
Adaptive Garbled RAM from Laconic Oblivious
Transfer

Sanjam Garg?1, Rafail Ostrovsky??2, and Akshayaram Srinivasan1

1 University of California, Berkeley
{sanjamg,akshayaram}@berkeley.edu

2 UCLA
rafail@cs.ucla.edu

Abstract. We give a construction of an adaptive garbled RAM scheme.
In the adaptive setting, a client first garbles a “large” persistent database
which is stored on a server. Next, the client can provide garbling of mul-
tiple adaptively and adversarially chosen RAM programs that execute
and modify the stored database arbitrarily. The garbled database and
the garbled program should reveal nothing more than the running time
and the output of the computation. Furthermore, the sizes of the garbled
database and the garbled program grow only linearly in the size of the
database and the running time of the executed program respectively (up
to poly logarithmic factors). The security of our construction is based
on the assumption that laconic oblivious transfer (Cho et al., CRYPTO
2017) exists. Previously, such adaptive garbled RAM constructions were
only known using indistinguishability obfuscation or in random oracle
model. As an additional application, we note that this work yields the
first constant round secure computation protocol for persistent RAM pro-
grams in the malicious setting from standard assumptions. Prior works
did not support persistence in the malicious setting.

1 Introduction

Over the years, garbling methods [Yao86,LP09,AIK04,BHR12b,App17] have been
extremely influential and have engendered an enormous number of applications

? Research supported in part from DARPA/ARL SAFEWARE Award
W911NF15C0210, AFOSR Award FA9550-15-1-0274, AFOSR YIP Award,
DARPA and SPAWAR under contract N66001-15-C-4065, a Hellman Award and
research grants by the Okawa Foundation, Visa Inc., and Center for Long-Term
Cybersecurity (CLTC, UC Berkeley). The views expressed are those of the author
and do not reflect the official policy or position of the funding agencies.

?? Research supported in part by NSF grant 1619348, DARPA SPAWAR contract
N66001-15-1C-4065, US-Israel BSF grant 2012366, OKAWA Foundation Research
Award, IBM Faculty Research Award, Xerox Faculty Research Award, B. John
Garrick Foundation Award, Teradata Research Award, and Lockheed-Martin Cor-
poration Research Award. The views expressed are those of the authors and do not
reflect position of the Department of Defense or the U.S. Government.

2

in cryptography. Informally, garbling a function f and an input x, yields the
function encoding f̂ and the input encoding x̂. Given f̂ and x̂, there exists an
efficient decoding algorithm that recovers f(x). The security property requires

that f̂ and x̂ do not reveal anything about f or x except f(x). By now, it is well
established that realizing garbling schemes [BHR12b,App17] is an important
cryptographic goal.

One shortcoming of standard garbling techniques has been that the size of
the function encoding grows linearly in the size of the circuit computing the
function and thus leads to large communication costs. Several methods have
been devised to overcome this constraint.

– Lu and Ostrovsky [LO13] addressed the question of garbling RAM pro-
gram execution on a persistent garbled database. Here, the efficiency re-
quirement is that the size of the function encoding grows only with the
running time of the RAM program. This work has lead to fruitful line of
research [GHL+14,GLOS15,GLO15,LO17] that reduces the communication
cost to grow linearly with running times of the programs executed, rather
that the corresponding circuit sizes. A key benefit of this approach is that it
has led to constructions based on one-way functions.

– Goldwasser, Kalai, Popa, Vaikuntanathan, and Zeldovich [GKP+13] addressed
the question of reducing the communication cost by reusing the encodings.
Specifically, they provided a construction of reusable garbled circuits based
on standard assumptions (namely learning-with-errors). However, their con-
struction needs input encoding to grow with the depth of the circuit being
garbled.

– Finally, starting with Gentry, Halevi, Raykova, and Wichs [GHRW14], a col-
lection of works [CHJV15,BGL+15,KLW15,CH16,CCHR16,ACC+16] have
attempted to obtain garbling schemes where the size of the function en-
coding only grows with its description size and is otherwise independent of
its running time on various inputs. However, these constructions are proven
secure only assuming indistinguishability obfuscation [BGI+01,GGH+13].

A recurring theme in all the above research efforts has been the issue of adap-
tivity : Can the adversary adaptively choose the input after seeing the function
encoding?

This task is trivial if one reveals both the function encoding and the input
encoding together after the input is specified. However, this task becomes highly
non-trivial if we require the size of the input encoding to only grow with the size
of the input and independent of the complexity of computing f . The first solution
to this problem was provided by Bellare, Hoang and Rogaway [BHR12a] for the
case of circuits in the random oracle model [BR93]. Subsequently, several adap-
tive circuit garbling schemes have been obtained in the standard model from (i)
one-way functions [HJO+16,JW16,JKK+17],3 or (ii) using laconic OT [GS18a]
which relies on public-key assumptions [CDG+17,DG17,DGHM18,BLSV18].

3 A drawback of these works is that the size of the input encoding grows with the
width/depth of the circuit computing f

3

However, constructing adaptively secure schemes for more communication
constrained settings has proved much harder. In this paper, we focus on the
case of RAM programs. More specifically, adaptively secure garbled RAM is
known only using random oracles (e.g. [LO13,GLOS15]) or under very strong
assumptions such as indistinguishability obfuscation [CCHR16,ACC+16]. In this
work, we ask:

Can we realize adaptively secure garbled RAM from standard assumptions?

Further motivating the above question, is the tightly related application of
constructing constant round secure RAM computation over a persistent database
in the malicious setting. More specifically, as shown by Beaver, Micali and
Rogaway [BMR90] garbling techniques can be used to realize constant round
secure computation [Yao82,GMW87] constructions. Similarly, above-mentioned
garbling schemes for RAM programs also yield constant round, communication
efficient secure computation solutions [HY16,Mia16,GGMP16,KY18]. However,
preserving persistence of RAM programs in the malicious setting requires the
underlying garbling techniques to provide adaptive security.4

1.1 Our Results

In this work, we obtain a construction of adaptively secure garbled RAM based
on the assumption that laconic oblivious transfer [CDG+17] exists. Laconic
oblivious transfer can be based on a variety of public-key assumptions such
as (i) Computation Diffie-Hellman Assumption [DG17], (ii) Factoring Assump-
tion [DG17], or (iii) Learning-With-Errors Assumption [BLSV18,DGHM18]. In
our construction, the size of the garbled database and the garbled program grow
only linearly in the size of the database and the running time of the executed
program respectively (up to poly logarithmic factors). The main result in our
paper is:

Theorem 1 (Informal). Assuming either the Computational Diffie-Hellman
assumption or the Factoring assumption or the Learning-with-Errors assump-
tion, there exists a construction of adaptive garbled RAM scheme where the time
required to garble a database, a program and an input grows linearly (upto poly
logarithmic factors) with the size of the database, running time of the program
and length of the input respectively.5

Additionally, plugging our adaptively secure garbled RAM scheme into a ma-
licious secure constant round secure computation protocol yields a maliciously se-
cure constant round secure RAM computation protocol [IKO+11,ORS15,BL18,GS18b]

4 We note that adaptive security is not essential for obtaining protocols with
round complexity that grows with the running time of the executed pro-
grams [OS97,GKK+12,WHC+14].

5 As in the case of adaptively secure garbled circuits, the size of the input encoding
must also grow with the output length of the program. Here, we implicitly assume
that the input and the outputs have the same length.

4

for a persistent database. Again, this construction is based on the assumption
that laconic OT exists and the underlying assumptions needed for the constant
round protocol.

2 Our Techniques

In this section, we outline the main challenges and the techniques used in our
construction of adaptive garbled RAM.

Starting Point. In a recent result, Garg and Srinivasan [GS18a] gave a con-
struction of adaptively secure garbled circuit transfer where the size of the input
encoding grows only with the input and the output length. The main idea behind
their construction is a technique to “linearize” a garbled circuit. Informally, a
garbled circuit is said to be linearized if the simulation of particular garbled gate
depends only on simulating one other gate (or in other words, the simulation
dependency graph is a line). In order to linearize a garbled circuit, their work
transforms a circuit into a sequence of CPU step circuits that can make read
and write accesses at fixed locations in an external memory. The individual step
circuits are garbled using a (plain) garbling scheme and the access to the mem-
ory is mediated using a laconic OT.6 The use of laconic OT enables the above
mentioned garbling scheme to have “linear” structure wherein the simulation of
a particular CPU step depends only on simulating the previous step circuit.

A Generalization. Though the approach of Garg and Srinivasan shares some
similarities with a garbling a RAM program (like garbling a sequence of CPU
step circuits), there are some crucial differences.

1. The first difference is that unlike a circuit, the locations that are accessed by
a RAM program are dynamically chosen depending on the program’s input.

2. The second difference is that the locations that are accessed might leak
information about the program and the input and a garbled RAM scheme
must protect against such leakages.

The first step we take in constructing an adaptive garbled RAM scheme is to
generalize the above approach of Garg and Srinivasan [GS18a] to construct an
adaptively secure garbled RAM scheme with weaker security guarantees. The
security that we achieve is that of unprotected memory access [GHL+14]. In-
formally, a garbled RAM scheme is said to have unprotected memory access if
both the contents of the database and the memory locations that are accessed
are revealed in the clear. This generalization is given in Section 4.

6 A laconic OT scheme allows to compress a large database/memory to a small digest.
The digest in some sense binds the entire database. In particular, given the digest
there exists efficient algorithms that can read/update particular memory locations.
The time taken by these algorithms grow only logarithmically with the size of the
database.

5

In the non-adaptive setting, there are standard transformations (outlined in
[GHL+14]) from a garbled RAM with unprotected memory access to a standard
garbled RAM scheme where both the memory contents and the access patterns
are hidden. This transformation involves the additional use of an ORAM scheme.
Somewhat surprisingly, these transformations fail in the adaptive setting! The
details follow.

Challenges. To understand the main challenges, let us briefly explain how the
security proof goes through in the work of Garg and Srinivasan [GS18a]. In a
typical construction of a garbled RAM program, using a sequence of garbled
circuits, one would expect that the simulation of garbled circuits would be done
from the first CPU step to the last CPU step. However, in [GS18a] proof, the
simulation is done in a rather unusual manner, from the last CPU step to the first
CPU step. Of course, it is not possible to simulate the last CPU step directly.
Thus, the process of simulating the last CPU step itself involves a sequence of
hybrids that simulate and “un-simulate” the garbling of the previous CPU steps.
Extending this approach so that the memory contents and the access patterns
are both hidden faces the following two main challenges.

- Challenge 1: In the Garg and Srinivasan construction [GS18a], memory
contents were encrypted using one-time pads. Since the locations that each
CPU step (for a circuit) reads from and write to are fixed, the one-time pad
corresponding to that location could be hardwired to those CPU steps. On
the other hand, in the case of RAM programs the locations being accessed
are dynamically chosen and thus it is not possible to hard-wire the entire
one-time pad into each CPU step as this would blow up the size of these
CPU steps.
It is instructive to note that encrypting the memory using an encryption
scheme and decrypting the read memory contents does not suffice. See more
on this in preliminary attempt below.

- Challenge 2: In the non-adaptive setting, it is easy to amplify unprotected
memory access security to the setting where memory accesses are hidden
using an oblivious RAM scheme [Gol87,Ost90,GO96]. However, in the adap-
tive setting this transformation turns out to be tricky. In a bit more detail,
the Garg and Srinivasan [GS18a] approach of simulating CPU step circuits
from the last to the first ends up in conflict with the security of the ORAM
scheme where the simulation is typically done from the first to the last CPU
steps. We note here that the techniques of Canetti et al. [CCHR16] and
Ananth et al. [ACC+16], though useful, do not apply directly to our setting.
In particular, in the Canetti et al. [CCHR16] and Ananth et al. [ACC+16]
constructions, CPU steps where obfuscated using an indistinguishability ob-
fuscation scheme. Thus, in their scheme the obfuscation for any individual
CPU step could be changed independently. For example, the PRF key used
in any CPU step could be punctured independent of the other CPU steps.
On the other hand, in our construction, inspite of each CPU step being gar-
bled separately, its input labels are hardwired in the previous garbled circuit.

6

Therefore, a change in hardwired secret value (like a puncturing a key) in
a CPU step needs an intricate sequence of hybrids for making this change.
For instance, in the case of the example above, it is not possible to puncture
the PRF key hardwired in a particular CPU step in one simple hybrid step.
Instead any change in this CPU step must change the CPU step before it
and so on. In summary, in our case, any such change would involve a new
and intricate hybrid argument.

2.1 Solving Challenge 1

In this subsection, we describe our techniques to solve challenge 1.

Preliminary Attempt. A very natural approach to encrypting external mem-
ory would be to use a pseudorandom function to encrypt memory content in
each location. More precisely, a data value d in location L is encrypted using the
key PRFK(L) where K is the PRF key. The key K for this pseudorandom func-
tion is hardwired in each CPU step so that it first decrypts the ciphertext that
is read from the memory and uses the underlying data for further processing.
This approach to solving Challenge 1 was in fact used in the works of Canetti et
al. [CCHR16] and Ananth et al. [ACC+16] (and several other prior works) in a
similar context. However, in order to use the security of this PRF, we must first
remove the hardwired key from each of the CPU steps. This is easily achieved
if we rely on indistinguishability obfuscation. Indeed, a single hybrid change is
sufficient to have the punctured key to be hardwired in each of the CPU steps.
However, in our setting this does not work! In particular, we need to puncture
the PRF key in each of the CPU step circuits by simulating them individually
and the delicate dependencies involved in garbling each CPU step blows up the
size of the garbled input to grow with the running time of the program.7 Due
to the same reason, the approaches of encrypting the memory by maintaining a
tree of secret keys [GLOS15,GLO15] do not work.

Our New Idea: A Careful Timed Encryption Mechanism. From the
above attempts, the following aspect of secure garbled RAM arise. Prior ap-
proaches for garbling RAM programs use PRF keys that in some sense “decrease
in power”8 as hybrids steps involve sequential simulation of the CPU steps start-
ing with the first CPU step and ending in the last CPU step. However, in the
approach of [GS18a], the hybrids do a backward pass, from the last CPU step
circuit to the first CPU step circuit. Therefore, we need a mechanism wherein

7 For the readers who are familiar with [GS18a], the number of CPU steps that have
to be maintained in the input dependent simulation for puncturing the PRF key
grows with the number of CPU steps that last wrote to this location and this could
be as large as the running time of the program.

8 The tree-based approaches of storing the secret keys use the mechanism wherein the
hardwired secret keys decrease in power in subsequent CPU steps. In particular, the
secret key corresponding to the root can decrypt all the locations, the secret keys
corresponding to its children can only decrypt a part of the database and so on.

7

the hardwired key for encryption in some sense “strengthens” along the first to
the last CPU step.

Location vs. Time. In almost all garbled RAM constructions, the data stored
at a particular location is encrypted using a location dependent key (e.g. [GLOS15]).
This was not a problem when the keys are being weakened across CPU steps.
However, in our case we need the key to be strengthened in power across CPU
steps. Thus, we need a special purpose encryption scheme where the keys are
derived based on time rather than the locations. Towards this goal, we construct
a special purpose encryption scheme called as a timed encryption scheme. Let
us explain this in more detail.

Timed Encryption. A timed encryption scheme is just like any (plain) sym-
metric key encryption except that every message is encrypted with respect to
a timestamp. Additionally, there is a special key constrain algorithm that con-
strains a key to only decrypt ciphertexts that are encrypted within a specific
timestamp. The security requirement is that the constrained key does not help
in distinguishing ciphertexts of two messages that are encrypted with respect
to some future timestamp. We additionally require the encryption using a key
constrained with respect to a timestamp time to have the same distribution as an
encryption using an unconstrained key as long as the timestamp to which we are
encrypting is less than or equal to time. For efficiency, we require that the size
of the constrained key to grow only with the length of the binary representation
of the timestamp.

Solving Challenge 1. Timed encryption provides a natural approach to solving
challenge 1. In every CPU step, we hardwire a time constrained key that allows
that CPU step to decrypt all the memory updates done by the prior CPU steps.
The last CPU step in some sense has the most powerful key hardwired, i.e., it can
decrypt all the updates made by all the prior CPU steps and the first CPU step
has the least powerful key hardwired. Thus, the hardwired secret key strengthens
from the first CPU step to the last CPU step. In the security proof, a backward
pass of simulating the last CPU step to the first CPU step conforms well with the
semantics and security properties of a timed encryption scheme. This is because
we remove the most powerful keys first and the rest of the hardwired secret keys
in the previous CPU steps do not help in distinguishing between encryptions of
the actual value that is written and some junk value. We believe that the notion
timed encryption might have other applications and be of independent interest.

Constructing Timed Encryption. We give a construction of a timed encryp-
tion scheme from any one-way function. Towards this goal, we introduce a notion
called as range constrained PRF. A range constrained PRF is a special con-
strained PRF [BW13] where the PRF key can be constrained to evaluate input
points that fall within a particular range. The ranges that we will be interested
in are of the form [0, x]. That is, the constrained key can be used to evaluate the
PRF on any y ∈ [0, x]. For efficiency, we require that the size of the constrained
key to only grow with the binary representation of x. Given such a PRF, we can
construct a timed encryption scheme as follows. The key generation samples a
range constrained PRF key. The encryption of a message m with respect to a

8

timestamp time proceeds by evaluating the PRF on time to derive sk and then
using sk as a key for symmetric encryption scheme to encrypt the message m.
The time constraining algorithm just constrains the PRF key with respect to
the range [0, time]. Thus, the goal of constructing a timed encryption scheme re-
duces to the goal of constructing a range constrained PRF. In this work, we give
a construction of range constrained PRF by adding a range constrain algorithm
to the tree-based PRF scheme of Goldreich, Goldwasser and Micali [GGM86].

2.2 Solving Challenge 2

Challenge 1 involves protecting the contents of the memory whereas challenge 2
involves protecting the access pattern. As mentioned before, in the non-adaptive
setting, this problem is easily solved using an oblivious RAM scheme. However,
in our setting we need an oblivious RAM scheme with some special properties.

The works of Canetti et al. [CCHR16] and Ananth et al. [ACC+16] define a
property of an ORAM scheme as strong localized randomness property and then
use this property to hide their access patterns. Informally, an ORAM scheme is
said to have a strong localized randomness property if the locations of the random
tape accessed by an oblivious program in simulating each memory access are
disjoint. Further, the number of locations touched for simulating each memory
access must be poly logarithmic in the size of the database. These works further
proved that the Chung-Pass ORAM scheme [CP13] satisfies the strong localized
randomness property. Unfortunately, this strong localized randomness property
alone is not sufficient for our purposes. Let us give the details.

To understand why the strong localized randomness property alone is not
sufficient, we first recall the details of the Chung-Pass ORAM (henceforth, de-
noted as CP ORAM) scheme. The CP ORAM is a tree-based ORAM scheme
where the leaves of this tree are associated with the actual memory. A posi-
tion map associates each data block in the memory with a random leaf node.
Accessing a memory location involves first reading the position map to get the
address of the leaf where this data block resides. Then, the path from the root
to this particular leaf is traversed and the content of the this data block is read.
It is guaranteed that the data block is located somewhere along the path from
the root to leaf node. The read data block is then placed in the root and the
position map is updated so that another random leaf node is associated with
this data block. To balance the memory, an additional flush is performed but
for the sake of this introduction we ignore this step. The CP ORAM scheme has
strong localized randomness as the randomness used in each memory accesses
involves choosing a random leaf to update the position map. Let us now explain
why this property alone is not sufficient for our purpose.

Recall that in the security proof of [GS18a], the CPU steps are simulated
from the last step to the first. A simulation of a CPU step involves changing
the bit written by the step to some junk value and the changing the location
accessed to a random location. We can change the bit to be written to a junk
value using the security of the timed encryption scheme, however changing the
location accessed to random is problematic. Note that the location that is being

9

accessed in the CP ORAM is a random root to leaf path. However, the address of
this leaf is stored in the memory via the position map. Therefore, to simulate a
particular CPU step, we must first change the contents of the position map. This
change must be performed in those CPU steps that last updated this memory
location. Unfortunately, timed encryption is not useful in this setting as we can
use its security only after removing all the secret keys that are hardwired in
the future time steps. However, in our case, the CPU steps that last updated
this particular location might be so far into the past that removing all the
intermediate encryption keys might blow up the cost of the input encoding to
be as large as the program running time.

To solve this issue, we modify the Chung-Pass ORAM to additionally have
the CPU steps to encrypt the data block that is written using a puncturable
PRF. Unlike the previous approaches of encrypting the data block with respect
to the location, we encrypt it with respect to the time step that modifies the
location. This helps in circumventing the above problem as we can first puncture
the PRF key (which in turn involves a careful set of hybrids) and use its security
to change the position map to contain an encryption of the junk value instead
of the actual address of the leaf node.9 Once this change is done, the locations
that the concerned CPU step is accessing is a random root to leaf path.

3 Preliminaries

Let λ denote the security parameter. A function µ(·) : N → R+ is said to be
negligible if for any polynomial poly(·) there exists λ0 ∈ N such that for all λ > λ0
we have µ(λ) < 1

poly(λ) . For a probabilistic algorithm A, we denote A(x; r) to

be the output of A on input x with the content of the random tape being r.
When r is omitted, A(x) denotes a distribution. For a finite set S, we denote
x← S as the process of sampling x uniformly from the set S. We will use PPT
to denote Probabilistic Polynomial Time. We denote [a] to be the set {1, . . . , a}
and [a, b] to be the set {a, a + 1, . . . , b} for a ≤ b and a, b ∈ Z. For a binary
string x ∈ {0, 1}n, we will denote the ith bit of x by xi. We assume without
loss of generality that the length of the random tape used by all cryptographic
algorithms is λ. We will use negl(·) to denote an unspecified negligible function
and poly(·) to denote an unspecified polynomial function.

We assume reader’s familiarity with the notions of a puncturable PRF and
selectively secure garbled circuits and omit the formal definitions here for the
lack of space.

3.1 Updatable Laconic Oblivious Transfer

In this subsection, we recall the definition of updatable laconic oblivious transfer
from [CDG+17].

9 Unlike in the location based encryption scheme, it is sufficient to change the encryp-
tion only in the CPU steps that last modified this location.

10

We give the formal definition below from [CDG+17]. We generalize their
definition to work for blocks of data instead of bits. More precisely, the reads
and the updates happen at the block-level rather than at the bit-level.

Definition 1 ([CDG+17]). An updatable laconic oblivious transfer consists of
the following algorithms:

– crs ← crsGen(1λ, 1N) : It takes as input the security parameter 1λ (encoded
in unary) and a block size N and outputs a common reference string crs.

– (d, D̂) ← Hash(crs, D) : It takes as input the common reference string crs

and database D ∈ {{0, 1}N}∗ as input and outputs a digest d and a state D̂.

We assume that the state D̂ also includes the database D.

– e← Send(crs, d, L, {mi,0,mi,1}i∈[N]) : It takes as input the common reference
string crs, a digest d, and a location L ∈ N and set of messages mi,0,mi,1 ∈
{0, 1}p(λ) for every i ∈ [N] and outputs a ciphertext e.

– (m1, . . . ,mN)← ReceiveD̂(crs, e, L) : This is a RAM algorithm with random

read access to D̂. It takes as input a common reference string crs, a ciphertext
e, and a location L ∈ N and outputs a set of messages m1, . . . ,mN .

– ew ← SendWrite(crs, d, L, {bi}i∈[N], {mj,0,mj,1}|d|j=1) : It takes as input the
common reference string crs, a digest d, and a location L ∈ N, bits bi ∈ {0, 1}
for each i ∈ [N] to be written, and |d| pairs of messages {mj,0,mj,1}|d|j=1,
where each mj,c is of length p(λ) and outputs a ciphertext ew.

– {mj}|d|j=1 ← ReceiveWriteD̂(crs, L, {bi}i∈[N], ew) : This is a RAM algorithm

with random read/write access to D̂. It takes as input the common reference
string crs, a location L, a set of bits b1, . . . , bN ∈ {0, 1} and a ciphertext ew.

It updates the state D̂ (such that D[L] = b1 . . . bN) and outputs messages

{mj}|d|j=1.

We require an updatable laconic oblivious transfer to satisfy the following prop-
erties.

Correctness: We require that for any database D of size at most M = poly(λ),
any memory location L ∈ [M], any set of messages (mi,0,mi,1) ∈ {0, 1}p(λ)
for each i ∈ [N] where p(·) is a polynomial that

Pr

∀i ∈ [N], mi = mi,D[L,i]

crs ← crsGen(1λ)

(d, D̂) ← Hash(crs, D)
e ← Send(crs, d, L, {mi,0,mi,1}i∈[N])

(m1, . . . ,mN)← ReceiveD̂(crs, e, L)

 = 1,

where D[L, i] denotes the ith bit in the Lth block of D.

Correctness of Writes: Let database D be of size at most M = poly(λ) and let
L ∈ [M] be any two memory locations. Let D∗ be a database that is identical
to D except that D∗[L, i] = bi for all i ∈ [N] some sequence of {bj} ∈ {0, 1}.

11

For any sequence of messages {mj,0,mj,1}j∈[λ] ∈ {0, 1}p(λ) we require that

Pr

m′j = mj,d∗j

∀j ∈ [|d|]

crs ← crsGen(1λ, 1N)

(d, D̂) ← Hash(crs, D)

(d∗, D̂∗) ← Hash(crs, D∗)

ew ← SendWrite(crs, d, L, {bi}i∈[N], {mj,0,mj,1}|d|j=1)

{m′j}
|d|
j=1 ← ReceiveWriteD̂(crs, L, {bi}i∈[N], ew)

 = 1,

Sender Privacy: There exists a PPT simulator Sim`OT such that the for any
non-uniform PPT adversary A = (A1,A2) there exists a negligible function
negl(·) s.t.,∣∣Pr[Exptreal(1λ,A) = 1]− Pr[Exptideal(1λ,A) = 1]

∣∣ ≤ negl(λ)

where Exptreal and Exptideal are described in Figure 1.

Exptreal[1λ,A]

1. crs← crsGen(1λ, 1N).
2. (D,L, {mi,0,mi,1}i∈[N], st)←
A1(crs).

3. (d, D̂)← Hash(crs, D).
4. Output
A2(st, Send(crs, d, L, {mi,0,mi,1}i∈[N])).

Exptideal[1λ,A]

1. crs← crsGen(1λ).
2. (D,L, {mi,0,mi,1}i∈[N], st)←
A1(crs).

3. (d, D̂)← Hash(crs, D).
4. Output
A2(st, Sim`OT(crs, D, L, {mi,D[L,i]}i∈[N])).

Figure 1: Sender Privacy Security Game

Sender Privacy for Writes: There exists a PPT simulator Sim`OTW such that
the for any non-uniform PPT adversary A = (A1,A2) there exists a negli-
gible function negl(·) s.t.,∣∣Pr[WriSenPrivExptreal(1λ,A) = 1]−Pr[WriSenPrivExptideal(1λ,A) = 1]

∣∣ ≤ negl(λ)

where WriSenPrivExptreal and WriSenPrivExptideal are described in Figure 2.
Efficiency: The algorithm Hash runs in time |D|poly(log |D|, λ). The algorithms

Send, SendWrite, Receive, ReceiveWrite run in time N · poly(log |D|, λ).

Theorem 2 ([CDG+17,DG17,BLSV18,DGHM18]). Assuming either the
Computational Diffie-Hellman assumption or the Factoring assumption or the
Learning with Errors assumption, there exists a construction of updatable laconic
oblivious transfer.

Remark 1. We note that the security requirements given in Definition 1 is stronger
than the one in [CDG+17] as we require the crs to be generated before the ad-
versary provides the database D and the location L. However, the construction
in [CDG+17] already satisfies this definition since in the proof, we can guess the
location by incurring a 1/|D| loss in the security reduction.

12

WriSenPrivExptreal[1λ,A]

1. crs← crsGen(1λ, 1N).
2. (D,L, {bi}i∈[N], {mj,0,mj,1}j∈[λ], st)
← A1(crs).

3. (d, D̂)← Hash(crs, D).

4. ew ← SendWrite(crs, d, L, {bi}i∈[N],

{mj,0,mj,1}|d|j=1)
5. Output A2(st, ew).

WriSenPrivExptideal[1λ,A]

1. crs← crsGen(1λ, 1N).
2. (D,L, {bi}i∈[N], {mj,0,mj,1}j∈[λ], st)
← A1(crs).

3. (d, D̂)← Hash(crs, D).

4. (d∗, D̂∗) ← Hash(crs, D∗) where D∗

be a database that is identical to D
except that D∗[L, i] = bi for each i ∈
[N].

5. ew ← Sim`OTW(crs, D, L, {bi}i∈[N],
{mj,d∗j

}j∈[λ])
6. Output A2(st, ew).

Figure 2: Sender Privacy for Writes Security Game

3.2 Somewhere Equivocal Encryption

We now recall the definition of Somewhere Equivocal Encryption from the work
of [HJO+16]. Informally, a somewhere equivocal encryption allows to create a
simulated ciphertext encrypting a message m with certain positions of the mes-
sage being “fixed” and the other positions having a “hole.” The simulator can
later fill these “holes” with arbitrary message values by deriving a suitable de-
cryption key. The main efficiency requirement is that the size of the decryption
key grows only with the number of “holes” and is otherwise independent of the
message size. We give the formal definition below.

Definition 2 ([HJO+16]). A somewhere equivocal encryption scheme with block-
length s, message length n (in blocks) and equivocation parameter t (all polyno-
mials in the security parameter) is a tuple of probabilistic polynomial algorithms
Π = (KeyGen,Enc,Dec,SimEnc,SimKey) such that:

– key ← KeyGen(1λ) : It is a PPT algorithm that takes as input the security
parameter (encoded in unary) and outputs a key key.

– c← Enc(key,m1 . . .mn) : It is a PPT algorithm that takes as input a key key
and a vector of messages m = m1 . . .mn with each mi ∈ {0, 1}s and outputs
a ciphertext c.

– m ← Dec(key, c) : It is a deterministic algorithm that takes as input a key
key and a ciphertext c and outputs a vector of messages m = m1 . . .mn.

– (st, c)← SimEnc((mi)i/∈I , I) : It is a PPT algorithm that takes as input a set
of indices I ⊆ [n] and a vector of messages (mi)i/∈I and outputs a ciphertext
c and a state st.

– key′ ← SimKey(st, (mi)i∈I) : It is a PPT algorithm that takes as input the
state information st and a vector of messages (mi)i∈I and outputs a key key′.

13

and satisfies the following properties:

Correctness. For every key ← KeyGen(1λ), for every m ∈ {0, 1}s×n it holds
that:

Dec(key,Enc(key,m)) = m

Simulation with No Holes. We require that the distribution of (c, key) com-
puted via (st, c) ← SimEnc(m, ∅) and key ← SimKey(st, ∅) to be identical to
key ← KeyGen(1λ) and c ← Enc(key,m1 . . .mn). In other words, simulation
when there are no holes (i.e., I = ∅) is identical to honest key generation and
encryption.

Security. For any PPT adversary A, there exists a negligible function ν = ν(λ)
such that: ∣∣Pr[Expsimenc

A,Π (1λ, 0) = 1]− Pr[Expsimenc
A,Π (1λ, 1) = 1]

∣∣ ≤ ν(λ)

where the experiment Expsimenc
A,Π is defined as follows:

Experiment Expsimenc
A,Π

1. The adversary A on input 1λ outputs a set I ⊆ [n] s.t. |I| < t, a vector
(mi)i 6∈I , and a challenge j ∈ [n] \ I. Let I ′ = I ∪ {j}.

2. – If b = 0, compute c as follows: (st, c)← SimEnc((mi)i 6∈I , I).
– If b = 1, compute c as follows: (st, c)← SimEnc((mi)i 6∈I′ , I

′).
3. Send c to the adversary A.
4. The adversary A outputs the set of remaining messages (mi)i∈I .

– If b = 0, compute key as follows: key← SimKey(st, (mi)i∈I).
– If b = 1, compute key as follows: key← SimKey(st, (mi)i∈I′)

5. Send key to the adversary.
6. A outputs b′ which is the output of the experiment.

Theorem 3 ([HJO+16]). Assuming the existence of one-way functions, there
exists a somewhere equivocal encryption scheme for any polynomial message-
length n, black-length s and equivocation parameter t, having key size t·s·poly(λ)
and ciphertext of size n · s · poly(λ) bits.

3.3 Random Access Machine (RAM) Model of Computation

We start by describing the Random Access Machine (RAM) model of computa-
tion in Section 3.3. Most of this subsection is taken verbatim from [CDG+17].

Notation for the RAM Model of Computation. The RAM model consists
of a CPU and a memory storage of M blocks where each block has length N .
The CPU executes a program that can access the memory by using read/write
operations. In particular, for a program P with memory of size M , we denote

14

the initial contents of the memory data by D ∈ {{0, 1}N}M . Additionally, the
program gets a “short” input x ∈ {0, 1}n, which we alternatively think of as the
initial state of the program. We use |P | to denote the running time of program
P . We use the notation PD(x) to denote the execution of program P with initial
memory contents D and input x. The program P can read from and write to
various locations in memory D throughout its execution.10

We will also consider the case where several different programs are executed
sequentially and the memory persists between executions. We denote this process
as (y1, . . . , y`) = (P1(x1), . . . , P`(x`))

D to indicate that first PD1 (x1) is executed,
resulting in some memory contents D1 and output y1, then PD1

2 (x2) is executed
resulting in some memory contentsD2 and output y2 etc. As an example, imagine
that D is a huge database and the programs Pi are database queries that can
read and possibly write to the database and are parameterized by some values
xi.

CPU-Step Circuit. Consider an execution of a RAM program which involves
at most T CPU steps. We represent a RAM program P via T small CPU-Step
Circuits each of which executes one CPU step. In this work we will denote one
CPU step by:11

CPCPU(state, rData) = (state′,R/W, L,wData)

This circuit takes as input the current CPU state state and rData ∈ {0, 1}N .
Looking ahead the data rData will be read from the memory location that was
requested by the previous CPU step. The circuit outputs an updated state state′,
a read or write R/W, the next location to read/write from L ∈ [M], and data
wData to write into that location (wData = ⊥ when reading). The sequence of
locations accessed during the execution of the program collectively form what is
known as the access pattern, namely MemAccess = {(R/Wτ

, Lτ) : τ = 1, . . . , T}.
We assume that the CPU state state contains information about the location that
the previous CPU step requested to read from. In particular, lastLocation(state)
outputs the location that the previous CPU step requested to read and it is ⊥
if the previous CPU step was a write.

Note that in the description above without loss of generality we have made
some simplifying assumptions. We assume that each CPU-step circuit always
reads from or writes to some location in memory. This is easy to implement via
a dummy read and write step. Moreover, we assume that the instructions of the
program itself are hardwired into the CPU-step circuits.

Representing RAM computation by CPU-Step Circuits. The compu-
tation PD(x) starts with the initial state set as state1 = x. In each step τ ∈
10 In general, the distinction between what to include in the program P , the memory

data D and the short input x can be somewhat arbitrary. However as motivated by
our applications we will typically be interested in a setting where the data D is large
while the size of the program |P | and input length x is small.

11 In the definition below, we model each CCPU as a deterministic circuit. Later, we
extend the definition to allow each CCPU to have access to random coins.

15

{1, . . . T}, the computation proceeds as follows: If τ = 1 or R/Wτ−1
= write,

then rDataτ := ⊥; otherwise rDataτ := D[Lτ−1]. Next it executes the CPU-Step

Circuit CP,τCPU(stateτ , rDataτ) = (stateτ+1,R/Wτ
, Lτ ,wDataτ). If R/Wτ

= write,
then set D[Lτ] = wDataτ . Finally, when τ = T , then stateτ+1 is the output of
the program.

3.4 Oblivious RAM

In this subsection, we recall the definition of oblivious RAM [Gol87,Ost90,GO96].

Definition 3 (Oblivious RAM). An Oblivious RAM scheme consists of two
procedures (OProg,OData) with the following syntax:

– P ∗ ← OProg(1λ, 1logM , 1T , P): Given a security parameter λ, a memory
size M , a program P that runs in time T , OProg outputs an probabilistic
oblivious program P ∗ that can access D∗ as RAM. A probabilistic RAM
program is modeled exactly as a deterministic program except that each step
circuit additionally take random coins as input.

– D∗ ← OData(1λ, D) : Given the security parameter λ, the contents of the
database D ∈ {{0, 1}N}M , outputs the oblivious database D∗. For conve-
nience, we assume that OData works by compiling a program P that writes
D to the memory using OProg to obtain P ∗. It then evaluates the program
P ∗ by using uniform random tape and outputs the contents of the memory
as D∗.

Efficiency. We require that the run-time of OData should be M ·N ·poly(log(MN))·
poly(λ), and the run-time of OProg should be T · poly(λ) · poly(log(MN)). Fi-
nally, the oblivious program P ∗ itself should run in time T ′ = T · poly(λ) ·
poly(log(MN)). Both the new memory size M ′ = |D∗| and the running time T ′

should be efficiently computable from M,N, T, and λ.

Correctness. Let P1, . . . , P` be programs running in polynomial times t1, . . . , t`
on memory D of size M . Let x1, . . . , x` be the inputs and λ be a security param-
eter. Then we require that:

Pr[(P ∗1 (x1), . . . , P ∗` (x`))
D∗

= (P1(x1), . . . , P`(x`))
D] = 1

where D∗ ← OData(1λ, D), P ∗i ← OProg(1λ, 1logM , 1T , Pi) and (P ∗1 (x1), . . . ,
P ∗` (x`))

D∗ indicates running the ORAM programs on D∗ sequentially using an
uniform random tape.

Security. For security, we require that there exists a PPT simulator Sim such
that for any sequence of programs P1, . . . , P` (running in time t1, . . . , t` respec-
tively), initial memory data D ∈ {{0, 1}N}M , and inputs x1, . . . , x` we have
that:

MemAccess
s
≈ Sim(1λ, {1ti}`i=1)

16

where (y1, . . . , y`) = (P1(x1), . . . , P`(x`))
D, D∗ ← OData(1λ, 1N , D), P ∗i ←

OProg(1λ, 1logM , 1T , Pi) and MemAccess corresponds to the access pattern of
the CPU-step circuits during the sequential execution of the oblivious programs
(P ∗1 (x1), . . . , P ∗` (x`))

D∗ using an uniform random tape.

3.4.1 Strong Localized Randomness For our construction of adaptively
secure garbled RAM, we need an additional property called as strong localized
randomness property [CCHR16] from an ORAM scheme. We need a slightly
stronger formalization than the one given in [CCHR16] (refer to footnote 12).

Strong Localized Randomness. Let D ∈ {{0, 1}N}M be any database and
(P, x) be any program/input pair. Let D∗ ← OData(1λ, 1N , D) and P ∗ ←
OProg(1λ, 1logM , 1T , P). Further, let the step circuits of P ∗ be indicated by

{CP
∗,τ

CPU }τ∈[T ′]. Let R be the contents of the random tape used in the execution
of P ∗.

Definition 4 ([CCHR16]). We say that an ORAM scheme has strong localized
randomness property if there there exists a sequence of efficiently computable
values τ1 < τ2 < . . . < τm where τ1 = 1, τm = T ′ and τt − τt−1 ≤ poly(logMN)
for all t ∈ [2,m] such that:

1. For every j ∈ [m− 1] there exists an interval Ij (efficiently computable from
j) of size poly(logMN,λ) s.t. for any τ ∈ [τj , τj+1), the random tape accessed

by CP
∗,τ

CPU is given by RIj (here, RIj denotes the random tape restricted to
the interval Ij).

2. For every j, j′ ∈ [m− 1] and j 6= j′, Ij ∩ Ij′ = ∅.
3. Further, for every j ∈ [m], there exists an k < j such that given R\{Ik∪Ij}

(where R\{Ik∪Ij} denotes the content of the random tape except in positions

Ij ∪ Ik) and the output of step circuits CP
∗,τ

CPU for τ ∈ [τk, τk+1), the memory

access made by step circuits CP
∗,τ

CPU for τ ∈ [τj , τj+1) is computationally in-
distinguishable to random. This k is efficiently computable given the program
P and the input x.12

We argue in the full version of our paper that the Chung-Pass ORAM scheme
[CP13] where the contents of the database are encrypted using a special encryp-
tion scheme satisfies the above definition of strong localized randomness. We
now give details on this special encryption scheme. The key generation sam-
ples a puncturable PRF key K ← PP.KeyGen(1λ). If the τ th step-circuit has to
write a value wData to a location L, it first samples r ← {0, 1}λ and computes
c = (τ‖r,PP.Eval(K, τ‖r) ⊕ wData). It writes c to location L. The decryption
algorithm uses K to first compute PP.Eval(K, τ‖r) and uses it compute wData.

12 Here, we require that the memory access to be indistinguishable to random even
given the outputs of the step circuits CP

∗,τ
CPU for τ ∈ [τk, τk+1). This is where we

differ from the definition of [CCHR16].

17

Remark 2. For the syntax of the ORAM scheme to be consistent with this special
encryption scheme, we will use a puncturable PRF to generate the random tape
of P ∗. This key will also be used implicitly used to derive the key for this special
encryption scheme.

3.5 Adaptive Garbled RAM

We now give the definition of adaptive garbled RAM.

Definition 5. An adaptive garbled RAM scheme GRAM consists of the following
PPT algorithms satisfying the correctness, efficiency and security properties.

– GRAM.Memory(1λ, D): It is a PPT algorithm that takes the security param-
eter 1λ and a database D ∈ {0, 1}M as input and outputs a garbled database

D̃ and a secret key SK.
– GRAM.Program(SK, i, P): It is a PPT algorithm that takes as input a secret

key SK, a sequence number i, and a program P as input (represented as a

sequence of CPU steps) and outputs a garbled program P̃ .
– GRAM.Input(SK, i, x): It is a PPT algorithm that takes as input a secret key
SK, a sequence number i and a string x as input and outputs the garbled
input x̃.

– GRAM.EvalD̃(st, P̃ , x̃): It is a RAM program with random read write access

to D̃. It takes the state information st, garbled program P̃ and the garbled
input x̃ as input and outputs a string y and updated database D̃′.

Correctness. We say that a garbled RAM GRAM is correct if for every database
D, t = poly(λ) and every sequence of program and input pair {(P1, x1), . . . , (Pt, xt)}
we have that

Pr[Exptcorrectness(1
λ,UGRAM) = 1] ≤ negl(λ)

where Exptcorrectness is defined in Figure 5.

Adaptive Security. We say that GRAM satisfies adaptive security if there exists
(stateful) simulators (SimD,SimP,SimIn) such that for all t that is polynomial in
the security parameter λ and for all polynomial time (stateful) adversaries A ,
we have that∣∣Pr[Exptreal(1

λ,GRAM,A) = 1]− Pr[Exptideal(1
λ,Sim,A) = 1]

∣∣ ≤ negl

where Exptreal,Exptideal are defined in Figure 4.

Efficiency. We require the following efficiency properties from a UGRAM scheme.

– The running time of GRAM.Memory should be bounded by M · poly(logM) ·
poly(λ).

18

– (D̃, SK)← GRAM.Memory(1λ, D).

– Set D1 := D, D̃1 := D̃ and st = ⊥.
– for every i from 1 to t
• P̃i ← GRAM.Program(SK, i, Pi) .
• x̃i ← GRAM.Input(SK, i, xi).

• Compute (yi, Di+1) := PDii (xi) and (ỹi, D̃i+1, st) :=

UGRAM.EvalD̃i(i, st, P̃i, x̃i).
– Output 1 if there exists an i ∈ [t] such that ỹi 6= yi.

Figure 3: Correctness Experiment for GRAM

Exptreal[1
λ,GRAM,A]

– D ← A(1λ) where D ∈ {0, 1}M

– (D̃, SK)← GRAM.Memory(1λ, D).
– for every i from 1 to t
• Pi ← A(D̃, {(P̃1, x̃1), . . . ,

(P̃i−1, x̃i−1)}).
• P̃i ← GRAM.Program(SK, i, Pi).

• xi ← A(D̃, {(P̃1, x̃1), . . . ,

(P̃i−1, x̃i−1)}, P̃i).
• x̃i ← GRAM.Input(SK, i, xi).

– Output A({(P̃1, x̃1), . . . , (P̃t, x̃t)}).

Exptideal[1
λ, Sim,A]

– D ← A(1λ) where D ∈ {0, 1}M .

– (D̃, st)← SimD(1λ, 1M).
– for every i from 1 to t
• Pi ← A(D̃, {(P̃1, x̃1), . . . ,

(P̃i−1, x̃i−1)}).
• (P̃i, st)← SimP(1|Pi|, st) .

• xi ← A(D̃, {(P̃1, x̃1), . . . ,

(P̃i−1, x̃i−1)}, P̃i).
• (yi, Di+1) := PDii (xi) where
D1 := D.

• x̃i ← SimIn(st, yi).

– Output A({(P̃1, x̃1), . . . , (P̃t, x̃t)}).

Figure 4: Adaptive Security Experiment for GRAM

– The running time of GRAM.Program should be bounded by T · poly(logM) ·
poly(λ) where T is the number of CPU steps in the description of the program
P .

– The running time of GRAM.Input should be bounded by |x|·poly(logM, log T)·
poly(λ).

– The running time of GRAM.Eval should be bounded by T ·poly(logM)·poly(λ)
where T is the number of CPU steps in the description of the program P .

4 Adaptive Garbled RAM with Unprotected Memory
Access

Towards our goal of constructing an adaptive garbled RAM, we first construct
an intermediate primitive with weaker security guarantees. We call this primitive

19

as adaptive garbled RAM with unprotected memory access. Informally, a garbled
RAM scheme has unprotected memory access if both the contents of the database
and the access to the database are revealed in the clear to the adversary. We
differ from the security definition given in [GHL+14] in three aspects. Firstly, we
give an indistinguishability style definition for security whereas [GHL+14] give
a simulation style definition. The indistinguishability based definition makes it
easier to get full-fledged adaptive security later. Secondly and most importantly,
we allow the adversary to adaptively choose the inputs based on the garbled
program. Thirdly, we also require the garbled RAM scheme to satisfy a special
property called as equivocability. Informally, equivocability requires that the real
garbling of a program P is indistinguishable to a simulated garbling where the
simulator is not provided with the description of the step circuits for a certain
number of time steps (this number is given by the equivocation parameter).
Later, when the input is specified, the simulator is given the output of these
step circuits and must come-up with an appropriate garbled input.

We now give the formal definition of this primitive.

Definition 6. An adaptive garbled RAM scheme with unprotected memory ac-
cess UGRAM consists of the following PPT algorithms satisfying the correctness,
efficiency and security properties.

– UGRAM.Memory(1λ, 1n, D): It is a PPT algorithm that takes the security
parameter 1λ, an equivocation parameter n and a database D ∈ {{0, 1}N}M
as input and outputs a garbled database D̃ and a secret key SK.

– UGRAM.Program(SK, i, P): It is a PPT algorithm that takes as input a se-
cret key SK, a sequence number i, and a program P as input (represented

as a sequence of CPU steps) and outputs a garbled program P̃ .
– UGRAM.Input(SK, i, x): It is a PPT algorithm that takes as input a secret

key SK, a sequence number i and a string x as input and outputs the garbled
input x̃.

– UGRAM.EvalD̃(st, P̃ , x̃): It is a RAM program with random read write access

to D̃. It takes the state information st, garbled program P̃ and the garbled
input x̃ as input and outputs a string y and updated database D̃′.

Correctness. We say that a garbled RAM UGRAM is correct if for every database
D, t = poly(λ) and every sequence of program and input pair {(P1, x1), . . . , (Pt, xt)}
we have that

Pr[Exptcorrectness(1
λ,UGRAM) = 1] ≤ negl(λ)

where Exptcorrectness is defined in Figure 5.

Security. We require the following two properties to hold.

– Equivocability. There exists a simulator Sim such that for any non-uniform
PPT stateful adversary A and t = poly(λ) we require that:∣∣Pr[Exptequiv(1

λ,A, 0) = 1]− Pr[Exptequiv(1
λ,A, 1) = 1]

∣∣ ≤ negl(λ)

20

– (D̃, SK)← UGRAM.Memory(1λ, 1n, D).

– Set D1 := D, D̃1 := D̃ and st = ⊥.
– for every i from 1 to t
• P̃i ← UGRAM.Program(SK, i, Pi) .
• x̃i ← UGRAM.Input(SK, i, xi).

• Compute (yi, Di+1) := PDii (xi) and (ỹi, D̃i+1, st) :=

UGRAM.EvalD̃i(i, st, P̃i, x̃i).
– Output 1 if there exists an i ∈ [t] such that ỹi 6= yi.

Figure 5: Correctness Experiment for UGRAM

where Exptequiv(1
λ,A, b) is described in Figure 6.

– Adaptive Security. For any non-uniform PPT stateful adversary A and
t = poly(λ) we require that:∣∣Pr[ExptUGRAM(1λ,A, 0) = 1]− Pr[ExptUGRAM(1λ,A, 1) = 1]

∣∣ ≤ negl(λ)

where ExptUGRAM(1λ,A, b) is described in Figure 7.

1. D ← A(1λ, 1n).

2. D̃ is computed as follows:
(a) If b = 0 : (D̃, SK)← UGRAM.Memory(1λ, 1n, D).

(b) If b = 1 : D̃ ← Sim(1λ, 1n, D).
3. for each i from t:

(a) (Pi, I)← A(D̃, {P̃j , x̃j}j∈[i−1]) where I ⊂ [|Pi|] and |I| ≤ n.

(b) P̃i is computed as follows:

i. If b = 0 : P̃i ← UGRAM.Program(SK, i, Pi).

ii. If b = 1 : P̃i ← Sim({CPi,tCPU }t 6∈I)
(c) xi ← A({P̃j , x̃j}j∈[i−1], P̃i).
(d) x̃i is computed as follows:

i. If b = 0 : x̃i ← UGRAM.Input(SK, i, xi)
ii. If b = 1 : x̃i ← Sim(xi, {yt}t∈I) where yt is the o/p of CPi,tCPU when Pi

is executed with xi.
4. b′ ← A({P̃j , x̃j}j∈[t]).
5. Output b′.

Figure 6: Exptequiv(1
λ,A, b)

21

1. D ← A(1λ, 1n).

2. (D̃, SK)← UGRAM.Memory(1λ, 1n, D).
3. for x each i from t:

(a) (Pi,0, Pi,1)← A(D̃, {P̃j , x̃j}j∈[i−1]).

(b) P̃i is computed as follows:

i. If b = 0 : P̃i ← UGRAM.Program(SK, i, Pi,0).

ii. If b = 1 : P̃i ← UGRAM.Program(SK, i, Pi,1)

(c) xi ← A({P̃j , x̃j}j∈[i−1], P̃i).
(d) x̃i ← UGRAM.Input(i, SK, xi)

4. b′ ← A({P̃j , x̃j}j∈[t]).
5. Output b′ if the output of each step circuit in PDi,0(xi) is same as PDi,1(xi) for

every i ∈ [t].

Figure 7: ExptUGRAM(1λ,A, b)

Efficiency. We require the following efficiency properties from a UGRAM scheme.

– The running time of UGRAM.Memory should be bounded by MN ·poly(logMN)·
poly(λ).

– The running time of UGRAM.Program should be bounded by T ·poly(logMN)·
poly(λ) where T is the number of CPU steps in the description of the program
P .

– The running time of UGRAM.Input should be bounded by n·|x|·poly(logMN, log T)·
poly(λ).

– The running time of UGRAM.Eval should be bounded by T ·poly(logMN, log T)·
poly(λ) where T is the number of CPU steps in the description of the program
P .

4.1 Construction

In this subsection, we give a construction of adaptive garbled RAM with un-
protected memory access from updatable laconic oblivious transfer, somewhere
equivocal encryption and garbling scheme for circuits with selective security us-
ing the techniques developed in the construction of adaptive garbled circuits
[GS18a]. Our main theorem is:

Theorem 4. Assuming the existence of updatable laconic oblivious transfer,
somewhere equivocal encryption, a pseudorandom function and garbling scheme
for circuits with selective security, there exists a construction of adaptive garbled
RAM with unprotected memory access.

Construction. We give the formal description of the construction in Figure 8.

22

We use a somewhere equivocal encryption with block length set to |S̃Cτ | where

S̃Cτ denotes the garbled version of the step circuit SC described in Figure 9,
the message length to be T (which is the running time of the program P) and
the equivocation parameter to be t + log T where t is the actual equivocation
parameter for the UGRAM scheme.

Correctness. The correctness of the above construction follows from a simple
inductive argument that for each step τ ∈ [|P |], the state and the database are

updated correctly at the end of the execution of S̃Cτ . The base case is τ = 0. In
order to prove the inductive step for a step τ , observe that if the step τ outputs
a read then labels recovered in Step 4.(c).(ii) of AdpEvalCkt correspond to data
block in the location requested. Otherwise, the labels recovered in Step 4(b).(ii)
of AdpEvalCkt corresponds to the updated value of the digest with the corre-
sponding block written to the database.

Efficiency. The efficiency of our construction directly follows from the efficiency
of updatable laconic oblivious transfer and the parameters set for the somewhere
equivocal encryption. In particular, the running time of UGRAM.Memory is D ·
poly(λ), UGRAM.Program is T ·poly(logMN,λ) and that of UGRAM.Input is n|x|·
poly(logM, log T, λ). The running time of UGRAM.Eval is T ·poly(logM, log T, λ).

Security. We prove the security of this construction in the full version of our
paper.

5 Timed Encryption

In this section, we give the definition and construction of a timed encryption
scheme. We will use a timed encryption scheme in the construction of adaptive
garbled RAM in the next section.

A timed encryption scheme is a symmetric key encryption scheme with some
special properties. In this encryption scheme, every message is encrypted with
respect to a timestamp time. Additionally, there is a special algorithm called as
constrain that takes an encryption key K and a timestamp time′ as input and
outputs a time constrained key K[time′]. A time constrained key K[time′] can
be used to decrypt any ciphertext that is encrypted with respect to timestamp
time < time′. For security, we require that knowledge of a time constrained key
does not help an adversary to distinguish between encryptions of two messages
that are encrypted with respect to some future timestamp.

Definition 7. A timed encryption scheme is a tuple of algorithms (TE.KeyGen,TE.Enc,TE.Dec,
TE.Constrain) with the following syntax.

– TE.KeyGen(1λ) : It is a randomized algorithm that takes the security param-
eter 1λ and outputs a key K.

– TE.Constrain(K, time) : It is a deterministic algorithm that takes a key K and
a timestamp time ∈ [0, 2λ − 1] and outputs a time-constrained key K[time].

23

UGRAM.Memory(1λ, 1t, D): On input a database D ∈ {{0, 1}N}M do:
1. Sample crs ← crsGen(1λ, 1N) and K ← PRFKeyGen(1λ) defining PRFK :
{0, 1}2λ+1 → {0, 1}λ.

2. For each k ∈ [λ] and b ∈ {0, 1}, compute lab1k,b := PRFK(1‖k‖b).
3. Compute (d, D̂) = Hash(crs, D).

4. Output D̂, {lab1k,dk}k∈[λ] as the garbled memory and (K, crs) as the secret
key.

UGRAM.Program(SK, i, P): On input SK = (K, crs), sequence number i, and a
program P (with T step-circuits) do:
1. For each step τ ∈ [2, T], k ∈ [λ+ n+N] and b ∈ {0, 1},

(a) Sample labτk,b ← {0, 1}λ.

(b) Set lab1k,b := PRFK(i‖k‖b) and labT+1
k,b := PRFK((i+ 1)‖k‖b).

We use {labτk,b} to denote {labτk,b}k∈[λ+n+N],b∈{0,1}.
2. for each τ from T down to 1 do:

(a) Compute S̃Cτ ← GarbleCkt
(

1λ, SC[crs, τ, {labτ+1
k,b }], {lab

τ
k,b}

)
where

the step-circuit SC is described in Figure 9.
3. Compute key = KeyGen(1λ;PRFK(i‖0λ‖0))

4. Compute c← Enc(key, {S̃Cτ}τ∈[T]) and output P̃ := c.
UGRAM.Input(SK, i, x) : On input the secret key SK = (K, crs), sequence number

i and a string x ∈ {0, 1}n do:
1. For each k ∈ [λ+ n+N] and b ∈ {0, 1}, compute lab1k,b := PRFK(i‖k‖b).
2. Compute key = KeyGen(1λ;PRFK(i‖0λ‖0)).
3. Output x̃ :=

(
key, {lab1k,xk}k∈[λ+1,λ+n], {lab1k,0}k∈[n+λ+1,n+λ+N]

)
.

UGRAM.EvalD̃(i, st, P̃ , x̃) : On input i, state st, the garbled program P̃ , and gar-
bled input x̃ do:
1. Parse x̃ as

(
key, {labk}k∈[λ+1,n+λ+N]

)
and P̃ as c.

2. If i = 1, obtain {labk}k∈[λ] from garbled memory; else, parse st as
{labk}k∈[λ].

3. Compute {S̃Cτ}τ∈[T] := Dec(key, c) and set lab := {labk}k∈[n+λ+N].
4. for each τ from 1 to T do:

(a) Compute (R/W, L,A, {labk}k∈[λ+1,λ+n], B) := EvalCkt(S̃Cτ , lab).
(b) If R/W = write,

i. Parse A as (ew,wData) and B as {labk}k∈[λ+1,n+λ+N].

ii. {labk}k∈[λ] ← ReceiveWriteD̂(crs, L,wData, ew)
(c) else,

i. Parse A as {labk}k∈[n+λ] and B as e.

ii. {labk}k∈[n+λ+1,n+λ+N] ← ReceiveD̂(crs, L, e)

(d) Set lab := {labk}k∈[n+λ+N].

5. Parse lab as {labk}k∈[n+λ+N]. Output {labk}k∈[λ+1,n+λ] and st :=
{labk}k∈[λ].

Figure 8: Adaptive Garbled RAM with Unprotected Memory Access

24

Step Circuit SC

Input: A digest d, state state and a block rData.
Hardcoded: The common reference string crs, the step number τ and a set of
labels {labk,b}.

1. Compute (state′,R/W, L,wData) := CP,τCPU(state, rData).
2. If τ = T , reset labk,b = b for all k ∈ [λ+ 1, λ+ n] and b ∈ {0, 1}.
3. if R/W = write do:

(a) Compute ew ← SendWrite(crs, d, L,wData, {labk,b}k∈[λ],b∈{0,1}).
(b) Output (R/W, L, ew,wData, {labk,state′

k−λ
}k∈[λ+1,λ+n], {labk,0}k∈[n+λ+1,n+λ+N]).

4. else,
(a) Compute e← Send(crs, d, L, {labk,b}k∈[n+λ+1,n+λ+N],b∈{0,1}).
(b) (R/W, L, {labk,dk}k∈[λ], {labk,state′k−λ}k∈[λ+1,λ+n], e).

Figure 9: Description of the Step Circuit

– TE.Enc(K, time,m) : It is a randomized algorithm that takes a key K, a
timestamp time and a message m as input and outputs a ciphertext c or ⊥.

– TE.Dec(K, c) : It is a deterministic algorithm that takes a key K and a
ciphertext c as input and outputs a message m.

We require a timed encryption scheme to follow the following properties.

Correctness. We require that for all messages m and for all timestamps time1 ≤
time2:

Pr[TE.Dec(K[time2], c) = m] = 1

where K ← TE.KeyGen(1λ), K[time2] := TE.Constrain(K, time2) and c← TE.Enc(K, time1,m).

Encrypting with Constrained Key. For any message m and timestamps
time1 ≤ time2, we require that:

{TE.Enc(K, time1,m)} ≈ {TE.Enc(K[time2], time1,m)}

where K ← TE.KeyGen(1λ), K[time2] := TE.Constrain(K, time2) and ≈ denotes
that the two distributions are identical.

Security. For any two messages m0,m1 and timestamps (time, {timei}i∈[t])
where timei < time for all i ∈ [t], we require that:

{{K[timei]}i∈[t],TE.Enc(K, time,m0)}
c
≈ {{K[timei]}i∈[t],TE.Enc(K, time,m1)}

where K ← TE.KeyGen(1λ) and K[timei] := TE.Constrain(K, timei) for every
i ∈ [t].

25

We prove the following theorem in the full version of our paper.

Theorem 5. Assuming the existence of one-way functions, there exists a con-
struction of timed encryption.

6 Construction of Adaptive Garbled RAM

In this section, we give a construction of adaptive garbled RAM. We make use
of the following primitives.

– A timed encryption scheme (TE.KeyGen,TE.Enc,TE.Dec,TE.Constrain). Let
N be the output length of TE.Enc when encrypting single bit messages.

– A puncturable pseudorandom function (PP.KeyGen,PP.Eval,PP.Punc).
– An oblivious RAM scheme (OData,OProg) with strong localized randomness.
– An adaptive garbled RAM scheme UGRAM with unprotected memory access.

The formal description of our construction appears in Figure 10.

Correctness. We give an informal argument for correctness. The only difference
between UGRAM and the construction we give in Figure 10 is that we encrypt the
database using a timed encryption scheme and encode it using a ORAM scheme.
To argue the correctness of our construction, it is sufficient to argue that each
step circuit SC faithfully emulates the corresponding step circuit of P ∗. Let
SCi,τ be the step circuit that corresponds to the τ th step of the ith program
Pi. We observe that any point in time the Lth location of the database D̂ is an
encryption of the actual data bit with respect to timestamp time := (i′‖τ ′) where

SCi
′,τ ′ last wrote at the Lth location. It now follows from this invariant and the

correctness of the timed encryption scheme that the hardwired constrained key
K[i‖τ] in SCi,τ can be used to decrypt the read block X as the step that last
modified this block has a timestamp that is less than (i‖τ).

Efficiency. We note that setting the equivocation parameter n = poly(logMN),
we obtain that the running time of GRAM.Input is |x| ·poly(λ, logMN). The rest
of the efficiency criterion follow directly from the efficiency of adaptive garbled
RAM with unprotected memory access.
Security. We give the proof of security in the full version of our paper.

References

[ACC+16] Prabhanjan Ananth, Yu-Chi Chen, Kai-Min Chung, Huijia Lin, and Wei-
Kai Lin. Delegating RAM computations with adaptive soundness and pri-
vacy. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part II,
volume 9986 of LNCS, pages 3–30. Springer, Heidelberg, October / Novem-
ber 2016.

[AIK04] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in
NC0. In 45th FOCS, pages 166–175. IEEE Computer Society Press, October
2004.

26

GRAM.Memory(1λ, D): On input the database D ∈ {0, 1}M :
1. Sample K ← TE.KeyGen(1λ) and S ← PRFKeyGen(1λ) defining PRFS :
{0, 1}λ → {0, 1}n (where n is the input length of each program).

2. Initialize an empty array D̂ of M blocks with block length N .
3. for each i from 1 to M do:

(a) Set D̂[i]← TE.Enc(K, 0λ, D[i]).

4. D∗ ← OData(1λ, 1N , D̂).

5. (D̃, SK)← UGRAM.Memory(1λ, 1t, D∗) where t = poly(logMN).

6. Output D̃ as the garbled memory and (K,S, SK) as the secret key.
GRAM.Program(SK′, i, P): On input SK′ = (K,S, SK), sequence number i, and

a program P :
1. Sample K′ ← PP.KeyGen(1λ)
2. P ∗ ← OProg(1λ, 1logM , 1T , P) where P ∗ runs in time T ′.
3. For each τ ∈ [T ′], computeK[(i‖τ)]← TE.Constrain(K, (i‖τ)) where (i‖τ)

is expressed as a λ-bit string.
4. Compute r := PRFS(i).
5. Let τ1, . . . , τm be the sequence of values guaranteed by strong localized

randomness.
6. for each τ ∈ [T ′] do:

(a) Let j ∈ [m− 1] be such that τ ∈ [τj , τj+1).
(b) Let CτCPU := SCτ [i, τ,K[(i‖τ)], Ij ,K

′, r′] where r′ = r if τ = T ′, else
r′ = ⊥. The step circuit SC is described in Figure 11

7. Construct a RAM program P ′ with step-circuits given by {CτCPU}.
8. P̃ ← UGRAM.Program(SK, i, P ′).

9. Output P̃ .
GRAM.Input(SK′, i, P): On input SK′ = (K,S, SK), i and x:

1. Compute r = PRFS(i)
2. Compute x̂← UGRAM.Input(SK, i, x)
3. Output x̃ = (x̂, r).

GRAM.EvalD̃(i, st, P̃ , x̃): On input state st, the garbled program P̃ , and garbled
input x̃:

1. Compute (y, st′) ← UGRAM.EvalD̃(st, P̃ , x̂) and update st to st′. Output
y ⊕ r.

Figure 10: Construction of Adaptive GRAM

27

Step Circuit SCτ

Input: A ciphertext cCPU and a data block X ∈ {0, 1}N .
Hardcoded: The sequence number i, step number τ , the constrained keyK[(i‖τ)],
the interval Ij , the key K′ and a string r′.

1. Compute rData := TE.Dec(K[(i‖τ)], X) and state = TE.Dec(K[(i‖τ)], cCPU).
2. Compute RIj = PP.Eval(K′, Ij).

3. Compute (R/W, L, state′,wData) := CP
∗,τ

CPU (state, rData, RIj).
4. if τ = T ′, then output c′CPU = state′⊕ r′; else c′CPU = TE.Enc(K[(i‖τ)], state′).
5. else if R/W = write do:

(a) Compute X ′ ← TE.Enc(K[i‖τ], (i, τ),wData).
(b) Output (c′CPU,R/W, L,X ′).

6. else if R/W = read, output (c′CPU,R/W, L,⊥).

Figure 11: Description of the Step Circuit

[App17] Benny Applebaum. Garbled circuits as randomized encodings of functions:
a primer. IACR Cryptology ePrint Archive, 2017:385, 2017.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating
programs. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS,
pages 1–18. Springer, Heidelberg, August 2001.

[BGL+15] Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Sidharth Telang.
Succinct randomized encodings and their applications. In Rocco A. Serve-
dio and Ronitt Rubinfeld, editors, 47th ACM STOC, pages 439–448. ACM
Press, June 2015.

[BHR12a] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Adaptively secure
garbling with applications to one-time programs and secure outsourcing. In
Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658
of LNCS, pages 134–153. Springer, Heidelberg, December 2012.

[BHR12b] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of
garbled circuits. In Ting Yu, George Danezis, and Virgil D. Gligor, editors,
ACM CCS 12, pages 784–796. ACM Press, October 2012.

[BL18] Fabrice Benhamouda and Huijia Lin. k-round multiparty computation from
k-round oblivious transfer via garbled interactive circuits. In Jesper Buus
Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part II, volume
10821 of LNCS, pages 500–532. Springer, Heidelberg, April / May 2018.

[BLSV18] Zvika Brakerski, Alex Lombardi, Gil Segev, and Vinod Vaikuntanathan.
Anonymous ibe, leakage resilience and circular security from new assump-
tions. To appear in Eurocrypt, 2018. https://eprint.iacr.org/2017/967.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity
of secure protocols (extended abstract). In 22nd ACM STOC, pages 503–
513. ACM Press, May 1990.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In V. Ashby, editor, ACM CCS

28

93, pages 62–73. ACM Press, November 1993.
[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions

and their applications. In Kazue Sako and Palash Sarkar, editors, ASI-
ACRYPT 2013, Part II, volume 8270 of LNCS, pages 280–300. Springer,
Heidelberg, December 2013.

[CCHR16] Ran Canetti, Yilei Chen, Justin Holmgren, and Mariana Raykova. Adaptive
succinct garbled RAM or: How to delegate your database. In Martin Hirt
and Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS,
pages 61–90. Springer, Heidelberg, October / November 2016.

[CDG+17] Chongwon Cho, Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao,
and Antigoni Polychroniadou. Laconic receiver oblivious transfer and ap-
plications. To appear in Crypto, 2017.

[CH16] Ran Canetti and Justin Holmgren. Fully succinct garbled RAM. In Madhu
Sudan, editor, ITCS 2016, pages 169–178. ACM, January 2016.

[CHJV15] Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan.
Succinct garbling and indistinguishability obfuscation for RAM programs.
In Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th ACM STOC,
pages 429–437. ACM Press, June 2015.

[CP13] Kai-Min Chung and Rafael Pass. A simple oram. Cryptology ePrint
Archive, Report 2013/243, 2013. https://eprint.iacr.org/2013/243.

[DG17] Nico Döttling and Sanjam Garg. Identity based encryption from diffie-
hellman assumptions. To appear in Crypto, 2017.

[DGHM18] Nico Dttling, Sanjam Garg, Mohammad Hajiabadi, and Daniel Masny.
New constructions of identity-based and key-dependent message secure en-
cryption schemes. To appear in PKC, 2018. https://eprint.iacr.org/

2017/978.
[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai,

and Brent Waters. Candidate indistinguishability obfuscation and func-
tional encryption for all circuits. In 54th FOCS, pages 40–49. IEEE Com-
puter Society Press, October 2013.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions. J. ACM, 33(4):792–807, 1986.

[GGMP16] Sanjam Garg, Divya Gupta, Peihan Miao, and Omkant Pandey. Secure
multiparty RAM computation in constant rounds. In Martin Hirt and
Adam D. Smith, editors, TCC 2016-B, Part I, volume 9985 of LNCS, pages
491–520. Springer, Heidelberg, October / November 2016.

[GHL+14] Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mariana Raykova,
and Daniel Wichs. Garbled RAM revisited. In Phong Q. Nguyen and Elis-
abeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages
405–422. Springer, Heidelberg, May 2014.

[GHRW14] Craig Gentry, Shai Halevi, Mariana Raykova, and Daniel Wichs. Out-
sourcing private RAM computation. In 55th FOCS, pages 404–413. IEEE
Computer Society Press, October 2014.

[GKK+12] S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell, Tal
Malkin, Mariana Raykova, and Yevgeniy Vahlis. Secure two-party com-
putation in sublinear (amortized) time. In Ting Yu, George Danezis, and
Virgil D. Gligor, editors, ACM CCS 12, pages 513–524. ACM Press, Octo-
ber 2012.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikun-
tanathan, and Nickolai Zeldovich. Reusable garbled circuits and succinct

29

functional encryption. In Dan Boneh, Tim Roughgarden, and Joan Feigen-
baum, editors, 45th ACM STOC, pages 555–564. ACM Press, June 2013.

[GLO15] Sanjam Garg, Steve Lu, and Rafail Ostrovsky. Black-box garbled RAM.
In Venkatesan Guruswami, editor, 56th FOCS, pages 210–229. IEEE Com-
puter Society Press, October 2015.

[GLOS15] Sanjam Garg, Steve Lu, Rafail Ostrovsky, and Alessandra Scafuro. Garbled
RAM from one-way functions. In Rocco A. Servedio and Ronitt Rubinfeld,
editors, 47th ACM STOC, pages 449–458. ACM Press, June 2015.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In
Alfred Aho, editor, 19th ACM STOC, pages 218–229. ACM Press, May
1987.

[GO96] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation
on oblivious rams. J. ACM, 43(3):431–473, 1996.

[Gol87] Oded Goldreich. Towards a theory of software protection and simulation by
oblivious RAMs. In Alfred Aho, editor, 19th ACM STOC, pages 182–194.
ACM Press, May 1987.

[GS18a] Sanjam Garg and Akshayaram Srinivasan. Adaptively secure garbling with
near optimal online complexity. In Advances in Cryptology - EUROCRYPT
2018 - 37th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018
Proceedings, Part II, pages 535–565, 2018.

[GS18b] Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure
computation from minimal assumptions. In Jesper Buus Nielsen and Vin-
cent Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS,
pages 468–499. Springer, Heidelberg, April / May 2018.

[HJO+16] Brett Hemenway, Zahra Jafargholi, Rafail Ostrovsky, Alessandra Scafuro,
and Daniel Wichs. Adaptively secure garbled circuits from one-way func-
tions. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016,
Part III, volume 9816 of LNCS, pages 149–178. Springer, Heidelberg, Au-
gust 2016.

[HY16] Carmit Hazay and Avishay Yanai. Constant-round maliciously secure two-
party computation in the RAM model. In Martin Hirt and Adam D.
Smith, editors, TCC 2016-B, Part I, volume 9985 of LNCS, pages 521–
553. Springer, Heidelberg, October / November 2016.

[IKO+11] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, and
Amit Sahai. Efficient non-interactive secure computation. In Kenneth G.
Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 406–
425. Springer, Heidelberg, May 2011.

[JKK+17] Zahra Jafargholi, Chethan Kamath, Karen Klein, Ilan Komargodski,
Krzysztof Pietrzak, and Daniel Wichs. Be adaptive, avoid overcommit-
ting. In Advances in Cryptology - CRYPTO 2017 - 37th Annual Inter-
national Cryptology Conference, Santa Barbara, CA, USA, August 20-24,
2017, Proceedings, Part I, pages 133–163, 2017.

[JW16] Zahra Jafargholi and Daniel Wichs. Adaptive security of Yao’s garbled cir-
cuits. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part I, vol-
ume 9985 of LNCS, pages 433–458. Springer, Heidelberg, October / Novem-
ber 2016.

[KLW15] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguisha-
bility obfuscation for turing machines with unbounded memory. In Rocco A.

30

Servedio and Ronitt Rubinfeld, editors, 47th ACM STOC, pages 419–428.
ACM Press, June 2015.

[KY18] Marcel Keller and Avishay Yanai. Efficient maliciously secure multiparty
computation for ram. To appear in EUROCRYPT, 2018. https://eprint.
iacr.org/2017/981.

[LO13] Steve Lu and Rafail Ostrovsky. How to garble RAM programs. In Thomas
Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume
7881 of LNCS, pages 719–734. Springer, Heidelberg, May 2013.

[LO17] Steve Lu and Rafail Ostrovsky. Black-box parallel garbled RAM. In Ad-
vances in Cryptology - CRYPTO 2017 - 37th Annual International Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings,
Part II, pages 66–92, 2017.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for
two-party computation. Journal of Cryptology, 22(2):161–188, April 2009.

[Mia16] Peihan Miao. Cut-and-choose for garbled RAM. Cryptology ePrint Archive,
Report 2016/907, 2016. http://eprint.iacr.org/2016/907.

[ORS15] Rafail Ostrovsky, Silas Richelson, and Alessandra Scafuro. Round-optimal
black-box two-party computation. In Rosario Gennaro and Matthew J. B.
Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages
339–358. Springer, Heidelberg, August 2015.

[OS97] Rafail Ostrovsky and Victor Shoup. Private information storage (extended
abstract). In 29th ACM STOC, pages 294–303. ACM Press, May 1997.

[Ost90] Rafail Ostrovsky. Efficient computation on oblivious RAMs. In 22nd ACM
STOC, pages 514–523. ACM Press, May 1990.

[WHC+14] Xiao Shaun Wang, Yan Huang, T.-H. Hubert Chan, Abhi Shelat, and
Elaine Shi. SCORAM: Oblivious RAM for secure computation. In Gail-
Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 14, pages 191–
202. ACM Press, November 2014.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended ab-
stract). In 23rd FOCS, pages 160–164. IEEE Computer Society Press,
November 1982.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended
abstract). In 27th FOCS, pages 162–167. IEEE Computer Society Press,
October 1986.

