
Rasta: A cipher with low ANDdepth and few
ANDs per bit

Christoph Dobraunig1, Maria Eichlseder1, Lorenzo Grassi1, Virginie
Lallemand2, Gregor Leander2, Eik List3, Florian Mendel4, and Christian

Rechberger1

1 Graz University of Technology, Austria
firstname.lastname@iaik.tugraz.at

2 Horst Görtz Institute for IT Security, Ruhr-Universität Bochum, Germany
firstname.lastname@rub.de

3 Bauhaus-Universität Weimar, Germany
eik.list@uni-weimar.de

4 Infineon Technologies AG, Germany
florian.mendel@infineon.com

Abstract. Recent developments in multi party computation (MPC) and
fully homomorphic encryption (FHE) promoted the design and analysis
of symmetric cryptographic schemes that minimize multiplications in
one way or another. In this paper, we propose with Rasta a design strat-
egy for symmetric encryption that has ANDdepth d and at the same
time only needs d ANDs per encrypted bit. Even for very low values of
d between 2 and 6 we can give strong evidence that attacks may not
exist. This contributes to a better understanding of the limits of what
concrete symmetric-key constructions can theoretically achieve with re-
spect to AND-related metrics, and is to the best of our knowledge the
first attempt that minimizes both metrics simultaneously. Furthermore,
we can give evidence that for choices of d between 4 and 6 the result-
ing implementation properties may well be competitive by testing our
construction in the use-case of removing the large ciphertext-expansion
when using the BGV scheme.

Keywords: Symmetric encryption, ASASA, homomorphic encryption,
multiplicative complexity, multiplicative depth

1 Introduction

In this paper we study symmetric encryption primitives with few AND gates.
This firstly feeds on the curiosity about how few AND gates a cryptographic
primitive can have for which we do not know attacks or are otherwise able to
argue about its security. But secondly, this is motivated by various new devel-
opments in applied and theoretical cryptography where AND-related properties
are of great interest: Encryption schemes with few AND gates were shown to
positively affect the cost of countermeasures against side-channel attacks [35],
throughput and latency of various applications of secure multiparty-computation



protocols [4,34], verification time of SNARKs [2], the cost to avoid ciphertext-
expansion in homomorphic encryption schemes [4,17,44], or reducing the signa-
ture size of signature schemes based on Sigma-protocols [18].

In general, we may be interested in three different metrics. One metric refers
to what is commonly called multiplicative complexity (MC), which is simply the
number of multiplications (in our case AND gates) in a circuit, see e.g. [14]. A
natural variant in the context of encryption schemes is the number of AND gates
per encrypted bit (MC/bit). The third metric refers to the multiplicative depth
of the circuit, which we will subsequently call ANDdepth.

1.1 Motivating applications

There are many examples where only the number of multiplications matters
(perhaps together with the size of the ring in which they operate). SNARKs,
protocols for secure multiparty communication based on Yao’s garbled circuits,
or Sigma-protocol signature schemes come to mind. However, there are also a
number of applications where both the ANDdepth and the number of multipli-
cations matter simultaneously, such as the following two important examples.

Preventing ciphertext expansion in homomorphic encryption schemes.
All known fully/somewhat homomorphic encryption schemes come with signif-
icant, often prohibitive ciphertext expansion. To prevent the thousand-fold to
million-fold ciphertext expansion in (F)HE schemes, a decryption circuit of a
symmetric encryption scheme has to be homomorphically evaluated in addition
to the actual computations on the ciphertext. The downside of this approach
is that application-specific operations on the ciphertext become more costly, as
the decryption circuit of the cipher always needs to be evaluated as well.

To prevent bootstrapping, we need to choose the FHE parameters gener-
ously enough to accommodate all additional noise from the decryption circuit.
This is linked to the homomorphic capacity of a concrete instantiation of an
FHE scheme, i.e., the number of operations on the ciphertext before an expen-
sive bootstrapping operation is needed. All known candidates for FHE schemes
are using noise-based cryptography. Each operation on the homomorphically en-
crypted ciphertext incurs an increase in the noise. In many schemes, the noise
level grows fast with the multiplicative depth of the circuit [16,19]. Hence, sym-
metric encryption scheme proposals aiming for these types of applications min-
imize first of all the ANDdepth.

While the cost of the application-specific homomorphic operations only de-
pends on the ANDdepth of the cipher, the cost of evaluating the additional
decryption circuit itself primarily depends on the number of multiplications.
Thus, the number of AND computations is also a relevant metric.

Applications of secure multiparty computation protocols. There are
various classes of practically efficient secure multiparty computation (MPC) pro-
tocols for securely evaluating Boolean circuits where XOR gates are considerably

2



cheaper (no communication, less computation) than AND gates. There are also
many MPC protocols where each AND gate of the evaluated circuit requires in-
teraction and so the performance depends on both the multiplicative complexity
(MC) and ANDdepth of the circuit. Examples are the semi-honest secure ver-
sion of the GMW protocol [33], and tiny-OT [47] with security against malicious
adversaries. Applications of symmetric encryption schemes in these protocols
include privacy-preserving keyword search based on Oblivious Pseudorandom
Functions (OPRFs) [29], set intersection [38] and secure database join [42]. More
details to motivate the use of symmetric encryption in MPC are given in [3].

1.2 The design strategy Rasta and its background

In this paper, we propose a design strategy called Rasta5 for symmetric encryp-
tion that simultaneously achieves very low values in two of the three considered
metrics: Symmetric encryption that has ANDdepth d and at the same time only
needs d ANDs per encrypted bit. The main result is that even for very low
d = 2, . . . , 6, we can give some evidence that attacks may not exist.

We achieve this by putting so-called ASASA-like permutation constructions
into a new setting. Generic substitution-permutation designs which interleave a
key-dependent affine layer with key-dependent S-boxes have been studied since
SASAS [12]. Follow-up work refined and extended this line of inquiry, and put it
also into use for the purpose of white-box implementations of symmetric ciphers,
and for instantiating schemes with public-key-like properties [10].

Our new twist to ASASA-like constructions is to consider a setting where the
substitution layer is suitably chosen, public and fixed, but the affine layers are
derived from a public nonce and a counter such that no affine layer is likely to be
ever re-used under a single key (see Fig. 1). This approach prevents the attacks
[24,32,45] that broke the proposals of [10], as an adversary will never be able
to query the same ASASA-like permutation more than once in Rasta. Since the
setup of each instance via the extendable-output function (XOF) [46] depends
only on public information (N , i), it does not contribute to the (homomorphic)
circuit evaluation cost in applications like FHE. In addition to the number of
rounds, we also consider key sizes (and so block sizes of the used permutation)
that are bigger than the required security level as tunable security parameter to
provide protection against certain attack vectors.

Variants. The practical downside of Rasta with a very low d is that for a
fixed security level, the required key size and the number of additions needed
for its evaluation grows very fast, see also the comparison in Table 1. Hence
we consider such parameters as non-practical and at times use gray coloring
in tables or figures for it. Throughout the paper we describe ways to bound

5 The name Rasta originates from the use of randomly looking affine layers A and the
repetition of affine and S-box layer (AS)* followed by a last affine layer A. In short
R(AS)*A. A C++ reference implementation is available at: https://github.com/
iaikkrypto/rasta.

3

https://github.com/iaikkrypto/rasta
https://github.com/iaikkrypto/rasta


public

key dependent

XOFN, i

· · ·

K A0,N,i A1,N,i Ar,N,iS S S· · · ⊕ KN,i

Fig. 1. The r-round Rasta construction to generate the keystream KN,i for block i
under nonce N with affine layers Aj,N,i.

various classes of attacks and use them to derive key and block sizes for any
depth d. However, we do not have attacks matching these bounds. As we can
see in Sect. 3, the attacks we have are rather far away from these bounds. In
order to also explore the limits of what this design approach might achieve and
to further encurage more cryptanalysis we also propose a variant of Rasta called
Agrasta where the key and block size equals the security level (plus one to get
odd numbers) and basing the number of rounds on what we can attack plus a
security margin. Fig. 2 brings the area where we know attacks in relation to
the instances of Rasta and Agrasta having 80-bit security. Note that the area
is mostly defined by cases, where the maximal number of different monomials
becomes so low, that the equation system can be solved by a trivial linearization.

80 128 256 512

1

2

3

4

5

6

Key/block size k (bits)

R
o
u
n
d
s
r

Rasta

Agrasta

Fig. 2. Security margin of Rasta and Agrasta instances having 80-bit security. White
area cannot be attacked with a complexity less than 280. Black area can be attacked
with complexity below 250.

1.3 Related work and comparison

Recently, a number of new primitives were proposed that aim to minimize met-
rics related to the computation of AND gates. For a conjectured security of 128

4



bits, LowMC and Kreyvium require an ANDdepth of 11 or more, whereas FLIP
manages to have a much lower ANDdepth of 4. The total number of AND com-
putations is however much larger in FLIP (1072 per bit, 112 from the quadratic
function, and 960 from the triangular function) than in LowMC or Kreyvium
(which can be as low as 3 to 4 ANDs per bit). We give a more detailed discussion
and comparison of them in the following. MiMC [2] is a very different design that
shows excellent properties in a broad range of use-cases incl. MPC and SNARKs.
It’s main feature is that it can operate on elements in GF(p) natively and as
such is very different to all the other designs we consider in our comparison.

High-level approach. What we do in this approach is to make a significant
part of the computations independent of the key. This high-level approach was
(perhaps for the first time) used in the FLIP design [44]. While in FLIP it is only
the key bits that are permuted in a nonce-dependent way and the rest of the
construction is fixed, in our design many essential parts of the construction are
nonce-dependent: The derivation of a suitable affine layer, for every block, based
on nonce and counter inputs using an extendable-output function (XOF) [46].

The advantage of this idea is that operations which do not depend on the
key are in various settings of interest much less costly than operations that do
depend on the key. In our experimental validation of the proposed approach, we
include in the runtime the construction of each affine layer.

This results in a nice advantage of our approach as it allows for security ar-
guments in the case of outputting many more than a single bit, hence drastically
improving the number of ANDs per bit. Note that FLIP mitigates this property
by focusing on a class of homomorphic encryption schemes where error growth
is quasi-additive when considering a multiplicative chain and hence the large
number of AND computations per encrypted bit are less of an issue.

New cryptanalytic insights. As a side-effect of these novel designs, new and
interesting cryptanalytic insights continue to emerge. Attacks on earlier versions
of LowMC [4] led to new insights on how higher-order properties can get extended
because of non-full S-box layers [25,27] and novel optimization of interpolation
attacks [25]. As a result, the LowMC v2 parameters are larger: For 80-bit security
at least 12 instead of 11 rounds are needed, and for 128-bit security at least
14 instead of 12 rounds are needed. The 12-round version was shown to offer
less than 128-bit of security. In this paper we consider both versions, because
comparisons in the past have been done with v1. Another example are attacks
on FLIP which showed that guess-and-determine attacks [28] force designers to
choose more conservative parameters for their novel design.

Comparison with respect to AND-related metrics. For a security level
of 128 bits, LowMCv2 has a depth of at least 14, Kreyvium [17] has depth of at
least 12 and the most recent proposal FLIP [44] only needs a depth of 4. The
comparison among these three custom designs is however more complicated than

5



these numbers might suggest. Whereas for LowMC the depth remains constant
for the encryption of at least 256 bits, for Kreyvium the depth starts to grow
after 67 bits already. The very low depth of FLIP comes at the cost of a much
larger number of AND computations per encrypted bit: At a security level of
128 bits it is 1072 ANDs/bit for FLIP compared to values as low as 3 to 4 for
Kreyvium and LowMC.

Table 1 and Fig. 3 illustrate a comparison of our design with these three
earlier designs. They overlap partially in the content they convey, but also com-
plement each other. For simplicity, in Fig. 3, we only show the figure for the
security level of 128 bits, also because only for this particular security level,
instantiation proposals are available for all design options.

1 2 4 8 16 32 64 128 256 512 10242048
0

10

20

ANDs per bit

A
N

D
d
ep

th

Rasta

FLIP

Kreyvium

LowMCv2

LowMCv1

Fig. 3. Comparison with respect to the two most important metrics. All are for a
security level of 128 bits. The different points for Kreyvium are derived from varying
the number of output bits generated per initialization. For LowMCv2 the given round
formula is used to explore various possible trade-offs in the design space.

Fig. 3 does not only give single data points for LowMC and Kreyvium, but
explores a wider range of usable options. As the stream cipher Kreyvium needs
an initialization phase, the number of ANDs/bit is very high if only a small
number of keystream bits are generated. The more keystream bits are generated,
the more this initialization phase is amortized and hence reduces the number of
ANDs/bit, but on the other hand the ANDdepth is growing.

LowMC does not refer to a particular block cipher geometry, but allows to
generate instantiations for a wide range of block sizes, security levels, and number
of S-boxes per round. For Fig. 3, we fixed the security level to 128-bit, but tried
a number of block sizes in the range between 256 and 1024 bits for two different
choices of number of S-boxes per round (33 and 63), simply to get an impression
of the trade-space between the two metrics.

What is however not visible in Fig. 3 are two other properties these schemes
have: key size and block size. This is shown, together with all other metrics in
Table 1, for 80-bit, 128-bit and 256-bit security levels. Whereas Kreyvium and

6



Table 1. Comparison of Rasta with related designs. ` is the number of encrypted bits.
For Rasta and LowMC, ` needs to be a multiple of the block size.

Name security key size block size ANDdepth minAND ANDs per bit

LowMCv1 [4] 80 80 256 11 1617 6.3
LowMCv2 [3] 80 80 256 12 1764 6.89
LowMCv2 [3] 80 80 128 12 1116 8.72
Trivium [23] 80 80 1 12 + log(`) 1152 + 3 · ` 3–1152
FLIP [44] 80 530 1 4 352 352
Rasta 80 219 219 6 6 · ` 6
Rasta 80 327 327 5 5 · ` 5
Rasta 80 327 327 4 4 · ` 4
Rasta 80 3939 3939 3 3 · ` 3
Rasta 80 ≈ 221 ≈ 221 2 2 · ` 2

LowMCv1 [4] 118 128 256 12 2268 8.86
LowMCv2 [3] 128 128 256 14 2646 10.34
LowMCv2 [3] 128 128 192 14 2592 13.50
Kreyvium [17] 128 128 1 12 + log(`) 1152 + 3 · ` 3–1152
FLIP [44] 128 1394 1 4 1072 1072
Rasta 128 351 351 6 6 · ` 6
Rasta 128 525 525 5 5 · ` 5
Rasta 128 1877 1877 4 4 · ` 4
Rasta 128 ≈ 218 ≈ 218 3 3 · ` 3
Rasta 128 ≈ 233 ≈ 233 2 2 · ` 2

LowMCv2 [3] 256 256 512 18 3564 6.96
Rasta 256 703 703 6 6 · l 6
Rasta 256 3545 3545 5 5 · ` 5
Rasta 256 ≈ 219 ≈ 219 4 4 · ` 4
Rasta 256 ≈ 234 ≈ 234 3 3 · ` 3
Rasta 256 ≈ 265 ≈ 265 2 2 · ` 2

LowMC allow for keys as short as the security level in bits, both FLIP and
Rasta require longer keys. Rasta, similarly to LowMC, requires a much larger
number of XOR operations than FLIP or Kreyvium. Whereas traditionally the
cost of linear operations is considered almost negligible compared to non-linear
operations, the number of XOR operations is so extreme in the setting we are
interested in that it is no longer negligible. Hence as we will see in the validation
of the practical usefulness in Sect. 4, more moderate choices of d between 4 and
6 seem more useful.

Implementation comparisons. Even though the main contribution of this
work is the analysis of a scheme that has at the same time very low ANDdepth
and ANDs/bit, we also aim to validate the design approach by means of actual
implementations. As discussed already, the practical downside is that for a fixed
security level and for a very low d (meaning very low ANDdepth and ANDs/bit),

7



the required key size and especially the number of additions needed for its eval-
uation grows very fast. Hence the question is: can variants of Rasta be useful in
practice?

It turns out that implementations of our scheme with too low d are not
possible. For some parameters this is already obvious from the huge required
key and block size. As we will show in Sect. 4 also more moderate sizes can be
prohibitive in the FHE setting we use as a test-case. Nevertheless, we also give
some evidence that for more moderate choices of d between 4 and 6, the resulting
cost of homomorphically evaluating the circuit of our new construction may well
be competitive.

1.4 External cryptanlysis

We are already aware of cryptanalysis attempts outside the design team. This
includes work by Raddum on a dedicated attack [48] as well work by Bile, Perret
and Faugère [9] on algebraic and Gröbner bases approaches.

1.5 Organization of the paper

In Sect. 2, we give the detailed specification of the new design approach to-
gether with concrete parameters for instantiations of Rasta at various conjec-
tured security levels. In Sect. 3, we thoroughly analyze the security of Rasta,
considering both standard symmetric cryptanalysis techniques and some novel,
design-specific attack angles. In Sect. 4, we discuss concrete implementations
and provide a performance comparison with other designs. Finally, we conclude
and discuss open problems in Sect. 5.

2 Specification

2.1 Encryption mode

Rasta is a family of stream ciphers. To produce the keystream, it applies a per-
mutation with feed-forward, as shown in Fig. 4. The input of the permutation is
the secret key K, where the key size k matches the block size n of the underly-
ing family of permutations PN,i. The keystream is generated by using different
permutations PN,i per encrypted block, which are parametrized by the nonce N
and a block counter i. To ensure confidentiality, a new and unique nonce N is
required for every encryption.

2.2 Permutation PN,i

Rasta’s family of permutations PN,i applies r rounds of different affine layers
Aj,N,i and non-linear layers S. After r rounds, a final affine layer is applied:

PN,i = Ar,N,i ◦ S ◦Ar−1,N,i ◦ · · · ◦ S ◦A1,N,i ◦ S ◦A0,N,i

Each affine layer is different and depends on the nonce N and block counter i.
The family of permutations is parameterizable in the number of rounds r and
permutation block size in bits n, where n is an odd number.

8



key stream

PN,1

K

PN,2

K

· · ·

Fig. 4. Encryption mode of Rasta.

Non-linear layer S. For the non-linear layer, we apply the χ-transforma-
tion [22, Section 6.6.3], previously used in Keccak [6] and ASASA [10], to the
entire block. This transformation is invertible for any odd number of bits n [22].
For input bits xi and output bits yi, 0 ≤ i < n, the non-linear layer is defined
in (1), with all indices modulo n:

y` = x` ⊕ x`+2 ⊕ x`+1x`+2 . (1)

Affine layers Aj,N,i. The affine layers are a simple binary multiplication of a
binary n× n matrix Mj,N,i to the input vector x, followed by the addition of a
round constant cj,N,i:

y = Mj,N,i · x⊕ cj,N,i .

Generation of matrices Mj,N,i and round constants cj,N,i. We pro-
pose to generate the different matrices and round constants with the help of
an extendable-output function (XOF) [46] that is seeded with the number of
rounds r, block size n, nonce N , and i. Hereby, the output of the XOF is first
used to generate M0,N,i, a unstructured nonsingular Matrix. Several ways are
possible to generate such matrices with the help of an XOF output. The first
one is to add rows and check if the matrix is invertible. As pointed out by Ran-
dall [49], on average it takes three tries before we end up with a nonsingular
matrix. In the same paper, Randall [49] gives an algorithm to generate random
nonsingular n × n matrices needing less than n2 + 3 random bits inserted in a
clever way in two n×n matrices, which are multiplied in the end. The choice of
the algorithm to generate nonsingular matrices should not influence the security,
just the execution time. However, communicating instances have to use the same
algorithm.

After the generation of the first matrix, the output of the XOF is used to
create c0,N,i, M1,N,i, and so on. To ensure that the permutation is secure, we
expect the XOF to behave like a random oracle up to a certain security level.
For instance, it should not be feasible for an attacker to find inputs to the XOF
for outputs of the attacker’s choice except by repeatedly querying the XOF for
different inputs. Furthermore, the internal state of the XOF should be large
enough so that internal collisions within its state are prohibited. A suitable
choice for an XOF would be for most instances SHAKE256 [46].

9



2.3 Design rationale

The essential idea of Rasta is to reduce the ANDdepth as much as possible by
creating a moving target, which is only evaluated once per key. Hence, we have
decided to use a permutation with feed-forward, where the secret occupies the
whole input and the keystream is generated by always evaluating a different
permutation. Those permutations are obtained by choosing new matrices and
round constants for each new permutation call, based on an XOF seeded with a
public nonce and block counter. This technique allows us to treat matrices and
round constants during our analysis as if they where randomly created for each
different permutation (new nonce and counter pair), with the restriction that
same nonce and counter pairs give us always the same permutation and hence,
the same matrices and round constants. Since the XOF uses no secret, it can be
publicly evaluated and thus, similar as for FLIP [44], the XOF does not influence
the AND related metrics.

Choosing the matrices this way minimizes structural similarities between and
within the permutation instances. The round constants remove obvious fixed-
points, such as the fixed-point 0 that all instances would have in common other-
wise. Furthermore, these round constants add an additional layer of protection
against attacks between single instances of the permutation. The affine layer
is required to be a permutation rather than a function to prevent reduction of
the state space. Otherwise, if for example the final affine layer did not have full
rank, then the final key feed-forward would allow an attacker to derive informa-
tion about a linear subspace containing the key with each query.

Instead of smaller S-boxes for the non-linear layer, we use one large χ-
transformation [22] across the entire state. Since we only need to evaluate it
in forward direction, we benefit from the fact that it is very efficient to evaluate
in forward direction with a degree of only 2, while its inverse has a very high
degree of (t+ 1) for size (2t+ 1) [10].

2.4 Instances

Based on the security analysis done in Sect. 3, we propose block sizes for 4 to 6
rounds of Rasta aiming at 80, 128, or 256 bits of security in Table 2. These block
sizes are derived from the results of our security analysis shown in Table 5 and
Table 6 in Sect. 3. Since part of our analysis relies on good diffusion properties,
we only recommend instances of Rasta with at least 4 rounds for use. However,
from a theoretical perspective, smaller instances are also of interest and hence,
we add parameters for 2 and 3 rounds (in gray) to Table 2 as well.

Data limit and related-key attacks. Our goal is to derive instances that have
both a small block size and a small ANDdepth. To make this feasible, we limit
the data complexity per key to

√
2s/n blocks, where s is the targeted security

level in bits and n is the block size. Furthermore, to ensure low ANDdepth with
our construction in general, related-key attacks are out of scope.

10



Table 2. Minimal block sizes for 4 to 6 rounds of Rasta aiming to provide 80, 128, or
256 bits of security (2 and 3 rounds in gray).

Security level Rounds

2 3 4 5 6

80-bit 2 320 961 3 939 327 327 219
128-bit 9 506 325 433 246 831 1 877 525 351
256-bit 40 829 356 287 426 864 861 16 167 762 975 445 939 3 545 703

Agrasta. As already mentioned, we have chosen the block sizes for Rasta in a
conservative manner based on our security evaluation in Sect. 3. The block sizes
of Rasta are mostly determined by the bounds we get on the maximal number of
monomials and the bounds on the probability that good linear approximations
exists. However, this does not mean that we have matching attacks for these
bounds, in fact, as can be seen in Sect. 3, what we actually can attack is far
away from these bounds. Hence, we propose Agrasta shown in Table 3.

Table 3. Instances of Agrasta.

Security level Rounds Blocksize

80-bit 4 81
128-bit 4 129
256-bit 5 257

Agrasta has a block size that matches the security level (or block size plus
1 for even security levels). For the number of rounds, we consider a minimal
number of 4 rounds for the same reasons as for Rasta and add rounds until we
cannot attack the construction anymore. As a consequence, Agrasta has a block
size of 81-bit for 80-bit security having 4 rounds, 129-bit for 128-bit security
having 4 rounds and 257-bits for 256-bit security having 5 rounds (in this case
trivial linarization would work for 4 rounds).

Toy version. To encourage cryptanalysis of Rasta, we specify toy versions of
Rasta in Table 4. Those toy versions aim at achieving 24-bit security.

Table 4. Toy versions of Rasta.

Security level Rounds

2 3 4 5 6

24-bit 193 193 97 97 65

11



3 Security analysis

In this section, we discuss various cryptanalytic approaches and argue the se-
curity of the recommended parameter configurations of Rasta. We focus on
key recovery attacks and assume that the attacker can obtain the keystream
K ⊕ PN,i(K) for arbitrary choices of (N, i). In particular, assume the attacker
requires instances with a particular property of the affine layers that occurs with
probability p. This chosen-nonce setting allows the attacker to obtain keystream
for such an instance with about p−1 XOF queries (in key-independent precom-
putation) and 1 Rasta query, instead of p−1 Rasta queries. We start out with al-
gebraic attacks via linearization and Gröbner bases, then we describe a potential
attack vector via linear approximations and argue why various classical attacks
such as differential, integral, or higher order attacks are ruled out or unlikely. In
Section 3.4 we then briefly describe a dedicated attack on variants that are very
close to Agrasta but reduced to three rounds. Last but not least we describe
various experiments on toy versions of Rasta, incl. SAT solver, Gröberner-bases,
and an analysis of linear properties and monomial counts.

3.1 Algebraic attacks

We first consider algebraic attacks that aim to recover the secret key K by
solving a system of non-linear Boolean equations. These equations are collected
by observing the keystream for different nonces, and setting up the algebraic
normal form (ANF) for each observed instance of the permutation. All these
ANF polynomials share the bits of K as unknowns. In the following, we consider
different approaches and trade-offs to solve these equations.

Trivial linearization. In this attack, the resulting non-linear system of equa-
tions is solved by substituting the non-linear terms with new variables. Consider
a cipher with algebraic degree φ and a key of k bits. For such a cipher, the num-
ber of unknowns in our equations is upper-bounded by kφ. Thus, after collecting
at most kφ linearly independent equations, the system can definitely be solved
and the key recovered. The maximum number of different monomials we can get
is:

U =

φ∑

i=0

(
k

i

)
. (2)

For instance, considering Rasta with one S-layer of degree 2 and a key of 1024
bits, we need at most 219 equations. For degree 16 and a 1024-bit key, we already
get up to 2115.6 monomials, and for degree 16 with a 2048-bit key, 2131.68 mono-
mials. Since the ANDdepth d of the cipher is bound to the degree φ (d = log2 φ),
we have an immediate impact on reasonable ANDdepths.

12



Key-guessing to reduce monomials. Guessing g out of k key bits reduces
the number U of possible monomials and hence the number of variables we need
to introduce to linearize and solve the system to

U =

φ∑

i=0

(
k − g
i

)
. (3)

Guessing g bits of the key reduces the data needed to perform a linearization
attack. However, the linear system has to be solved 2g times for every key guess,
giving a maximum number of bits corresponding to the security level of the
scheme that can be guessed.

On the number of monomials. While the total number of monomials we
can get gives us insight when the system of equations can definitely be solved,
the number of monomials we get per output equation plays an important role
in algebraic attacks. For instance, getting too many sparse equations might lead
to a sub-system that can be solved or might enable other attacks similar to
algebraic or fast algebraic attacks on stream ciphers [20,21]. Therefore, we study
the average number of monomials after r rounds of Rasta, and we compare it
with the worst-case number. We conclude that the number of monomials in the
average case is well approximated by the worst case.

We first consider the worst case, which was already studied in the previous
section. Since the S-layer has degree 2, the degree of the scheme after r rounds

is 2r, so the number of monomials is upper-bounded by
∑2r

i=0

(
k
i

)
.

To analyze the average case, recall that the matrices A of the linear layers
are uniformly distributed. Consider one round S ◦ A(x) of Rasta with input
x = (x0, . . . , xk−1), and let A(x) = A · x+ c:

S ◦A(x)i =

k−1⊕

j=0

k−1⊕

l=j+1

aij,l · xj · xl ⊕
k−1⊕

j=0

bij · xj ⊕ gi,

where remember that x2 = x for each x ∈ F2 and where

aij,l = Ai+1,j ·Ai+2,l ⊕Ai+2,j ·Ai+1,l,

bij = Ai,j ⊕ ci+2 ·Ai+1,j ⊕ (1⊕ ci+1) ·Ai+2,j ,

gi = ci ⊕ ci+2 ⊕ ci+1 · ci+2.

First, we focus on the monomials of degree 2. The probability that a coefficient
aij,l is equal to 0 is 5/8:

P[aij,l=0]=P[Ai+1,jAi+2,l=Ai+2,jAi+1,l=0]+P[Ai+1,jAi+2,l=Ai+2,jAi+1,l=1]

=

(
3

4

)2

+

(
1

4

)2

=
5

8
.

13



Thus, the probability that all the coefficients of the variable xj · xl with l > j
are equal to 0 is

P[aij,l = 0 ∀i = 0, . . . , k − 1] =

(
5

8

)k
,

or equivalently, at least one of these coefficients is different from 0 with proba-
bility 1 − (5/8)k. Since this is true for each i, we expect an average number of
monomials of degree 2 equals to

(
k

2

)
·
[
1−

(
5

8

)k]
'
(
k

2

)
,

where the approximation holds for k � 1. In a similar way, we expect an av-
erage number of monomials of degree 1 equal to k · (1 − 2−k) ' k. It follows
that the average number of monomials is well approximated by the worst one6.
Our experiments confirm this prediction: we observed that all the monomials of
degree 1 and 2 are present in the system made by the equations of the output
bits of S ◦ A(x). Since the same argumentation holds for the following rounds,
this justifies our claim.

Another consideration that strengthens our claim is the following. Suppose
that the average number v of variables is much lower than the number w of
variables in the worst case, that is, v � w. Thus, given one encryption, the
number of variables that one has to consider is only v. However, in order to
find a solution for the given system of linear equations, one must consider other
encryptions. Due to the previous hypothesis, for each one of these new encryp-
tions, one expects an average number of v variables. On the other hand, since
the linear layers change for each encryption, it is not possible to claim that the
variables of these texts are always the same. In other words, the variables of a
second encryption are in general different from the ones of the first encryption.
This implies that if one uses a second encryption to find the solutions of the
linear equations, the number of variables that one has to consider is on average
not v, but greater than v (and lower than 2 ·v). Due to the same argumentation,
using r texts, this number is on average (much) greater than v but lower than
r · v. Intuitively, if r is big enough, even if for each single text/encryption the
number of variables v is lower than the total one (i.e. w), using r texts to find
the real values of these variables implies that this number is closer to w than
to v. As a consequence, this provides another intuitive reason while one has to
consider the worst number of variables in order to evaluate the security of this
proposed encryption scheme.

Gröbner basis computation. Instead of linearization, one could also try to
solve the non-linear system by computing a Gröbner basis for the system of

6 Note here that an attacker could rename the variables obtained after the linear layer,
making the number of quadratic terms drops to only k. However, this renaming
would only be valid for one message, while many messages are necessary to solve the
system, which makes this process unlikely to have any impact.

14



equations. However, it is highly unlikely that this attack vector threatens our
construction. The main point is that the number of unknowns is very large
(starting from 219-bit blocks and keys) and the algebraic degree is not that small
(starting from 24). This has to be compared with the best results to date, that
to the best of our knowledge allow to solve a system with up to 148 quadratic
equations in 74 variables [39]. Actually, a recent technical report [9] provides
further evidence that solving the corresponding system of equations for Rasta
becomes quickly infeasible.

Discussion. As we have seen in this section, Rasta gives us a system of non-
linear Boolean equations of a certain degree φ with dense equations on average.
This system of equations depends on the two parameters of Rasta, the block
size and the ANDdepth. We have plotted the maximum number of different
monomials under guessing 80-bit, 128-bit, 256-bit key information for various
block sizes and ANDdepths in Fig. 5.

96 128 192 256 384 512 7681024 2048 4096
0

100

200

300

key/block size k (bits)

lo
g
2
(m

a
x
im

u
m

d
iff

er
en

t
m

o
n
o
m

ia
ls

) depth r = 6

depth r = 5

depth r = 4

depth r = 3

depth r = 2

Fig. 5. Trivial linearizion attack. / / / denote 0/80/128/256-bit key guess.

This is particularly interesting, since Fig. 5 gives us insight in the data an
attacker has to acquire before the system can be definitely solved by using trivial
linearization. At the moment, the costs of solving a linear system of U linear
equations in U binary variables is about O(Uω) bit operations, where ω is bigger
than 2. Nevertheless, the key can still be recovered with k equations in O(2k)
using brute-force.

Estimating the required time complexity for solving a non-linear system with
k+ε equations is an open research question in the case of Rasta. Since we want to
limit the possibilities an attacker has to solve the system of non-linear equations,

15



Table 5. Block sizes such that the number of monomials is greater than 2s.

Security level s Depth

2 3 4 5 6

80-bit 2 320 961 3 938 305 167 161
128-bit 9 506 325 433 246 831 1 876 348 258
256-bit 40 829 356 287 426 864 861 16 167 762 975 445 938 3 545 682

we set a limit on the number of equations acquirable by the attacker. Therefore,
we apply the two following restrictions for a security level of s bits, which will
influence the block and key size of Rasta:

– Choose key size k and degree φ such that
∑φ
i=0

(
k−g
i

)
> 2s (Table 5).

– Data complexity limit of
√

2s/k blocks.

3.2 Attacks based on linear approximations

In this section, we deal with classes of attacks that exploit linear approximations
having a high bias δ.7 Although classical linear cryptanalysis [43] seems not to
be applicable to Rasta in a straight forward manner, since it would require the
repeated evaluation of the same Rasta permutation with different inputs, other
attacks based on linear approximations can still be a threat. For instance, in
the case of Rasta, an attacker can collect single evaluations of different linear
approximations that are valid with a certain probability. Here, the attacker faces
a problem similar to the LPN-problem and thus, algorithms similar to existing
ones designed for solving the LPN-problem [13] might be applicable.

However, attacks utilizing linear approximations have in common that the
data-complexity required to perform these attacks is bound to the bias δ of the
used linear approximations and usually lies in regions of δ−2. Therefore, attacks
exploiting linear approximations are not applicable if linear approximations that
have a good bias do not exist. Hence, we want to bound the probability that a
certain choice of the nonce N gives us matrices that allow linear approximations
with a good bias δ.

Bounds for 2 S-layers (depth 2). First, we restrict our observations on two
S-layers with one matrix M1 in between. If we restrict our observations just to
the matrix M1, we can make the following statements about the quality for a
certain linear characteristic, where a0 bits are active at the input of M1 and a1
bits are active at the output.

As already shown by Daemen [22], the correlation weight wc of a linear
approximation for the χ-transformation only depends on the active bits of the

7 We do not extend this analysis to linear hulls as even for more suitable designs doing
this analytically is beyond the state of the art.

16



output of the χ-transformation and its correlation is either zero or 2−wc . As
noted in [5], the correlation weight is equal to half the number of active bits plus
a positive number that depends on the position of the active bits. If all bits of
the output are active, then the correlation weight is half the block length minus
1. Since in our case the block length is always at least the security level, we can
ignore this special case and can upper-bound the bias just relying on half the
number of active bits at the output of the S-layers.

However, as mentioned in the beginning of the section, we want to make
statements on a linear characteristic just using the information that a0 bits are
active at the output of the first S-layer and a1 bits are active on the input a
second one. Thus, we have to make assumptions on the minimum number of
active output bits, dependent on the number of active input bits. Let us assume
that just one bit on the output of an S-layer is active. How many bits at the input
can be active, so that we get a correlation, or bias different from zero? As we can
see from (1), in order to determine the value of the active bit, just 3 bits of the
input are needed. Hence, just these 3 bits can be used in a linear approximation
of the output bit, while trying to include any other bit in a linear approximation
definitely results in a bias of zero. So we know that if we have 3 active bits at the
input of the S-layer, at least one output bit has to be active, while for 4 or more
active input bits definitely 2, or more outputs have to be active. Considering two
active output bits, at most 6 bits are used in their calculations, which in turn can
be used in a linear approximation and so on. Therefore, a linear approximation
using x active bits at the output might use less than 3x input bits, but never
more.

Thus, we can upper-bound the correlation of a resulting linear approximation
with 2−(a0+da1/3e+1)/2 and hence, the bias with 2−(a0+da1/3e)/2−1. So, our goal
is to make statements about the probability that a randomly generated matrix
M1 allows linear characteristics with a0 active bits at the input and a1 active
bits at the output, so that (a0 + da1/3e) is smaller than a certain threshold.
Consider that in Sect. 3.1, we already introduce a limit on the data complexity,
we assume that linear approximations with a bias of 2−s/4 cannot be exploited
in attacks, where s is the security level in bits. The number of invertible matrices
that allow a certain fixed linear characteristic is

∏n−1
i=1 (2n − 2i). This number is

independent of the concrete pattern. By counting the number of suitable linear
characteristics, we get:

P2

[
− log2(δ) ≤ s

2

]
≤

∑

0<a0,a1
(a0+da1/3e)≤s/2

(
n

a0

)(
n

a1

)∏n−1
i=1 (2n − 2i)

∏n−1
i=0 (2n − 2i)

≤ (2n − 1)
−1 ∑

0<a0,a1
(a0+da1/3e)≤s/2

(
n

a0

)(
n

a1

)

≤ (2n − 1)
−1 ∑

0≤a0,a1
(a0+a1)≤ 3s

2

(
n

a0

)(
n

a1

)
≤ (2n − 1)

−1 ∑

0≤a≤ 3s
2

(
2n

a

)
.

17



S0M0 S1M1 S2M2 S3M3 M4
︸ ︷︷ ︸ ︸ ︷︷ ︸

P1 P2

Fig. 6. Schematic of the Rasta permutations having 4 S-layers.

Bounds for 4 S-layers (depth 4). Fig. 6 shows the Rasta permutation having
4 S-layers. We will show bounds on the probability that randomly generated
matrices allow linear characteristics having a bias higher than some threshold. As
indicated in Fig. 6, we will calculate the probabilities that randomly generated
matrices allowing a certain number of active bits independently for M1 and
M3, assuming that every randomly generated matrix M2 is able to connect the
resulting linear characteristics.

As already mentioned, we do not want to have linear characteristics with a
bias higher than 2−s/4. Hence, the probability that a matrix M1 allows transi-
tions with a0 and a1 active bits and that a matrix M3 allows transitions with
a2 and a3 active bits, where (a0 + da1/3e+ a2 + da3/3e) ≤ s/2, should be small.
We can calculate this probability by summing up the probabilities for fixed a0,
a1, a2, and a3 up to this bound:

P4

[
− log2(δ) ≤ s

2

]
≤ (2n − 1)

−2 ×
∑

0<a0,a1,a2,a3
(a0+da1/3e+a2+da3/3e)≤ s

2

(
n

a0

)(
n

a1

)(
n

a2

)(
n

a3

)

≤ (2n − 1)
−2 ×

∑

0≤a≤ 3s
2

(
4n

a

) (4)

Bounds for r S-layers (depth r). Finally, we can extend the concept we
have used for bounding the probability on 4 rounds to bounding the probability
for an arbitrary even number r of rounds of Rasta:

Pr
[
− log2(δ) ≤ s

2

]
≤ (2n − 1)

−r/2 ×
∑

0≤a≤ 3s
2

(
r · n
a

)
(5)

Discussion. We visualize the effects of different block sizes and depths on the
probability that a linear approximation for such an instance of Rasta exists in
Fig. 7. If we compare 80-bit security for 2 rounds of Rasta with 80-bit security for
4 rounds in Fig. 7, we see that we get similar probabilities for 4 rounds of Rasta,
requiring just half the block size compared to two rounds. This gets already
clear from equation (5), where we see that—at least for our bounds—doubling
the depth has similar effects as doubling the block size.

To give a better overview about the influence of linear approximations on the
block size, we summarize reasonable block sizes for different security levels and
depths in Table 6. Concretely, we do not want to have linear approximations

18



0 256 512 768 1024 1536 2048

−3000

−2000

−1000

0

key/block size k (bits)

lo
g
2
(p

ro
b
a
b
il
it

y
)

80-bit, r = 2

128-bit, r = 2

256-bit, r = 2

80-bit, r = 4

128-bit, r = 4

256-bit, r = 4

80-bit, r = 6

128-bit, r = 6

256-bit, r = 6

Fig. 7. Probability that a linear trail/approximation with bias above for a certain
security level exists.

Table 6. Block sizes where − log2(P) matches s.

Security level s r = 2 r = 4 r = 6

80-bit 654 327 218
128-bit 1050 525 350
256-bit 2106 1053 702

where the squared bias δ2 matches our data limit. Hence, the block sizes for this
table have been chosen so that the probability that a linear approximation with
a bias ≥ 2−s/4 exists (for one random choice of the linear layer) exceeds 2−s,
where s is the security level. Therefore, for block sizes exceeding the ones given
in Table 6, the probability that one useable bias exists gets smaller and smaller.

3.3 Classical attacks exploiting the structure

In this section, we discuss some classical cryptographic attacks that exploit the
“structure” of cryptographic primitives. This includes, among others, differential
attacks [8], higher-order differential attacks [41], cube attacks [26] and integral
attacks [40]. All these attacks have in common that they rely on the fact that
an adversary is able to evaluate the cryptographic primitive (equation system)
more than once with different inputs. Since Rasta uses different nonce-based
matrices and constants for encryption/decryption, these attacks are thwarted.

Differential attacks. Two prerequisites are needed for performing a differential
attack. First of all, an attacker has to find a suitable differential characteristic
and in the second step, this attacker has to be able to inject the needed dif-
ferences. For Rasta such a classical differential attack on the permutation is
precluded, since each permutation can be at most evaluated once.

19



Furthermore, even if we consider related-key attacks, where the attacker is
able to use different keys under the same nonce and hence is able to evaluate
the permutation of Rasta multiple times, it is unlikely that a good exploitable
differential characteristic exists following similar arguments as used in Sect. 3.2.

Higher-order differential and cube attacks. Higher-order differential and
cube attacks exploit the algebraic degree of the output functions of a crypto-
graphic primitive. Considering the fact that Rasta aims to have a small AND-
depth, the output functions of Rasta only have a low degree. For instance, Rasta
with depth 4 has an algebraic degree of 16. Having such a low degree would be a
major threat for classical permutation based designs, where a single permutation
can be evaluated multiple times.

For instance, in a related-key scenario, an attacker could evaluate the same
permutation of depth-4 Rasta 216 times to mount a cube attack or exploit the re-
sulting non-random properties in another way. Hence, Rasta is clearly not secure
in such a related-key scenario. However, for single-key attacks, each individual
output function can only be evaluated once. Therefore, higher-order differential
attacks and cube attacks, which rely on evaluating these functions multiple times
are effectively hindered.

Integral attacks. Integral attacks exploit the structure of the linear layer in
combination with properties of the used S-boxes. In addition to the fact that the
used linear layer of Rasta is highly unstructured, it changes for every application
of the nonce. Moreover, we only get one evaluation per permutation instance.
Both facts make the application of integral attacks on Rasta unlikely.

3.4 On the relative size of block and security parameter for depth 3

In this section we show a guess-and-determine attack to three-round (toy) vari-
ants of Rasta where the block size matches the security parameter (n = k = s),
or the block size slightly exceeds the security parameter. In particular, the at-
tack is applicable to round-reduced variants of Agrasta. This attack requires
knowledge of only a single keystream block Kn. As an additional prerequisite, it
needs a weakness in the matrix M2 of the affine layer A2,N,j . The adversary can
query the XOF in an off-line phase to identify a nonce-counter pair (N, i) that
yields such a weak matrix. In the following, we briefly describe the details of the
attack, including an estimation on the probability of a weak matrix to occur.

We enumerate by Xi the states after the (i − 1)-th affine layer (e.g., X1 =
A0,N,j(K)) and by Y i = S(Xi) the states after the subsequent S-layer. The
attack starts at X1. We guess g1 = dn/2e bits of X1 at consecutive even bit
indices. This allows to formulate all bits of Y 1, i.e., the state after the S layer,
as equations linear in the (n − g1) unknowns from X1. Through A1,N,j , we
can derive the full state X2 also as linear equations in unknowns from X1.
In backward direction, we can formulate K, and from it X4 = K ⊕ KN , and
Y 3 = A−13,N,j(X

4) also as a linear equation system in the unknowns from X1.

20



Table 7. Best found parameters for the guess-and-determine attack on three-round
Agrasta. Encs. = encryptions; ps = Probability of a weak affine layer.

n g1 g2 g3 xr yr log2(t) log2(p)
(bits) (bits) (bits) (bits) (bits) (bits) (encs.)

81 41 37 1 4 74 78.19 −18.71
129 65 59 2 6 118 125.76 −55.46
219 110 103 2 6 206 215.39 −66.45
257 129 122 2 6 244 253.58 −66.22
327 164 157 2 6 314 323.86 −65.86

Next, from Y 1, we can guess g2 < n/2 bits of X2 at consecutive even bit
indices. Therefore, we obtain g2 further equations for the n − g1 remaining un-
knowns. Moreover, we can formulate 2 · g2 bits of Y 2 as linear equations in the
unknowns from X1. We have to choose the 2g2 bits in a way such that we obtain
a subset of yr = g2 − 2 consecutive bits of X3 to depend only on the 2g2 bits of
Y 2 through A2,N,j , the “weak” linear layer.

Let Matn denote the set of all non-singular matrices from Fn×n2 . Let x, y ∈ Fn2
be Boolean vectors with x = M ·y. Let u, v ∈ Fn2 denote further Boolean vectors
that represent masks; we call a bit xi relevant iff ui = 1 and yi relevant iff vi = 1.
We call a matrix M ∈ Matn weak iff for all i, j ∈ {0, . . . , n− 1} with vi = 1 and
uj = 0, it holds that Mi,j = 0. So, if M is weak, all relevant bits of x depend on
only relevant bits of y.

Naturally, the probability for a linear layer to be weak depends on the num-
bers of relevant bits xr in x, relevant bits yr in y, and the options to distribute
them. In M , we need (n − yr) · xr zero entries and to have the relevant bits
in both Y 2 and X3 to be located at consecutive positions. Hence, there exist
(n − yr + 1) consecutive bit positions in Y 2 and (n − xr + 1) positions in X3.
So, we can approximate

P [M � Matn : M is weak] ≥ (n− xr + 1)(n− yr + 1)

2(n−yr)·xr
.

We search for a region of xr consecutive relevant bits in X3 such they depend
only on the yr relevant bits in Y 2. Since those bits are linear in unknowns from
X1, we can formulate also the xr bits of X3 as those. Since they are consecutive,
we can guess g3 = b(xr − 2)/2c bits at consecutive even indices among them.
This yields again g3 equations for the unknowns form X1. Moreover, the guessed
bits allow to formulate 2g3 further linear equations for 2g3 consecutive bits of
Y 3 through the S-layer since we already formulated Y 3 as equations from the
backward direction before.

We require that the xr consecutive bits in X3 depend only on the yr = 2g2
bits of Y 2. We guess g = g1 + g2 + g3 = dn/2e + g2 + b(xr − 2)/2c bits at X1,
X2, and X3. We obtain g2 + g3 + 2 · g3 equations for the n−dn/2e unknowns of
X1. The equation system can be solved with computational complexity

t = 2g1+g2+g3 · (n− dn/2e)2.8 binary operations.

21



Rasta with r rounds consists of (r + 1)(n2 + n) XORs in the linear layers, 2rn
XORs in the S-layers, n XORs in the feed-forward as well as (r+ 1)n2 multipli-
cations by constants in the linear layers, plus rn multiplications in the S-layers.
For r = 3, this sums to 8n2 + 14n binary operations. We use this figure to com-
pare the effort in terms of three-round Rasta encryptions and optimize the choice
of g2, g3, and xr with respect to lowest computational effort while remaining a
practical probability that a weak matrix occurs of at least 2−80. The results of
the optimal values for the interesting state sizes are provided in Table 7. We im-
plemented a proof of concept of the attack for small state sizes of n ∈ {11, 21},
tested it with 100 random keys and weak affine layers each.

3.5 Experiments on small block size variants of Rasta

Number of Monomials. To confirm the analysis made in Section 3.1, we
looked at a reduced version with n = 21 bits. We start with a state where each
bit is a variable and compute one round, that is S ◦A(x). As expected, we found
out that all the monomials of degree less or equal to 2 are present in the resulting
state. Similarly, we start with a formal state x and compute S−1 ◦A−1(x). Since
n = 21, the degree of S−1 is 11. On average on 20 instances (i.e. 20 different
linear layers), we obtained that the resulting state contains 1394774 monomials
out of the 1401292 monomials of degree less or equal to 11, that is 99.5%.

Practical Gröbner basis experiments. As mentioned above, [9] provided
some experiments on computing a Gröbner basis using the algorithm F4 as
implemented in Magma. Those experiments, limited to two and three rounds and
a block size of at most 101 (for two rounds) and 49 (for three rounds) confirmed
our intuition that the security of Rasta is not threatened by this attack vector.

Practical SAT solver experiments. To practically evaluate the performance
of automatic solvers for Rasta, we solved small-scale key-recovery challenges
with a state-of-the-art SAT solver. Each challenge consists of finding a k-bit key
input that generates a randomly generated keystream, for a randomly sampled
nonce. Such a challenge is expected to have a valid solution with a probability
of roughly 63 %, which was confirmed by our experiments. We translated 8 chal-
lenges per depth d ∈ {1, 2, 3} and block size k ∈ {11, 13, . . . , 41} (if d = 1) or
k ∈ {11, 13, . . . , 31} (if d > 1) to a 3-SAT instance in conjunctive normal form
(CNF) and solved with parallelized SAT solver plingeling [7]. The minimum,
average, and maximum runtime out of the 8 challenges per parameter configu-
ration is illustrated in Fig. 8. Only challenges that were (a) valid and (b) solved
within a time limit of 1 hour are included, so there are no results for d = 3
and k > 25, and only one result for d = 2 and k > 27. All runs were evaluated
on Intel Xeon E5-2630v3 CPUs (8 cores max. 3.2 GHz, 92 GB DDR4 RAM).
Surprisingly, the solvers performed worse than exhaustive search for all depths
d > 1. It appears the large, dense linear layers do not interact well with the SAT
solver’s decision heuristics.

22



17 19 21 23 25 27 29 31 33 35 37 39
0

900

1,800

2,700

3,600
timeout

Block size k

S
ec

o
n
d
s

depth d = 1

depth d = 2

depth d = 3

Fig. 8. SAT solver runtime for successful key-recovery on toy parameter sizes: Average,
minimum, and maximum runtime for up to 8 challenges per block size.

Linear properties. To test the linear properties of the cipher, we consider
versions with small block sizes and we compute the linear approximation table
of the full cipher. Recall that LAT [a, b] = (1/2)×Wa,b where Wa,b is the Walsh
coefficient. In our case, we have: Wa,b =

∑
K∈Fn

2
(−1)a·K⊕b·KN,i , where K is the

key and KN,i is the keystream for block i of nonce N .

As explained previously, to measure the resistance of these reduced versions
we should not only look at the value of the higher coefficients of their LAT but
also see if it is likely that the same linear approximation holds with high proba-
bility for various instances. To apprehend these questions, we run the following
experiments for variants on 9 and 11 bits and for different number of rounds:

– Pick 50 linear layers at random. For each of them, look for the maximum
(in absolute value) of the LAT coefficients. Report the maximum and the
minimum over the 50 maximums, together with their average (first three
lines of Table 8).

– Pick 50 linear layers at random. Compute the average LAT (that is a LAT
where each coefficient is the average of the corresponding (absolute) values
of the 50 instances). Look for the maximum of this LAT (line 4 in Table 8).

The obtained results in Table 8 show that the linear properties of variants of 4
and more rounds are close to the one of random permutations.

To visualize this graphically, we use the Pollock representation of the LAT
as introduced in [11]. We start by looking at the LAT of specific instances of the
small scaled ciphers (Figure 9). On these, we can observe patterns for variants
of 1 and 2 rounds, but these disappear for 2 rounds when looking at the average
LAT for 50 random instances (see Figure 10). Together with Table 8, this seems
to indicate that it is really unlikely that several instances have a bias for the
same input and output masks.

23



Table 8. Experiments on small scaled variants of Rasta. We look at 50 instances of
each variant, and for each we note the maximum absolute coefficient of its LAT. We
report below the maximum, the minimum and the average of these maximums. We
also report the maximum of the average of the LAT.

n = 9 2 rounds 3 rounds 4 rounds 5 rounds random

max 128 64 60 60 60
min 60 50 46 48 50
average 72.72 53.88 53.40 52.96 52.92
max in av. LAT 13.68 13.76 14.00 14.12 14.36

n = 11 2 rounds 3 rounds 4 rounds 5 rounds random

max 384 160 132 130 126
min 184 112 112 110 112
average 256.64 121.92 119.44 117.64 118.40
max in av. LAT 29.44 30.72 29.32 28.96 29.20

Fig. 9. Pollock representation of the LAT for 1, 2 and 3-round versions of one instance
of the cipher on 9 bits.

Fig. 10. Pollock representation of the average LAT for 1, 2 and 3-round versions over
50 instances of the cipher on 9 bits.

24



4 Validation of design approach through benchmarking
of FHE use-case

To test the feasibility of our proposed design approach for various choices for
the ANDdepth, we implemented Rasta using Helib [36,37], which implements
the BGV homomorphic encryption scheme [15] and which was also used to eval-
uate AES-128 [31,30] and earlier custom designs that minimize the number of
multiplications. Our implementation represents each plaintext, ciphertext and
key bits as individual HE ciphertexts on which XOR and AND operations are
performed. In the HE setting the number of AND gates is not the main deter-
minant of complexity. Instead, the ANDdepth of the circuit largely determines
the cost of XOR and AND, where AND is more expensive than XOR. However,
due to the high number of XORs in Rasta, the cost of the linear layer is not
negligible. In our implementation we use the “method of the four Russians” [1]
to reduce the number of HE ciphertext additions from O(n2) to O(n2/ log(n)).

Caveats. All earlier works of custom constructions use Helib for comparative
timings. However things are vague in this part of the literature as security levels
are not given (automatically determined by Helib from within a wide range of
possibilities). Also the number of slots (i.e. blocks processed in parallel) is not
under the direct control of the user (and as can be seen from the comparison
tables in the literature). Hence we caution the reader to not interpret too much
into the detailed timings. These timings should rather be seen as supporting
evidence for the practical feasibility of a design approach. In contrast to earlier
benchmarks we give the concrete (conjectured) security level of the instantiation
of the underlying BGV scheme. We also try to get that BGV security level close
to the security level of the cipher. Earlier comparisons were always done with at
most 80-bit of security.

Discussion of timing results. A detailed overview of our benchmarks is given
in Table 9 and 10. We use the publicly available Helib implementation of LowMC
and compare it with our implementation of Rasta in various settings. We try
parameters for 80-bit, 128-bit, and 256-bit security. In addition to the case of
a pure cipher evaluation (Table 9), we also consider the case where the BGV
parameters are chosen such that there is enough “room” for more noise coming
from operations that constitute the actual reason (Table 10). For comparability
with work in [17,44] we also chose to allow for 7 additional levels for this purpose.
Note that we also include the time spent on parts that are not depending on the
key, i.e., to generate all the affine layers. For simplicity, we re-use the approach
that is used in LowMC to generate random invertible matrices. Only for larger
block sizes this is not completely negligible, but it always amounts for less than
10 % of the overall time. This confirms our model to focus on AND-related
metrics of those parts of the algorithm that depend on the key.

We cannot directly compare Trivium, Kreyvium and FLIP on our machine
as no HElib implementation for them is public. Trivium and Kreyvium numbers

25



Table 9. Performance comparison of Rasta on Intel(R) Core(TM) i7-4650U CPU
@ 1.70GHz CPU with 8GB of RAM. BVG parameters chosen to allow homomorphic
evaluation of cipher only. n is the block size or the number of encrypted bits, d is
the multiplicative depth, # slots is the number of slots used in HElib, ttotal is the
total running time of the decryption in seconds and includes the time to generate all
nonce-dependant computations.Trivium and Kreyvium estimated based on [17], FLIP
estimated based on [44], both using LowMCv1 numbers as a point of reference and
linear extrapolation.

Cipher n d ttotal BGV slots BGV levels BGV security

80-bit cipher security

LowMC v1 128 11 884.7 600 13 64.24
LowMC v2 (low latency) 128 12 546.0 600 14 75.82
LowMC v2 (throughput) 256 12 733.6 600 14 62.83
Trivium 57 12 ∼500.0 504 – –
Trivium 136 13 ∼1500.0 682 – –
FLIP 1 4 ∼0.4 378 5 –
Rasta 327 4 110.5 378 5 50.72
Rasta 327 5 206.2 150 7 78.60
Rasta 219 6 159.0 150 7 78.60
Agrasta 81 4 20.0 378 5 50.72

128-bit cipher security

LowMC v1 256 12 2807.6 720 15 132.26
LowMC v1 256 12 2298.8 720 15 105.72
LowMC v2 256 14 2981.5 720 17 88.01
Kreyvium 46 12 ∼1090.0 504 – –
Kreyvium 125 13 ∼2530.0 682 – –
FLIP 1 4 ∼3.3 630 6 –
Rasta 525 5 464.5 330 7 103.97
Rasta 351 6 815.0 600 9 86.37
Agrasta 129 4 50.3 150 5 117.38

256-bit cipher security

LowMC v2 512 18 8142.7 1285 20 107.67
Kreyvium Not specified for this security level
FLIP Not specified for this security level
Rasta 703 6 1345.5 720 9 149.43
Agrasta 257 5 1141.1 720 9 212.90

are estimates based on [17], FLIP numbers are estimates based on [44], both
using LowMCv1 numbers as a point of reference and linear extrapolation.

As can be seen in the tables, even the very conservative Rasta can in several
cases offer significantly lower latency than LowMC or Kreyvium/Trivium. As
FLIP is special in this table with the ability to take advantage of producing only
a single keystream bit with minimal latency, the latency there is even lower.
However, taking the number of encrypted bits into account the comparison with

26



Table 10. Performance comparison of Rasta, like Table 9, but BGV parameters are
chosen to allow homomorphic evaluation of 7 more levels on top of the cipher evaluation.

Cipher n d ttotal BGV slots BGV levels BGV security

80-bit cipher security

LowMC v1 128 11 2011.9 720 20 74.05
LowMC v2 (throughput) 256 12 1721.3 600 21 62.83
Trivium 57 12 ∼1560.0 504 – –
Trivium 136 13 ∼4050.0 682 – –
FLIP 1 4 ∼3.5 600 12 –
Rasta 327 4 397.8 224 12 89.57
Rasta 327 4 609.6 600 13 62.83
Rasta 327 5 766.7 600 14 62.83
Rasta 219 6 610.6 600 14 62.83
Agrasta 81 4 98.9 600 12 81.41

128-bit cipher security

LowMC v1 256 12 3785.2 480 21 106.31
Kreyvium 12 42 ∼1760.0 504 – –
Kreyvium 13 124 ∼4430.0 682 – –
FLIP 1 4 ∼39.0 720 13 –
Rasta 525 5 912.1 682 14 90.39
Rasta 351 6 2018.6 720 15 110.74
Agrasta 129 4 217.4 682 12 127.50

256-bit cipher security

LowMCv2 Too big to run
Kreyvium Not specified for this security level
FLIP Not specified for this security level
Rasta 703 6 5543.2 720 16 89.93
Agrasta 257 5 1763.8 1800 15 210.68

Rasta seems to be in favour of Rasta. One interesting thing to note here is that
in some cases we were not able to successfully complete the cipher evaluation,
despite seemingly moderate parameter sizes. At the 256-bit security level LowMC
instances could only be computed purely, but not when 7 additional levels of
homomorphic operations are still allowable. With Rasta it was possible. Other
designs do not offer parameter-sets for such high security levels.

5 Conclusion and future work

Summary. We studied Rasta constructions where the substitution layer is
chosen to be of low ANDdepth and public and fixed, but each affine layer is
different, derived from a public nonce and various counters. Our conclusion is
that they are interesting candidates for schemes that try to offer simultaneously a
very low ANDdepth and a very low number of AND computations per encrypted

27



bit. This contributes to a better understanding of the limits of what concrete
symmetric-key constructions can achieve.
Implementations and Applications. Applications for symmetric schemes
that minimize metrics like those we consider in this paper are currently inves-
tigated in various lines of work [2,4,17,34,44]. To test the applicability of our
theoretical work, we chose the FHE setting (using HElib) and benchmarked
actual implementations of Rasta, concluding that balanced choices of instanti-
ations appear to be in the same ballpark as other specialized approaches. Our
more aggressively parameterized variants termed ‘Agrasta’ result in our HElib
experiments in an improvement of around one order of magnitude. It would be
interesting to test applications of Rasta in various other settings, like secure
multiparty communication protocols. Due to its low depth it will be especially
beneficial for all those protocols where the round-complexity is linear in the
ANDdepth of the evaluated circuit (e.g. GMW, tiny-OT).
Cryptanalysis. To better understand the security offered by Rasta, we ex-
plored various attack vectors including algebraic attacks, linear approximations
and statistical attacks and choose parameters for the instantiations of Rasta to
rule them out in a conservative way. While we conclude that known attacks do
not threaten our design, we encourage further cryptanalysis and also proposed
concrete toy versions to that end.
Improving the affine layer. As we have shown, the huge amount of XORs
influences performance in targeted applications, and even more so considerably
slows down a “plain” implementation of Rasta. New ideas for linear-layer design
are needed which impose structure in one way or another which on one hand
allows for significantly more efficient implementations while at the same time
still resist attacks and allows for arguments against such attacks.

Acknowledgments. This research was supported by H2020 project Pris-
macloud, grant agreement n◦644962 and by the Austrian Science Fund (project
P26494-N15).

References

1. Albrecht, M.R., Bard, G.V., Hart, W.: Algorithm 898: Efficient multiplication of
dense matrices over GF(2). ACM Trans. Math. Softw. 37(1) (2010)

2. Albrecht, M.R., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: Mimc: Efficient
encryption and cryptographic hashing with minimal multiplicative complexity. In:
ASIACRYPT. LNCS, vol. 10031, pp. 191–219 (2016)

3. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. Cryptology ePrint Archive, Report 2016/687

4. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: EUROCRYPT. LNCS, vol. 9056, pp. 430–454. Springer
(2015)

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak reference (ver-
sion 3.0) (2011), http://keccak.noekeon.org

28

http://keccak.noekeon.org


6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak specifications. Sub-
mission to NIST (Round 3) (2011), http://keccak.noekeon.org

7. Biere, A.: Lingeling, Plingeling and Treengeling entering the SAT Competition
2013. In: Balint, A., Belov, A., Heule, M., Järvisalo, M. (eds.) SAT Competition
2013. vol. B-2013-1, pp. 51–52 (2013), http://fmv.jku.at/lingeling/

8. Biham, E., Shamir, A.: Differential cryptanalysis of des-like cryptosystems. In:
CRYPTO. LNCS, vol. 537, pp. 2–21. Springer (1990)

9. Bile, C., Perret, L., Faugère, J.C.: Algebraic cryptanalysis of RASTA. technical
report (2017)

10. Biryukov, A., Bouillaguet, C., Khovratovich, D.: Cryptographic schemes based on
the ASASA structure: Black-box, white-box, and public-key (extended abstract).
In: ASIACRYPT. LNCS, vol. 8873, pp. 63–84. Springer (2014)

11. Biryukov, A., Perrin, L.: On reverse-engineering s-boxes with hidden design criteria
or structure. In: CRYPTO. LNCS, vol. 9215, pp. 116–140. Springer (2015)

12. Biryukov, A., Shamir, A.: Structural cryptanalysis of SASAS. J. Cryptology 23(4),
505–518 (2010)

13. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. J. ACM 50(4), 506–519 (2003)

14. Boyar, J., Peralta, R., Pochuev, D.: On the multiplicative complexity of Boolean
functions over the basis (cap, +, 1). Theor. Comput. Sci. 235(1), 43–57 (2000)

15. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption
without bootstrapping. ECCC 18, 111 (2011)

16. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic en-
cryption without bootstrapping. In: ITCS. pp. 309–325. ACM (2012)

17. Canteaut, A., Carpov, S., Fontaine, C., Lepoint, T., Naya-Plasencia, M., Pail-
lier, P., Sirdey, R.: Stream ciphers: A practical solution for efficient homomorphic-
ciphertext compression. In: FSE. LNCS, vol. 9783, pp. 313–333. Springer (2016)

18. Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rechberger, C.,
Slamanig, D., Zaverucha, G.: Post-quantum zero-knowledge and signatures from
symmetric-key primitives. In: CCS. pp. 1825–1842. ACM (2017)

19. Coron, J.S., Lepoint, T., Tibouchi, M.: Scale-invariant fully homomorphic encryp-
tion over the integers. In: PKC. LNCS, vol. 8383, pp. 311–328. Springer (2014)

20. Courtois, N.: Fast algebraic attacks on stream ciphers with linear feedback. In:
CRYPTO. LNCS, vol. 2729, pp. 176–194. Springer (2003)

21. Courtois, N., Meier, W.: Algebraic attacks on stream ciphers with linear feedback.
In: EUROCRYPT. LNCS, vol. 2656, pp. 345–359. Springer (2003)

22. Daemen, J.: Cipher and hash function design – Strategies based on linear and
differential cryptanalysis. Ph.D. thesis, Katholieke Universiteit Leuven (1995)

23. De Cannière, C.: Trivium: A stream cipher construction inspired by block cipher
design principles. In: ISC. LNCS, vol. 4176, pp. 171–186. Springer (2006)

24. Dinur, I., Dunkelman, O., Kranz, T., Leander, G.: Decomposing the ASASA block
cipher construction. Cryptology ePrint Archive, Report 2015/507

25. Dinur, I., Liu, Y., Meier, W., Wang, Q.: Optimized interpolation attacks on lowmc.
In: ASIACRYPT. LNCS, vol. 9453, pp. 535–560. Springer (2015)

26. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: EU-
ROCRYPT. LNCS, vol. 5479, pp. 278–299. Springer (2009)

27. Dobraunig, C., Eichlseder, M., Mendel, F.: Higher-order cryptanalysis of lowmc.
In: ICISC. LNCS, vol. 9558, pp. 87–101. Springer (2015)

28. Duval, S., Lallemand, V., Rotella, Y.: Cryptanalysis of the FLIP family of stream
ciphers. In: CRYPTO. LNCS, vol. 9814, pp. 457–475. Springer (2016)

29

http://keccak.noekeon.org
http://fmv.jku.at/lingeling/


29. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious
pseudorandom functions. In: TCC. LNCS, vol. 3378, pp. 303–324. Springer (2005)

30. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit.
Cryptology ePrint Archive, Report 2012/099

31. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit.
In: CRYPTO. LNCS, vol. 7417, pp. 850–867. Springer (2012)

32. Gilbert, H., Plût, J., Treger, J.: Key-recovery attack on the ASASA cryptosystem
with expanding s-boxes. In: CRYPTO. LNCS, vol. 9215, pp. 475–490. Springer
(2015)

33. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: STOC. pp. 218–229.
ACM (1987)

34. Grassi, L., Rechberger, C., Rotaru, D., Scholl, P., Smart, N.P.: Mpc-friendly sym-
metric key primitives. In: CCS. pp. 430–443. ACM (2016)

35. Grosso, V., Leurent, G., Standaert, F.X., Varici, K.: Ls-designs: Bitslice encryption
for efficient masked software implementations. In: FSE. LNCS, vol. 8540, pp. 18–37.
Springer (2014)

36. Halevi, S., Shoup, V.: Design and implementation of a homomorphic-encryption
library. https://github.com/shaih/HElib/ (2013)

37. Halevi, S., Shoup, V.: Algorithms in helib. In: CRYPTO. LNCS, vol. 8616, pp.
554–571. Springer (2014)

38. Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching
with security against malicious and covert adversaries. In: TCC. LNCS, vol. 4948,
pp. 155–175. Springer (2008)

39. Joux, A., Vitse, V.: A crossbred algorithm for solving boolean polynomial systems.
Cryptology ePrint Archive, Report 2017/372

40. Knudsen, L.R., Wagner, D.A.: Integral cryptanalysis. In: FSE. LNCS, vol. 2365,
pp. 112–127. Springer (2002)

41. Lai, X.: Higher order derivatives and differential cryptanalysis. In: Communications
and Cryptography: Two Sides of One Tapestry. pp. 227–233. Kluwer Academic
Publishers (1994)

42. Laur, S., Talviste, R., Willemson, J.: From oblivious AES to efficient and secure
database join in the multiparty setting. In: ACNS. LNCS, vol. 7954, pp. 84–101.
Springer (2013)

43. Matsui, M.: Linear cryptanalysis method for DES cipher. In: EUROCRYPT.
LNCS, vol. 765, pp. 386–397. Springer (1993)

44. Méaux, P., Journault, A., Standaert, F.X., Carlet, C.: Towards stream ciphers for
efficient FHE with low-noise ciphertexts. In: EUROCRYPT. LNCS, vol. 9665, pp.
311–343. Springer (2016)

45. Minaud, B., Derbez, P., Fouque, P.A., Karpman, P.: Key-recovery attacks on
ASASA. In: ASIACRYPT. LNCS, vol. 9453, pp. 3–27. Springer (2015)

46. National Institute of Standards and Technology: FIPS PUB 202: SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions. U.S. Department of
Commerce (August 2015)

47. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical
active-secure two-party computation. In: CRYPTO. LNCS, vol. 7417, pp. 681–700.
Springer (2012)

48. Raddum, H.: Personal communication (2017)
49. Randall, D.: Efficient generation of random nonsingular matrices. Random Struc-

tures & Algorithms 4(1), 111–118 (1993)

30

https://github.com/shaih/HElib/

	Rasta: A cipher with low ANDdepth and few ANDs per bit

