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Abstract. A central challenge in differential privacy is to design compu-
tationally efficient non-interactive algorithms that can answer large num-
bers of statistical queries on a sensitive dataset. That is, we would like
to design a differentially private algorithm that takes a dataset D ∈ Xn

consisting of some small number of elements n from some large data
universe X, and efficiently outputs a summary that allows a user to
efficiently obtain an answer to any query in some large family Q.

Ignoring computational constraints, this problem can be solved even
when X and Q are exponentially large and n is just a small polyno-
mial; however, all algorithms with remotely similar guarantees run in
exponential time. There have been several results showing that, under
the strong assumption of indistinguishability obfuscation, no efficient dif-
ferentially private algorithm exists when X and Q can be exponentially
large. However, there are no strong separations between information-
theoretic and computationally efficient differentially private algorithms
under any standard complexity assumption.

In this work we show that, if one-way functions exist, there is no general
purpose differentially private algorithm that works when X and Q are
exponentially large, and n is an arbitrary polynomial. In fact, we show
that this result holds even if X is just subexponentially large (assuming
only polynomially-hard one-way functions). This result solves an open
problem posed by Vadhan in his recent survey [52].

1 Introduction

A central challenge in privacy research is to generate rich private summaries of
a sensitive dataset. Doing so creates a tension between two competing goals. On
one hand we would like to ensure differential privacy [22]—a strong notion of
individual privacy that guarantees no individual’s data has a significant influence
on the summary. On the other hand, the summary should enable a user to obtain
approximate answers to some large set of queries. Since the summary must be
generated without knowing which queries the user will need to answer, we would
like Q to be very large. This problem is sometimes called non-interactive query
release, in contrast with interactive query release where the user is required



specify the (much smaller) set of queries that he needs to answer in advance,
and the private answers may be tailored to just these queries.

More specifically, there is a sensitive dataset D = (D1, . . . , Dn) ∈ Xn where
each element of D is the data of some individual, and comes from some data
universe X. We are interested in generating a summary that allows the user to
answer statistical queries on D, which are queries of the form “What fraction
of the individuals in the dataset satisfy some property q?” [38]. Given a set of
statistical queries Q and a data universe X, we would like to design a differen-
tially private algorithm M that takes a dataset D ∈ Xn and outputs a summary
that can be used to obtain an approximate answer to every query in Q. Since
differential privacy requires hiding the information of single individuals, for a
fixed (X,Q) generating a private summary becomes easier as n becomes larger.
The overarching goal is to find algorithms that are both private and accurate
for X and Q as large as possible and n as small as possible.

Since differential privacy is a strong guarantee, a priori we might expect
differentially private algorithms to be very limited. However, a seminal result
of Blum, Ligett, and Roth [7] showed how to generate a differentially private
summary encoding answers to exponentially many queries. After a series of im-
provements and extensions [23, 26, 43, 35, 33, 34, 41, 49], we know that any set
of queries Q over any universe X can be answered given a dataset of size
n &

√
log |X|·log |Q| [35]. Thus, it is information-theoretically possible to answer

huge sets of queries using a small dataset.

Unfortunately, all of these algorithms have running time poly(n, |X|, |Q|),
which can be exponential in the dimension of the dataset, and in the descrip-
tion of a query. For example if X = {0, 1}d, so each individual’s data consists
of d binary attributes, then the dataset has size nd but the running time will
be at least 2d. Thus, these algorithms are only efficient when both |X| and |Q|
have polynomial size. There are computationally efficient algorithms when one
of |Q| and |X| is very large, provided that the other is extremely small—at
most n2−Ω(1). Specifically, (1) the classical technique of perturbing the answer
to each query with independent noise requires a dataset of size n &

√
|Q| [19,

25, 6, 22], and (2) the folklore noisy histogram algorithm (see e.g. [52]) requires a
dataset of size n &

√
|X| · log |Q|. Thus there are huge gaps between the power

of information-theoretic and computationally efficient differentially private algo-
rithms.

Beginning with the work of Dwork et al. [23], there has been a series of results
giving evidence that this gap is inherent using a connection to traitor-tracing
schemes [16]. The first such result by Dwork et al. [23] showed the first separa-
tion between efficient and inefficient differentially private algorithms, proving a
polynomial-factor separation in sample complexity between the two cases assum-
ing bilinear cryptography. Subsequently, Boneh and Zhandry [10] proved that,
under the much stronger assumption that indistinguishability obfuscation (iO)
exists, then for a worst-case family of statistical queries, there is no computa-
tionally efficient algorithm with poly(log |Q|+ log |X|) sample complexity. More
recently, Kowalczyk et al. [40] strengthened these results to show that the two
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Reference Data Universe # of Queries Dataset Size Assumption

|Xκ| |Qκ| n(κ)

[23, 8] ≥ exp(κ) ≥ exp(κ) ≤ κ2−Ω(1) Bilinear Maps

[23, 10] ≥ exp(κ) ≥ exp(κ) ≤ poly(κ) iO + OWF

[40] ≥ exp(κ) ≥ Õ(n7) ≤ poly(κ) iO + OWF

[40] ≥ Õ(n7) ≥ exp(κ) ≤ poly(κ) iO + OWF

This work ≥ exp(κo(1)) ≥ exp(κ) ≤ poly(κ) OWF

Table 1. Comparison of Hardness Results for Offline Differentially Private Query
Release. Each row corresponds to an informal statement of the form “If the assumption
holds, then there is no general purpose differentially private algorithm that works when
the data universe has size at least |X|, the number of queries is at least |Q|, and the
size of the dataset is at most n.” All assumptions are polynomial-time hardness.

efficient algorithms mentioned above—independent perturbation and the noisy
histogram—are optimal up to polynomial factors, also assuming iO.

These results give a relatively clean picture of the complexity of non-interactive
differential privacy, but only if we assume the existence of iO. Recently, in his
survey on the foundations of differential privacy [52], Vadhan posed it as an open
question to prove hardness of non-interactive differential privacy using standard
cryptographic assumptions. In this work, we resolve this open question by prov-
ing a strong hardness result for non-interactive differential privacy making only
the standard assumption that one-way functions (OWF) exist.

Theorem 1. There is a sequence of pairs {(Xκ, Qκ)}κ∈N where

|Xκ| = 22
poly(log log κ)

= 2κ
o(1)

, |Qκ| = 2κ

such that, assuming the existence of one-way functions, for every polynomial
n = n(κ), there is no polynomial time differentially private algorithm that takes
a dataset D ∈ Xn

κ and outputs an accurate answer to every query in Qκ up to
an additive error of ±1/3.

We remark that, in addition to removing the assumption of iO, Theorem 1 is
actually stronger than that of Boneh and Zhandry [10], since the data universe
size can be subexponential in κ, even if we only make standard polynomial-time
hardness assumptions. We leave it as an interesting open question to obtain quan-
titatively optimal hardness results matching (or even improving) those of [40]
using standard assumptions. Table 1 summarizes existing hardness results as
compared to our work.

Like all of the aforementioned hardness results, the queries constructed in
Theorem 1 are somewhat complex, and involve computing some cryptographic
functionality. A major research direction in differential privacy has been to con-
struct efficient non-interactive algorithms for specific large families of simple
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queries, or prove that this problem is hard. The main technique for constructing
such algorithms has been to leverage efficient PAC learning algorithms. Specif-
ically, a series of works [7, 32, 33, 36] have shown that an efficient PAC learning
algorithm for a class of concepts related to Q can be used to obtain efficient dif-
ferentially private algorithms for answering the queries Q. Thus, hardness results
for differential privacy imply hardness results for PAC learning. However, it is
relatively easy to show the hardness of PAC learning using just OWFs [42], and
one can even show the hardness of learning simple concept classes (e.g. DNF for-
mulae [17, 18]) by using more structured complexity assumptions. One roadblock
to proving hardness results for privately answering simple families of queries is
that, prior to our work, even proving hardness results for worst-case families
of queries required using extremely powerful cryptographic primitives like iO,
leaving little room to utilize more structured complexity assumptions to obtain
hardness for simple queries. By proving hardness results for differential privacy
using only the assumption of one-way functions, we believe our results are an
important step towards proving hardness results for simpler families of queries.

Relationship to [31]. A concurrent and independent work by Goyal, Koppula,
and Waters also shows how to prove hardness results for non-interactive dif-
ferential privacy from weaker assumptions than iO. Specifically, they propose a
new primitive called risky traitor tracing that has weaker security than standard
traitor tracing, but is still strong enough to rule out the existence of computation-
ally efficient differentially private algorithms, and construct such schemes under
certain assumptions on composite-order bilinear maps. Unlike our work, their
new primitive has applications outside of differential privacy. However, within
the context of differential privacy, Theorem 1 is stronger than what they prove
in two respects: (1) their bilinear-map assumptions are significantly stronger
than our assumption of one-way functions, and (2) their hardness result requires
a data universe of size |Xκ| = exp(κ), rather than our result, which allows
|Xκ| = exp(κo(1)).

1.1 Techniques

Differential Privacy and Traitor-Tracing Schemes. Our results build on
the connection between differentially private algorithms for answering statistical
queries and traitor-tracing schemes, which was discovered by Dwork et al. [23].
Traitor-tracing schemes were introduced by Chor, Fiat, and Naor [16] for the
purpose of identifying pirates who violate copyright restrictions. Roughly speak-
ing, a (fully collusion-resilient) traitor-tracing scheme allows a sender to generate
keys for n users so that 1) the sender can broadcast encrypted messages that
can be decrypted by any user, and 2) any efficient pirate decoder capable of
decrypting messages can be traced to at least one of the users who contributed
a key to it, even if an arbitrary coalition of the users combined their keys in an
arbitrary efficient manner to construct the decoder.

Dwork et al. show that the existence of traitor-tracing schemes implies hard-
ness results for differential privacy. Very informally, they argue as follows. Sup-
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pose a coalition of users takes their keys and builds a dataset D ∈ Xn where each
element of the dataset contains one of their user keys. The family Q will contain
a query qc for each possible ciphertext c. The query qc asks “What fraction of
the elements (user keys) in D would decrypt the ciphertext c to the message 1?”
Every user can decrypt, so if the sender encrypts a message b ∈ {0, 1} as a ci-
phertext c, then every user will decrypt c to b. Thus, the answer to the statistical
query qc will be b. Now, suppose there were an efficient algorithm that outputs
an accurate answer to each query qc in Q. Then the coalition could use it to
efficiently produce a summary of the dataset D that enables one to efficiently
compute an approximate answer to every query qc, which would also allow one to
efficiently decrypt the ciphertext. Such a summary can be viewed as an efficient
pirate decoder, and thus the tracing algorithm can use the summary to trace
one of the users in the coalition. However, if there is a way to identify one of the
users in the dataset from the summary, then the summary is not private.

Hardness of Privacy from OWF. In order to instantiate this outline, we
need a sufficiently good traitor-tracing scheme. Traitor-tracing schemes can be
constructed from any functional encryption scheme for comparison functions [8]3

This is a cryptographic scheme in which secret keys are associated with functions
f and ciphertexts are associated with a message x, and decrypting the ciphertext
with a secret key corresponding to f reveals f(x) and “nothing else.” In our
application, the functions are of the form fz where fz(x) = 1 if and only if x ≥ z
(as integers).

Using techniques from [40] (also closely related to arguments in [14]), we
show that, in order to prove hardness results for differentially private algorithms
it suffices to have a functional encryption scheme for comparison functions that
is non-adaptively secure for just two ciphertexts and n secret keys. That is, if
an adversary chooses to receive keys for n functions f1, . . . , fn, and ciphertexts
for two messages x1, x2, then he learns nothing more than {fi(x1), fi(x2)}i∈[n].
Moreover, the comparison functions only need to support inputs in {0, 1, . . . , n}
(i.e. log n bits). Lastly, it suffices for us to have a symmetric-key functional
encryption scheme where both the encryption and key generation can require a
private master secret key.

We then construct this type of functional encryption (FE) using the tech-
niques of Gorbunov, Vaikuntanathan and Wee [30] who constructed bounded-
collusion FE from any public-key encryption. There are two important differ-
ences between the type of FE that we need and bounded-collusion FE in [30]:
(1) we want a symmetric-key FE based on one-way functions (OWFs), whereas
they constructed public-key FE using public-key encryption, (2) we want secu-
rity for only 2 ciphertexts but many secret keys, whereas they achieved security
for many ciphertexts but only a small number of secret keys. It turns out that
their construction can be rather easily scaled down from the public-key to the
symmetric-key setting by replacing public-key encryption with symmetric-key
encryption (as previously observed by, e.g., [11]). Going from many ciphertexts

3 These were called private linear broadcast encryption schemes by [8], but we use the
more modern terminology of functional encryption.
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and few secret keys to many secret keys and few ciphertexts essentially boils
down to exchanging the role of secret keys and ciphertexts in their scheme, but
this requires care. We give the full description and analysis of this construction.
Lastly, we rely on one additional property: for the simple functions we consider
with logarithmic input length, we can get a scheme where the ciphertext size
is extremely small κo(1), where κ is the security parameter, while being able
to rely on standard polynomial hardness of OWFs. To do so, we replace the
garbled circuits used in the construction of [30] with information-theoretic ran-
domized encodings for simple functions and leverage the fact that we are in the
more restricted nonadaptive secret-key setting. The resulting small ciphertext
size allows us to get DP lower bounds even when the data universe is of size
|X| = exp(κo(1)).

We remark that Tang and Zhang [47] proved that any black-box construc-
tion of a traitor-tracing scheme from a random oracle must have either keys or
ciphertexts of length nΩ(1), provided that the scheme does not make calls to the
random oracle when generating the user keys. Our construction uses one-way
functions during key generation, and thus circumvents this barrier.

Why Two-Ciphertext Security? In the hardness reduction sketched above,
the adversary for the functional encryption scheme will use the efficient differ-
entially private algorithm to output some stateless program (the summary) that
correctly decrypts ciphertexts for the functional encryption scheme (by approxi-
mately answering statistical queries). The crux of the proof is to use differential
privacy to argue that the scheme must violate security of the functional encryp-
tion scheme by distinguishing encryptions of the messages x and x − 1 even if
it does not possess a secret key for the function fx, which is the only function
in the family of comparison functions that would give different output on these
two messages, and therefore an adversary without this key should not be able
to distinguish between these two messages.

Thus, in order to obtain a hardness result for differential privacy we need
a functional encryption scheme with the following non-standard security def-
inition: for every polynomial time adversary that obtains a set of secret keys
corresponding to functions other than fx and outputs some stateless program,
with high probability that program has small advantage in distinguishing en-
cryptions of x from x − 1. Implicit in the work of Kowalczyk et al. [40] is a
lemma that says that this property is satisfied by any functional encryption
scheme that satisfies the standard notion of security for two messages. At a high
level, security for one-message allow for the possibility that the adversary some-
times outputs a program with large positive advantage and sometimes outputs
a program with large negative advantage, whereas two-message security bounds
the average squared advantage, meaning that the advantage must be small with
high probability. This argument is similar to one used by Dodis and Yu [20] in
a completely different setting.
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1.2 Additional Related Work

(Hardness of) Interactive Differential Privacy. Another area of focus is
interactive differential privacy, where the mechanism gets the dataset D and a
(relatively small) set of queries Q chosen by the analyst and must output an-
swers to each query in Q. Most differentially private algorithms for answering
a large number of arbitrary queries actually work in this setting [23, 26, 34], or
even in a more challenging setting where the queries in Q arrive online and may
be adaptively chosen. [43, 35, 33, 49]. Ullman [50] showed that, assuming one-way
functions exist, there is no polynomial-time differentially private algorithm that
takes a dataset D ∈ Xn and a set of Õ(n2) arbitrary statistical queries and
outputs an accurate answer to each of these queries. The hardness of interactive
differential privacy has also been extended to a seemingly easier model of inter-
active data analysis [37, 45], which is closely related to differential privacy [21, 3],
even though privacy is not an explicit requirement in that model. These results
however do not give any specific set of queries Q that can be privately summa-
rized information-theoretically but not by a computationally efficient algorithm,
and thus do not solve the problem addressed in thus work.

The Complexity of Simple Statistical Queries. As mentioned above, a
major open research direction is to design non-interactive differentially pri-
vate algorithms for simple families of statistical queries. For example, there
are polynomial time differentially private algorithms with polynomial sample
complexity for summarizing point queries and threshold queries [5, 12], using
an information-theoretically optimal number of samples. Another class of focus
has been marginal queries [32, 36, 48, 15, 24]. A marginal query is defined on the
data universe {0, 1}κ. It is specified by a set of positions S ⊆ {1, . . . , κ}, and a
pattern t ∈ {0, 1}|S| and asks “What fraction of elements of the dataset have
each coordinate j ∈ S set to tj?” Specifically, Thaler et al. [48], building on
the work of Hardt et al. [36] gave an efficient differentially private algorithm for
answering all marginal queries up to an additive error of ±.01 when the dataset
is of size n & 2

√
κ. If we assume sufficiently hard one-way functions exist, then

Theorem 1 would show that these parameters are not achievable for an arbitrary
set of queries. It remains a central open problem in differential privacy to either
design an optimal computationally efficient algorithm for marginal queries or to
give evidence that this problem is hard.

Hardness of Synthetic Data. There have been several other attempts to ex-
plain the accuracy vs. computation tradeoff in differential privacy by considering
restricted classes of algorithms. For example, Ullman and Vadhan [51] (building
on Dwork et al. [23]) show that, assuming one-way functions, no differentially
private and computationally efficient algorithm that outputs a synthetic dataset
can accurately answer even the very simple family of 2-way marginals. A syn-
thetic dataset is a specific type of summary that is interchangeable with the real
dataset—it is a set D̂ = (D̂1, . . . , D̂n) ∈ Xn such that the answer to each query
on D̂ is approximately the same as the answer to the same query on D. 2-way
marginals are just the subset of marginal queries above where we only allow
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|S| ≤ 2, and these queries capture the mean covariances of the attributes. This
result is incomparable to ours, since it applies to a very small and simple family
of statistical queries, but only applies to algorithms that output synthetic data.

Information-Theoretic Lower Bounds. A related line of work [13, 29, 4, 1,
46] uses ideas from fingerprinting codes [9] to prove information-theoretic lower
bounds on the number of queries that can be answered by differentially private
algorithms, and also devise realistic attacks against the privacy of algorithms
that attempt to answer too many queries [28, 27]. Most relevant to this work is

the result of [13] which says that if the size of the data universe is 2n
2

, then
there is a fixed set of n2 queries that no differentially private algorithm, even a
computationally unbounded one, can answer accurately. Although these results
are orthogonal to ours, the techniques are quite related, as fingerprinting codes
are essentially the information-theoretic analogue of traitor-tracing schemes.

2 Differential Privacy Preliminaries

2.1 Differentially Private Algorithms

A dataset D ∈ Xn is an ordered set of n rows, where each row corresponds to
an individual, and each row is an element of some data universe X. We write
D = (D1, . . . , Dn) where Di is the i-th row of D. We will refer to n as the size
of the dataset. We say that two datasets D,D′ ∈ X∗ are adjacent if D′ can
be obtained from D by the addition, removal, or substitution of a single row,
and we denote this relation by D ∼ D′. In particular, if we remove the i-th
row of D then we obtain a new dataset D−i ∼ D. Informally, an algorithm A
is differentially private if it is randomized and for any two adjacent datasets
D ∼ D′, the distributions of A(D) and A(D′) are similar.

Definition 1 (Differential Privacy [22]). Let A : Xn → S be a randomized
algorithm. We say that A is (ε, δ)-differentially private if for every two adjacent
datasets D ∼ D′ and every E ⊆ S,

P [A(D) ∈ E] ≤ eε · P [A(D′) ∈ E] + δ.

In this definition, ε, δ may be functions of n.

2.2 Algorithms for Answering Statistical Queries

In this work we study algorithms that answer statistical queries (which are also
sometimes called counting queries, predicate queries, or linear queries in the
literature). For a data universe X, a statistical query on X is defined by a
predicate q : X → {0, 1}. Abusing notation, we define the evaluation of a query
q on a dataset D = (D1, . . . , Dn) ∈ Xn to be

1

n

n∑
i=1

q(Di).
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A single statistical query does not provide much useful information about the
dataset. However, a sufficiently large and rich set of statistical queries is sufficient
to implement many natural machine learning and data mining algorithms [38],
thus we are interested in differentially private algorithms to answer such sets.
To this end, let Q = {q : X → {0, 1}} be a set of statistical queries on a data
universe X.

Informally, we say that a mechanism is accurate for a set Q of statistical
queries if it answers every query in the family to within error ±α for some
suitable choice of α > 0. Note that 0 ≤ q(D) ≤ 1, so this definition of accuracy
is meaningful when α < 1/2.

Before we define accuracy, we note that the mechanism may represent its
answer in any form. That is, the mechanism outputs may output a summary
S ∈ S that somehow represents the answers to every query in Q. We then
require that there is an evaluator Eval : S ×Q → [0, 1] that takes the summary
and a query and outputs an approximate answer to that query. That is, we think
of Eval(S, q) as the mechanism’s answer to the query q. We will abuse notation
and simply write q(S) to mean Eval(S, q).4

Definition 2 (Accuracy). For a family Q of statistical queries on X, a dataset
D ∈ Xn and a summary S ∈ S, we say that S is α-accurate for Q on D if

∀q ∈ Q |q(D)− q(S)| ≤ α.

For a family of statistical queries Q on X, we say that an algorithm A : Xn → S
is (α, β)-accurate for Q given a dataset of size n if for every D ∈ Xn,

P [A(D) is α-accurate for Q on X] ≥ 1− β.

In this work we are typically interested in mechanisms that satisfy the very
weak notion of (1/3, o(1/n))-accuracy, where the constant 1/3 could be replaced
with any constant < 1/2. Most differentially private mechanisms satisfy quan-
titatively much stronger accuracy guarantees. Since we are proving hardness
results, this choice of parameters makes our results stronger.

2.3 Computational Efficiency

Since we are interested in asymptotic efficiency, we introduce a computation
parameter κ ∈ N. We then consider a sequence of pairs {(Xκ, Qκ)}κ∈N where
Qκ is a set of statistical queries on Xκ. We consider databases of size n where
n = n(κ) is a polynomial. We then consider algorithms A that take as input a

4 If we do not restrict the running time of the algorithm, then it is without loss
of generality for the algorithm to simply output a list of real-valued answers to
each queries by computing Eval(S, q) for every q ∈ Q. However, this transformation
makes the running time of the algorithm at least |Q|. The additional generality of
this framework allows the algorithm to run in time sublinear in |Q|. This generality
is crucial for our results, which apply to settings where the family of queries is
superpolynomially large in the size of the dataset.
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dataset Xn
κ and output a summary in Sκ where {Sκ}κ∈N is a sequence of output

ranges. There is an associated evaluator Eval that takes a query q ∈ Qκ and a
summary s ∈ Sκ and outputs a real-valued answer. The definitions of differential
privacy and accuracy extend straightforwardly to such sequences.

We say that such an algorithm is computationally efficient if the running
time of the algorithm and the associated evaluator run in time polynomial in
the computation parameter κ. In principle, it could require as many as |X| bits
even to specify a statistical query, in which case we cannot hope to answer the
query efficiently, even ignoring privacy constraints. Thus, we restrict attention to
statistical queries that are specified by a circuit of size polylog|X|, and thus can
be evaluated in time polylog|X|, and so are not the bottleneck in computation.
To remind the reader of this fact, we will often say that Q is a family of efficiently
computable statistical queries.

2.4 Notational Conventions

Given a boolean predicate P , we will write I{P} to denote the value 1 if P is
true and 0 if P is false. We also say that a function ε = ε(n) is negligible if
ε(n) = O(1/nc) for every constant c > 0, and denote this by ε(n) = negl(n).

3 Weakly Secure Traitor-Tracing Schemes

In this section we describe a very relaxed notion of traitor-tracing schemes whose
existence will imply the hardness of differentially private data release.

3.1 Syntax and Correctness

For a function n : N→ N and a sequence {Kκ, Cκ}κ∈N, an (n, {Kκ, Cκ})-traitor-
tracing scheme is a tuple of efficient algorithms Π = (Setup,Enc,Dec) with the
following syntax.

– Setup takes as input a security parameter κ, runs in time poly(κ), and out-
puts n = n(κ) secret user keys sk1, . . . , skn ∈ Kκ and a secret master key
msk. We will write sk = (sk1, . . . , skn,msk) to denote the set of keys.

– Enc takes as input a master key msk and an index i ∈ {0, 1, . . . , n}, and
outputs a ciphertext c ∈ Cκ. If c ←R Enc(j,msk) then we say that c is
encrypted to index j.

– Dec takes as input a ciphertext c and a user key ski and outputs a single bit
b ∈ {0, 1}. We assume for simplicity that Dec is deterministic.

Correctness of the scheme asserts that if sk are generated by Setup, then for
any pair i, j, Dec(ski,Enc(msk, j)) = I{i ≤ j}. For simplicity, we require that
this property holds with probability 1 over the coins of Setup and Enc, although
it would not affect our results substantively if we required only correctness with
high probability.
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Definition 3 (Perfect Correctness). An (n, {Kκ, Cκ})-traitor-tracing scheme
is perfectly correct if for every κ ∈ N, and every i, j ∈ {0, 1, . . . , n}

P
sk=Setup(κ), c=Enc(msk,j)

[Dec(ski, c) = I{i ≤ j}] = 1.

3.2 Index-Hiding Security

Intuitively, the security property we want is that any computationally efficient
adversary who is missing one of the user keys ski∗ cannot distinguish cipher-
texts encrypted with index i∗ from index i∗ − 1, even if that adversary holds
all n − 1 other keys sk−i∗ . In other words, an efficient adversary cannot infer
anything about the encrypted index beyond what is implied by the correctness
of decryption and the set of keys he holds.

More precisely, consider the following two-phase experiment. First the ad-
versary is given every key except for ski∗ , and outputs a decryption program
S. Then, a challenge ciphertext is encrypted to either i∗ or to i∗ − 1. We say
that the traitor-tracing scheme is secure if for every polynomial time adversary,
with high probability over the setup and the decryption program chosen by the
adversary, the decryption program has small advantage in distinguishing the two
possible indices.

Definition 4 (Index Hiding). A traitor-tracing scheme Π satisfies (weak)
index-hiding security if for every sufficiently large κ ∈ N, every i∗ ∈ [n(κ)], and
every poly(κ)-time adversary A,

P
sk=Setup(κ)
S=A(sk−i∗ )

[
P [S(Enc(msk, i∗)) = 1]− P [S(Enc(msk, i∗ − 1)) = 1] >

1

4en

]
≤ 1

4en

(1)
In the above, the inner probabilities are taken over the coins of Enc and S.

Note that in the above definition we have fixed the success probability of the
adversary for simplicity. Moreover, we have fixed these probabilities to relatively
large ones. Requiring only a polynomially small advantage is crucial to achieving
the key and ciphertext lengths we need to obtain our results, while still being
sufficient to establish the hardness of differential privacy.

3.3 Index-Hiding Security Implies Hardness for Differential Privacy

It was shown by Kowalczyk et al. [40] (refining similar results from [23, 50])
that a traitor-tracing scheme satisfying index-hiding security implies a hardness
result for non-interactive differential privacy.

Theorem 2. Suppose there is an (n, {Kκ, Cκ})-traitor-tracing scheme that sat-
isfies perfect correctness (Definition 3) and index-hiding security (Definition 4).
Then there is a sequence of of pairs {Xκ, Qκ}κ∈N where Qκ is a set of statistical
queries on Xκ, |Qκ| = |Cκ|, and |Xκ| = |Kκ| such that there is no algorithm A
that is simultaneously
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1. computationally efficient,
2. (1, 1/4n)-differentially private, and

3. (1/3, 1/2n)-accurate for Qκ on datasets D ∈ Xn(κ)
κ .

3.4 Two-Index-Hiding-Security

While Definition 4 is the most natural to prove hardness of privacy, it is not
consistent with the usual security definition for functional encryption because
of the nested “probability-of-probabilities.” In order to apply more standard
notions of functional encryption, we show that index-hiding security follows from
a more natural form of security for two ciphertexts.

First, consider the following IndexHiding game.

The challenger generates keys sk = (sk1, . . . , skn,msk)←R Setup(κ).
The adversary A is given keys sk−i∗ and outputs a decryption program S.
The challenger chooses a bit b←R {0, 1}
The challenger generates an encryption to index i∗ − b, c←R Enc(msk, i∗ − b)
The adversary makes a guess b′ = S(c)

Fig. 1. IndexHidingi∗

Let IndexHidingi∗,sk,S be the game IndexHidingi∗ where we fix the choices
of sk and S. Also, define

Advi∗,sk,S = P
IndexHidingi∗,sk,S

[b′ = b]− 1

2
.

so that

P
IndexHidingi∗

[b′ = b]− 1

2
= E

sk=Setup(κ)
S=A(sk−i∗ )

[Advi∗,sk,S ]

Then the following statement implies (1) in Definition 4:

P
sk=Setup(κ), S=A(sk−i∗ )

[
Advi∗,sk,S >

1

4en

]
≤ 1

2en
(2)

We can define a related two-index-hiding game.
Analogous to what we did with IndexHiding, we can define TwoIndexHidingi∗,sk,S

to be the game TwoIndexHidingi∗ where we fix sk and S, and define

TwoAdvi∗ = P
TwoIndexHidingi∗

[b′ = b0 ⊕ b1]− 1

2

Kowalczyk et al. [40] proved the following lemma that will be useful to con-
nect our new construction to the type of security definition that implies hardness
of differential privacy.
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The challenger generates keys sk = (sk1, . . . , skn,msk)←R Setup.
The adversary A is given keys sk−i∗ and outputs a decryption program S.
Choose b0 ←R {0, 1} and b1 ←R {0, 1} independently.
Let c0 ←R Enc(i∗ − b0;msk) and c1 ←R Enc(i∗ − b1;msk).
Let b′ = S(c0, c1).

Fig. 2. TwoIndexHidingi∗

Lemma 1. Let Π be a traitor-tracing scheme such that for every efficient ad-
versary A, every κ ∈ N, and index i∗ ∈ [n(κ)],

TwoAdvi∗ ≤
1

300n3

Then Π satisfies weak index-hiding security.

In the rest of the paper, we will construct a scheme satisfying the assumption
of the above lemma with suitable key and ciphertext lengths, which we can
immediately plug into Theorem 2 to obtain Theorem 1 in the introduction.

4 Cryptographic Tools

4.1 Decomposable Randomized Encodings

Let F =
{
f : {0, 1}` → {0, 1}k

}
be a family of Boolean functions. An (information-

theoretic) decomposable randomized encoding for F is a pair of efficient algo-
rithms (DRE.Encode,DRE.Decode) such that the following hold:

– DRE.Encode takes as input a function f ∈ F and randomness R and outputs
a randomized encoding consisting of a set of ` pairs of labels

F̃ (f,R) =

{
F̃1(f, 0, R) · · · F̃`(f, 0, R)

F̃1(f, 1, R) · · · F̃`(f, 1, R)

}
where the i-th pair of labels corresponds to the i-th bit of the input x.

– (Correctness) DRE.Decode takes as input a set of ` labels corresponding
to some function f and input x and outputs f(x). Specifically,

∀ f ∈ F , x ∈ {0, 1}` DRE.Decode
(
F̃1(f, x1, R), . . . , F̃`(f, x`, R)

)
= f(x)

with probability 1 over the randomness R.
– (Information-Theoretic Security) For every function f and input y, the

set of labels corresponding to f and y reveal nothing other than f(y). Specif-
ically, there exists a randomized simulator DRE.Sim that depends only on
the output f(x) such that

∀ f ∈ F , x ∈ {0, 1}`
{
F̃1(f, x1, R), . . . , F̃`(f, x`, R)

}
∼ DRE.Sim(f(x))

where ∼ denotes that the two random variables are identically distributed.
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– The length of the randomized encoding is the maximum length of F̃ (f,R)
over all choices of f ∈ F and the randomness R.

We will utilize the fact that functions computable in low depth have small
decomposable randomized encodings.

Theorem 3 ([2, 39]). If F is a family of functions such that a universal func-
tion for F , U(f, x) = f(x), can be computed by Boolean formulae of depth d
(with fan-in 2, over the basis {∧,∨,¬}), then F has an information-theoretic
decomposable randomized encoding of length O(4d).

4.2 Private Key Functional Encryption

Let F =
{
f : {0, 1}` → {0, 1}k

}
be a family of functions. A private key func-

tional encryption scheme for F is a tuple of polynomial-time algorithms ΠFE =
(FE.Setup,FE.KeyGen,FE.Enc,FE.Dec) with the following syntax and properties:

– FE.Setup takes a security parameter 1κ and outputs a master secret key
FE.msk.

– FE.KeyGen takes a master secret key FE.msk and a function f ∈ F and
outputs a secret key FE.skf corresponding to the function f .

– FE.Enc takes the master secret key FE.msk and an input x ∈ {0, 1}` and
outputs a ciphertext c corresponding to the input x.

– (Correctness) FE.Dec takes a secret key FE.sk corresponding to a function f
and a ciphertext c corresponding to an input x and outputs f(x). Specifically,
for every FE.msk is in the support of FE.Setup

FE.Dec(FE.KeyGen(FE.msk, f),FE.Enc(FE.msk, x)) = f(x)

– The key length is the maximum length of FE.sk over all choices of f ∈
F and the randomness of FE.Setup,FE.Enc. The ciphertext length is the
maximum length of c over all choices of x ∈ {0, 1}` and the randomness of
FE.Setup,FE.Enc.

– (Security) We will use a non-adaptive simulation-based definition of secu-
rity. In particular, we are interested in security for a large number of keys n
and a small number of ciphertexts m. We define security through the pair
of games in Figure 3. We say that ΠFE is (n,m, ε)-secure if there exists a
polynomial-time simulator FE.Sim such that for every polynomial-time ad-
versary A and every κ,∣∣P [Ereal

κ,n,m(ΠFE ,A) = 1
]
− P

[
Eideal
κ,n,m(ΠFE ,A,FE.Sim) = 1

]∣∣ ≤ ε(κ)

Our goal is to construct a functional encryption scheme that is (n, 2, 1
300n3 )-

secure and has short ciphertexts and keys, where n = n(κ) is a polynomial in
the security parameter. Although it is not difficult to see, in Section 7 we prove
that the definition of security above implies the definition of two-index-hiding
security that we use in Lemma 1.
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Ereal
κ,n,m(ΠFE ,A) :
A outputs at most n functions f1, . . . , fn and m inputs x1, . . . , xm
Let FE.msk←R FE.Setup(1κ) and

∀ i ∈ [n] FE.skfi ←R FE.KeyGen(FE.msk, fi)

∀ j ∈ [m] cj ←R FE.Enc(FE.msk, xj)
A receives {FE.skfi}

n
i=1 and {cj}mj=1 and outputs b

Eideal
κ,n,m(ΠFE ,A,FE.Sim) :
A outputs at most n functions f1, . . . , fn and m inputs x1, . . . , xm(

{FE.skfi}
n
i=1 , {cj}

m
j=1

)
←R FE.Sim

({
fi, {fi(xj)}mj=1

}n
i=1

)
A receives {FE.skfi}

n
i=1 and {cj}mj=1 and outputs b

Fig. 3. Security of Functional Encryption

Function-Hiding Functional Encryption As an ingredient in our construc-
tion we also need a notion of function-hiding security for a (one-message)
functional encryption scheme. Since we will only need this definition for a sin-
gle message, we will specialize to that case in order to simplify notation. We
say that ΠFE is function-hiding (n, 1, ε)-secure if there exists a polynomial-time
simulator FE.Sim such that for every polynomial-time adversary A and every κ,∣∣P [Ēreal

κ,n,1(ΠFE ,A) = 1
]
− P

[
Ēideal
κ,n,1(ΠFE ,A,FE.Sim) = 1

]∣∣ ≤ ε(κ)

where Ēreal
κ,n,1, Ē

ideal
κ,n,1 are the same experiments as as Ereal

κ,n,1, E
ideal
κ,n,1 except that

the simulator in Ēideal
κ,n,1 is not given the functions fi as input. Namely, in Ēideal

κ,n,1:(
{FE.skfi}

n
i=1 , c

)
←R FE.Sim ({fi(x)}ni=1)

A main ingredient in the construction will be a function-hiding functional en-
cryption scheme that is (n, 1,negl(κ))-secure. The construction is a small variant
of the constructions of Sahai and Seyalioglu [44] and Gorbunov, Vaikuntanathan,
and Wee [30]

Theorem 4 (Variant of [44, 30]). Let F be a family of functions such that
a universal function for F has a decomposable randomized encoding of length
L. That is, the function U(f, x) = f(x) has a DRE of length L. If one-way
functions exist, then for any polynomial n = n(κ) there is an (n, 1,negl(κ))-
function-hiding-secure functional encryption scheme Π with key length L and
ciphertext length O(κL).

Although this theorem follows in a relatively straightforward way from the
techniques of [44, 30], we will give a proof of this theorem in Section 5. The main
novelty in the theorem is to verify that in settings where we have a very short
DRE—shorter than the security parameter κ—we can make the secret keys have
length proportional to the length of the DRE rather than proportional to the
security parameter.
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5 One-Message Functional Encryption

We will now construct ΠOFE = (OFE.Setup,OFE.KeyGen,OFE.Enc,OFE.Dec): a
function-hiding (n, 1,negl(κ))-secure functional encryption scheme for functions
with an (information-theoretic) decomposable randomized encoding DRE. The
construction is essentially the same as the (public key) variants given by [44,
30] except we consider information theoretic randomized encodings instead of
computationally secure ones and instead of encrypting the labels under a public
key encryption scheme, we take advantage of the private-key setting to use an
encryption method that produces ciphertexts with size equal to the message if
the message is smaller than the security parameter. Encrypting the labels of a
short randomized encoding, this allows us to argue that keys for our scheme are
small. To perform this encryption, we use a PRF evaluated on known indices to
mask each short label of DRE.

Let n = poly(κ) denote the number of users for the scheme. We assume for
simplicity that lg n is an integer. Our construction will rely on the following
primitives:

– A PRF family {PRFsk : {0, 1}lgn → {0, 1}lgn | s ∈ {0, 1}κ}.
– A DRE of fy(x) = I{x ≥ y} where x, y ∈ {0, 1}logn.

Setup(1κ) :
Choose seeds skk,b ←R {0, 1}κ for k ∈ [lgn], b ∈ {0, 1}.
Choose randomness Rj for the randomized encoding for each j ∈ [n].
Choose x←R {0, 1}lgn.
Define {

K
(j)
k,b

}
:=
{
PRFskk,b(j)⊕ F̃k(fj , xk ⊕ b,Rj)

}
where k ∈ {1, .., lgn}, b ∈ {0, 1}
Let each user’s secret key be sk j = (j, {K(j)

k,b}).
Let the master key be msk = {skk,b}.

Enc(i,msk = {skk,b}) :
Output ci = (y := x⊕ i, sk1,y1 , ..., sklgn,ylgn)

Dec(ci, sk j):

Output DRE.Decode(PRFsk1,y1
(j)⊕K(j)

1,y1
, ...,PRFsklgn,ylgn

(j)⊕K(j)
lgn,ylgn

)

Fig. 4. Our scheme ΠOFE .
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5.1 Proof of Correctness

Dec(ci, skj) = DRE.Decode(PRFsk1,y1
(j)⊕K(j)

1,y1
, ...,PRFsklgn,ylgn

(j)⊕K(j)
lgn,ylgn

)

= DRE.Decode(F̃1(fj , y1 ⊕ x1, Rj), ..., F̃lgn(fj , ylgn ⊕ xlgn, Rj))
= DRE.Decode(F̃1(fj , i1, Rj), ..., F̃lgn(fj , ilgn, Rj))

= fj(i)

Where the last step uses the (perfect) correctness of the randomized encoding
scheme. So:

P
sk=Setup(κ), ci=Enc(msk,i)

[Dec(ci, ski) = I{i ≤ j}]

= P
R

[
DRE.Decode(F̃1(fj , i1, Rj), ..., F̃lgn(fj , ilgn, Rj)) = fj(i)

]
= 1

5.2 Proof of Security

Lemma 2.
∣∣P [Ereal

κ,n,m(ΠOFE ,A) = 1
]
− P

[
Eideal
κ,n,m(ΠOFE ,A,FE.Sim) = 1

]∣∣ ≤ ε(κ)

Proof. Consider the hybrid scheme Π∗OFE defined in Figure 5, which uses a
truly random string instead of the output of a PRF for the encrypted labels
corresponding to the off-bits of y = x ⊕ i. Note that this scheme is only useful
in the nonadaptive security game, where i is known at time of Setup (since it is
needed to compute y). We can easily show that the scheme is indistinguishable
from the original scheme in the nonadaptive security game.

Lemma 3.∣∣P [Ereal
κ,n,m(ΠOFE ,A) = 1

]
− P

[
Ereal
κ,n,m(Π∗OFE ,A) = 1

]∣∣ ≤ lg n·PRF.Adv(κ) = ε(κ)

Proof. Follows easily by the security of the PRF (applied lg n times in a hybrid
for each function in the off-bits of y).

In Figure 6 we define a simulator for the ideal setting that is indistinguishable
from our hybrid scheme Π∗OFE . The simulator uses the simulator for the decom-
posable randomized encoding scheme to generate the labels to be encrypted
using only the knowledge of the output value of the functions on the input.

Lemma 4.
∣∣P [Ereal

κ,n,m(Π∗OFE ,A) = 1
]
− P

[
Eideal
κ,n,m(ΠOFE ,A,FE.Sim) = 1

]∣∣ = 0

Proof. Follows easily by the information-theoretic security of the randomized
encoding.

Adding the statements of Lemma 3 and Lemma 4 gives us the original state-
ment of security.

So,ΠOFE is a function-hiding-secure private-key functional encryption scheme
(n, 1,negl(κ)) with security based on the hardness of a PRF (which can be
instantiated using a one-way function) and the existence of an information-
theoretic randomized encoding for the family of comparison functions {fj :
{0, 1}lgn → {0, 1}} of length L. Furthermore, note that the length of cipher-
texts is: lg n · κ + lg n = O(κL) and the length of each key is L, satisfying the
conditions of Theorem 4.
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Setup(1κ) :
Choose seeds skk ←R {0, 1}κ for k ∈ [lgn].
Choose randomness Rj for the randomized encoding for each j ∈ [n].
Choose x←R {0, 1}lgn.
Let y = x⊕ i.
Define {

K
(j)
k,yk

}
:=
{
PRFskk (j)⊕ F̃k(fj , ik, Rj)

}
Construct {

K
(j)
k,yk

}
←R {0, 1}lgn

where k ∈ {1, .., lgn}
Let each user’s secret key be sk j = (j, {K(j)

k,b}).
Let the master key be msk = {skk}.

Enc(i,msk = {skk}) :
Output ci = (y = x⊕ i, sk1, ..., sklgn)

Dec(ci, sk j):

Output DRE.Decode(PRFsk1(j)⊕K(j)
1,y1

, ...,PRFsklgn(j)⊕K(j)
lgn,ylgn

)

Fig. 5. Hybrid scheme Π∗OFE .

6 A Two-Message Functional Encryption Scheme for
Comparison

We now use the one-message functional encryption scheme ΠOFE described in
Section 5 to construct a functional encryption scheme ΠFE that is (n, 2, 1

300n3 )-
secure for the family of comparison functions. For any y ∈ {0, 1}`, let

fy(x) = I{x ≥ y}

where the comparison operation treats x, y as numbers in binary. We define the
family of functions

Fcomp :=
{
fy : {0, 1}` → {0, 1}

∣∣ y ∈ {0, 1}`}
In our application, we need x, y ∈ {0, 1, . . . , n}, so we will set ` = dlog2(n+

1)e = O(log n). One important property of our construction is that the user key
length will be fairly small as a function of `, so that when ` = O(log n), the
overall length of user keys will be no(1) (in fact, nearly polylogarithmic in n).

6.1 Construction

Our construction will be for a generic family of functions F , and we will only
specialize the construction to Fcomp when setting the parameters and bounding
the length of the scheme. Before giving the formal construction, let’s gather
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OFE.Sim:
Input: 1κ, and the evaluation of n (unknown) functions on 1 unknown input:
{yi}ni=1

Let DRE.Sim be the simulator for information-theoretic randomized encoding
DRE.

// Generate ciphertext
Choose y ←R {0, 1}lgn.
For k ∈ [lgn]:

Choose skk ←R {0, 1}κ
Let c = (y, sk1, ..., sklgn)

// Generate keys for j ∈ [n] using DRE.Sim

For j ∈ [n]:

Generate:
(
F̃

(j)
1 , ..., F̃

(j)
lgn

)
← DRE.Sim(yj)

Let: K
(j)
k,yk

= PRFskk (j)⊕ F̃ (j)
k for k ∈ [lgn]

Choose: K
(j)
k,yk
←R {0, 1}lgn for k ∈ [lgn]

Let: OFE.skj =
{
K

(j)
k,b

}
k∈[lgn],
b∈{0,1}

// Output the n simulated secret keys and simulated ciphertext
Output: {OFE.ski}ni=1 , c

Fig. 6. The Simulator OFE.Sim for ΠOFE .

some notation and ingredients. Note that we will introduce some additional
parameters that are necessary to specify the scheme, but we will leave many of
these parameters to be determined later.

– Let n be a parameter bounding the number of user keys in the scheme, and
let F be a finite field whose size we will determine later.

– Let F =
{
f : {0, 1}` → {0, 1}

}
be a family of functions. For each function

f ∈ F we define an associated polynomial f̃ : F`+1 → F as follows:

1. Let f̂ : F` → F be a polynomial computing f

2. Define f̃ : F`+1 → F to be f̃(x1, . . . , x`, z) = f̂(x1, . . . , x`) + z

Let D and S be such that every for every f ∈ F , the associated polynomial
f̃ has degree at most D and can be computed by an arithmetic circuit of
size at most S. These degree and size parameters will depend on F .

– Let PD′,S′,F be the set of all univariate polynomials p : F → F of degree at
mostD′ and size at most S′. LetΠOFE = (OFE.Setup,OFE.KeyGen,OFE.Enc,OFE.Dec)
be an (n, 1,negl(κ))-function-hiding-secure functional encryption scheme (i.e. se-
cure for n keys and one message) for the family of polynomials PD′,S′,F.

We’re now ready to describe the construction of the two-message functional
encryption scheme ΠFE . The scheme is specified in Figure 7.
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Global Parameters: A family of functions F = {f : {0, 1}` → {0, 1}`} is a
family of functions, a finite field F, a bound D on the degree of polynomials
f̃ : F`+1 → F computing a function in F , a parameter R ∈ N, and parameters
U = RD + 1, and T = U2.

FE.Setup(1κ) :
Generate T independent master keys for OFE.mskt ←R OFE.Setup(1κ)
Output FE.msk = {OFE.mskt}Tt=1

FE.KeyGen(FE.msk, fi) :
// To aid in our proofs later, we index invocations of FE.KeyGen with i
Let f̃i : F` → F be a multivariate polynomial computing fi
Choose a random polynomial ri : F→ F of degree RD such that ri(0) = 0
For every t ∈ [T ]:

Define the function f̃i,ri(x, t) = f̃i(x) + ri(t)
Let OFE.ski,t ←R OFE.KeyGen(OFE.mskt, f̃i,ri(·, t))

Output FE.ski = {OFE.ski,t}Tt=1

FE.Enc(FE.msk, x) :
Choose a random polynomial map q : F→ F` of degree R so that q(0) = x.
Choose a random U ⊆ [T ] of size U
For every t ∈ U : let ct ←R OFE.Enc(OFE.mskt, q(t))
Output c = {ct}t∈U

FE.Dec(FE.ski, c) :
Let FE.ski = {OFE.ski,t}Tt=1, c = {ct}t∈U
For every t ∈ U , let p̃(t) = OFE.Dec(OFE.ski,t, ct)
Extend the polynomial p̃(t) to all of F by interpolation
Output p̃(0)

Fig. 7. A Functional Encryption Scheme for 2 Messages

Correctness of ΠFE . Before going on to prove security, we will verify that encryp-
tion and decryption are correct for our scheme. Fix any fi ∈ F and let f̃i : F` → F
be the associated polynomial, and fix any input x ∈ F`. Let ri : F → F be the
degree RD polynomial chosen by FE.KeyGen on input fi and let f̃i,ri(·, t) be the
function used to generate the key OFE.ski,t. Let q : F → F` be the degree R
polynomial map chosen by FE.Enc on input x. Observe that, by correctness of
ΠOFE , when we run FE.Dec we will have

p̃(t) = OFE.Dec(OFE.ski,t, ct) = f̃i,ri(q(t), t) = f̃i(q(t)) + ri(t).

Now, consider the polynomial f̃i,q,ri : F→ F defined by

f̃i,q,ri(t) = f̃i(q(t)) + ri(t).

Since f̃i has degree at most D, q has degree at most R, and ri has degree at most
RD, the degree of f̃i,q,ri is at most RD. Since |U| = RD + 1, the polynomial p̃
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agrees with f̃i,q,ri at RD + 1 distinct points, and thus p̃ ≡ f̃i,q,ri . In particular,

p̃(0) = f̃i,q,ri(0). Since we chose ri and q such that ri(0) = 0 and q(0) = x, we

have p̃(0) = f̃i(q(0)) + ri(0) = f̃i(x). This completes the proof of correctness.

6.2 Security for Two Messages

Theorem 5. For every polynomial n = n(κ), ΠFE is (n, 2, δ)-secure for δ =
T · negl(κ) + 2−Ω(R).

First we describe at a high level how to simulate. To do so, it will be useful
to first introduce some terminology. Recall that FE.Setup instantiates T inde-
pendent copies of the one-message scheme T . We refer to each instantiation as a
component. Thus, when we talk about generating a secret key for a function fi
we will talk about generating each of the T components of that key and similarly
when we talk about generating a ciphertext for an input xb we will talk about
generating each of the U components of that ciphertext. Thus the simulator has
to generate a total of nT components of keys and 2U components of ciphertexts.
The simulator will consider several types of components:

– Components t ∈ U1 ∩ U2 where U1,U2 are the random sets of components
chosen by the encryption scheme for the two inputs, respectively. The ad-
versary obtains two ciphertexts for these components, so we cannot use the
simulator for the one-message scheme. Thus for these components we simply
choose uniformly random values for all the keys and ciphertexts and use the
real one-message scheme.

– Components t ∈ U14U2 (where 4 is the symmetric difference). For these we
want to use the simulator for the one-message scheme to generate both the
keys for each function and the ciphertexts for these components (recall that
the one-message scheme is function-hiding). To do so, we need to feed the
simulator with the evaluation of each of the functions on the chosen input.
We show how to generate these outputs by leveraging the random high-
degree polynomials ri included in the keys. These values are then fed into
the simulator to produce the appropriate key and ciphertext components.

– Components t 6∈ U1 ∪ U2. For these components the real scheme would not
generate a ciphertext so the distribution can be simulated by a simulator
that takes no inputs.

With this outline in the place, it is not too difficult to construct and analyze the
simulator.

Proof (Proof of Theorem 5). We prove security via the simulator described in
Figure 8.

First we make a simple claim showing that there is only a small probability
that the simulator has to halt and output ⊥ because I is too large.

Claim. P [FE.Sim = ⊥] = 2−Ω(R).
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FE.Sim:
Input: 1κ, n functions and their evaluations on 2 unknown inputs

{
fi, y

1
i , y

2
i

}n
i=1

Let f̃i : F`+1 → F and ỹ1i , ỹ
2
i ∈ F be the associated polynomial and field elements

Let OFE.Sim be the simulator for the one-message scheme ΠOFE

Choose random r1, . . . , rn : F → F of degree RD s.t. for all i, ri(0) = 0, let
f̃i,ri(·, t) = f̃i(·) + ri(t)
Choose two random sets U1,U2 ⊆ [T ] of size U = RD + 1
Let I = U1 ∩ U2. If |I| > R, halt, output ⊥ (henceforth we assume |I| ≤ R).

// Generate the keys and ciphertexts for components t ∈ I using ΠOFE

For t ∈ I:
For b ∈ {1, 2} choose a random value αbt ∈ F`
Let OFE.mskt ←R OFE.Setup(1κ)
For every i, let OFE.ski,t ←R OFE.KeyGen(OFE.mskt, f̃i,ri(·, t))
For b ∈ {1, 2}, let cbt ←R OFE.Enc(OFE.mskt, α

b
t)

// Interpolate consistent evaluations to give OFE.Sim for t ∈ Ub \ I
For every i, generate a set of evaluations

{
ỹbi,t
}
t∈Ub as follows:

// Choose random values consistent with the choices we made for t ∈ I
For every i and every t ∈ I, set ỹbi,t = f̃i,ri(α

b
t)

For all except one point t ∈ Ub \ I, choose uniformly random values for ỹbi,t
// Ensure consistency with the final output.
For all i, interpolate a polynomial p̃bi of degree RD

such that p̃bi (0) = ỹbi , p̃
b
i (t) = ỹbi,t

For the last point t ∈ Ub, set ỹbi,t = p̃bi (t)

// Generate keys and ciphertexts for t ∈ Ub \ I using OFE.Sim

For t ∈ Ub \ I:
(
{OFE.ski,t}ni=1 , ct

)
←R OFE.Sim

({
ỹbi,t
}n
i=1

)
// Generate keys (but no ciphertexts) for t 6∈ U1 ∪ U2 obliviously
For t ∈ [T ] \ (U1 ∪ U2) and i ∈ [n], let OFE.ski,t ←R OFE.Sim().

// Output the n simulated secret keys and 2 simulated ciphertexts
Output:

{
{OFE.ski,t}Tt=1

}n
i=1

,
{
c1t
}
t∈U1

,
{
c2t
}
t∈U2

Fig. 8. The Simulator FE.Sim for ΠFE .

Proof (Proof Sketch for Claim 6.2). Recall that I is defined to be U1∩U2. Since
U1,U2 are random subsets of [T ], each of size U , and we set T = U2, we have
E [|I|] = 1. Moreover, the intersection of the two sets has a hypergeometric
distribution, and by a standard tail bound for the hypergeometric distribution
we have P [FE.Sim = ⊥] = P [|I| > R] ≤ 2−Ω(R).

In light of the above claim, we will assume for the remainder of the analysis
that the simulator does not output ⊥, and thus |I| ≤ R, and this will only cost
add 2−Ω(R) to the simulation error. In what follows, we will simplify notation by
referring only to components corresponding to keys and one of the ciphertexts,
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and will drop the superscript b. All of our arguments also applies to the second
ciphertext, since this ciphertext is generated in a completely symmetric way.

Components Used in Both Ciphertexts. First, we claim that the simulator pro-
duces the correct distribution of the keys and ciphertexts for the components
t ∈ I. Note that the simulator chooses the keys in exactly the same way as
the real scheme would: it generates keys for the functions f̃i,ri(·, t) where ri is a
random degree RD polynomial with the constant coefficient 0. The ciphertexts
in the real scheme would contain the messages {q(t)}t∈U where q is a random
degree R polynomial with constant coefficient equal to the (unknown) input x.
Since |I| ≤ R, this is a uniformly random set of values. Thus, the distribu-
tion of {αt}t∈U is identical to {q(t)}t∈U , and therefore the simulated ciphertext
components and the real ciphertext components have the same distribution.

Components Used in Exactly One Ciphertext. Next we claim that the simulated
keys and ciphertexts for the components t ∈ U \ I are computationally indistin-
guishable from those of the real scheme. Since in these components we only need
to generate a single ciphertext, we can rely on the simulator OFE.Sim for the
one-message scheme. OFE.Sim takes evaluations of n functions each at a single
input and simulates the keys for those n functions and the ciphertext for that
single input. In order to apply the indistinguishability guarantee for OFE.Sim,
we need to argue that the evaluations that FE.Sim feeds to OFE.Sim are jointly
identically distributed to the real scheme.

Recall that in the real scheme, each key corresponds to a function f̃i,ri(·, t)
and this function gets evaluated on points q(t). Thus for each function i, and
each ciphertext component t, the evaluation is f̃i,q,ri(t) = f̃i(q(t)) + ri(t). The

polynomials q, r1, . . . , rn are chosen so that for every i, f̃i,q,ri(0) = f̃i(x) where
x is the (unknown) input. We need to argue that the set of evaluations {ỹi,t}
generated by the simulator have the same distribution as {f̃i,q,ri(t)}. Observe
that, since ri is a random polynomial of degree RD with constant coefficient 0,
its evaluation on any set of RD points is jointly uniformly random. Therefore,
for every q chosen independently of r, the evaluation of f̃i,q,ri on any set of RD
points is also jointly uniformly random. On the other hand, the evaluation of
f̃i,q,ri on any set of RD + 1 points determines the whole function and thus de-

termines f̃i,q,ri(0), therefore conditioned on evaluations at any set of RD points,

and the desired value of f̃i,q,ri(0), the evaluation at any other point is uniquely
determined.

Now, in the simulator, for every i, we choose RD evaluations ỹi,t uniformly
randomly—for the points t ∈ I they are uniformly random because the polyno-
mials ri and the values αi,t were chosen randomly, and then for all but one point
in U \ I we explicitly chose them to be uniformly random. For the remaining
point, we chose ỹi,t to be the unique point such that we obtain the correct eval-

uation of f̃i,q,ri(0), which is the value ỹi that was given to the simulator. Thus,
we have argued that for any individual i, the distribution of the points ỹi,t that
we give to the simulator is identical to that of the real scheme. The fact that this
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holds jointly over all i follows immediately by independence of the polynomials
r1, . . . , rn.

Components Used in Neither Ciphertext. Since the underlying one-message scheme
satisfies function-hiding, it must be the case that the distribution of n keys and
no messages is computationally indistinguishable from a fixed distribution. That
is, it can be simulated given no evaluations. Thus we can simply generate the
keys for these unused components in a completely oblivious way.

Since we have argued that all components are simulated correctly, we can
complete the proof by taking a hybrid argument over the simulation error for
each of the T components, and a union bound over the failure probability cor-
responding to the case where |I| > R. Thus we argue that FE.Sim and the real
scheme are computationally indistinguishable with the claimed parameters.

6.3 Bounding the Scheme Length for Comparison Functions

In the application to differential privacy, we need to instantiate the scheme
for the family of comparison functions of the form fy(x) = I{x ≥ y} where
x, y ∈ {0, 1}logn, and we need to set the parameters to ensure (n, 2, 1

300n3 )-
security where n = n(κ) is an arbitrary polynomial.

Theorem 6. For every polynomial n = n(κ) there is a (n, 2, 1
300n3 )-secure func-

tional encryption scheme for the family of comparison functions on O(log n) bits
with keys are in Kκ and ciphertexts in Cκ where

|Kκ| = 22
poly(log logn)

= 2n
o(1)

and |Cκ| = 2κ.

Theorem 1 follows by combining Theorem 6 with Theorem 2. Note that The-
orem 6 constructs a different scheme for every polynomial n = n(κ). However,
we can obtain a single scheme that is secure for every polynomial n(κ) by in-
stantiating this construction for some n′(κ) = κω(1).

Proof (Proof of Theorem 6). By Theorem 5, if the underlying one-message
scheme ΠOFE is (n, 1,negl(κ))-function-hiding secure, then the final schemeΠFE

will be (n, 2, δ)-secure for δ = T · negl(κ) + 2−Ω(R). If we choose an appropriate
R = Θ(log n) then we will have δ = T · negl(κ) + 1

600n3 . As we will see, T will be
a polynomial in n, so for sufficiently large values of κ, we will have δ ≤ 1

300n3 .
To complete the proof, we bound the length of the keys and ciphertexts:

The functions constructed in FE.KeyGen have small DREs. For the family of
comparison functions on log n bits, there is a universal Boolean formula u(x, y) :
{0, 1}logn × {0, 1}logn → {0, 1} of size S = O(log n) and depth d = O(log log n)
that computes fy(x). Thus, for any field F, the polynomial ũ(x, y) : Flogn ×
Flogn → F is computable by an arithmetic circuit of size S = O(log n) and depth
d = O(log log n), and this polynomial computes f̃y(x). For any value r ∈ F, the
polynomial ũr(x, y) = ũ(x, y) + r is also computable by an arithmetic circuit of
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size S + 1 = O(log n) with degree d. Note that this polynomial is a universal
evaluation for the polynomials f̃y,r(·, t) = f̃y(·) + r(t) created in FE.KeyGen.

To obtain a DRE, we can write ũr(x, y) as a Boolean formula ur,F(x, y) :
{0, 1}(logn)(log |F|)×{0, 1}(logn)(log |F|) → {0, 1}log |F| with depth d′ = d ·depth(F)
and size S′ = S · size(F) where depth(F) and size(F) are the depth and size
of Boolean formulae computing operations in the field F, respectively. Later we
will argue that it suffices to choose a field of size poly(log n), and thus dF, SF =
poly(log log n). Therefore these functions can be computed by formulae of depth
d′ = poly(log log n) and size S′ = poly(log n). Finally, by Theorem 3, the univer-
sal evaluator for this family has DREs of length O(4d

′
) = exp(poly(log log n)).

The secret keys and ciphertexts for each component are small. ΠFE generates
key and ciphertext components for up to T independent instantiations of ΠOFE .
Each function for ΠOFE corresponds to a formula of the form ur,F defined
above. By Theorem 4, we can instantiate ΠOFE so that each key component
has length exp(poly(log log n)) and each ciphertext component has length κ ·
exp(poly(log log n)) = poly(κ), where the last inequality is because n = poly(κ).

The number of components T and the size of the field F is small. In ΠFE we
take T = U2 = (RD + 1)2 where D ≤ 2d is the degree of the polynomials
computing the comparison function over F. As we argued above, we can take
R = O(log n) and D = poly(log n). Therefore we have T = poly(log n). We need
to ensure that |F| ≥ T +1, since the security analysis relies on the fact that each
component t ∈ [T ] corresponds to a different non-zero element of F. Therefore,
it suffices to have |F| = poly(log n). In particular, this justifies the calculations
above involving the complexity of field operations.

Putting it together. By the above, each component of the secret keys has length
exp(poly(log log n)) and there are poly(log n) components, so the overall length
of the keys for ΠFE is exp(poly(log log n)). Each component of the ciphertexts
has length poly(κ) and there are poly(log n) = poly(log κ)) components, so the
overall length of the ciphertexts for ΠFE is poly(κ). The theorem statement now
follows by rescaling κ and converting the bound on the length of the keys and
ciphertexts to a bound on their number.

7 Two-Message Functional Encryption ⇒ Index Hiding

As discussed in subsection 3.2, Lemma 1 tells us that if we can show that any
adversary’s advantage in the TwoIndexHiding game is small, then the game’s
traitor-tracing scheme satisfies weak index-hiding security and gives us the lower
bound of Theorem 2. First, note that one can use a private key functional encryp-
tion scheme for comparison functions directly as a traitor-tracing scheme, since
they have the same functionality. We will now show that any private key func-
tional encryption scheme that is (n, 2, 1

300n3 )-secure is a secure traitor-tracing
scheme in the TwoIndexHiding game.

In Figure 9, we describe a variant of the TwoIndexHiding game from Figure 2
that uses the simulator FE.Sim for the functional encryption scheme ΠFE =
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(FE.Setup,FE.KeyGen,FE.Enc,FE.Dec) for comparison functions fy(x) = I{x ≥
y} where x, y ∈ {0, 1}logn that is (n, 2, 1

300n3 )-secure. Note that the challenger
can give the simulator inputs that are independent of the game’s b0, b1 since for
all indices j 6= i∗, the output values of the comparison function for j on both
inputs i∗ − b0, i∗ − b1 are always identical: I{j > i∗} (for all b0, b1 ∈ {0, 1}).

The challenger runs the simulator to produce:(
{skj}j 6=i∗∈[n] , {c0, c1}

)
←R FE.Sim

(
{fj , {I{j > i∗}, I{j > i∗}}}j 6=i∗∈[n]

)
The adversary A is given keys sk−i∗ and outputs a decryption program S.
Choose b0 ←R {0, 1} and b1 ←R {0, 1} independently.
Let b′ = S(c0, c1).

Fig. 9. SimTwoIndexHiding[i∗]

Defining:

SimTwoAdv[i∗] = P
SimTwoIndexHiding[i∗]

[b′ = b0 ⊕ b1]− 1

2

We can then prove the following lemmas:

Lemma 5. For all p.p.t. adversaries, SimTwoAdv[i∗] = 0.

Proof. In SimTwoIndexHiding[i∗], b0, b1 are chosen uniformly at random and in-
dependent of the adversary’s view. Therefore, the probability that the adversary
outputs b′ = b0 ⊕ b1 is exactly 1

2 , and so

SimTwoAdv[i∗] = P
SimTwoIndexHiding[i∗]

[b′ = b0 ⊕ b1]− 1

2
= 0.

Lemma 6. For all p.p.t. adversaries, |TwoAdv[i∗]− SimTwoAdv[i∗]| ≤ 1
300n3 .

Proof. This follows easily from the simulation security of the 2-message FE
scheme.

We can now show that any adversary’s advantage in the TwoIndexHiding
game is small:

Lemma 7. Given a Two-Message Functional Encryption scheme for compar-
ison functions fy(x) = I{x ≥ y} where x, y ∈ {0, 1}logn that is (n, 2, 1

300n3 )-
secure,

ΠFE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec)

then for all i∗,

TwoAdv[i∗] ≤ 1

300n3
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Proof. Adding the statements of Lemma 5 and Lemma 6 gives us the statement
of the lemma: TwoAdv[i∗] ≤ 1

300n3 This completes the proof.

Combining Lemma 7 with Lemma 1, the (n, 2, 1
300n3 )-secure Two-Message

Functional Encryption scheme from Section 6 is therefore a (n, {Kκ, Cκ})-traitor
tracing scheme with weak index-hiding security. From Theorem 6, we have that

|Kκ| = 22
poly(log logn)

= 2n
o(1)

and |Cκ| = 2κ.

which when combined with Theorem 2 gives us our main Theorem 1.
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