y, z, t) :=


Σ0(x) = Σ1(y)
Σ0(z) = Σ1(t)
Θ0(z) = Θ1(y)
Θ0(x) = Θ1(t).

⇔


x⊕ E1(0) = y ⊕ E1(1)
z ⊕ E1(0) = t⊕ E1(1)
E1(z ⊕ E1(0))⊕ E1(0) = E1(y ⊕ E1(1))⊕ E1(1)
E1(x⊕ E1(0))⊕ E1(0) = E1(t⊕ E1(1))⊕ E1(1)

⇔


x⊕ y ⊕ z ⊕ t = 0
x⊕ y = E1(0)⊕ E1(1)
E1(x⊕ E1(0))⊕ E1(t⊕ E1(1)) = E1(0)⊕ E1(1)

⇒ MAC(φ(x))⊕MAC(ψ(y))⊕MAC(φ(z))⊕MAC(ψ(t)) = 0.

As in the previous attacks, R defines a 3n−bit relation. Moreover, we can easily
observe when x⊕ y ⊕ z ⊕ t = 0, and the relation x⊕ y = E1(0)⊕ E1(1) can be
verified across several quadruples. We don’t have related quadruples satisfying
R simultaneously as in the previous attacks, but we can use those properties
to detect right quadruples. This leads to an attack with Õ(23n/4) queries: we
consider four sets X ,Y,Z, T of 4

√
n × 23n/4 random values, and we look for

quadruples (x, y, z, t) ∈ X × Y × Z × T , such that:{
x⊕ y ⊕ z ⊕ t = 0
MAC(φ(x))⊕MAC(ψ(y))⊕MAC(φ(z))⊕MAC(ψ(t)) = 0.

(6)



m1

E1

m2

E1

m`−1

E1

...

...

m`

E1

E3

E2
Σ

Θ

MAC(m)

Fig. 6. Diagram for 3kf9 with a `−block message.

Since this a 2n-bit condition, we expect on average n · 2n quadruples (x, y, z, t)
satisfying (6). In order to filter out the right ones, we look at the value x⊕ y for
all these quadruples. While the wrong quadruples should have a random x⊕ y,
the right ones have x⊕ y = E1(0)⊕E1(1). Therefore, with high probability, the
most frequent value for x⊕y is equal to E1(0)⊕E1(1), and quadruples satisfying
this extra relation are right quadruples with probability 1/2. More precisely, we
expect on average n wrong quadruples for each value of x ⊕ y, and n right
quadruples with x⊕ y = E1(0)⊕ E1(1).

Optimizing the time complexity. While the algorithm of Section 2.2 would
take time Õ(23n/2) with Õ(23n/4) queries, we can reduce the time complexity
using sets X ,Y,Z, T with some structure. More precisely, we use:

X = Z =
{
x ∈ {0, 1}n : x[0:n/4] = 0

}
Y = T =

{
x ∈ {0, 1}n : x[n/4:n/2] = 0

}
so that quadruples can be written as

x =: x3|x2|x1|0 ∈ X y =: y3|y2|0|y0 ∈ Y
z =: z3|z2|z1|0 ∈ Z t =: t3|t2|0|t0 ∈ T .

In particular, right quadruples satisfy x⊕y⊕z⊕t = 0, therefore x1 = z1, y0 = t0,
and x3|x2⊕z3|z2 = y3|y2⊕ t3|t2. We use these properties to adapt the algorithm
of Section 2.2 and locate the quadruples efficiently. First we guess the n/2-bit
value α3|α2 := x3|x2 ⊕ z3|z2 = y3|y2 ⊕ t3|t3. Then, for each x = x3|x2|x1|0,
there is a single candidate z = (x3 ⊕ α3)|(x2 ⊕ α2)|x1|0 that could be part of
a right quadruple. Similarly, every y = y3|y2|0|y0 can be paired with a single



t = (y3 ⊕ α3)|(y2 ⊕ α2)|0|y0. Therefore, we consider the two following lists:

L1 = {MAC(φ(x3|x2|x1|0))⊕MAC((x3 ⊕ α3)|(x2 ⊕ α2)|x1|0) : x3|x2|x1|0 ∈ X}
L2 = {MAC(φ(y3|y2|0|y0))⊕MAC((y3 ⊕ α3)|(y2 ⊕ α2)|0|y0) : y3|y2|0|y0 ∈ Y}

After sorting the lists, we look for matches, and the corresponding quadruples
x, y, z, t are exactly the quadruples satisfying

x⊕ y ⊕ z ⊕ t = 0
(x⊕ z)[n/2:n] = α3|α2

MAC(φ(x))⊕MAC(ψ(y))⊕MAC(φ(z))⊕MAC(ψ(t)) = 0.
(7)

More precisely, a match L1[x] = L2[y] suggests z = x ⊕ α3|α2|0|0 and t =
y⊕α3|α2|0|0, but there are four corresponding quadruples: (x, y, z, t), (z, y, x, t),
(x, t, z, y), (z, t, x, y), and two candidate values for E1(0) ⊕ E1(1): x ⊕ y and
x⊕ y ⊕ α3|α2|0|0.

We need Õ(23n/4) operations to generate those quadruples. We repeat this
2n/2 times to exhaust all n/2-bit values α3|α2 and generate all quadruples sat-
isfying (6). Finally, we use an array to count the number of occurrences of each
possible value of x ⊕ y. Each counter receives an average two values, but the
counter corresponding to E1(0)⊕E1(1) will receive three values on average. Af-
ter repeating all the operations O(n) times, with some arbitrary constants in
place of the zero bits, the highest counter corresponds to E1(0) ⊕ E1(1) with
high probability, as proved in Section 5.2. This gives an attack with Õ(23n/4)
queries, Õ(25n/4) operations, and O(2n) memory4.

Time-Memory Trade-offs. We can reduce the memory usage if we store only
a subset of the counters, and repeat the whole algorithm until the whole set has
been covered. Concretely, we store only the counters with a fixed value for bits
[0 : n/8] and [n/4 : 3n/8] of x ⊕ y. Because of the way the lists L1 and L2 are
constructed, we have actually fixed n/8 bits of y0 and x1, and we can reduce the
lists to size 25n/8. Therefore we evaluate 23n/4 counters in time Õ(2n/2 · 25n/8),
using only O(23n/4) memory. We repeat iteratively over the full counter set, so
we need time Õ(2n/4 · 2n/2 · 25n/8) = Õ(211n/8). More generally, we have a time-
memory trade-off with time Õ(25n/4+t/2) and memory O(2n−t) for 0 < t < n/4.

Forgeries. Once we found a quadruple (x, y, z, t) that respects R(x, y, z, t) we
know that after processing message φ(x) = 0 ‖ x and ψ(t) = 1 ‖ t, there is
no difference in the Θ part of the state (Θ0(x) = Θ1(t)). Moreover we have
Θ0(x) = Σ0(x)⊕ E1(0) and Θ1(t) = Σ1(x)⊕ E1(1); this implies that there is a
difference E1(0) ⊕ E1(1) = x ⊕ y in the Σ part of the state. Therefore, we can
build a full state collision with message 0 ‖ x ‖ 0 and 1 ‖ t ‖ x⊕ y. In particular,
the following relation can be used to create forgeries with an arbitrary message
m (of any length):

MAC(0 ‖ x ‖ 0 ‖m) = MAC(1 ‖ t ‖ x⊕ y ‖m).
4 We can actually reduce the polynomial factors by fixing only (n− log2(n))/4 bits to
zero, in order to have sets of size 4√n · 23n/4.



Universal Forgeries. We can even forge the tag of an arbitrary message of
length at least (2n+ 2) blocks with complexity only n+ 1 times the complexity
of the simple forgery attack. The technique is more advanced and inspired by
the multi-collision attack described by Joux [23]. For ease of notation we’ll show
how to forge the signature for a message starting with 2n+ 2 blocks of zero, but
this can be trivially adapted for any message.

First, we find a quadruple (x1, y1, z1, t1) as before. Then we consider messages
0‖0 and 1‖x1⊕y1. Since x1⊕y1 = E1(0)⊕E1(1), we have Σ(0‖0) = Σ(1‖x1⊕y1),
i. e. the Σ part of the state collides. Moreover, we know the difference in the Θ
part: Θ(0 ‖ 0)⊕Θ(1 ‖ x1 ⊕ y1) = x1 ⊕ y1.

More generally, at step i we use message injection functions

φi(x) = 0 ‖ 0 ‖ . . . ‖ 0︸ ︷︷ ︸
×2(i−1)

‖ 0 ‖ x ψi(x) = 0 ‖ 0 ‖ . . . ‖ 0︸ ︷︷ ︸
×2(i−1)

‖ 1 ‖ x,

to look for a quadruple of messages

Xi = φi(xi) Yi = ψi(yi) Zi = φi(zi) Ti = ψi(ti).

When a right quadruple (xi, yi, zi, ti) has been identified, we can deduce that
the MACs for 0 ‖ 0 ‖ . . . ‖ 0 ‖ 0 ‖ 0 and 0 ‖ 0 ‖ . . . ‖ 0 ‖ 1 ‖ xi ⊕ yi will match on
the Σ branch and differ by xi ⊕ yi in their Θ branch.

After several iterations, we have actually built a multi-collision: all the mes-
sages h1 ‖ h2 ‖ . . . ‖ hn ‖ hn+1 with hi ∈ {(1 ‖ xi ⊕ yi), (0 ‖ 0)} collide on the
Σ branch. In addition, we also know the difference in the Θ branch for those
messages: it is equal to

⊕
{i : hi 6=0‖0}(xi ⊕ yi).

After at most n + 1 steps, we can find a non empty subset I ⊆ [1 : n + 1]
such that

⊕
i∈I(xi ⊕ yi) = 0 by simple linear algebra5. This gives a collision on

the full state, using messages m0 = 0 ‖ 0 ‖ . . . ‖ 0 (with 2(n + 1) blocks) and
h = h1 ‖ h2 ‖ . . . ‖ hn ‖ hn+1 with hi = 1 ‖ xi ⊕ yi if i ∈ I, hi = 0 ‖ 0 otherwise.
Since the full state collides, we have for any message m (of any length):

MAC(h ‖m) = MAC(m0 ‖m).

5.2 Detailed Complexity Analysis

We want to prove the claim that one will need to find O(n · 2n) quadruples in
order to finish the attack on 3kf9 described in Section 5.1. We say the attack
finishes when we recover the target value T = E(0)⊕ E(1).

Assuming that each quadruple we find respects R with probability 1/2n, we
fill a list of counters for every suspected values of T ; a random quadruple gives
two random values and a right one gives one value equal to T and one random
value. Therefore we sum up the distribution of an observable value x as:

x

{
$←− {0, 1}n with probability 1− 1/2n+1

←− T with probability 1/2n+1

5 We construct the kernel of the linear function λi 7→
⊕

i
λi(xi ⊕ yi)



Let N be the number of observed values, andXc
i represents the indicator that

the ith value equals c (following a Bernoulli distribution), so that the counter
corresponding to c is Xc =

∑N
i=1 X

c
i . Now we have to discriminate between the

distributions of Xc with c 6= T , and the distribution of XT :

Pr(XT
i = 1) = Pr(x = T ) = (1− 1/2n+1)/2n + 1/2n+1 = (3/2− 1/2n+1)/2n

=⇒ E[XT ] = N(3/2− 1/2n+1)/2n

Pr(Xc
i = 1) = Pr(x = c) = (1− 1/2n+1)/2n

=⇒ E[Xc] = N(1− 1/2n+1)/2n

=⇒ E[XT ] ≥ 3/2 ·E[Xc]

We use the Chernoff bound to get a lower bound on the probability that a
given counter is higher than the average value of XT :

Pr(Xc ≥ E[XT ]) ≤ Pr(Xc ≥ 3/2 ·E[Xc]) ≤ e−N(1−1/2n+1)/2n+1

and assuming the counters are independent:

Pr(Xc < E[XT ]) ≥ 1− e−N(1−1/2n+1)/2n+1

Pr(∀c 6= T : Xc < E[XT ]) ≥ (1− e−N(1−1/2n+1)/2n+1
)2n

This expression will asymptotically converge to a strictly positive constant when
e−N(1−1/2n+1)/2n+1 ' 2−n. Therefore, we use

N ' n ln(2) · 2n+1

(1− 1/2n+1) = O(n · 2n).

Since we observe 2 values per quadruples, this makes O(n · 2n) quadruples.
Moreover, the event ’XT ≥ E[XT ]’ has a probability close to 0.5, therefore after
O(n ·2n) quadruples, we indeed have a Ω(1) probability that XT is greater than
all of the other counters, which allows to recover the value T . Performing the
attack until the end with probability Ω(1) also requires O(n · 2n) quadruples.

To get to this result some assumptions have been made, like the independence
of the counters, but they all tend to be either conservative or asymptotically true.

5.3 Attacking 1kf9

1kf9 is a single-key variant of 3kf9 suggested in [8], and later withdrawn. Since
the structure of 1kf9 is the same as the structure of 3kf9, we can use the same
attack. However, in the next section, we give an attack with birthday complexity
using properties of the fix functions.

6 Attacks using collision in fix functions

Finally, we show attacks against single key variant of beyond-birthday-bound
MACs based on fix functions, as defined by by Datta, Dutta, Nandi, Paul and



0

E

m1

E

m`−1

E

...

...

m`

E

Σ′

Θ′

2

fix0

fix1

E

E

MAC(m)

Σ

Θ

Fig. 7. Diagram for 1kf9 with a `−block message.

Zhang [8,9]. The fix functions just fix the least significant bit an n-bit value to
zero or one, and are used for domain separation:

fix0 : x 7→ x[1:n]|0 fix1 : x 7→ x[1:n]|1

Datta et al. used those function to build a single-key variant of PMAC+ called
1kPMAC+ [9], and a single-key variant of 3kf9 called 1kf9 [8], both with security
up to 22n/3 queries. However, 1kf9 has been withdrawn because of issues in its
security proof. In this section, we exploit trivial collisions in the fix functions
to build colliding pairs or quadruples more easily:

fix0(x) = fix0(x⊕ 1) fix1(x) = fix1(x⊕ 1)

This allows a more straightforward attack against 1kPMAC+ with the same com-
plexity as the attacks in Section 4, and an attack against 1kf9 [8] with birthday
complexity, violating its security claims.

6.1 Attacking 1kf9

The 1kf9 mode uses the fix function for domain separation to build a single-key
variant of 3kf9, as shown in Figure 7:

σ0 = 0 σi = E(σi−1 ⊕mi)
Σ′(M) = σ` Σ(M) = 2� fix0(Σ′(M))

Θ′(M) =
⊕`

i=1 σi Θ(M) = 2� fix1(Θ′(M))
MAC(M) = E(Σ(M))⊕ E(Θ(M))



Attack. Because of a mistake in the proof of 1kf9, we can use pairs of messages
instead of quadruples. More precisely, instead of looking for a quadruple with
pairwise collisions in Σ and Θ, we look for a pair of message X,Y colliding
on Σ′, and with a difference in Θ′ that will be absorbed by the fix1 function.
Therefore, we define the relation R as:

R(X,Y ) :=
{
Σ′(X) = Σ′(Y )
2Θ′(X) = 2Θ′(Y )⊕ 1

⇒ MAC(X) = MAC(Y ).

We build the messages with different postfixes, parametrized by u:

X = φu(x) = x ‖ u Y = ψu(y) = y ‖ u⊕ d,

where d is the inverse of 2 in the finite field. With this construction, we have

Σ′(φu(x)) = E
(
u⊕ E(x⊕ E(0))

)
Θ′(φu(x)) = E

(
u⊕ E(x⊕ E(0))

)
⊕ E

(
x⊕ E(0)

)
⊕ E

(
0
)

Σ′(ψu(y)) = E
(
u⊕ d⊕ E(y ⊕ E(0))

)
Θ′(ψu(y)) = E

(
u⊕ d⊕ E(y ⊕ E(0))

)
⊕ E

(
y ⊕ E(0)

)
⊕ E

(
0
)

In particular, we observe

E(x⊕ E(0))⊕ E(y ⊕ E(0)) = d⇔ Σ′(φu(x)) = Σ′(ψu(y))
⇒ Θ′(φu(x))⊕Θ′(ψu(y)) = d

⇒ MAC(φu(x)) = MAC(ψu(y)). (8)

From this observation, we construct a birthday attack against 1kf9. We build
two lists:

L0 =
{

MAC(φ0(x)) : x < 2n/2
}

L1 =
{

MAC(ψ0(y)) : y < 2n/2
}
,

and we look for a match between the lists. We expect on average one pair to
match randomly, and one pair to match because of (8). Moreover, when we have
a collision candidate L0[x], L1[y], we can verify whether it is a right pair by
comparing MAC(x ‖ 1) and MAC(y ‖ d⊕ 1).

Therefore, we find a pair satisfying R(X,Y ) with complexity 2n/2, and this
leads to simple forgeries using (8). This contradicts the security proof of 1kf9
given in[8]. Note that this attack is still valid if we use different multiplications
for the two branches in the finalization function.

6.2 Attacking 1kPMAC+

The 1kPMAC+ mode uses the fix function for domain separation to build a single-
key variant of PMAC+, as shown in Figure 8.

Σ′(M) =
⊕`

i=1 Ẽi(mi) Σ(M) = fix0(Σ′(M))

Θ′(M) =
⊕`

i=1 2`+1−i � Ẽi(mi) Θ(M) = fix1(Θ′(M))
MAC(M) = E(Σ(M))⊕ E(Θ(M))



m1

∆1

∆2

E

Ẽ1

0

0

2`

m2

2 ·∆1

22 ·∆2

E

Ẽ2

2`−1

...

...

...

m`

2`−1 ·∆1

22`−2 ·∆2

E

Ẽ`

2

fix0

fix1

E

E

Σ′

Θ′

Σ

Θ

MAC(m)

Fig. 8. Diagram for 1kPMAC+ with a `-block message where ∆1 = E(1) and ∆2 = E(2).

Attack. Since the fix functions used in the finalization have collisions, we can
build a variant of the attacks from Section 4 using differences in Σ′ and/or Θ′
that are absorbed by the fix functions. More precisely, we use the following
relation R on quadruple of messages:

R(X,Y, Z, T ) :=


Σ′(X) = Σ(Y )′ ⊕ 1
Θ′(Y ) = Θ(Z)′ ⊕ 1
Σ′(Z) = Σ(T )′ ⊕ 1
Θ′(T ) = Θ(X)′ ⊕ 1

⇒ MAC(X)⊕MAC(Y )⊕MAC(Z)⊕MAC(T ) = 0.

We can find quadruple of messages satisfying R using a single message injection
function:

φu(i) = u ‖ i
X = φu(x) = u ‖ x Y = ψu(y) = u ‖ y Z = φu(z) = u ‖ z T = ψu(t) = u ‖ t

Indeed we have

MAC(φu(i)) = E
(
fix0

(
Ẽ1(u)⊕ Ẽ2(x)︸ ︷︷ ︸

Σ′
u(i)

))
⊕ E

(
fix1

(
4Ẽ1(u)⊕ 2Ẽ2(x)︸ ︷︷ ︸

Θ′
u(i)

))



We observe that:

R(x, y, z, t)⇔


Ẽ2(x) = Ẽ2(y)⊕ 1
Ẽ2(z) = Ẽ2(t)⊕ 1
2Ẽ2(x) = 2Ẽ2(z)⊕ 1
2Ẽ2(y) = 2Ẽ2(t)⊕ 1

⇔


Ẽ2(x)⊕ Ẽ2(y)⊕ Ẽ2(z)⊕ Ẽ2(t) = 0
Ẽ2(x) = Ẽ2(y)⊕ 1
Ẽ2(x) = Ẽ2(z)⊕ d

Therefore, R defines a 3n−bit relation that is independent of the value u. This
can be used for attacks in the same way as in the previous sections, using a
single list

L =
{

MAC(φ0(x)) ‖MAC(φ1(x)) ‖MAC(φ2(x)) : x < 23n/4
}

We can find a quadruple of four distinct values (x, y, z, t) such that L[x]⊕L[y]⊕
L[z]⊕ L[t] = 0 with Õ(23n/2) operations, using a memory of size O(23n/4), and
this easily leads to forgeries.

7 Conclusion

In this paper we have introduced a cryptanalysis technique to attack double-
block-hash MACs using quadruples of messages. We show three variants of
the technique, with attacks with O(23n/4) queries against SUM-ECBC, GCM-SIV2,
PMAC+, LightMAC+, 1kPMAC+ and 3kf9. All these modes have a security proof up
to 22n/3 queries, but no attacks with fewer than 2n queries were known before
our work.

Our main attacks are in the information theoretic model, and an attacker
would need more than 2n operations to perform a forgery. On the other hand,
we also have a variant of the attack against SUM-ECBC and GCM-SIV2 with time
complexity Õ(26n/7). This opens the path for attack with total complexity below
2n for other double-block-hash MACs.

We believe that studying generic attacks is important in order to understand
the security of these MACs, and is needed in addition to security proofs. In
particular our results show that they do not reach full security, and we invalidate
a recent proof for LightMAC+. However, there is still a gap between the 22n/3

bound of the proofs, and our attacks with O(23n/4) queries. Further work is
needed to determine whether the attacks can be improved, or whether better
proofs are possible.

Acknowledgement

Mridul Nandi is supported by R.C.Bose Centre for Cryptology and Security.
Part of this work was supported by the French DGA.



A SageMath Implementation

In order to verify that the algorithm is correct, we have implemented the attack
against SUM-ECBC with complexity Õ(26n/7) given in Section 3.1 with SageMath:

xor␣␣=␣lambda␣x,␣y:␣x.__xor__(y)
txor␣=␣lambda␣a,b:␣tuple(xor(u,v)␣for␣u,v␣in␣zip(a,b)␣)
def␣random_perm(n):
␣␣pp␣=␣Permutations(n).random_element()
␣␣return␣lambda␣x:␣pp(x+1)-1

def␣CBC(E,M):
␣␣x␣=␣0
␣␣for␣m␣in␣M:
␣␣␣␣x␣=␣E(x.__xor__(m))
␣␣return␣x
def␣SUMECBC(E1,E2,E3,E4,M):
␣␣a␣=␣E2(CBC(E1,M))
␣␣b␣=␣E4(CBC(E3,M))
␣␣return␣a.__xor__(b)

E1,␣E2,␣E3,␣E4␣=␣(random_perm(2^21)␣for␣_␣in␣range(4))
MAC␣=␣lambda␣x:␣SUMECBC(E1,E2,E3,E4,x)
print␣"Values␣to␣recover␣␣␣␣␣␣␣|␣{0:06x}␣{1:06x}".format(
␣␣xor(E1(0),E1(1)),␣xor(E3(0),E3(1)))

print␣"Generating␣data..."
L1,L2,L3,L4␣=␣[],␣[],␣[],␣[]
for␣i␣in␣range(2^12):
␣␣if␣(i&0b000000000111␣==␣0):␣L1.append(i)
␣␣if␣(i&0b000000111000␣==␣0):␣L2.append(i)
␣␣if␣(i&0b000111000000␣==␣0):␣L3.append(i)
␣␣if␣(i&0b111000000000␣==␣0):␣L4.append(i)
def␣macs(u,i):
␣␣x␣=␣(0,0)
␣␣for␣j␣in␣range(i,2^21,2^12):
␣␣␣␣x␣=␣txor(x,(MAC([u,j]),␣MAC([u,␣xor(1,j)])))
␣␣return␣(i,x)
L1␣=␣[␣macs(0,i)␣for␣i␣in␣L1␣]
L2␣=␣[␣macs(0,i)␣for␣i␣in␣L2␣]
L3␣=␣[␣macs(1,i)␣for␣i␣in␣L3␣]
L4␣=␣[␣macs(1,i)␣for␣i␣in␣L4␣]

print␣"Looking␣for␣quadruples..."
L13␣=␣sorted((txor(a[1],b[1]),a[0],b[0])␣for␣a␣in␣L1␣for␣b␣in␣L3)
L24␣=␣sorted((txor(a[1],b[1]),a[0],b[0])␣for␣a␣in␣L2␣for␣b␣in␣L4)



i,j␣=␣0,0
while␣i<len(L13)␣and␣j<len(L24):
␣␣if␣L13[i][0]␣==␣L24[j][0]:
␣␣␣␣if␣L13[i]␣!=␣L24[j]:
␣␣␣␣␣␣print␣"{:06x}␣{:06x}␣{:06x}␣{:06x}␣|␣{:06x}␣{:06x}".format(
␣␣␣␣␣␣␣␣L13[i][1],␣L13[i][2],␣L24[j][1],␣L24[j][2],
␣␣␣␣␣␣␣␣xor(L13[i][1],L13[i][2]),␣xor(L13[i][1],L24[j][2]))
␣␣␣␣if␣L13[i]␣<␣L24[j]:
␣␣␣␣␣␣i+=1
␣␣␣␣else:
␣␣␣␣␣␣j+=1
␣␣elif␣L13[i][0]␣<␣L24[j][0]:
␣␣␣␣i+=1
␣␣else:
␣␣␣␣j+=1

References
1. An, J.H., Bellare, M.: Constructing VIL-MACs from FIL-MACs: Message authen-

tication under weakened assumptions. In: Wiener, M.J. (ed.) CRYPTO’99. LNCS,
vol. 1666, pp. 252–269. Springer, Heidelberg (Aug 1999)

2. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO’96. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (Aug 1996)

3. Bellare, M., Guérin, R., Rogaway, P.: XOR MACs: New methods for message
authentication using finite pseudorandom functions. In: Coppersmith, D. (ed.)
CRYPTO’95. LNCS, vol. 963, pp. 15–28. Springer, Heidelberg (Aug 1995)

4. Bellare, M., Kilian, J., Rogaway, P.: The security of the cipher block chaining
message authentication code. Journal of Computer and System Sciences 61(3),
362–399 (2000)

5. Black, J., Rogaway, P.: A block-cipher mode of operation for parallelizable message
authentication. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp.
384–397. Springer, Heidelberg (Apr / May 2002)

6. Chose, P., Joux, A., Mitton, M.: Fast correlation attacks: An algorithmic point of
view. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 209–221.
Springer, Heidelberg (Apr / May 2002)

7. Cogliati, B., Seurin, Y.: EWCDM: An efficient, beyond-birthday secure, nonce-
misuse resistant MAC. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I.
LNCS, vol. 9814, pp. 121–149. Springer, Heidelberg (Aug 2016)

8. Datta, N., Dutta, A., Nandi, M., Paul, G., Zhang, L.: Building single-key beyond
birthday bound message authentication code. Cryptology ePrint Archive, Report
2015/958 (2015), http://eprint.iacr.org/2015/958

9. Datta, N., Dutta, A., Nandi, M., Paul, G., Zhang, L.: Single key variant of
PMAC_Plus. IACR Trans. Symm. Cryptol. 2017(4), 268–305 (2017)

10. Dinur, I., Leurent, G.: Improved generic attacks against hash-based MACs and
HAIFA. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol.
8616, pp. 149–168. Springer, Heidelberg (Aug 2014)

http://eprint.iacr.org/2015/958


11. Dutta, A., Jha, A., Nandi, M.: Tight security analysis of EHtM MAC. IACR Trans.
Symm. Cryptol. 2017(3), 130–150 (2017)

12. Ferguson, N.: Authentication weaknesses in GCM. Comment to NIST
(2005), http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/
CWC-GCM/Ferguson2.pdf

13. Computer data authentication. National Bureau of Standards, NIST FIPS PUB
113, U.S. Department of Commerce (1985)

14. Fuhr, T., Leurent, G., Suder, V.: Collision attacks against CAESAR candidates -
forgery and key-recovery against AEZ and Marble. In: Iwata, T., Cheon, J.H. (eds.)
ASIACRYPT 2015, Part II. LNCS, vol. 9453, pp. 510–532. Springer, Heidelberg
(Nov / Dec 2015)

15. Gilbert, E.N., MacWilliams, F.J., Sloane, N.J.: Codes which detect deception. Bell
Labs Technical Journal 53(3), 405–424 (1974)

16. Guo, J., Peyrin, T., Sasaki, Y., Wang, L.: Updates on generic attacks against
HMAC and NMAC. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I.
LNCS, vol. 8616, pp. 131–148. Springer, Heidelberg (Aug 2014)

17. Iwata, T.: New blockcipher modes of operation with beyond the birthday bound
security. In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 310–327.
Springer, Heidelberg (Mar 2006)

18. Iwata, T., Kurosawa, K.: OMAC: One-key CBC MAC. In: Johansson, T. (ed.)
FSE 2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (Feb 2003)

19. Iwata, T., Mennink, B., Vizár, D.: CENC is optimally secure. Cryptology ePrint
Archive, Report 2016/1087 (2016), http://eprint.iacr.org/2016/1087

20. Iwata, T., Minematsu, K.: Stronger security variants of GCM-SIV. IACR Trans.
Symm. Cryptol. 2016(1), 134–157 (2016), http://tosc.iacr.org/index.php/
ToSC/article/view/539

21. Iwata, T., Minematsu, K., Peyrin, T., Seurin, Y.: ZMAC: A fast tweakable block
cipher mode for highly secure message authentication. In: Katz, J., Shacham, H.
(eds.) CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 34–65. Springer, Heidelberg
(Aug 2017)

22. Jaulmes, É., Joux, A., Valette, F.: On the security of randomized CBC-MAC be-
yond the birthday paradox limit: A new construction. In: Daemen, J., Rijmen, V.
(eds.) FSE 2002. LNCS, vol. 2365, pp. 237–251. Springer, Heidelberg (Feb 2002)

23. Joux, A.: Multicollisions in iterated hash functions. Application to cascaded con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (Aug 2004)

24. Knudsen, L.R., Mitchell, C.J.: Analysis of 3gpp-mac and two-key 3gpp-mac. Dis-
crete Applied Mathematics 128(1), 181 – 191 (2003), http://www.sciencedirect.
com/science/article/pii/S0166218X02004444, international Workshop on Cod-
ing and Cryptography (WCC2001).

25. Lee, C., Kim, J., Sung, J., Hong, S., Lee, S.: Forgery and key recovery attacks
on PMAC and mitchell’s TMAC variant. In: Batten, L.M., Safavi-Naini, R. (eds.)
ACISP 06. LNCS, vol. 4058, pp. 421–431. Springer, Heidelberg (Jul 2006)

26. Leurent, G., Peyrin, T., Wang, L.: New generic attacks against hash-based MACs.
In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp.
1–20. Springer, Heidelberg (Dec 2013)

27. List, E., Nandi, M.: Revisiting full-PRF-secure PMAC and using it for beyond-
birthday authenticated encryption. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS,
vol. 10159, pp. 258–274. Springer, Heidelberg (Feb 2017)

28. List, E., Nandi, M.: ZMAC+ – an efficient variable-output-length variant of ZMAC.
IACR Trans. Symm. Cryptol. 2017(4), 306–325 (2017)

http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/CWC-GCM/Ferguson2.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/CWC-GCM/Ferguson2.pdf
http://eprint.iacr.org/2016/1087
http://tosc.iacr.org/index.php/ToSC/article/view/539
http://tosc.iacr.org/index.php/ToSC/article/view/539
http://www.sciencedirect.com/science/article/pii/S0166218X02004444
http://www.sciencedirect.com/science/article/pii/S0166218X02004444


29. Luykx, A., Preneel, B., Tischhauser, E., Yasuda, K.: A MAC mode for lightweight
block ciphers. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 43–59. Springer,
Heidelberg (Mar 2016)

30. Mennink, B., Neves, S.: Encrypted davies-meyer and its dual: Towards optimal
security using mirror theory. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017,
Part III. LNCS, vol. 10403, pp. 556–583. Springer, Heidelberg (Aug 2017)

31. Minematsu, K.: How to thwart birthday attacks against MACs via small ran-
domness. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 230–249.
Springer, Heidelberg (Feb 2010)

32. Naito, Y.: Full PRF-secure message authentication code based on tweakable block
cipher. In: Au, M.H., Miyaji, A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 167–182.
Springer, Heidelberg (Nov 2015)

33. Naito, Y.: Blockcipher-based MACs: Beyond the birthday bound without message
length. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS, vol.
10626, pp. 446–470. Springer, Heidelberg (Dec 2017)

34. Naito, Y.: Improved security bound of LightMAC_Plus and its single-key variant.
In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 300–318. Springer,
Heidelberg (Apr 2018)

35. Nikolic, I., Sasaki, Y.: Refinements of the k-tree algorithm for the generalized
birthday problem. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part II.
LNCS, vol. 9453, pp. 683–703. Springer, Heidelberg (Nov / Dec 2015)

36. Peyrin, T., Wang, L.: Generic universal forgery attack on iterative hash-based
MACs. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 147–164. Springer, Heidelberg (May 2014)

37. Preneel, B., van Oorschot, P.C.: MDx-MAC and building fast MACs from hash
functions. In: Coppersmith, D. (ed.) CRYPTO’95. LNCS, vol. 963, pp. 1–14.
Springer, Heidelberg (Aug 1995)

38. Preneel, B., van Oorschot, P.C.: On the security of two MAC algorithms. In: Mau-
rer, U.M. (ed.) EUROCRYPT’96. LNCS, vol. 1070, pp. 19–32. Springer, Heidelberg
(May 1996)

39. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (Dec 2004)

40. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–303. Springer, Heidelberg (Aug 2002)

41. Wegman, M.N., Carter, L.: New hash functions and their use in authentication
and set equality. Journal of Computer and System Sciences 22, 265–279 (1981)

42. Yasuda, K.: The sum of CBC MACs is a secure PRF. In: Pieprzyk, J. (ed.) CT-
RSA 2010. LNCS, vol. 5985, pp. 366–381. Springer, Heidelberg (Mar 2010)

43. Yasuda, K.: A new variant of PMAC: Beyond the birthday bound. In: Rogaway,
P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 596–609. Springer, Heidelberg (Aug
2011)

44. Zhang, L., Wu, W., Sui, H., Wang, P.: 3kf9: Enhancing 3GPP-MAC beyond the
birthday bound. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol.
7658, pp. 296–312. Springer, Heidelberg (Dec 2012)


	Generic Attacks against Beyond-Birthday-Bound MACs
	Introduction
	Generic Attack against double-block-hash MACs
	Using Quadruples
	Detecting Quadruples: Generalized Birthday Algorithms

	Attacking SUM-ECBC-like constructions
	Attacking SUM-ECBC
	Attacking GCM-SIV2

	Attacking PMAC-like constructions
	Attacking PMAC+
	Attacking LightMAC+
	Attacking 1kPMAC+

	Attacking f9-like constructions
	Attacking 3kf9
	Detailed Complexity Analysis
	Attacking 1kf9

	Attacks using collision in fixfunctions
	Attacking 1kf9
	Attacking 1kPMAC+

	Conclusion
	SageMath Implementation


