
Non-Interactive Zero-Knowledge Proofs for
Composite Statements

Shashank Agrawal1, Chaya Ganesh2?, and Payman Mohassel1

1 Visa Research
2 Aarhus University

Abstract. The two most common ways to design non-interactive zero-
knowledge (NIZK) proofs are based on Sigma protocols and QAP-based
SNARKs. The former is highly efficient for proving algebraic statements
while the latter is superior for arithmetic representations.

Motivated by applications such as privacy-preserving credentials and
privacy-preserving audits in cryptocurrencies, we study the design of
NIZKs for composite statements that compose algebraic and arithmetic
statements in arbitrary ways. Specifically, we provide a framework for
proving statements that consist of ANDs, ORs and function composi-
tions of a mix of algebraic and arithmetic components. This allows us to
explore the full spectrum of trade-offs between proof size, prover cost,
and CRS size/generation cost. This leads to proofs for statements of
the form: knowledge of x such that SHA(gx) = y for some public y
where the prover’s work is 500 times fewer exponentiations compared to
a QAP-based SNARK at the cost of increasing the proof size to 2404
group and field elements. In application to anonymous credentials, our
techniques result in 8 times fewer exponentiations for the prover at the
cost of increasing the proof size to 298 elements.

1 Introduction

Zero-knowledge proofs provide the ability to convince a verifier that a statement
is true without revealing the secrets involved. Since their conception in the mid
1980s, zero-knowledge proofs have emerged as a fundamental object in modern
cryptography, with connections to the theory of computation [41, 36, 7, 61].
Zero-knowledge proofs (ZKPs) have found numerous applications as a building
block in other cryptographic constructions such as identification schemes [32],
group signature schemes [19], public-key encryption [55], anonymous credentials
[17], voting [23], and secure multi-party computation [42]. Most recently, ZKPs
have been used as a core component in digital cryptocurrencies such as ZCash
and Monero to make the transactions private and anonymous [8, 56].

Zero-knowledge proofs exist for all languages in NP [41], but not all such
constructions are efficiently implementable. Indeed, a large body of work has
been devoted to the design and implementation of efficient ZKPs for a variety

? Work done as an intern at Visa Research.

of statements. In case of Non-Interactive Zero-Knowledge (NIZK) proofs, which
is the focus of this paper, the most practical approaches are based on (i) Sigma
protocols (with the Fiat-Shamir transform), (ii) zk-SNARKs and (iii) “MPC-in-
the-head” techniques, each with their own efficiency properties, advantages and
shortcomings. While the MPC-in-the-head technique [48] has led to (Boolean)
circuit-friendly NIZKs [40, 20, 6], this line of work produces large proofs. In this
paper we focus on Sigma protocols and zk-SNARKs, and elaborate on these
next.

Sigma Protocols. Many of the statements we prove in cryptographic construc-
tions are efficiently representable as algebraic functions over some group G, such
as an elliptic-curve group where the discrete-logarithm problem is hard. For ex-
ample, Alice may want to convince Bob that she knows an x such that gx = y
for publicly known values g, y ∈ G (knowledge of discrete log), or she may like
to show that x lies between two public integers a and b (range proof).

Sigma protocol-based ZKPs are extremely efficient for such statements. They
yield short proof sizes, require a constant number of public-key operations, and
do not impose trusted common reference string (CRS) generation [46, 60, 26, 59,
38, 45]. Moreover, they can be made non-interactive, i.e. only a single message
from prover to verifier, using the efficient Fiat-Shamir transformation [34].

While Sigma protocols are efficient for algebraic statements, they are sig-
nificantly slower when it comes to non-algebraic ones. Consider a cryptographic
hash function or a block cipher represented by a Boolean or arithmetic circuit C,
and suppose Alice wants to show that she knows an input x such that C(x) = y
for some public y. Alice can treat each gate of C as an algebraic function and
provide a proof that the input and output wires of each gate satisfy the asso-
ciated algebraic relation, to show that she indeed knows x, but this would be
prohibitively expensive. In particular, both the proving/verification time and the
proof size would grow linearly with the size of circuit which in case of hash func-
tions and block-ciphers can be tens of thousands of exponentiations and group
elements.

zk-SNARKS. There has been a series of works on constructing zero-knowledge
Succinct Non-interactive ARguments of Knowledge (zk-SNARKs) [44, 51, 12,
39, 57, 9, 52, 10]. Starting with the construction of Kilian [50] based on proba-
bilistically checkable proofs (PCPs), made non-interactive by Micali [53], there
has been further works [43, 11, 29] that construct succinct arguments by remov-
ing interaction in Kilian’s PCP-based protocol. Despite these advances, PCPs
remain concretely expensive and current implementations along this line are not
yet efficient. A more effective approach for proving statements about functions
represented as Boolean or arithmetic circuits is based on Quadratic Arithmetic
Programs (QAPs) [39] and throughout the paper, we will be concerned with
QAP-based zk-SNARK proofs. Such proofs are very short and have fast veri-
fication time. More precisely, the proofs have constant size and can be verified
in time that is linear in the length of the input x, rather than the length of

2

the circuit C. Thus, zk-SNARKs are better suited for proving statements about
hash functions or block ciphers than (non-interactive) Sigma protocols.

In principle, zk-SNARKs could also be used to prove algebraic statements,
such as knowledge of discrete-log in a cyclic group by representing the expo-
nentiation circuit as a QAP. The circuit for computing a single exponentiation
is in the order of thousands or millions of gates depending on the group size.
In zk-SNARKs based on QAP, the prover cost is linear in the size of circuit
and an honestly generated common reference string (CRS) is needed, whose size
also grows proportional to the circuit size. This makes them extremely ineffi-
cient for algebraic statements. In contrast, Sigma protocols can be used to prove
knowledge of discrete-log with a constant number of exponentiations.

Another disadvantage of zk-SNARKs is that the CRS is generated with re-
spect to a particular circuit C and, in the most efficient instantiations, needs to
be regenerated when proving a new statement represented with a different cir-
cuit C ′. This is not desirable since in current applications such as ZCash, where
CRS is generated using an expensive secure multi-party computation (MPC)
protocol in order to guarantee soundness of the proof system [4]. In contrast,
Sigma protocols have constant-size untrusted CRSs that can be used to prove
arbitrary statements and can be generated inexpensively (without an MPC).

1.1 Composite Statements and Applications

Composite statements that include multiple algebraic and arithmetic compo-
nents appear in various applications. We discuss three important cases here.

Proof of Solvency. Consider privacy-preserving proofs of solvency for Bitcoin
exchanges [62, 27]. Here an exchange wants to prove to its customers that it has
enough reserves to cover its liabilities, or, in simple words, that it is solvent. A
proof of reserves in the Bitcoin network amounts to showing that the exchange
has control over certain Bitcoin addresses. A Bitcoin address is a 160-bit hash
of the public portion of a public/private ECDSA keypair [2], where the public
portion is derived from the private key by doing an exponentiation operation on
the secp256k1 curve [1]3. Thus the exchange wants to show that it knows the pri-
vate keys corresponding to some hashed public keys available on the blockchain.
Furthermore, the proof should not reveal the public keys themselves otherwise
an adversary would be able to track the movement of exchange’s funds.

In particular, the exchange wants to show that it knows a secret x such that
H(gx) = y where H is a hash function such as SHA-256. The statement has
both algebraic (gx) and Boolean (hash function H) parts. One can express the
composite function (exponentiate then hash) as a purely algebraic or Boolean
function and then use a Sigma protocol or zk-SNARK respectively, but, in the
former case, the proof size and verification time will be quite large, while in the

3 Most cryptocurrencies generate public/private keys and define an address in a sim-
ilar manner. Apart from Bitcoin and its fork Bitcoin Cash, Ethereum is another
prominent example.

3

latter, the proof generation time will increase substantially and a much larger
CRS is needed. Ideally, one would like to use a Sigma protocol for the algebraic
part and a zk-SNARK for the Boolean part, and then combine the two proofs so
that no extra information about x is revealed (beyond the fact that H(gx) = y).

Thus any proof of solvency for a Bitcoin exchange must deal with a zero-
knowledge proof that combines both Boolean and algebraic statements. Exist-
ing proposals for proofs of solvency get around this problem by assuming (incor-
rectly) that public keys themselves are available on the blockchain so that Sigma
protocols alone suffice [27]. As we will see later, our efficient techniques allow
designing NIZKs for proving knowledge of x given H(gx) that require roughly
500 times fewer exponentiations for the prover compared to proving the same
statement using a QAP-based SNARK.

Privacy-Preserving Credentials. Digital certificates (X.509) are commonly used
to identify entities over the Internet. They include a message m that may contain
various identifying information about a user or a machine, and a digital signa-
ture (by a certificate authority) on the message attesting to its authenticity. The
signature can then be verified by anyone who holds the public verification key.
Typically, certificates reveal the message m and hence the identity of their owner.
Anonymous credentials [22] provide the same authentication guarantees without
revealing the identifying message, and are widely studied due to their strong
privacy guarantees. A main ingredient for making digital certificates anonymous
is a ZKP of knowledge of a message m and a signature σ, where σ is a valid
signature on message m with respect to the verification key vk. The ZKP ensures
that we do not leak any information about m beyond the knowledge of a valid
signature. A large body of work has studied anonymous credentials, but only
a handful of techniques can turn commonly used X.509 certificates into anony-
mous credentials. The main challenge is that the ZKP statement being proven is
a hybrid statement containing both algebraic (RSA or elliptic-curve operations)
and Boolean functions (hashing), since the message is hashed before being alge-
braically signed. The work of Delignat-Lavaud et al. [30] constructs a proof for
such a hybrid statement using only zk-SNARKs which, as discussed earlier, is
inefficient for the algebraic component, while the work of Chase et al. [21] design
such ZKP proofs in the interactive setting where the prover and verifier exchange
multiple messages. Efficient NIZK for composite statements based on both zk-
SNARKs and Sigma protocols would yield more efficient anonymous credential
systems. Using our techniques for RSA signature results in prover’s work that is
about 8 times fewer group exponentiations compared to Cinderella [30].

zk-SNARKs with composable CRSs. Anonymous decentralized digital crypto-
currencies such as ZCash use zk-SNARKs to prove a massive statement contain-
ing many different smaller components. For example, at a high level, one of the
statement being proven in ZCash is of the form: I have knowledge of xi’s such
that H(x1||H(x2|| . . . H(xn))) = y for a large value of n. The CRS generated for
proving this statement is extremely large (about a gigabyte for ZCash [3]) and
cannot be reused to prove any other statement. A better alternative is to gener-

4

ate a much smaller CRS for proving a statement of the form: I have knowledge
of x, y such that H(x||H(y)), combined with a technique for composing many
such proofs. More generally, one can envision a general system with CRSs for
small size statements C1, . . . , Cn that enables NIZKs for arbitrary composition
of these statements without having to generate new CRSs for each new com-
position. This yields a trade-off between proof size and the CRS size (and its
reusability).

1.2 Contributions

Motivated by the above applications, we study the design of NIZKs for composite
statements that compose algebraic and arithmetic statements in arbitrary ways.
Specifically, we provide new protocols for statements that consist of ANDs, ORs
and function compositions of a mix of algebraic and arithmetic components. In
doing so, our goal is to maintain the invariant that algebraic components are
proven using Sigma protocols, and arithmetic statements using QAP-based zk-
SNARKs. This allows us to explore the full spectrum of trade-offs between proof
size (verification cost), prover cost, and CRS size (and cost of generation) for
composite statements.

More precisely, we propose new NIZKs for proof of knowledge of x, x1, x2, y1, y2
such that

– f1(x1, f2(x2)) = z,
– f1(x, y1) = z1 AND f2(x, y2) = z2,
– f1(x, y1) = z1 OR f2(x, y2) = z2,

for public values z, z1, z2, and where f1 and f2 can be either algebraic or arith-
metic. Given our NIZKs for these compositions, it is easy to handle arbitrary
composite statements. This is the first work that directly addresses the question
of non-interactive proofs for composite statements and how disparate techniques
can be used to prove them in zero-knowledge efficiently. We note that in this
paper we primarily focus on elliptic curves as our algebraic group, as they are
the most efficient for instantiating both zk-SNARKs and Sigma protocols.

2 Preliminaries

Notation. Throughout the paper, we use κ to denote the security parameter or
level. A function is negligible if for all large enough values of the input, it is
smaller than the inverse of any polynomial. We use negl to denote a negligible
function. We write Xκ ≡ Yκ to mean that distributions Xκ and Yκ are identical.
We use [1, n] to represent the set of numbers {1, 2, . . . , n}. If Alg is a randomized
algorithm, we use y ← Alg(x) to denote that y is the output of Alg on x. We

write x
R← X to mean sampling a value x uniformly from the set X .

We denote an interactive protocol between two parties A and B by 〈A,B〉.
〈A(x),B(y)〉 (z) denotes a protocol where A has input x, B has input y and z is
a common input. Also, viewA denotes the “view” of A in an interaction with B,
which consists of the input to A, its random coins, and the messages sent by B
(viewB is defined in a similar manner).

5

Bilinear groups. Let GroupGen be an asymmetric pairing group generator that
on input 1κ, outputs description of three cyclic groups G, G̃, GT of prime order
p = Θ(2κ) equipped with a non-degenerate efficiently computable bilinear map

e : G× G̃→ GT , and generators g and g̃ for G and G̃ respectively. The discrete
logarithm assumption is said to hold in G relative to GroupGen if for all PPT

algorithms A, Pr[x← A(G, p, g, h) | (G, G̃,GT)← GroupGen;x
R← Zp;h := gx] is

negl(κ).
In this paper, we primarily consider elliptic curves as our algebraic group.

Let E be an elliptic curve defined over a field Ft. The set of points on the curve
form a group under the point addition operation, and we denote the group by
E(Ft). For an element P ∈ E(Ft) of prime order p, Px and Py represent the x
and y co-ordinates of the point P respectively. In some constructions, we use
additive notation and write Q = αP for a scalar α ∈ Fp. The discrete logarithm
assumption is believed to hold in well chosen elliptic curve groups where group
elements are represented with O(κ) bits. In our constructions, we use asymmetric

bilinear groups where G 6= G̃, and discrete logarithm is hard in G. We also rely
on q-type assumptions similar to Parno et al. [57] (but in asymmetric groups).

Zero-knowledge Proofs. Let R be an efficiently computable binary relation which
consists of pairs of the form (s, w) where s is a statement and w is a witness.
Let L be the language associated with R, i.e., L = {s | ∃w s.t. R(s, w) = 1}.

A zero-knowledge proof for L lets a prover P convince a verifier V that
s ∈ L for a common input s without revealing w. A proof of knowledge captures
not only the truth of a statement s ∈ L, but also that the prover “possesses”
a witness w to this fact. We are concerned with non-interactive proofs in this
paper where P sends only one message to V , and V decides whether to accept
or not based on its input, the message, and any public parameters. We define
them formally below.

2.1 Non-interactive Zero-knowledge Proofs

Non-interactive zero-knowledge (NIZK) proofs are usually studied in the com-
mon reference string (CRS) model, wherein a string of a special structure is
generated in a setup phase, and made available to everyone to prove/verify
statements.

Definition 2.1 (Non-interactive Zero-knowledge Argument [13, 33]).
A NIZK argument for an NP relation R consists of a triple of polynomial time
algorithms (Setup,Prove,Verify) defined as follows.

– Setup(1κ) takes a security parameter κ and outputs a CRS Σ.
– Prove(Σ, s, w) takes as input the CRS Σ, a statement s, and a witness w,

and outputs an argument π.
– Verify(Σ, s, π) takes as input the CRS Σ, a statement s, and a proof π, and

outputs either 1 accepting the argument or 0 rejecting it.

The algorithms above should satisfy the following properties.

6

1. Completeness. For all κ ∈ N, (s, w) ∈ R,

Pr

(
Verify(Σ, s, π) = 1 :

Σ ← Setup(1κ)
π ← Prove(Σ, s, w)

)
= 1.

2. Computational soundness. For all PPT adversaries A, the following proba-
bility is negligible in κ:

Pr

(
Verify(Σ, s̃, π̃) = 1

∧ s̃ 6∈ L :
Σ ← Setup(1κ)

(s̃, π̃)← A(1κ, Σ)

)
.

3. Zero-knowledge. There exists a PPT simulator (S1,S2) such that S1 outputs
a simulated CRS Σ and trapdoor τ ; S2 takes as input Σ, a statement s and
τ , and outputs a simulated proof π; and, for all PPT adversaries (A1,A2),
the following probability is negligible in κ:

∣∣∣∣∣∣Pr

 (s, w) ∈ R ∧
A2(π, st) = 1

:
Σ ← Setup(1κ)

(s, w, st)← A1(1κ, Σ)
π ← Prove(Σ, s, w)

 −
Pr

 (s, w) ∈ R ∧
A2(π, st) = 1

:
(Σ, τ)← S1(1κ)

(s, w, st)← A1(1κ, Σ)
π ← S2(Σ, τ, s)

∣∣∣∣∣∣ .
Definition 2.2 (Non-interactive Zero-knowledge Argument of Knowl-
edge). A NIZK argument of knowledge for a relation R is a NIZK argument
for R with the following additional extractability property:

– Extraction. For any PPT adversary A, random string r
R← {0, 1}∗, there

exists a PPT algorithm Ext such that the following probability is negligible
in κ:

Pr

Verify(Σ, s̃, π̃) = 1
∧R(s̃, w′) = 0

:
Σ ← Setup(1κ)

(s̃, π̃)← A(1κ, Σ; r)
w′ = Ext(Σ, s̃, π̃; r)

 .

Definition 2.3 (zero-knowledge Succinct Non-interactive ARgument
of Knowledge (zk-SNARK)). A zk-SNARK for a relation R is a non-
interactive zero-knowledge argument of knowledge for R with the following addi-
tional property:

– Succinctness. For any s and w, the length of the proof π is given by |π| =
poly(κ) · polylog(|s|+ |w|).

2.2 Sigma Protocols

Sigma protocols are two-party interactive protocols of a specific structure. Let
P (the prover) and V (the verifier) be two parties with common input s and a
private input w for P . In a Sigma protocol, P sends a message a, V replies with

7

a random κ-bit string r, P then sends a message e, and V decides to accept
or reject based on the transcript (a, r, e). If V accepts (outputs 1), then the
transcript is called accepting.

Definition 2.4 (Sigma protocol [28]). An interactive protocol between a prover
P and a verifier V is a Σ protocol for a relation R if the following properties
are satisfied:

1. It is a three move public coin protocol.
2. Completeness: If P and V follow the protocol then Pr[〈P (w), V 〉 (s) = 1] = 1

whenever (s, w) ∈ R.
3. Special soundness: There exists a polynomial time algorithm called the ex-

tractor which when given s and two transcripts (a, r, e) and (a, r′, e′) that
are accepting for s, with r 6= r′, outputs w′ such that (s, w′) ∈ R.

4. Special honest verifier zero knowledge: There exists a polynomial time sim-
ulator which on input s and a random r outputs a transcript (a, r, e) with
the same probability distribution as that generated by an honest interaction
between P and V on (common) input s.

Fiat-Shamir transform. A Σ protocol can be efficiently compiled into a non-
interactive zero-knowledge proof of knowledge (in the random oracle model)
through the Fiat-Shamir transform [34]. Not only the transformation removes
interaction from the protocol, but also makes it zero-knowledge against malicious
verifiers. At a high level, the transform works by having the prover compute
the verifier’s message by applying an appropriate hash function, modeled as a
random oracle in the security proof, to the prover’s first message to obtain a
random challenge.

OR composition of Σ-protocols. In Cramer et al. [26], the authors devise an OR
composition technique for Sigma protocols. Essentially, a prover can efficiently
show ((x0 ∈ L) ∨ (x1 ∈ L)) without revealing which xi is in the language. More
generally, the OR transform can handle two different relations R0 and R1.

Theorem 2.5 (OR-composition [26]). If Π0 is a Σ-protocol for R0 and Π1

a Σ-protocol for R1, then there is a Σ-protocol ΠOR for the relation ROR given
by {((x0, x1), w) : ((x0, w) ∈ R0) ∨ ((x1, w) ∈ R1)}.

Pedersen commitment. Throughout the paper, we use algebraic commitment
schemes that allow proving linear relationships among committed values. The
Pedersen commitment scheme [58] is one such example which gives uncondi-
tional hiding and computational binding properties based on the hardness of
computing discrete logarithm in a group G, say of order q. Given two random
generators g, h ∈ G such that logg h is unknown, a value x ∈ Zq is committed
to by choosing r randomly from Zq, and computing gxhr. We write Comq(x) to
denote a Pedersen commitment to x in a group of order q.

Sigma protocols are known in literature to prove knowledge of a committed
value, equality of two committed values, and so on, and these protocols can be

8

combined in natural ways. In particular, linear relationships between Pedersen
commitments can be shown through existing techniques [60, 37, 19, 18]. For
example, one could show that y = ax + b for some public values a and b, given
Comq(x) and Comq(y).

We use PK{(x, y, . . .) : statements about x, y, . . .} to denote a proof of knowl-
edge of x, y, . . . that satisfies statements [19]. Other values in statements are
public.

2.3 SNARK Construction from QAP

The work of Gennaro et al. [39] showed how to encode computations as quadratic
programs. They show how to convert any Boolean circuit into a Quadratic Span
Program (QSP) and any arithmetic circuit into a Quadratic Arithmetic Program
(QAP). In this work, we will only use the latter definition. Even though QSPs are
designed for Boolean circuits, arithmetic split gates defined in Parno et al. [57]
translate an arithmetic wire into binary output wires, and Boolean functions
may be computed using arithmetic gates. Parno et al. also note that such
an arithmetic embedding results in a smaller QAP compared to the QSP of
the original Boolean circuit. In the rest of the paper, we assume that Boolean
functions are computed by a QAP defined over an arithmetic field, and hence
will only be concerned with QAP.

Definition 2.6 (Quadratic Arithmetic Program [39]). A quadratic arith-
metic program (QAP) Q over a field F consists of three sets of polynomials
V = {vk(x) : k ∈ {0, . . . ,m}},W = {wk(x) : k ∈ {0, . . . ,m}}, Y = {yk(x) : k ∈
{0, . . . ,m}} and a target polynomial t(x), all in F[X].

Let f : Fn → Fn′
be a function with input variables labeled 1, . . . , n and

output variables labeled m − n′ + 1, . . . ,m. A QAP Q is said to compute f if
the following holds: a1, . . . , an, am−n′+1, . . . , am ∈ Fn+n′

is a valid assignment
to the input and output variables of f (i.e., f(a1, . . . , an) = (am−n′+1, . . . , am))
iff there exist (an+1, · · · , am−n′) ∈ Fm−n−n′

such that t(x) divides p(x), where

p(x) =

(
v0(x) +

m∑
k=1

akvk(x)

)
.

(
w0(x) +

m∑
k=1

akwk(x)

)
−

(
y0(x) +

m∑
k=1

akyk(x)

)
.

The size of the QAP Q is m, and degree is deg(t(x)).

The polynomials vk(x), wk(x), yk(x) have degree at most deg(t(x)) − 1, since
they can be reduced modulo t(x) without affecting the divisibility check.

3 NIZK on Committed IO for Algebraic Statements

In this section, we design Sigma protocols for knowledge of inputs and outputs
of algebraic statements where the inputs and outputs are committed to. In other
words, we enable proof of knowledge of xi given commitments Com(xi) to inputs

9

and a commitment Com(Πg
Pi(xi)
i) to the output of an algebraic function where

gis are public generators in an elliptic curve group and Pis are public single-
variable polynomials. An important ingredient in this is a proof of knowledge of
double discrete log which we elaborate on next.

3.1 Proof of Knowledge of Double Discrete Logarithm

Our goal is to prove the equality of a committed value and the discrete logarithm
of another committed value. When the commitments are in elliptic curve groups,
the known techniques for double discrete logarithm proofs will not work [19,
54]. This is because a group element cannot be naturally interpreted as a field
element, as can be done in integer groups. Towards this end, we first describe a
protocol to prove that the sum of two elliptic curve points that are committed
to, is another public point on the curve.

In this section, we consider the family of curves E given by

y2 = x3 + ax+ b, (1)

where a, b ∈ Ft, but the techniques we describe below would extend to other
curve families like Edwards [31]. The curve sec256k1 used by Bitcoin has the
form of equation 1 with a = 0, b = 7.

The point addition relation is defined by the point addition equation specific
to the curve family. Let P = (x1, y1), Q = (x2, y2), P,Q ∈ E(Ft) for the family
E above. For distinct P,Q, P 6= −Q, (x3, y3) = P +Q is given by

x3 =

(
y2 − y1
x2 − x1

)2

− x1 − x2, (2)

y3 =
y2 − y1
x2 − x1

(x1 − x3)− y1. (3)

We use addFormula(P,Q) to denote (x3, y3) computed in this way. When P = Q,
the operation is doubling of the point P , denoted by doubleFormula(P). In this
case, (x3, y3) is given by

x3 =

(
3x21 + a

2y1

)2

− 2x1, (4)

y3 =
3x21 + a

2y1
(x1 − x3)− y1. (5)

We could prove the above relations for committed x1, x2, y1, y2 using known
Sigma protocol techniques. But since the point addition computation is over Ft,
the commitments to the coordinates have to be in a group of order t, which
is not necessarily the same as p, the order of the group E(Ft). The Complex
Multiplication (CM) method could be used to find elliptic curve groups of a
specific order. However, it is quite inefficient for large orders and would make
our protocols impractical . We avoid the CM method by proposing a protocol
that does not need to find a group of a given order.

10

We rewrite the point addition formula (equations 2 and 3) as

x3x
2
2 + x3x

2
1 + x31 + x32 + 2y1y2 = y22 + y21 + x21x2 + x1x

2
2 + 2x1x2x3, (6)

x2y3 + x3y2 + x2y1 = x1y2 + x3y1 + x1y3. (7)

Let Lx and Rx denote the left-hand side and right-hand side respectively of
equation 6, and Ly and Ry of equation 7. That is:

Lx(x1, y1, x2, y2) = x3x
2
2 + x3x

2
1 + x31 + x32 + 2y1y2,

Rx(x1, y1, x2, y2) = y22 + y21 + x21x2 + x1x
2
2 + 2x1x2x3,

Ly(x1, y1, x2, y2) = x2y3 + x3y2 + x2y1,

Ry(x1, y1, x2, y2) = x1y2 + x3y1 + x1y3.

We use Sigma protocols to prove that Lx, Rx, Ly and Ry satisfy the above
relations using committed intermediate values. To do so, in addition to linear re-
lationships, our protocol needs to prove that a committed value is the product of
two committed values: given C1 = Com(a) = gahr1 , C2 = Com(b) = gbhr2 , C3 =
Com(c) = gchr3 , prove c = ab. This can be done by proving knowledge of b
such that the discrete logarithm of C4 with respect to C1 is equal to the com-
mitted value in C2, and the equality of committed values in C4 and C3, where
C4 = Cb1. The prover computes and sends C4 = Cb1 with the following proof:
PK{(a, b, c, b′, c′, r1, r2, r3, r4) : C1 = gahr1 ∧ C2 = gbhr2 ∧ C3 = gchr3 ∧ C4 =
Cb

′

1 ∧C4 = gc
′
hr4 ∧ b′ = b ∧ c′ = c}. In general, Sigma protocols for polynomial

relationships among committed values were given by Camenisch and Michels
[18].

Let G2 be an elliptic-curve group of order q such that q > 2t3, and P ′, Q′ be
points in G2. We commit to the coordinates and the intermediate values neces-
sary for the proof in G2, and since the largest intermediate value in equations 6
and 7 is cubic, the choice of q ensures there is no wrap around when the com-
putation is modulo q. Since all computation on committed values will now be
modulo q, and the addition equations are to be computed modulo t, we use divi-
sion with remainder. We prove equality of Lx and Rx modulo q, divide them by t
taking away multiples of t, and prove that the remainders are equal. When used
together with appropriate range proofs to prove that the remainder does not
exceed the divisor, and that the committed coordinates are in the desired range,
we get equality modulo t. (There are several known techniques to build range
proofs [14, 16], that is, to prove that x ∈ [0, S] for a public S and committed x,
including the recent, very efficient technique called Bulletproof [15].)

The protocol addition given in Figure 1 proves that the addition formula holds
for committed points P,Q and their sum T . We show that addition is secure in
the full version. The protocol’s cost is dominated by the range proofs in steps
4, 5, 6 and the proof for polynomial relationships in steps 2 and 3. addition
roughly has a proof size of 75 + log log t elements, and prover’s work 60 + log t
exponentiations.

Let CP = Comq(P) = (Comq(Px),Comq(Py)) denote a commitment to a
point P = (Px, Py).

11

Given T = (Tx, Ty),
C1 = Comq(Px),C2 = Comq(Py),C3 = Comq(Qx),C4 = Comq(Qy), prove that

T = P +Q, where P = (Px, Py), Q = (Qx, Qy), T ∈ E(Ft) and q > 2t3.

1. Let Lx(Px, Py, Qx, Qy) = k1t + r1, Rx(Px, Py, Qx, Qy) = k′1t +
r′1, Ly(Px, Py, Qx, Qy) = k2t + r2, Ry(Px, Py, Qx, Qy) = k′2t + r′2, for
k1, k

′
1, k2, k

′
2 <

q
t

and r1, r
′
1, r2, r

′
2 < t.

Compute and send commitments C4 = Comq(Lx),C5 = Comq(Rx),C6 =
Comq(Ly),C7 = Comq(Ry),C8 = Comq(k1),C9 = Comq(r1),C10 =
Comq(k

′
1),C11 = Comq(r

′
1),C12 = Comq(k2),C13 = Comq(r2),C14 =

Comq(k
′
2),C15 = Comq(r

′
2).

2. Prove that (Px, Py), (Qx, Qy) and (Tx, Ty) satisfy the addition equation for
the x-coordinate.
π1 : PK{(Px, Py, Qx, Qy, Lx, Rx) : C1 = Comq(Px) ∧ C2 = Comq(Py) ∧ C3 =
Comq(Qx) ∧ C4 = Comq(Qy) ∧ C4 = Comq(Lx) ∧ C5 = Comq(Rx) ∧ Lx =
TxQ

2
x+TxP

2
x +P 3

x +P 3
y +2PyQy∧Rx = Q2

y+P 2
y +P 2

xQx+PxQ
2
x+2PxQxTx}

3. Prove that (Px, Py), (Qx, Qy) and (Tx, Ty) satisfy the addition equation for
the y-coordinate.
π2 : PK{(Px, Py, Qx, Qy, Ly, Ry) : C1 = Comq(Px) ∧ C2 = Comq(Py) ∧ C3 =
Comq(Qx) ∧ C4 = Comq(Qy) ∧ C6 = Comq(Ly) ∧ C7 = Comq(Ry) ∧ Ly =
QxTy + TxQy +QxPy ∧Ry = PxQy + TxPy + PxTy}

4. Prove that the coordinates are in the correct range.
π3 : PK{(Px, Py, Qx, Qy) : C1 = Comq(Px) ∧ C2 = Comq(Py) ∧ C3 =
Comq(Qx) ∧ C4 = Comq(Qy) ∧Qx < t ∧Qy < t ∧ Px < t ∧ Py < t}

5. Prove that Lx and Rx are equal modulo t, by dividing each side by t, showing
correct range for the quotients and the remainders, and proving the remain-
ders are equal.
π4 : PK{(Lx, Rx, k1, k′1, r1, r′1) : C4 = Comq(Lx) ∧ C5 = Comq(Rx) ∧ C8 =
Comq(k1) ∧ C9 = Comq(r1) ∧ C10 = Comq(k

′
1) ∧ C11 = Comq(r

′
1) ∧ Lx =

k1t+ r1 ∧Rx = k′1t+ r′1 ∧ r1 < t ∧ r′1 < t ∧ k1 < q
t
∧ k′1 < q

t
∧ r1 − r′1 = 0}

6. Prove that Ly and Ry are equal modulo t, by dividing each side by t, showing
correct range for the quotients and the remainders, and proving the remain-
ders are equal.
π5 : PK{(Ly, Ry, k2, k′2, r2, r′2) : C6 = Comq(Ly) ∧ C7 = Comq(Ry) ∧ C12 =
Comq(k2) ∧ C13 = Comq(r2) ∧ C14 = Comq(k

′
2) ∧ C15 = Comq(r

′
2) ∧ Ly =

k2t+ r2 ∧Ry = k′2t+ r′2 ∧ r2 < t ∧ r′2 < t ∧ k2 < q
t
∧ k′2 < q

t
∧ r2 − r′2 = 0}

Fig. 1: addition : PK{(P = (Px, Py), Q = (Qx, Qy)) : T = (Tx, Ty) =
addFormula(P,Q) ∧ C1 = Comq(Px) ∧ C2 = Comq(Py) ∧ C3 = Comq(Qx) ∧ C4 =
Comq(Qy)}

12

Theorem 3.1. Let E(Ft) be an elliptic curve given by equation 1, T ∈ E
and q > 2t3. Then, addition in Figure 1 is a Σ-protocol for the relation R =
{((T,CP ,CQ), (P,Q)) : CP = Comq(P)∧CQ = Comq(Q)∧T = addFormula(P,Q)∧
P,Q ∈ E}.

Using techniques similar to the above protocol addition, we obtain a protocol
double to prove that doubling formula holds, i.e. T = doubleFormula(P). Now,
we can handle all cases of point addition through the following statement:

(P 6= Q ∧ P 6= −Q ∧ T = addFormula(P,Q))∨
(P = Q ∧ T = doubleFormula(P)) ∨ (P = −Q ∧ T = 0) .

This statement can be proved using OR composition of Sigma protocols: protocol
addition for the first part of the OR statement, protocol double for the second,
and simple Sigma protocols for the last component. We denote the proof of point
addition of two committed points by pointAddition.

pointAddition : PK{(P,Q) : CP = Comq(P) ∧ CQ = Comq(Q) ∧ P,Q ∈ E∧
((P 6= Q ∧ P 6= −Q ∧ T = addFormula(P,Q))∨

(P = Q ∧ T = doubleFormula(P)) ∨ (P = −Q ∧ T = 0))}

For curves with a complete formula like Edwards, a point addition proof will not
have different cases based on the relationship between P and Q.

Theorem 3.2. Let E(Ft) be an elliptic curve given by equation 1, T ∈ E and
q > 2t3. Then, pointAddition is a Σ-protocol for the relation R = {((T,CP ,CQ),
(P,Q)) : CP = Comq(P) ∧ CQ = Comq(Q) ∧ T = P +Q ∧ P,Q ∈ E}.

We note that the protocol addition may be modified to prove point addition
for a committed point T in the following way. The proofs π1 and π2 are on
committed coordinates (Tx, Ty), and the range proof π3 also includes proving
the range of coordinates of T . We denote the point addition proof PK{(P,Q, T) :
CP = Comq(P) ∧ CQ = Comq(Q) ∧ CT = Comq(T) ∧ T = P +Q ∧ P,Q, T ∈ E}
on all committed inputs by comPointAddition.

We now construct a protocol to prove the equality of a committed value
and the discrete logarithm of another committed value using the point addition
proof. The double discrete logarithm proof is given in Figure 2. (See the full
version for a proof of security.) While the prover’s work is dominated by the
protocol pointAddition, we note that the range proofs for each challenge bit may
be batched [15]. For soundness 2−60, the protocol ddlog incurs proof size of about
2370 + log log t elements and prover’s work of 1800 + 30 log t exponentiations.

Theorem 3.3. Let E(Ft) be an elliptic curve given by equation 1, and P ∈ E
be an element of prime order p. Then, ddlog is a Σ-protocol for the relation
R = {(P,C,Ch, (λ, h)) : C = Com(λ) ∧ Ch = Com(h) ∧ h = λP, 0 < λ < p} with
soundness 1/2.

13

Given C1 = Comp(λ),C2 = Comq(x),C3 = Comq(y), for q > 2t3, prove that
(x, y) = λP , where P ∈ E is an element of prime order p, 0 < λ < p, P ′, Q′,

points in G2 of order q.

1. The prover computes the following values: a1 = Comp(α) = αP + β1Q, a2 =
Comq(γ1) = γ1P

′ + β2Q
′, a3 = Comq(γ2) = γ2P

′ + β3Q
′ where α ∈ Fp is

chosen at random, and (γ1, γ2) = αP .
and sends a1, a2, a3 to the verifier.

2. The verifier chooses a random challenge bit c and sends it to the prover.
3. For challenge c,

– If c = 0, compute z1 = α, z2 = β1, z3 = β2, z4 = β3. Send the tuple
(z1, z2, z3, z4)

– If c = 1, compute z1 = α − λ. Let T = z1P = (t1, t2). The prover uses
pointAddition (Figure 1) to prove that T = (γ1, γ2)− (x, y).
π : PK{(x, y, γ1, γ2) : T = (γ1, γ2)− (x, y)}. Send (z1, π)

4. Verification: Compute (t1, t2) = z1P . If c = 0, check if a1 = z1P + z2Q, a2 =
t1P

′ + z3Q
′, a3 = t2P

′ + z4Q
′. If c = 1, verify proof π.

Fig. 2: ddlog : PK{(λ, x, y, r, r1, r2) : Comp(λ) = λP + rQ ∧ Comq(x) = xP ′ +
r1Q

′ ∧ Comq(y) = yP ′ + r2Q
′ ∧ (x, y) = λP}

3.2 Sigma Protocols on Committed Outputs

In this section, we construct Sigma protocols for committed output. First, we
note a simpler construction when the output is a single bit. (This simpler variant
is used in our OR compositions.) In particular, given an algebraic commitment to
private input x, public y and an efficient Sigma protocol to prove that f(x, y) = 1,
we show how to construct an efficient Sigma protocol to prove f(x, y) = b, for
a committed bit b. Let f : Zn+mq → {0, 1}, and let C be a commitment to
the input x. Let fcom be the relation, fcom = {(y, (x, b)) : ((x, y) ∈ Lf ∧ b =
1) ∨ (b = 0)}. The Sigma protocol for the relation fcom is given by the proof
PK{(b, x) : f(x, y) = b∧Db = gbhr1 ∧C = gxhr}. Let G be a group of order q, g
a generator of G, and h a random element of G such that the discrete logarithm
of h with respect to g is unknown to the prover. Let Π be a Σ-protocol for the
relation f . The Σ-protocol for fcom is shown in Figure 3.

Theorem 3.4. If Π is a Σ-protocol for f , then comBitSigma is a Σ-protocol
for fcom.

To generalize the above to the case where output is a group element and not
a single bit, we need one more building block.

Proof of Point Addition and Discrete Log on Committed Points. Suppose we
want to prove that a committed point is the sum of two group elements. But
the challenge is that the input group elements are secret and are committed to,
hence the prover also needs to prove knowledge of discrete logarithms of the
input points with respect to a public base. Specifically, our goal is to design a

14

Given y, C = Com(x), Db = Com(b), prove that f(x, y) = b.

– The prover uses the protocol Π for f , Σ-protocol for proving knowledge of
committed values, and the OR-transform to prove the following statement:

PK
{

(b, x) :
(
f(x, y) = 1 ∧ b = 1 ∧Db = gbhr1 ∧ C = gxhr

)
∨
(
b = 0 ∧Db = gbhr1 ∧ C = gxhr

)}

Fig. 3: comBitSigma : PK{(b, x) : f(x, y) = b ∧Db = gbhr1 ∧ C = gxhr}

protocol to prove knowledge of discrete logarithms of two committed points such
that their sum is another committed point which we do using comPointAddition.
Let E be an elliptic curve defined over Ft, and let P ∈ E be an element of prime
order p. Let q > 2t3 be a prime. The protocol comSum : PK{(γ, α, β, x1, x2) :
γ = α+ β ∧ α = x1P ∧ β = x2P} for 0 < x1, x2 < p is shown in Figure 4.

– The prover computes commitments c1 = Comp(x1), c2 = Comp(x2), c3 =
Comq(α), c4 = Comq(β), c5 = Comq(γ)

– The prover uses ddlog to give the following proof.
PK{(x1, α) : α = x1P ∧ c3 = Comq(α) ∧ c1 = Comp(x1)}

– The prover uses ddlog to give the following proof.
PK{(x2, β) : β = x2P ∧ c4 = Comq(β) ∧ c2 = Comp(x2)}

– The prover uses comPointAddition to give the following proof, given the
commitments c3 = (Comq(αx),Comq(αy)), c4 = (Comq(βx),Comq(βy)), c5 =
(Comq(γx),Comq(γy)) and the point addition formula for the elliptic curve
that defines the group (Equations 6,7).
PK{(γ, α, β) : γ = α+ β ∧ c3 = Comq(α) ∧ c4 = Comq(β) ∧ c5 = Comq(γ)}

Fig. 4: comSum : PK{(γ, α, β, x1, x2) : γ = α+ β ∧ α = x1P ∧ β = x2P}

When Committed Output is a Group Element. In the following discussion, sim-
ilar to before, for a group element α = (αx, αy), where αx, αy are the two
coordinates of the elliptic curve point, the commitment to the point is per-
formed by committing to its two coordinates in the proper group, i.e. Com(α) =
(Com(αx),Com(αy)).

We observe that given the above-mentioned building blocks i.e. ddlog and
comSum, we can construct Sigma protocol on a committed output group element

for algebraic statements of the form f(x1, . . . , xn) = Πg
Pi(xi)
i . We sketch the

ideas at a high-level for some simple functions. Let f : Znp → G, where G is a
group E(Ft) of order p. When f(x) = gx, then this reduces to the ddlog proof.
For f(x1, x2) = gx1

1 gx2
2 , it suffices to commit to gx1

1 and gx2
2 separately and

call the comSum proof. To consider higher degree polynomials in the exponent
let us consider f(x) = gx

2

. To construct a proof PK{(x, y) : gx
2

= y ∧ C1 =

15

Com(x)∧C2 = Com(y)}, the prover computes the commitments C1 = Comp(x),

C2 = Comp(x
2) and C3 = Comq(k) = (Comq(kx),Comq(ky)), where k = gx

2

=
(kx, ky), for the choice of q as discussed in Section 3.1. Now, the prover gives the
following proofs. PK{(x2, k) : k = gx2 ∧ C2 = Comp(x2) ∧ C3 = Comq(k)} using
ddlog, and a Sigma protocol for PK{(x1, x2) : x2 = x21 ∧ C1 = Comp(x1) ∧ C2 =
Comp(x2)}. Given the above building blocks, it is easy to see that we can extend

the techniques to devise proofs comSigma for f(x1, . . . xn) = Πg
Pi(xi)
i .

4 NIZK on Committed IO for Non-Algebraic Statements

In this section we instantiate the following two building blocks which are critical
for our NIZKs for composite statements.

– zk-SNARK on committed input. Given an algebraic commitment C = gxhr,
and a circuit f , a zk-SNARK proof that f(x, z) = b.

– zk-SNARK on committed input and output. Given algebraic commitments
C1 = gxhr, C2 = gbhr, and a circuit f , a zk-SNARK proof that f(x, z) = b.

We first give a brief high-level description of our central ideas. Our start-
ing point is a SNARK where the proof consists of multi-exponentiation that
resembles a Pedersen commitment. We identify what part of the proof allows
commitments to a private input (witness) and private output (for hiding inter-
mediate values of a larger computation) by suitably separating the input/output
wires so there are corresponding distinct proof elements in the SNARK. We then
commit to the private input and output of the SNARK proof independently us-
ing Pedersen commitment, and show equality of the committed values and the
values in the multi-exponentiation proof element. While this observation has
been used in prior works in verifiable computation [24, 35], it has been in differ-
ent contexts and for different purposes. We briefly discuss how our ideas relate
to two such ideas.

In [24], the authors present a verifiable computation scheme called Geppetto
where the prover can share state across proofs. They generalize QAPs to create
MultiQAPs which allow one to commit to data, and use it in many proofs. But
crucially, all the proofs are for statements still represented as circuits while we
also utilize the commitment to switch to sigma protocol proofs.

In [35], certain proof elements of a SNARK act as “accumulated” value of
inputs in the context of large data size. The multi-exponentiations computed
by the verifier in [35] act as a hash on data and different computations may be
performed (verifiably) on it. The verifier computes the hash, and the proof veri-
fication involves checking the proof is consistent with the hash along with checks
that the computation was performed correctly on the data using only the hash
that was computed. On the other hand, in our setting, the multi-exponentiation
is part of the proof, and computed by the prover, whose consistency across
proofs must be shown. Additionally, these proofs could be different sigma proto-
cols proving a variety of algebraic relations among some subset of the input used

16

in the SNARK. Though our idea of exploiting a proof element with a certain
structure is similar to the above works, we use it towards a different end.

For concreteness, we describe our protocol using the verifiable computation
protocol Pinocchio [57] as a starting point. But our techniques carry over
to other SNARK constructions as well. The key property we need from a
SNARK construction is that the proof contains a multi-exponentiation of the
input/output. Given this, we separate the circuit wires and obtain in a non-
blackbox way, commitments as part of the SNARK proof.

Before giving the description of the above building blocks, we introduce an
important ingredient: a protocol for proving equality of the discrete logarithms
(a1, . . . , an) in y =

∏n
i=1G

ai
i and individual algebraic commitments to them. Us-

ing the standard notation, we denote the protocol by PK{(a1, . . . , an, r1, . . . , rn) :
y =

∏n
i=1G

ai
i ∧ C1 = ga1hr1 ∧ · · · ∧ Cn = ganhrn}. We include the steps of the

protocol in the full version.

4.1 zk-SNARK on Committed Inputs

Recall that at a high level, each polynomial of the quadratic program (Defini-
tion 2.6), say, vk(x) ∈ F[x] is mapped to an element in a bilinear group, gvk(s),
where s is a secret value chosen during CRS generation. Given these group el-
ements and the values ai on the circuit wires which are the coefficients of the
quadratic program, the prover can compute “in the exponent” to obtain gv(s),
where v(s) =

∑
aivk(s). The verifier uses the bilinear map to verify that the

divisibility check of the QAP holds. We assume the computations are over large
fields, that is, the QAP is defined over Fp for a large p. The size of the field is
exponential in the security parameter. We omit p in all further descriptions of
the field.

Let f : FN → Fn′
be a function with input/output values from F, com-

puted by an arithmetic circuit C with input wires labeled 1, . . . , N , output wires
labeled m − n′ + 1, . . . ,m. Let Q be a QAP of size m and degree d corre-
sponding to C. We separate the circuit wires I into private input, public in-
put, intermediate values, and output wires. Let Icom ⊆ {1, . . . , N} be the set
of indices corresponding to the private inputs a1, . . . , an, Ipub the indices for
the public input wires, and Iout the indices for the public output. Then let
Imid = {1, . . . ,m} \ (Ipub ∪ Icom ∪ Iout) be the indices of the intermediate wires.
This way there are separate CRS elements corresponding to the private input
and public input allowing the prover to compute corresponding proof elements.
The divisibility check can still proceed, and we include additional span checks for
the new proof elements. Now, we bind the multi-exponentiation corresponding
to the private input in the proof to the value committed to in a Pedersen com-
mitment using the protocol comEq. Let Ci = gaihri be a Pedersen commitment
to the ith input ai. The construction comInSnark : PK{(a1, . . . , an, r1, . . . , rn) :
f(a1, . . . an, z1, . . . , zN−n) = (b1, . . . , bn′) ∧ C1 = ga1hr1 ∧ · · · ∧ Cn = ganhrn} is
given in Figure 5.

17

Given commitments to private inputs Ci = gaihri for i ∈ [n], public inputs
z1, . . . , zN−n, and public outputs b1, . . . , bn′ .

1. CRS generation: Run GroupGen(1κ) to get (p,G, G̃,GT , g, g̃, e). Choose

rv, rw, αv, αw, αy, s, β, γ
R← F. Set ry = rvrw, gv = grv , gw = grw , g̃w =

g̃rw , gy = gry .

Set the CRS to be:

crs =
(
{gvk(s)v }k∈Icom , {g

vk(s)
v }k∈Imid , {g̃

wk(s)
w }k∈Icom ,

{g̃wk(s)
w }k∈Imid , {g

yk(s)
y }k∈Icom , {g

yk(s)
y }k∈Imid , {g

αvvk(s)
v }k∈Icom ,

{gαvvk(s)
v }k∈Imid , {g̃

αwwk(s)
w }k∈Icom , {g̃

αwwk(s)
w }k∈Imid ,

{gαyyk(s)
y }k∈Icom , {g

αyyk(s)
y }k∈Imid , {g

si}i∈[d], {g̃s
i

}i∈[d],

{gαvs
i

}i∈[d], {g̃αvs
i

}i∈[d], {gαws
i

}i∈[d], {g̃αws
i

}i∈[d], {gαys
i

}i∈[d],

{g̃αys
i

}i∈[d], {gβvk(s)v gβwk(s)
w gβyk(s)y }k∈Icom , {g

βvk(s)
v gβwk(s)

w gβyk(s)y }k∈Imid

)
Set the short verification CRS to be:

shortcrs =
(
g, g̃, g̃αv , gαw , g̃αy , g̃γ , gβγ , g̃βγ , gt(s),

{gvk(s)v }k∈Icom , {g
vk(s)
v }k∈Ipub∪Iout , {g̃

wk(s)
w }k∈Ipub∪Iout , {g

yk(s)
y }k∈Ipub∪Iout

)
2. Prove: On input z1, . . . , zN−n, witness a1, . . . , an, and crs, the prover evaluates

the QAP to obtain {ai}i∈[m]. (Equivalently, evaluates the circuit to obtain the
values on the circuit wires). The prover solves for the quotient polynomial
h such that p(x) = h(x)t(x). Let vcom(x) =

∑
k∈Icom akvk(x), vmid(x) =∑

k∈Imid
akvk(x) and similarly define wcom(x), wmid(x), ycom(x) and ymid(x).

– The prover computes the proof π:(
gvcom(s)
v , gvmid(s)

v , g̃wcom(s)
w , g̃wmid(s)

w , gycom(s)
y , gymid(s)

y , g̃h(s),

g̃αvvcom(s)
v , g̃αvvmid(s)

v , gαwwcom(s)
w , gαwwmid(s)

w , g̃
αyycom(s)
y , g̃

αyymid(s)
y

gβvcom(s)
v gβwcom(s)

w gβycom(s)
y , gβvmid(s)

v gβwmid(s)
w gβymid(s)

y

)
– Prove input consistency with commitment: The prover uses the Sigma

protocol comEq to compute πin: PK{(a1, . . . , an, r1, . . . , rn) : y =∏n
i=1G

ai
i ∧ C1 = ga1hr1 ∧ · · · ∧ Cn = ganhrn}, for Gi = g

vi(s)
v , i ∈ Icom,

and y = g
vcom(s)
v .

3. Verify:

– On input shortcrs, z, and proofs π, πin parse π as

π =
(
gVcom , gVmid , g̃Wcom , g̃Wmid , gYcom , gYmid , g̃H ,

g̃V
′
com , g̃V

′
mid , gW

′
com , gW

′
mid , g̃Y

′
com , g̃Y

′
mid , gZcom , gZmid

)

18

– Divisibility check. Compute g
vio(s)
v =

∏
k∈Ipub∪Iout

(g
vk(s)
v)ak . Similarly,

compute g̃
wio(s)
w and g

yio(s)
y . Verify that

e
(
gv0(s)v gvio(s)v gVcomgVmid , g̃w0(s)

w g̃wio(s)
w g̃Wcom g̃Wmid

)
= e

(
gt(s), g̃H

)
· e
(
gy0(s)y gyio(s)y gYcomgYmid , g̃

)
.

– Verify that the linear combinations are in correct spans.

e
(
gVcom , g̃αv

)
= e

(
g, g̃V

′
com

)
, e

(
gVmid , g̃αv

)
= e

(
g, g̃V

′
mid

)
,

e
(
gW

′
com , g̃

)
= e

(
gαw , g̃Wcom

)
, e

(
gW

′
mid , g̃

)
= e

(
gαw , g̃Wmid

)
,

e
(
gYcom , g̃αy

)
= e

(
g, g̃Y

′
com

)
, e
(
gYmid , g̃αy

)
= e

(
g, g̃Y

′
mid

)
.

– Verify same coefficients in all linear combinations.

(a) e
(
gZcom , g̃γ

)
= e

(
gVcomgYcom , g̃βγ

)
· e
(
gβγ , g̃Wcom

)
(b) e

(
gZmid , g̃γ

)
= e

(
gVmidgYmid , g̃βγ

)
· e
(
gβγ , g̃Wmid

)
– Verify input consistency with commitment: Set Gi = g

vi(s)
v , i ∈ Icom,

and y = gVcom . Verify the proof πin.

Fig. 5: comInSnark : PK{(a1, . . . , an, r1, . . . , rn) : f(a1, . . . an, z1, . . . , zN−n) =
(b1, . . . , bn′) ∧ C1 = ga1hr1 ∧ . . . ∧ Cn = ganhrn}

Zero-knowledge. We make our construction zero-knowledge, and obtain zkcomInSnark,
by randomizing the elements in the proof π such that the checks verify and the
proof is statistically indistinguishable from random group elements. Specifically,
the prover chooses random δv, δw, δy ← F, and adds δvt(s) in the exponent to
vcom(s), vmid(s); δwt(s) to wcom(s), wmid(s); and δyt(s) to ycom(s), ymid(s). It is
easy to see that the modified value of p(x) remains divisible by t(x). The follow-

ing terms are added to crs: g
t(s)
v , g̃

t(s)
w , g

t(s)
y , g

αvt(s)
v , g

αwt(s)
w , g

αyt(s)
y , g

βt(s)
v , g

βt(s)
w ,

g
βt(s)
y (g

t(s)
v is also added to shortcrs). Prover can now compute the new values

in π from crs, and they are verified in the same manner as before. The proof
πin now proves a slightly different statement: PK{(a1, . . . , an, δ, r1, . . . , rn) : y =
Hδ
∏n
i=1G

ai
i ∧ C1 = ga1hr1 ∧ . . . ∧ Cn = ganhrn}. To verify it, the verifier uses

g
t(s)
v from shortcrs.

Theorem 4.1. If q-PDH, 2q-SDH and d-PKE assumptions hold for GroupGen
for q ≥ 4d+ 4, then zk-comInSnark instantiated with a QAP of degree d is secure
under Definition 2.2.

A proof of Theorem 4.1 can be found in the full version. Similarly, by separating
the circuit wires into private input, public input, intermediate values and private
output, we obtain zk-SNARK on committed input and output. This construc-
tion, comIOSnark, can be found in the full version. We state the theorem below.

19

Theorem 4.2. If q-PDH, 2q-SDH and d-PKE assumptions hold for GroupGen
for q ≥ 4d+4, and discrete logarithm assumption holds in G, then zk-comIOSnark
instantiated with a QAP of degree d is secure under Definition 2.2.

5 Constructions for Compound Statements

In this section we use the building blocks we constructed in Sections 4 and 3, to
devise proofs for compound statements. In the following, we distinguish between
functions that have an efficient algebraic representation versus functions that
are efficiently represented as an arithmetic circuit over a field. Of course, any
algebraic function can be written as a circuit over some field. But certain func-
tions, modular exponentiation for instance, have a large circuit size and hence it
is more desirable to not use a circuit in computing them. Therefore, when we say
algebraic or arithmetic for functions below, we really mean the efficient repre-
sentation of the function for computation. We say a function f is arithmetic if an
arithmetic circuit is used to compute f , and say f is algebraic if it is represented
algebraically. In this section, we show how to prove compound statements in-
volving function compositions, OR, and AND. In our compositions, the SNARK
used for the circuit could use a group whose order does not match with the group
of the sigma protocol for the algebraic part. We construct a building block Eq to
prove equality of committed values in different groups, given in the full version,
which we use in our compositions.

5.1 Function Composition

We assume that the commitments we use in the following are in groups of cor-
rect order for the computation, so as to focus on the ideas for the composition.
Wlog., our compositions hold even when the the scalar field of the elliptic curve
group, the field the curve is defined over and the field of the arithmetic circuit
are all different, since we can prove equality of committed values in different
groups using the protocol Eq. We present the interactive variant for ease of pre-
sentation but note that all our constructions can be made non-interactive by
running all the proofs in parallel and invoking the standard Fiat-Shamir trans-
form (see Section 2.1). The constructions below also easily generalize to func-
tions that have more input/output elements than shown, i.e. we can obtain con-
structions for statements of the form PK{(x1, . . . , xn, y1, . . . , ym) : f1(x1, . . . , xn,
f2(y1, . . . , ym)) = z} where f1, f2 may each be arithmetic or algebraic. We give
constructions composition by elaborating on the four possible compositions next:

1. f1 and f2 are functions represented as arithmetic circuits. Let f1 : F2
p → Fp,

and f2 : Fp → Fp, and we want to prove knowledge of secrets x1, x2 such
that f1(x1, f2(x2)) = z for a public z. An example is proof of knowledge of
x1 and x2 such that H(x1||H(x2)) = z where H is a collision resistant hash
function such as SHA256. Such a composition can help reduce the size of
CRS by composing the same or a few SNARK systems multiple times to
obtain more complex statements without an increase in CRS size.

20

– The prover commits to x1, x2 and x3 = f2(x2) by computing c1 =
Comp(x1), c2 = Comp(x2), c3 = Comp(x3). The prover sends c1, c2, c3 to the
verifier.

– The prover uses zk-comIOSnark to give a proof that f2(x2) = x3, given c2
and c3. PK{(x2, x3, r2, r3) : f2(x2) = x3 ∧ c2 = Comp(x2) ∧ c3 = Comp(x3)}.

– The prover uses zk-comInSnark to give a proof that f1(x1, x3) = z given c1, c3
and z. PK{(x1, x3, r1, r3) : f1(x1, x3) = z ∧ c1 = Comp(x1)∧ c3 = Comp(x3)}.

2. f1 is an arithmetic circuit and f2 is algebraic. Let f1 : F3
p → Fp, f2 : Zq → G

and T : G → F2
p. In this proof, we assume the algebraic function is over

an elliptic curve group and assume the natural transformation for mapping
an elliptic curve point to a tuple of field elements, i.e. its coordinates. Let
G be an elliptic curve group of prime order q, and let T (k) = (kx, ky) for
k ∈ G, where (kx, ky) are the coordinates of the elliptic curve point. The
following is a protocol for PK{(x1, x2) : f1(x1, T (f2(x2))) = z}. An example
is proving knowledge of x such that H(gx) = z.

– The prover commits to x1, x2 and k = f2(x2) by computing c1 =
Comp(x1), c2 = Comq(x2), c3 = Comp(k) = (Comp(kx),Comp(ky)), and sends
c1, c2, c3 to the verifier.

– The prover uses the protocols ddlog and the sigma protocol on commit-
ted group element comSigma to give the following proof: PK{(x2, k, r2, r3) :
f2(x2) = k ∧ c2 = Comq(x2) ∧ c3 = Comp(k)}.

– The prover uses zk-comInSnark to prove f1(x1, T (k)) = z given c1, c3, c4.
PK{(x1, k, r1, r3) : f1(x1, T (k)) = z ∧ c1 = Comp(x1) ∧ c3 = Comp(k)}.

3. f1 is algebraic, and f2 is an arithmetic circuit. Let f1 : Z2
q → G, f2 : Fp → Fp.

Let Π be a Σ-protocol for f1. The following is a protocol for PK{(x1, x2) :
f1(x1, f2(x2)) = z}. An example is proving knowledge of x such that gH(x) =
z where H is a hash function. This composition commonly appears when
proving knowledge of a digitally signed message.

– The prover commits to x1, x2, x3 = f2(x2) by computing c1 = Comq(x1), c2 =
Comp(x2), c3 = Comq(x3), c′3 = Comp(x3). c3 is committed to twice, in groups
of order p and q. The prover sends c1, c2, c3, c

′
3 to the verifier.

– The prover uses zk-comIOSnark to give a proof that f2(x2) = x3, given c2
and c′3. PK{(x2, x′3, r2, r′3) : f2(x2) = x′3 ∧ c2 = Comp(x2) ∧ c′3 = Comp(x

′
3)}.

– The prover uses the sigma protocol Π to give the following proof.
PK{(x1, x3, r1, r3) : f1(x1, x3) = z ∧ c1 = Comq(x1) ∧ c3 = Comq(x3)}.

– The prover uses the protocol Eq to prove that c′3 and c3 are commitments to
the same value. PK{(x3, x′3, r3, r′3) : x3 ≡ x′3 (mod q)∧ c3 = Comq(x3)∧ c′3 =
Comp(x

′
3)}

4. f1 and f2 are algebraic. Let f1 : Z3
p → G1, f2 : Zq → G2, where G1 and G2 are

elliptic curve groups of prime order p and q respectively. Let T (k) = (kx, ky)

21

for k ∈ G2, where (kx, ky) are the coordinates of the elliptic curve point. Let
Π1 be a Σ-protocol for f1. Let x1 ∈ Zp, x2 ∈ Zq. An example is proving

knowledge of x such that g
T (gx2)
1 for generators g1 and g2 for two different

groups and a valid transformation T for mapping from one group to an-
other. These statements often occur in anonymous credential constructions
or proving statements about accumulators but the only previous construc-
tions are for RSA groups.

– The prover commits to x1, x2 and k = f2(x2) by computing c1 =
Comp(x1), c2 = Comq(x2), c3 = Comp(k) = (Comp(kx),Comp(ky)), and sends
c1, c2, c3 to the verifier.

– The prover uses the protocols ddlog and the sigma protocol on committed
group element comSigma for f2 to give the following proof: PK{(x2, k, r2, r3) :
f2(x2) = k ∧ c2 = Comq(x2) ∧ c3 = Comp(k)}.

– The prover uses the sigma protocol Π1 to give the following proof.
PK{(x1, k, r1, r3) : f1(x1, T (k)) = z ∧ c1 = Comp(x1) ∧ c3 = Comp(k)}.

Theorem 5.1 (Function Composition). The constructions composition are
non-interactive zero-knowledge arguments PK{(x1, . . . , xn, y1, . . . , ym) : f1(x1, . . . ,
xn, f2(y1, . . . , ym)) = z}, as per Definition 2.2, for any f1, f2 ∈ {algebraic, arithmetic}
assuming the security of zk-comInSnark, zk-comIOSnark, ddlog, Eq.

5.2 OR Composition

Consider the OR composition where a prover wants to show that f1(x1, x2) = 1
or f2(x1, x3) = 1 but without revealing which one is true. We give constructions
compoundOR : PK{(x1, x2, x3) : f1(x1, x2)∨ f2(x1, x3) = 1}, where the fis could
have either an arithmetic or algebraic representation, and could have shared
secret inputs.

1. f1 and f2 are functions represented as arithmetic circuits. Let f1 : F2
p →

{0, 1}, and f2 : F2
q → {0, 1}, q < p. An example is composing proofs for two

SNARK systems that work over different elliptic curve groups.

– The prover commits to the inputs by computing, c1 = Comp(x1), c′1 =
Comq(x1), c2 = Comp(x2), c3 = Comq(x3), and to the output bits b1 =
f1(x1, x2), b2 = f1(x1, x3), c4 = Comp(b1), c5 = Comq(b2), c′5 = Comp(b2).
x1 and b2 are committed to in both groups of order p and q.

– The prover uses zk-comIOSnark to give proofs.
PK{(x1, x2, b1, r1, r2, r4) : f1(x1, x2) = b1 ∧ c1 = Comp(x1)∧ c2 = Comp(x2)∧
c4 = Comp(b1)}.
PK{(x′1, x3, b2, r′1, r3, r5) : f2(x′1, x3) = b2 ∧ c′1 = Comq(x

′
1)∧ c3 = Comq(x3)∧

c5 = Comq(b2)}.

22

– The prover uses the protocol Eq to prove that c′1 and c1 are commitments to
the same value.
PK{(x1, x′1r1, r′1) : x1 ≡ x′1 (mod q) ∧ c1 = Comp(x1) ∧ c′1 = Comq(x1)}

– The prover uses the protocol Eq to prove that c′5 and c5 are commitments to
the same value.
PK{(b2, b′2, r5, r′5) : b2 ≡ b′2 (mod q) ∧ c5 = Comq(b2) ∧ c′5 = Comp(b

′
2)}

– The prover uses the Sigma protocol OR-transform to give the following proof.
PK{(b1, b2, r4, r5) : (b1 = 1 ∧ c4 = Comp(b1)) ∨ (b2 = 1 ∧ c′5 = Comp(b2))}

2. One of them is an arithmetic circuit and the other is an algebraic relation.
Wlog., f1 is represented as an arithmetic circuit and f2 is an algebraic
statement. Let f1 : F2

p → {0, 1}, f2 : Z2
q → {0, 1}, q < p. Let Π be a Σ-

protocol for f2. An example is proving knowledge of x such that H(x) = y
OR gx = z.

– The prover commits to the inputs, c1 = Comq(x1), c′1 = Comp(x1), c2 =
Comp(x2), c3 = Comq(x3). The prover computes the outputs b1 =
f1(x1, x2), b2 = f1(x1, x3) and commits to them by computing c4 =
Comp(b1), c5 = Comq(b2), c′5 = Comp(b2).

– The prover uses comIOSnark to give the following proof.
PK{(x′1, x2, b1, r′1, r2, r4) : f1(x′1, x2) = b ∧ c′1 = Comp(x1) ∧ c2 = Comp(x2) ∧
c4 = Comp(b1)}.

– The prover uses the protocol Π and protocol comBitSigma (Figure 3) to prove
the following.
PK{(x1, x3, b2, r1, r3, r5) : f2(x1, x3) = b2 ∧ c1 = Comq(x1)∧ c3 = Comq(x3)∧
c5 = Comq(b2)}

– The prover uses the protocol Eq to prove that c′1 and c1 are commitments to
the same value.
PK{(x1, x′1r1, r′1) : x1 ≡ x′1 (mod q) ∧ c1 = Comq(x1) ∧ c′1 = Comp(x1)}

– The prover uses the protocol Eq to prove that c′5 and c5 are commitments to
the same value.
PK{(b2, b′2, r5, r′5) : b2 ≡ b′2 (mod q) ∧ c5 = Comq(b2) ∧ c′5 = Comp(b

′
2)}

– The prover uses the Sigma protocol OR-transform to prove the following.
PK{(b1, b2, r4, r5) : (b1 = 1 ∧ c4 = Comq(b1)) ∨ (b2 = 1 ∧ c5 = Comq(b2))}.

Let fOR be the relation given by fOR = {((f1, f2), (x1, x2, x3)) : ((x1, x2) ∈ Rf1)
∨ ((x1, x3) ∈ Rf2)}.
Theorem 5.2 (OR Composition). The constructions compoundOR are non-
interactive zero-knowledge arguments PK{(x1, x2, x3) : f1(x1, x2) ∨ f2(x1, x3) =
1}, as per Definition 2.2, for the relation fOR, for any f1, f2 ∈ {algebraic, arithmetic},
assuming the security of zk-comInSnark, zk-comIOSnark, comBitSigma, Eq.

5.3 AND Composition

Techniques shown in Section 5.2 extend for proofs of the form, PK{(x1, x2, x3) :
f1(x1, x2) ∧ f2(x1, x3) = 1} for all combinations of f1 and f2 being arithmetic

23

and algebraic. In particular, to prove the AND of multiple statements, we use our
building blocks comInSnark for the arithmetic part, Σ-protocol for the algebraic
part, and Eq to switch between groups.

6 Applications

6.1 Privacy-preserving Audits of Bitcoin Exchanges

In this section, we show how to use our constructions for proving composite
statements in zero-knowledge to build a privacy-preserving proof of solvency for
Bitcoin exchanges. A proof of solvency demonstrates that an exchange controls
sufficient reserves to settle each customer’s account. If the exchange loses a large
amount of money in an attack, it would not be able to provide such a proof. Thus
customers will find out about the attack very soon and take necessary actions.

A proof of solvency consists of three components:

– A proof of liabilities that allows customers to verify that their accounts are
included in the total.

– A proof of assets which shows that the exchange has a certain amount of
reserves.

– A proof that the reserves cover the liabilities to an acceptable degree.

Let g, h be fixed public generators of a group G of order q. For a Bitcoin
public key y, x ∈ Zq is the corresponding secret key such that y = gx. In the
proof of assets below, for a group element k = (kx, ky), we write Com(k) to mean
a commitment to the coordinates of k, i.e. Com(k) = (Com(kx),Com(ky)). The
Bitcoin address corresponding to a key y is given by h = H(y), where H hashes
y to a more compact representation. We denote the balance associated with an
address h by bal(h).

Proof of assets We give the proof of assets in Figure 6, which allows an ex-
change to generate a commitment to its total assets along with a zero-knowledge
proof that the exchange knows the private keys for a set of Bitcoin addresses
whose total value is equal to the committed value. The exchange creates a set of
hashes PK to serve as an anonymity set: PK = {h1, · · · , hn} from the public data
available on the blockchain. Let x1, · · · , xn be the corresponding secret keys, so
that hi = H(gxi), si indicates whether the exchange knows the ith secret key.
The total assets can now be expressed as Assets =

∑n
i=1 si · bal(hi). The public

data available on the blockchain is hi = H(yi), pi = gbal(hi) for all i ∈ [1, n].
Zero-knowledge and soundness of the proof of assets follow from properties of

our constructions for compound statements (Theorems 5.1, 5.2) and properties
of the Sigma protocols used. Proofs of liabilities and solvency have been moved
to the full version because they are very similar to Provisions. We compare the
trade-off between proof size and prover’s work in our approach versus Provisions
and a full SNARK solution in Table 1 in Appendix 7.

24

– The exchange computes the commitments. For i ∈ [1, n], commit to xi by
publishing αi = Comq(xi) = gxihri , and commit to yi by publishing βi =
Comq(yi).

– The exchange commits to the balance in each address for the public keys
he controls and to 0 otherwise, by publishing ui = Comq(si · bal(hi)) =
gsi·bal(hi)hti , si ∈ {0, 1}, where si = 1 if the exchange knows xi such that
yi = gxi .

– The exchange uses protocols ddlog, comIOSnark and the constructions for
function composition and OR composition, composition and compoundOR re-
spectively, to prove the following for each i,

πi : PK{(xi, yi, si, ri, ai, bi, ti) :
(
αi = Comq(xi) ∧ βi = Comq(yi)∧

ui = Comq(si · bal(hi)) ∧ f1(f2(xi), hi) = si ∧ si = 1
)
∨
(
si = 0

)
}

where f2(x) = gx and f1(y, h) = 1 if H(y) = h and 0 otherwise.
– Compute and publish ZAssets =

∏n
i=1 ui.

Fig. 6: Proof of assets

6.2 Privacy-Preserving Credentials

Another application of our compositions for compound statements is in privacy-
preserving verification of credentials. A credential system allows a user to obtain
credentials from an organization or a Certificate Authority, and later prove to a
verifier that she has been given appropriate credentials. Typically, the user’s cre-
dentials will contain a set of attributes, and the verifier will require that the user
prove that the attributes in his credential satisfy certain policy. Many different
constructions have been proposed for anonymous credential systems built around
sigma protocols. The signatures used, therefore, are specially designed so that a
sigma protocol can be used to prove knowledge of the signature on a committed
message. If we want to base anonymous credentials on standard signatures, like
RSA signatures, we will need to prove a compound statement involving an al-
gebraic relation (for the exponentiation), and a circuit-based statement (for the
hash function). The recent work of [30] achieves privacy-preserving verification
of X.509 certificates by using zk-SNARKs, and this involves representing the
exponentiation in an RSA group as a circuit. Here, we use our composition con-
structions to build an efficient proof avoiding expensive circuit representation of
algebraic statements.

Given a SHA hash digest of a message m, a candidate RSA signature σ,
and an RSA modulus N , verification involves checking whether σe mod n =
h, where h = padding(SHA(m)). The construction given in Figure 7 achieves
privacy-preserving verification for credentials based on RSA signatures. We com-
pare the trade off between the proof size and prover’s work in our approach
versus other methods in Table 2 in Appendix 7. Our compositions and similar
techniques extend to yield efficient privacy-preserving verification for credentials
based on existing infrastructure like standard RSA-PSS, RSA-PKCS etc.

25

– The prover commits to the message m, the digest h, and the signature σ by
computing c1 = Comp(m), c2 = Comp(h), c3 = Comn(σ), c4 = Comn(h) for
p < n.

– The prover uses zk-comIOSnark to give a proof that the hash digest is correct,
given c1 and c2.
PK{(m,h, r1, r2) : padding(SHA(m)) = h ∧ c1 = Comp(m) ∧ c2 = Comp(h)}.

– The prover uses a sigma protocol to prove knowledge of e-th root of a com-
mitted value [19].
PK{(h, σ, r2, r3) : σe mod n = h ∧ c2 = Comn(h) ∧ c3 = Comn(σ)}.

– The prover uses the protocol Eq to prove that the commitments c2 and c4 are
to the same value: PK{(h, h′, r2, r4) : c2 = Comp(h)∧ c4 = Comn(h′)∧ h ≡ h′
mod p}.

Fig. 7: RSA Signature Verification

References

1. Secp256k1. https://en.bitcoin.it/wiki/Secp256k1

2. Technical background of version 1 bitcoin addresses. https://en.bitcoin.it/

wiki/Technical_background_of_version_1_Bitcoin_addresses

3. Zcash 1.0 “Sprout” Guide. https://github.com/zcash/zcash/wiki/1.

0-User-Guide

4. Zcash Parameter Generation. https://z.cash/technology/paramgen.html

5. Aho, A. (ed.): 19th ACM STOC. ACM Press (May 1987)

6. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight sub-
linear arguments without a trusted setup. In: Thuraisingham, B.M., Evans, D.,
Malkin, T., Xu, D. (eds.) ACM CCS 17. pp. 2087–2104. ACM Press (Oct / Nov
2017)

7. Ben-Or, M., Goldreich, O., Goldwasser, S., H̊astad, J., Kilian, J., Micali, S., Ro-
gaway, P.: Everything provable is provable in zero-knowledge. In: Goldwasser, S.
(ed.) CRYPTO’88. LNCS, vol. 403, pp. 37–56. Springer, Heidelberg (Aug 1990)

8. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: Decentralized anonymous payments from bitcoin. In: 2014 IEEE
Symposium on Security and Privacy. pp. 459–474. IEEE Computer Society Press
(May 2014)

9. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
Verifying program executions succinctly and in zero knowledge. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 90–108. Springer,
Heidelberg (Aug 2013)

10. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von neumann architecture. In: 23rd USENIX Security Symposium
(USENIX Security 14). pp. 781–796. USENIX Association, San Diego, CA (2014)

11. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision re-
sistance to succinct non-interactive arguments of knowledge, and back again. In:
Goldwasser, S. (ed.) ITCS 2012. pp. 326–349. ACM (Jan 2012)

12. Bitansky, N., Chiesa, A., Ishai, Y., Ostrovsky, R., Paneth, O.: Succinct non-
interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (Mar 2013)

26

https://en.bitcoin.it/wiki/Secp256k1
https://en.bitcoin.it/wiki/Technical_background_of_version_1_Bitcoin_addresses
https://en.bitcoin.it/wiki/Technical_background_of_version_1_Bitcoin_addresses
https://github.com/zcash/zcash/wiki/1.0-User-Guide
https://github.com/zcash/zcash/wiki/1.0-User-Guide
https://z.cash/technology/paramgen.html

13. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations (extended abstract). In: 20th ACM STOC. pp. 103–112. ACM Press (May
1988)

14. Boudot, F.: Efficient proofs that a committed number lies in an interval. In: Pre-
neel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Hei-
delberg (May 2000)

15. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
Efficient range proofs for confidential transactions. Cryptology ePrint Archive, Re-
port 2017/1066 (2017), https://eprint.iacr.org/2017/1066

16. Camenisch, J., Chaabouni, R., shelat, a.: Efficient protocols for set membership
and range proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
234–252. Springer, Heidelberg (Dec 2008)

17. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EU-
ROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (May 2001)

18. Camenisch, J., Michels, M.: Proving in zero-knowledge that a number is the prod-
uct of two safe primes. In: Stern, J. (ed.) EUROCRYPT’99. LNCS, vol. 1592, pp.
107–122. Springer, Heidelberg (May 1999)

19. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups
(extended abstract). In: Kaliski Jr. [49], pp. 410–424

20. Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rechberger, C.,
Slamanig, D., Zaverucha, G.: Post-quantum zero-knowledge and signatures from
symmetric-key primitives. In: Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. pp. 1825–1842. ACM (2017)

21. Chase, M., Ganesh, C., Mohassel, P.: Efficient zero-knowledge proof of algebraic
and non-algebraic statements with applications to privacy preserving credentials.
In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp.
499–530. Springer, Heidelberg (Aug 2016)

22. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest,
R.L., Sherman, A.T. (eds.) CRYPTO’82. pp. 199–203. Plenum Press, New York,
USA (1982)

23. Cohen, J.D., Fischer, M.J.: A robust and verifiable cryptographically secure elec-
tion scheme (extended abstract). In: 26th FOCS. pp. 372–382. IEEE Computer
Society Press (Oct 1985)

24. Costello, C., Fournet, C., Howell, J., Kohlweiss, M., Kreuter, B., Naehrig, M.,
Parno, B., Zahur, S.: Geppetto: Versatile verifiable computation. In: 2015 IEEE
Symposium on Security and Privacy. pp. 253–270. IEEE Computer Society Press
(May 2015)

25. Cramer, R. (ed.): TCC 2012, LNCS, vol. 7194. Springer, Heidelberg (Mar 2012)
26. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-

plified design of witness hiding protocols. In: Desmedt, Y. (ed.) CRYPTO’94.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (Aug 1994)

27. Dagher, G.G., Bünz, B., Bonneau, J., Clark, J., Boneh, D.: Provisions: Privacy-
preserving proofs of solvency for bitcoin exchanges. In: Ray, I., Li, N., Kruegel:, C.
(eds.) ACM CCS 15. pp. 720–731. ACM Press (Oct 2015)

28. D̊amgard, I.: On Sigma Protocols. http://www.cs.au.dk/~ivan/Sigma.pdf
29. Damg̊ard, I., Faust, S., Hazay, C.: Secure two-party computation with low com-

munication. In: Cramer [25], pp. 54–74
30. Delignat-Lavaud, A., Fournet, C., Kohlweiss, M., Parno, B.: Cinderella: Turning

shabby X.509 certificates into elegant anonymous credentials with the magic of

27

https://eprint.iacr.org/2017/1066
http://www.cs.au.dk/~ivan/Sigma.pdf

verifiable computation. In: 2016 IEEE Symposium on Security and Privacy. pp.
235–254. IEEE Computer Society Press (May 2016)

31. Edwards, H.: A normal form for elliptic curves. Bulletin of the American Mathe-
matical Society 44(3), 393–422 (2007)

32. Feige, U., Fiat, A., Shamir, A.: Zero knowledge proofs of identity. In: Aho [5], pp.
210–217

33. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs
based on a single random string (extended abstract). In: 31st FOCS. pp. 308–317.
IEEE Computer Society Press (Oct 1990)

34. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO’86. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (Aug 1987)

35. Fiore, D., Fournet, C., Ghosh, E., Kohlweiss, M., Ohrimenko, O., Parno, B.: Hash
first, argue later: Adaptive verifiable computations on outsourced data. In: Weippl,
E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 16.
pp. 1304–1316. ACM Press (Oct 2016)

36. Fortnow, L.: The complexity of perfect zero-knowledge (extended abstract). In:
Aho [5], pp. 204–209

37. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular
polynomial relations. In: Kaliski Jr. [49], pp. 16–30

38. Garay, J.A., MacKenzie, P.D., Yang, K.: Strengthening zero-knowledge protocols
using signatures. Journal of Cryptology 19(2), 169–209 (Apr 2006)

39. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (May 2013)

40. Giacomelli, I., Madsen, J., Orlandi, C.: Zkboo: Faster zero-knowledge for boolean
circuits. In: 25th USENIX Security Symposium, USENIX Security 16, Austin, TX,
USA, August 10-12, 2016. (2016)

41. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
and a methodology of cryptographic protocol design (extended abstract). In: 27th
FOCS. pp. 174–187. IEEE Computer Society Press (Oct 1986)

42. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Aho [5], pp. 218–229

43. Goldwasser, S., Lin, H., Rubinstein, A.: Delegation of computation without re-
jection problem from designated verifier CS-Proofs. Cryptology ePrint Archive,
Report 2011/456 (2011), http://eprint.iacr.org/2011/456

44. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(Dec 2010)

45. Groth, J., Kohlweiss, M.: One-out-of-many proofs: Or how to leak a secret and
spend a coin. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II.
LNCS, vol. 9057, pp. 253–280. Springer, Heidelberg (Apr 2015)

46. Guillou, L.C., Quisquater, J.J.: A practical zero-knowledge protocol fitted to secu-
rity microprocessor minimizing both trasmission and memory. In: Günther, C.G.
(ed.) EUROCRYPT’88. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg (May
1988)

47. 2013 IEEE Symposium on Security and Privacy. IEEE Computer Society Press
(May 2013)

48. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC. pp.
21–30. ACM Press (Jun 2007)

28

http://eprint.iacr.org/2011/456

49. Kaliski Jr., B.S. (ed.): CRYPTO’97, LNCS, vol. 1294. Springer, Heidelberg (Aug
1997)

50. Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In: Proceedings
of the twenty-fourth annual ACM symposium on Theory of computing. pp. 723–
732. ACM (1992)

51. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In: Cramer [25], pp. 169–189

52. Lipmaa, H.: Succinct non-interactive zero knowledge arguments from span pro-
grams and linear error-correcting codes. In: Sako, K., Sarkar, P. (eds.) ASI-
ACRYPT 2013, Part I. LNCS, vol. 8269, pp. 41–60. Springer, Heidelberg (Dec
2013)

53. Micali, S.: Computationally sound proofs. SIAM Journal on Computing 30(4),
1253–1298 (2000)

54. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: Anonymous distributed
E-cash from Bitcoin. In: IEEE S&P 2013 [47], pp. 397–411

55. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In: 22nd ACM STOC. pp. 427–437. ACM Press (May 1990)

56. Noether, S., Mackenzie, A., Team, M.C.: Ring confidential transactions. https:
//lab.getmonero.org/pubs/MRL-0005.pdf

57. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical verifi-
able computation. In: IEEE S&P 2013 [47], pp. 238–252

58. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO’91. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (Aug 1992)

59. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.M.
(ed.) EUROCRYPT’96. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg (May
1996)

60. Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptology
4(3), 161–174 (1991)

61. Vadhan, S.P.: A study of statistical zero-knowledge proofs. Ph.D. thesis, Mas-
sachusetts Institute of Technology (1999)

62. Wilcox, Z.: Proving bitcoin reserves. https://iwilcox.me.uk/2014/

proving-bitcoin-reserves

7 Efficiency

We briefly discuss the estimated cost of some of the building blocks. The ddlog
proof is dominated by the cost of the range proofs in steps 4, 5, 6 of pointAddition
protocol in Figure 1. In a recent work [15], it was shown how to prove that
a committed value is in a range using only a number of field elements that is
logarithmic in the bit length of the range. Using these proofs to instantiate all the
necessary range proofs in protocol pointAddition, the prover’s work is 30 log t +
1800 group exponentiations, the verifier’s work is 10 log t exponentiations, and
the proof size is 2370 + log log t elements where the proof is for a curve defined
over Ft. The cost of comInSnark is the cost of the comEq in addition to the cost
incurred by separating the wires in the underlying SNARK construction. The
proof size of comInSnark is 15 group elements, and 2 field elements for every
committed value (input/output). In the case of our following applications, the

29

https://lab.getmonero.org/pubs/MRL-0005.pdf
https://lab.getmonero.org/pubs/MRL-0005.pdf
https://iwilcox.me.uk/2014/proving-bitcoin-reserves
https://iwilcox.me.uk/2014/proving-bitcoin-reserves

proof size is 17 elements. The prover’s work is the number of exponentiations
for computing the SNARK proof and an additional 2 exponentiations for the
comEq proof. The verifier’s work is 2 exponentiations and 21 pairings. Similarly,
comIOSnark has proof size 26 elements, the prover’s work, in addition to the
exponentiations for the SNARK proof is 4 exponentiations and the verifier’s
work is 4 exponentiations and 30 pairings.

Proof of solvency. In Table 1, we compare the proof size and prover’s work of
Provisions with our protocol and a solution that uses zk-SNARK for the entire
statement. The proof size and prover’s work are dominated by the range proofs;
the numbers below give only the dominating terms ignoring small constants and
are assuming that the range proofs are realized using Bulletproofs.

zk technique Functionality Proof size (in elements) Prover

Provisions pay-to-pub 10n+ logm+ log c 5n+ 4mc exp.

SNARK pay-to-pub, pay-
to-hash

7 (|H|+ p3)n+ c exp.

Our composition
techniques

pay-to-pub, pay-
to-hash

2396n+ log p+ logn (|H|+30p+1800)n+c
exp.

Table 1: Comparison of prover work and proof sizes for proof of solvency using different
methods. n is the size of the anonymity set, c is the number of customer accounts, m
is dlogMaxe = 51, p is the bit length of the modulus for exponentiation (size of the
field over which the the curve is defined). For n = 500, 000 and c = 2 million, the
proof size and prover’s work in Provisions is 5 ∗ 106 and 4 ∗ 107 respectively. For the
same parameters, our approach gives proof size of 109 and prover’s work 1010, while
also achieving the additional pay-to-hash functionality. A fully zk-SNARK solution
requires prover’s work roughly 1013. (Exp. stands for exponentiations.)

Privacy preserving credentials. In Table 2, we compare the proof size and prover’s
work in privacy-preserving credentials for Cinderella, the interactive protocol
of [21], and our composition.

zk technique Feature Proof size Prover

Cinderella non-interactive 7 |H|+ additional 164,826 equations for
RSA (as optimized in Cinderella)

GC + Sigma [21] interactive |H| |m|+ |h| exp. + |H| symmetric-key op-
erations

Our composition
techniques

non-interactive 42 + log p |H|+ log p+ 16 exp.

Table 2: Comparison of prover work and proof sizes for credential verification using
different methods. p is the order of the group in which commitments are computed,
|m| is the bit length of the message. For e = 65537, log p = 256, |H| = 23785, we note
an 87% decrease in prover’s work compared to Cinderella at the cost of increasing the
proof size to 298 from 7 group elements. (Exp. stands for exponentiations.)

30

	Non-Interactive Zero-Knowledge Proofs for Composite Statements

