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Abstract. An Oblivious RAM (ORAM) introduced by Goldreich and
Ostrovsky [JACM’96] is a (possibly randomized) RAM, for which the
memory access pattern reveals no information about the operations per-
formed. The main performance metric of an ORAM is the bandwidth
overhead, i.e., the multiplicative factor extra memory blocks that must
be accessed to hide the operation sequence. In their seminal paper in-
troducing the ORAM, Goldreich and Ostrovsky proved an amortized
Ω(lgn) bandwidth overhead lower bound for ORAMs with memory size
n. Their lower bound is very strong in the sense that it applies to the
“offline” setting in which the ORAM knows the entire sequence of oper-
ations ahead of time.
However, as pointed out by Boyle and Naor [ITCS’16] in the paper “Is
there an oblivious RAM lower bound?”, there are two caveats with the
lower bound of Goldreich and Ostrovsky: (1) it only applies to “balls
in bins” algorithms, i.e., algorithms where the ORAM may only shuffle
blocks around and not apply any sophisticated encoding of the data,
and (2), it only applies to statistically secure constructions. Boyle and
Naor showed that removing the “balls in bins” assumption would result
in super linear lower bounds for sorting circuits, a long standing open
problem in circuit complexity. As a way to circumventing this barrier,
they also proposed a notion of an “online” ORAM, which is an ORAM
that remains secure even if the operations arrive in an online manner.
They argued that most known ORAM constructions work in the online
setting as well.
Our contribution is an Ω(lgn) lower bound on the bandwidth overhead
of any online ORAM, even if we require only computational security and
allow arbitrary representations of data, thus greatly strengthening the
lower bound of Goldreich and Ostrovsky in the online setting. Our lower
bound applies to ORAMs with memory size n and any word size r ≥ 1.
The bound therefore asymptotically matches the known upper bounds
when r = Ω(lg2 n).

1 Introduction

It is often attractive to store data at an untrusted party, and only retrieve the
needed parts of it. Encryption can help ensure that the party storing the data
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has no idea of what it is storing, but still it is possible to get information about
the stored data by analyzing the access pattern.

Goldreich and Ostrovsky[GO96] solved this problem in a model with a client
that is equipped with a random oracle and small (constant size) memory. The
client runs a program while using a (larger) RAM stored on a server, where the
access pattern is observed by the adversary. The results from [GO96] shows that
any program in the standard RAM model can be transformed using an ”obliv-
ious RAM simulator” into a program for the oblivious RAM model, where the
access pattern is information theoretically hidden. Whereas it is not reasonable
to assume a random oracle in a real implementation, Goldreich and Ostrovsky
point out that one can replace it by a pseudorandom function (PRF) that only
depends on a short key stored by the client. This way, one obtains a solution that
is only computationally secure. The construction in [GO96] had an overhead of
polylog(n), where the overhead is defined to be the number of memory blocks
communicated per operation and n is defined as the number of memory blocks of
the ORAM. The paper at the same time showed a lower bound on the overhead
of Ω(lg n).

There has been a surge in research on ORAMs in recent years, both on
practical efficiency, asymptotic efficiency, practical applications and theoreti-
cal applications. There are literally hundreds of papers on the subject and
any list will leave out important results. However, a good starting point for
getting an overview of the breadth of the research is [PR10, DMN11, GM11,
GMOT12, KLO12, WST12, SS13, CLP14, GHL+14, GLO15, BCP16, LO17,
Goo17, Goo18], their references and the papers citing them.

A seminal result was the Path ORAM [SvDS+13], which has an amortized
O(lg n) bandwidth cost (measured in blocks communicated) for blocks of size
Ω(lg2 n) bits. It was the first to achieve this overhead. Since the lower bound
in [GO96] applies to any block size, this seems to have finished the story by
giving matching lower and upper bounds. However, as pointed out by Boyle
and Naor [BN16], there are two caveats with the lower bound of Goldreich and
Ostrovsky: (1) it only applies to “balls in bins” algorithms, i.e., algorithms where
the ORAM may only shuffle blocks around and not apply any sophisticated
encoding of the data, and (2), it only applies to statistically secure constructions.
This leaves open the question whether a non-“balls in bins” ORAM construction
or an inherently computationally secure only ORAM construction could beat the
lg n lower bound. In this work we show that this is not the case.

1.1 Our Contributions

Before we state our result we present the class of ORAM schemes our new lower
bound applies to.

Online ORAMs. Boyle and Naor showed that proving lower bounds without the
“balls in bins” assumption would result in super-linear lower bounds for sorting
circuits, a long standing open problem in circuit complexity. As a way to circum-
venting this barrier, they proposed a notion of an “online” ORAM, which is an
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ORAM that remains secure even if the operations arrive in an online manner.
They argued that most known ORAM constructions work in the online setting
as well. Also, most applications of ORAM schemes require that the scheme is
online.

Passive ORAMs. It is implicit in the original definition of ORAMs that the
server is passive storage. There are also ORAM constructions (for instance,
Onion ORAM[DvDF+16] and the recent proposal in [AFN+16]), which allow the
server to perform untrusted computation on behalf of the client. Our lower bound
does not apply to such ORAMs. And indeed most of these schemes achieves sub-
logarithmic overhead.

Problem Statement. To be a bit more precise, the purpose of the online ORAM is
to allow a client to store data on an untrusted server. The online ORAM provides
security in the sense that it hides the data access pattern from the server (which
blocks are read/written). More formally, an online ORAM supports the following
two operations:

– write(a,data): Store data in the block of address a, where a ∈ [n] and data ∈
{0, 1}r.

– read(a): Return the contents of the block of address a.

During operation, the ORAM maybe perform the same type of operations on a
memory stored on a server. The server memory space may be larger than that of
the ORAM and the block size need not be the same. To distinguish the two, we
refer to blocks at the server as memory cells, we use w to denote the number of
bits in a memory cell and we use r to denote the number of bits in a block, i.e.,
r is the number of bits in the data arguments of the write(a,data) operations.

An online ORAM is secure in the following sense: Let y be a sequence of
operations for the ORAM:

y := (op1, . . . , opM )

where each opi is either a write(a,data) or read(a) operation. Let

A(y) := (A(op1), . . . , A(opM ))

denote the memory access pattern to the server from the online ORAM, i.e., each
A(opj) is the list of addresses of the cells accessed at the server while processing
opj . For a randomized construction A(y) is a random variable. Security is defined
as follows: for two distinct sequences of operations y and z with the same number
of operations, A(y) and A(z) are computationally indistinguishable. In the main
text we will give a more formal definition. The present informal definition is only
to be able to present our result.

We prove the following theorem.

Theorem 1 (informal). Any online ORAM with n blocks of memory, consist-
ing of r ≥ 1 bits each, must have an expected amortized bandwidth overhead of
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Ω(lg(nr/m)) on sequences of Θ(n) operations. Here m denotes the client mem-
ory in bits. This holds in the random oracle model, requiring only computational
indistinguishability, holds for any server cell size w and allows for arbitrary
representations of the data in memory. For the natural setting of parameters
r ≤ m ≤ n1−ε for an arbitrarily small constant ε > 0, the lower bound simplifies
to Ω(lg n).

Discussion 1. Comparing our definition of an online ORAM to that of Boyle
and Naor [BN16], our security definition is slightly stricter in the sense that
for us, A(y) also lets the adversary see which block accesses belong to which
operations. Boyle and Naor simply define A(y) as A(op1) · · ·A(opM ) (without
the comma separation). We believe our stricter definition is justifiable as it seems
questionable to base security on not knowing when one operation has finished
processing, at least in an online setting where operations arrive one at a time
and we don’t know before hand how many operations we have to process. To
the best of our knowledge, all online ORAM implementations also satisfy our
stricter security definition.

Discussion 2. Most ORAM constructions have w = Θ(r), i.e., the server memory
cells have the same asymptotic number of bits as the block size of the ORAM.
However, this is not a strict requirement, and the Path ORAM [SvDS+13] in fact
has r = Θ(lg2 n) and w = Θ(lg n) in order to achieve their O(lg n) amortized
bandwidth overhead, i.e., the ORAM block size and the server memory cells have
very different sizes. When dealing with w and r that are not asymptotically the
same, one defines the bandwidth overhead as the multiplicative factor extra bits
that must be accessed from the server compared to just reading the r bits com-
prising a block. Thus if an ORAM accesses t memory cells per operation, its
bandwidth overhead is tw/r. The Path ORAM accesses an amortized Θ(lg2 n)
memory cells per operation. This is Θ(w lg2 n) = Θ(lg3 n) bits, which is a mul-
tiplicative factor Θ((lg3 n)/r) = Θ(lg n) overhead, i.e., its bandwidth overhead
is Θ(lg n). Our lower bound holds regardless of the memory cell size w.

1.2 Proof Strategy

In the following, we give a brief overview of the ideas in our lower bound proof.
Our first observation is that the definition of the online ORAM coincides with
the definition of an oblivious data structure, as defined in [WNL+14], solving
the following array maintenance problem:

Definition 1. In the array maintenance problem, we must maintain an array
B of n r-bit entries under the following two operations:

– write(a,data): Set the contents of B[a] to data, where a ∈ [n] and data ∈
{0, 1}r.

– read(a): Return the contents of B[a].

4



This data structure view allows us to re-use techniques for proving data struc-
ture lower bounds. More concretely, we prove a lower bound for oblivious data
structures solving the array maintenance problem and then use the argument
above to conclude the same lower bound for online ORAMs.

Data structure lower bounds are typically proved in the cell probe model
of Yao [Yao81]. Intuitively, this model is the same as the standard RAM, ex-
cept that computation is free of charge and we only pay for memory accesses.
This matches the ORAM performance metrics perfectly as we care about the
bandwidth overhead and the memory accesses revealing no information. We thus
tweak the definition of the cell probe model such that it captures client mem-
ory and other technical details of the online ORAM not normally found in data
structures. We will define our model, which we term the oblivious cell probe
model, formally in Section 2. Another advantage of this data structure view is
that it accurately captures the online setting of online ORAMs and thus al-
low us to circumvent the circuit complexity barrier demonstrated by Boyle and
Naor [BN16].

The strongest current techniques for proving lower bounds in the cell probe
model, can prove lower bounds of the form Ω̃(lg2 n) [Lar12] for problems with a
lg n-bit output, and Ω̃(lg1.5 n) for decision problems [LWY18], i.e., one-bit an-
swers to queries. Here Ω̃ hides polyloglog factors. We did not manage to use these
techniques to prove lower bounds for ORAMs, but instead took inspiration from
the so-called information transfer method of Pǎtraşcu and Demaine [PD06],
which can prove lower bounds of Ω(lg n). It would be quite exciting if the tech-
niques in [Lar12, LWY18] could be tweaked to prove ω(lg n) lower bounds for
e.g. the worst case bandwidth overhead of ORAMs. We leave this as intriguing
future work.

The basic idea in the information transfer method, is to consider a distribu-
tion over sequences of M operations on a data structure. One then considers a
binary tree T on top of such a random sequence, having an operation in each
leaf. The next step is to consider the memory accesses arising from processing
the M operations. Each such memory access is assigned to a node v ∈ T as fol-
lows: For a memory access p to a memory cell c, let `i be the leaf of T containing
the operation that caused the memory access p. Let `j , with j < i, be the leaf
corresponding to the last time c was accessed prior to p. We associate p with the
lowest common ancestor of `i and `j . The next step is to prove that for every
node v ∈ T , there has to be many memory accesses assigned to v. Since each
memory access is assigned to only one node in T , we can sum up the number of
memory accesses assigned to all the nodes of T and get a lower bound on the
total number of accesses.

Now to lower bound the number of memory accesses assigned to a node v,
observe that such memory accesses correspond precisely to operations in the
right subtree of v accessing memory cells last accessed during the operations in
the left subtree. To prove that there must be many such memory accesses, one
proves that the answers to the queries (read operations) in the right subtree
depends heavily on the updates (write operations) in the left subtree. In this
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way, one basically shows that every leaf must make a memory access for every
ancestor in T , resulting in an Ω(lgM) lower bound.

The problem for us, is that the array maintenance problem is trivial for
standard data structures. Thus the above approach fails utterly without more
ideas. The issue is that for any distribution over read and write operations,
we cannot prove that a read operation in some leaf of T has to make memory
accesses for every ancestor in T . Basically, for most nodes, the read operations in
the right subtree will request array entries not written to in the left subtree and
thus will not need to access anything written there. Our key idea for exploiting
the security requirement is that, if we change the distribution over operations,
then the number of memory accesses assigned to the nodes of T cannot change
drastically as this would be observable by an adversary who can simply construct
T and assign the memory accesses. We can therefore examine the nodes v of T ,
and for each one, change the distribution over operations such that the read
operations in the right subtree requests precisely the array entries written to in
the left subtree. By an entropy argument, there has to be many memory accesses
under such a distribution. And by our security requirement, this translates back
to many memory accesses under the original distribution. We refer the reader to
Section 3 for the full details.

2 Oblivious Cell Probe Model

In this section, we formally define a lower bound model for proving lower bounds
for oblivious data structures. As mentioned earlier, an ORAM immediately gives
an oblivious data structure for array maintenance. Hence we set out to prove
lower bounds for such data structures.

Our new model is an extension of the cell probe model of Yao [Yao81]. The
cell probe model is traditionally used to prove lower bounds for word-RAM data
structures and is extremely powerful in the sense that it allows arbitrary compu-
tations and only charge for memory accesses. We augment the cell probe model
to capture the client side memory of an ORAM. To make clear the distinction
between our lower bound model and traditional upper bound models, we call
ours the oblivious cell probe model. The reason why we introduce this model, is
that it allows for a clean proof and definition, plus it brings in all the techniques
developed for proving data structure lower bounds. Moreover, we hope that our
work inspires other lower bound proofs for oblivious data structures, and thus
our thorough definition may serve as a reference.

Problems. A data structure problem in the oblivious cell probe model is defined
by a universe U of update operations, a universe Q of queries and an output
domain O. Furthermore, there is a query function f : U∗ × Q → O. For a
sequence of updates u1 . . . uM ∈ U and a query q ∈ Q we say that the answer to
the query q after updates u1 . . . uM is f(u1 . . . uM , q).

As an example, consider the array maintenance problem (Definition 1). Here
U is the set of all write(a,data) operations, Q is the set of all read(a) operations
and O is {0, 1}r.
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Oblivious Cell Probe Data Structure. An oblivious cell probe data structure
with client memory m bits for a problem P = (U ,Q,O, f) consists of a random
access memory of w-bit cells, a client memory of m bits and a random bit string
R of some finite length `. We make no restrictions on `, only that it is finite.
Note in particular that R can be exponentially long and hence contain all the
randomness needed by the oblivious RAM and/or a random oracle. We will call
R the random-oracle bit-string. Each cell of the memory has an integer address
amongst [K] and we typically assume w ≥ max{lgK, lgM} such that any cell
can store the address of any other cell and the index of any operation performed
on it.

When processing an operation, an oblivious cell probe data structure may
read or write memory cells. The cell to read or write in each step may depend
arbitrarily on the client memory contents and all contents of cells read so far
while processing the operation. Moreover, after each read or write, the oblivious
cell probe data structure may change the contents of the client memory. The per-
formance measure is defined solely as the number of memory cells read/written
to while processing an operation, i.e., computation is free of charge. To capture
this formally, an oblivious cell probe data structure is defined by a decision tree
Top for every operation op ∈ U ∪ Q, i.e., it has one decision tree for every pos-
sible operation in the data structure problem. The tree is meant to capture in
a crisp way the operation of the oblivious data structure. Each node represents
a “step” of computation which might depend on the local client memory of the
oblivious data structure, the randomness R and all server memory positions read
so far while processing the operation. It may also read a memory position on
the server or write a memory position on the server. The “implementation” of
the operation can therefore depend on previous operations to the extent that
information about them is stored in the local memory.

More formally, each decision tree Top is a rooted finite tree. Each node v of
Top is labelled with an address i ∈ [K] and it has one child for every triple of
the form (m0, c0, r) where m0 ∈ {0, 1}m, c0 ∈ {0, 1}w and r ∈ {0, 1}`. Each
edge to a child is furthermore labelled with a triple (j,m1, c1) with j ∈ [K],
m1 ∈ {0, 1}m and c1 ∈ {0, 1}w. To process an operation op, the oblivious cell
probe data structure starts its execution at the root of the corresponding tree Top
and traverses a root to leaf path in Top. When visiting a node v in this traversal,
labelled with some address iv ∈ [K] it probes the memory cell of address iv. If C
denotes its contents, M denotes the current contents of the client memory and
R denotes the random-oracle bit-string, the process continues by descending to
the child of v corresponding to the tuple (M,C,R). If the edge to the child is
labelled (j,m1, c1), then the memory cell of address j has its contents updated
to c1 and the client memory is updated to m1. We say that memory cell j is
probed. We make no requirements that m1 6= M , c1 6= C or j 6= i. The execution
stops when reaching a leaf of Top.

Finally, each leaf v of a tree Top, where op is in Q, is labelled with a w-bit
string Lv (the answer to the query). We say that the oblivious cell probe data
structure returns Lv as its answer to the query op.
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Definition 2 (Expected Amortized Running Time). We say that an obliv-
ious cell probe data structure has expected amortized running time t(M) on a
sequence y of M operations from U ∪ Q if the total number of memory probes
is no more than t(M) ·M in expectation. The expectation is taken over a uni-
formly random random-oracle string r ∈ {0, 1}`. We say that an oblivious cell
probe data structure has expected amortized running time t(M) if it has expected
amortized running time t(M) on all sequences y of operations from U ∪ Q.

We proceed to define security. Let

y := (op1, . . . , opM )

denote a sequence of M operations to the data structure problem, where each
opi ∈ U ∪ Q. For an oblivious cell probe data structure, define the (possibly
randomized) probe sequence on y as the tuple:

A(y) := (A(op1), . . . , A(opM ))

where A(opi) is the sequence of memory addresses probed while processing opi.
More precisely, let A(y;R) := (A(op1;R), . . . , A(opM ;R)) be the deterministic
sequence of operations when the random-oracle bit-string is R and let A(y) be
the random variable describing A(y;R) for a uniformly random R ∈ {0, 1}`.

Definition 3 (Correctness). We say that an oblivious cell probe data struc-
ture has failure probability δ if, for every sequence and any operation op in the
sequence, the data structure answers op correctly with probability at least 1− δ.

Definition 4 (Security). An oblivious cell probe data structure is said to be
secure if the following two properties hold:

Indistinguishability: For any two data request sequences y and z of the same
length M , their probe sequences A(y) and A(z) cannot be distinguished with
probability better than 1

4 by an algorithm which is polynomial time in M +
lg |U|+ lg |Q|+ w.

Correctness: The oblivious cell probe data structure has failure probability at
most 1/3.

Discussion 1. It is clear that for most uses of an ORAM, having indistinguisha-
bility of 1/4 and failure probability 1/3 is not satisfactory. However, for the sake
of a lower bound, allowing these large constant slack parameters just gives a
stronger bound. In particular, when M, lg |U|, lg |Q|, w ∈ poly(k) for a security
parameter k, then our bound applies to computational indistinguishability by
an adversary running in time poly(k).

Discussion 2. Since the random-oracle bit-string and the decision trees are finite,
the model does not capture algorithms which might potentially run for arbitrary
many steps with vanishing probability. However, any such algorithm might at
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the price of an error probability on the output be pruned to a finite decision
tree consuming only a finite amount of randomness. By pruning at a sufficiently
high depth, an arbitrarily small error probability in O(2−n) may be introduced.
Since we allow a large constant error probability of 1/3 our lower bound also
applies to algorithms which might potentially run for arbitrary many step with
vanishing probability on sequences of length poly(n).

Discussion 3. For online ORAMs, we are typically interested in the bandwidth
overhead, which is the multiplicative factor extra bits that must be accessed
compared to the underlying RAM being simulated. If the underlying RAM/array
has r-bit entries, we have that a sequence of M operations can be processed by
accessing Mr bits. Thus for ORAMs with (server) cell size w bits, this translates
into the minimum number of probes being Mr/w. Thus if an oblivious data
structure for the array maintenance problem has expected amortized running
time t(M), then the corresponding ORAM has an expected amortized bandwidth
overhead of t(M)w/r.

3 Lower Bound

In this section, we prove our lower bound for oblivious cell probe data structures
solving the array maintenance problem and thus indirectly also prove a lower
bound for online ORAMs. The model is recapped in Fig. 1. The formal statement
of our result is as follows:

Theorem 2. Let D be an oblivious cell probe data structure for the array main-
tenance problem on arrays of n r-bit entries where r ≥ 1. Let w denote the cell
size of D, let m denote the number of bits of client memory. If D is secure accord-
ing to Definition 4, then there exists a sequence y of Θ(n) operations such that
the expected amortized running time of D on y is Ω(lg(nr/m)r/w). In terms of
bandwidth overhead, this means that the expected amortized bandwidth overhead
is Ω(lg(nr/m)). For the most natural setting of r ≤ m ≤ n1−ε, this simplifies to
Ω(lg n).

Let D be as in Theorem 2 and let [K] ⊆ [2w] be the set of possible addresses
of its memory cells. Throughout our lower bound proof, we assume that D has
failure probability at most 1/32 instead of 1/3. Note that the lower bound ex-
tends to failure probability 1/3 (or any failure probability bounded away from
1/2) simply because one can always run a constant number of independent copies
in parallel and use a majority vote when answering a read operation.

We prove our lower bound for processing the following fixed sequence of
M = 2n operations:

– We perform a sequence y of intermixed read and write operations. The se-
quence has n of each type and looks as follows:

y := write(0, 0̄), read(0),write(0, 0̄), read(0), . . . ,write(0, 0̄), read(0)

where 0̄ denotes the all-zeroes bit string of length r.
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Fig. 1. An ORAM implements an array of r-bit entries. Each operation can be a read
or a write. Each operation op makes read and write probes to the server memory. The
sequence of probes made during an operation op is called the access pattern of op and is
written as A(op). Words in the server memory are called cells. Each cell is w bits. The
ORAM is restricted to m bits of storage between two operations. During an operation
it can use unlimited storage.
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The sequence y is just the sequence of alternating write and read operations
that all access the first array entry, and the write operations just store 0̄ in it.
What makes this sequence costly is of course that the probe sequence of D on y
must be computationally indistinguishable from all other sequences of M = 2n
operations.

To exploit this, define A(y) as the random variable giving the probe sequence
(as defined in Section 2) of D when processing y. Since our sequence has M =
2n operations on an array with r-bit entries, we have a minimum bandwidth
usage of 2nr bits. The data structure D has a cell size of w bits, and thus
the minimum number of probes is 2nr/w. Thus by definition, we have that the
expected amortized bandwidth overhead is E[|A(y)|]w/(2nr). Our goal is thus
to lower bound E[|A(y)|]. Our proof is an adaptation of the information transfer
technique by Pǎtraşcu and Demaine [PD06] for proving data structure lower
bounds in the cell probe model. The basic proof strategy is as follows:

p8; p9

p4; p5 p9; p10

p3 fg

w(0; 7)
r(3)

fg fg

w(1; 42)
r(6)

: : : : : : : : : : : : : : : : : :

p1 = 5
p2 = 2

p3 = 5
p4 = 5 p5 = 2

p6 = 4
p7 = 11

p8 = 2 p9 = 11 p10 = 2

Fig. 2. Illustration of how probes are associated to nodes. The second to
bottom layer is a sequence of 16 intermixed read and write operations
write(0, 7), read(3),write(1, 42), read(6), . . .. We only show the two first pairs. Under
each pair of commands we show for illustration the probes that they made. In the
nodes we illustrate where the probes would be associated. As an example, take leaf
number 8 (the right most leaf). It did the 10’th probe. That probe probed cell 2. That
happened last time in leaf number 6 by probe p8. The lowest common ancestor of leafs
6 and 8 therefore contains p10.

For any sequence of M = 2n operations z of the form:

write(i1, d1), read(i2),write(i3, d3), read(i4), . . . ,write(i2n−1, d2n−1), read(i2n),
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we consider a binary tree T (z) with n leaves, on top of the 2n operation. There
is one leaf in T (z) for each consecutive pair write(ij , dj), read(ij+1). Let opi

denote the i’th operation in the sequence z, i.e., op1 is the first write(i1, d1)
operation, op2 is the first read(i2) operation and so on. Consider the probe se-
quence A(z) = (A(op1), A(op2), . . . , A(op2n)) where each A(opi) is the sequence
of memory addresses probed when D processes A(opi) during the sequence of op-
erations z. Let p1, . . . , pT denote the concatenation of all the sequences of probed
memory addresses, i.e., p1, . . . , pT = A(op1) ◦ A(op2) ◦ · · · ◦ A(op2n) where ◦ is
concatenation.

We assign each probed address pi to a node of T (z). If pi = s for some
address s ∈ [K] ⊆ [2w], then let pj with j < i denote the last time cell s was
probed prior to pi. Let `i and `j denote the leaves of T (z) containing the two
operations whose processing caused the probes pi and pj , i.e., if pi is a probe
resulting from opa, then `i is the leaf containing opa. We assign pi to the lowest
common ancestor of `i and `j . If pj does not exist, i.e., the memory cell with
address s was not probed before, then we do not assign pi to any node of T (z).
See Fig. 2 for an illustration.

Our goal is to show that for the sequence y, it must be the case that most
nodes of T (y) have a large number of probes assigned to them (in expectation).
Since a probe is assigned to only one node of the tree, we can sum up the number
of probes assigned to all nodes of T (y) to get a lower bound on the total number
of probes in A(y). In more detail, consider a node v ∈ T (y). Our proof will show
that the read instructions in the right subtree of v have to probe many cells
that were last probed during the operations in the left subtree. This corresponds
precisely to the set of probes assigned to v being large.

To gain intuition for why the read operations in the right subtree must make
many probes to cells written in the left subtree, observe that from the indistin-
guishability requirement, the probe sequence must look identical regardless of
whether D is processing y, or if we instead process a random sequence in which
the write operations in the left subtree are write(1, d1),write(2, d2), . . . and the
reads in the right subtree are read(1), read(2), . . . , where each di is a uniformly
random r-bit string. In the latter case, the read operations have to recover all
the (random) bits written in the left subtree and thus must probe many cells
written in the left subtree by an entropy argument. Since counting the probes
assigned to a node v can be done in poly-time in M + r without knowing the
arguments to the instructions, it follows from the indistinguishability property
that for A(y), there also has to be a large number of probes assigned to the node
v. The argument is fleshed out in a bit more detail in Fig. 3.

We proceed to give a formal proof.

Nodes with Large Information Transfer. In the following, we argue that for
many nodes in T (y), there must be a large number of probes assigned to v in
expectation. We can then sum this up over all nodes in T (y). We do this as
follows: For a sequence of operations z of the form

write(i1, d1), read(i2),write(i3, d3), read(i4), . . . ,write(i2n−1, d2n−1), read(i2n),
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: : : ; w(0; 0̄); r(0); w(0; 0̄); : : :
| {z }

Z0
v

w(1; d1); : : : ; w(L; dL)
| {z }

Z`
v

r(1); : : : ; r(L)
| {z }

Zr
v

No information on D jDj = r · L

L = n

2d+1

di 2R f0; 1gr

D = (d1; : : : ; dL)

node v sitting at depth d

T 0

T ` T r

m bits of client memory

p1

p3

p2

Fig. 3. We sketch the intuition of the proof. Assume for simplicity that the ORAM
has perfect correctness, is deterministic and has no client memory. Consider a node v
sitting at depth d. It has two sub-tree T ` and T r. Each of them has L = n

2d+1 write
and read operations in their leafs. Consider the sequence of operations which in each
write in T ` writes a fresh uniform value di ∈ {0, 1}r and which in T r reads these values
back. In the sub-tree T 0 preceding T ` the sequence will just write and read zero-values.
There is an information transfer of r ·L bits from the write operations in T ` to the read
operations in T r, as the string D = (d1, . . . , dL) is being retrieved by the ORAM while
in T r. We argue that this information goes through v in the sense that there must be
Lr/w probes assigned to v (illustrated using the dotted arrow in the figure). Namely,
there must in T r clearly be Lr/w probes that give information on D as each probe
gives at most w bits of information. A probe in T r gets assigned either to a node in
T r, to the node v or to an ancestor of v. Consider first a probe p1 which gets assigned
to an ancestor of v. It reads a cell which was last written before D was stored. Hence it
cannot give information on D. Consider a probe p3 assigned to a node in T r. This node
was last written by an operation in T r. Hence it cannot give new information which
was not previously learned by a probe in T r. Therefore all probes giving information
on D are assigned to v, so there are Lr/w probes assigned to v. If the scheme is only
correct on a fraction 1−δ of the reads, proportionally less information is transferred, so
only (1− δ)Lr/w probes are needed. Also, m bits of information could be transferred
via the client memory when moving from T ` to T r, reducing the needed number of
probes to δLr/w −m/w. If d is small enough, this will still be Ω(Lr/w).
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and for every internal node v in T (z), let Pv(z) denote the set of probes assigned
to v. Using the terminology by Pǎtraşcu and Demaine [PD06], we refer to the set
Pv(z) as the information transfer in node v. We thus want to lower bound the
size of the information transfer in the nodes of T (y). To do so, define depth(v)
to be the distance from the root of T (y) to v. We prove the following:

Lemma 1. If D has failure probability at most 1/32, then for every internal
node v ∈ T (y) with depth d ∈ {5, . . . , (1/2) lg(nr/m)}, it holds that

E [|Pv(y)|] = Ω(nr/(w2d)).

Let us first briefly give an explanation why the lemma only is proven for d ∈
{5, . . . , (1/2) lg(nr/m)}. Consider a node at depth d. It has about nr/2d nodes
below it. So a node at depth d = lg(nr/m) has about m nodes below it. Recall
that m is the size of the client memory between two operations. By going only to
depth (1/2) lg(nr/m) we ensure that the node has to transfer much more than
m bits such that the client memory plays essentially no role in the information
transfer. Starting only from d = 5 makes some steps in the proof simpler.

Before proving Lemma 1, we show that it implies our main result. Since every
probe in A(y) is assigned to at most one node in T (y), and using linearity of
expectation together with the fact that there are 2d nodes of depth d in T (y),
we have:

E[|A(y)|] ≥
∑

v∈T (y)

E[|Pv(y)|]

≥
(1/2) lg(nr/m)∑

d=5

∑
v∈T (y):depth(v)=d

E[|Pv|]

= Ω

(1/2) lg(nr/m)∑
d=5

∑
v∈T (y):depth(v)=d

nr/(w2d)


= Ω

(1/2) lg(nr/m)∑
d=5

2d · nr/(w2d)


= Ω (nr lg(nr/m)/w) .

Thus the expected amortized bandwidth overhead is

E[|A(y)|]w/(2nr) = Ω(lg(nr/m))

as claimed. What remains is to prove Lemma 1.

Lower Bounding the Probes. Consider a node v in T (y) whose depth is d =
depth(v) ∈ {5, . . . , (1/2) lg(nr/m)}. To prove Lemma 1, we consider a distribu-
tion over sequences of M = 2n operations of the form

write(i1, d1), read(i2),write(i3, d3), read(i4), . . . ,write(i2n−1, d2n−1), read(i2n).
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Our distribution will be chosen such that if we draw a sequence Zv from the
distribution and run D on Zv, then the read operations in v’s right subtree
must probe many cells last written during the operations in v’s left subtree.
This means that Pv(Zv) must be large. We will then use the computational
indistinguishability to argue that Pv(y) must be just as large.

In greater detail, let Zv be the random variable giving a sequence of 2n op-
erations chosen as follows: For every read(ij) not in the subtree rooted at v’s
right child, we simply have ij = 0. For every write(ij , dj) not in the subtree
rooted at v’s left child, we have ij = 0 and dj = 0̄. For the n/2d+1 read opera-
tions in v’s right subtree read(ij), . . . , read(ij+n/2d+1−1), we have ij = 1, ij+1 =

2, . . . , ij+n/2d+1−1 = n/2d+1, i.e., the read operations in v’s right subtree sim-

ply read the array entries 1, 2, 3, . . . , n/2d+1 in that order. Finally for the n/2d+1

write operations in v’s left subtree write(ij , dj), . . . ,write(ij+n/2d+1 , dj+n/2d+1−1)

we have ij = 1, jj+1 = 2, . . . , ij+n/2d+1−1 = n/2d+1 and all dj are independent
and uniformly random w-bit strings. Thus for the random sequence Zv, the read
operations in v’s right subtree precisely read the n/2d+1 array entries that were
filled with random bits during the n/2d+1 write operations in v’s left subtree.
All other operations just read and write array entry 0 as in the fixed sequence
y. We prove the following via an entropy argument:

Lemma 2. If D has failure probability at most 1/32, then there exists a universal
constant C > 0 such that

Pr[|Pv(Zv)| ≥ Cnr/(w2d)] ≥ 1/2.

Before proving Lemma 2, we show that it implies Lemma 1. For this, observe
that by averaging, Lemma 2 implies that there must exist a sequence z in the
support of Zv such that

Pr[|Pv(z)| ≥ Cnr/(w2d)] ≥ 1/2.

From our security definition, A(y) and A(z) must be computationally indis-
tinguishable. We argue that this implies that E[|Pv(y)|] ≥ (C/4)nr/(w2d) =
Ω(nr/(w2d)). To see this, assume for the sake of contradiction that E[|Pv(y)|] <
(C/4)nr/(w2d). By Markov’s inequality, we get Pr[|Pv(y)| ≥ Cnr/(w2d)] ≤ 1/4.
An adversary can now distinguish z and y as follows: Given a sequence a ∈ {y, z},
run D on the sequence a to obtain A(a). Construct from A(a) the tree T (a) and
the set Pv(a) (an adversary knows precisely which probes belong to which op-
erations and can thus construct all the sets Pv(a) for all nodes v in T (a) in
polynomial time in M and w). Output 1 if |Pv(a)| ≥ Cnr/(w2d) and 0 oth-
erwise. This distinguishes y and z with probability at least 1/4. Thus all that
remains is to prove Lemma 2.

Encoding Argument. To prove Lemma 2, we assume for the sake of contradiction
that the lemma is false, i.e., D has failure probability at most 1/32 but:

Pr[|Pv(Zv)| ≥ (1/100)nr/(w2d)] < 1/2.
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We will use this D to give an impossible encoding of the (random) data

dj , dj+1, . . . , dj+n/2d+1−1

written in the left subtree of v in the sequence Zv. Let H(·) denote binary
Shannon entropy and observe that:

H(dj , dj+1, . . . , dj+n/2d+1−1 | R) = nr/2d+1 ,

where R denotes the random bits of the random oracle (these are independent
of the input distribution). This is because the variables

dj , dj+1, . . . , dj+n/2d+1−1

are uniformly random and independent r-bit strings. From Shannon’s source
coding theorem, any (possibly randomized) encoding of

dj , dj+1, . . . , dj+n/2d+1−1,

conditioned on R, must use nr/2d+1 bits in expectation. This also holds for
encoding and decoding algorithms which are not computationally efficient. Our
encoding and decoding procedures are as follows:

Encoding. The encoder Alice is given

dj , dj+1, . . . , dj+n/2d+1−1, R .

Alice does as follows:

1. From dj , dj+1, . . . , dj+n/2d+1−1 she constructs the sequence Zv. She then runs
D on Zv using the randomness R. While running the sequence Zv on D, she
collects the set F of read operations read(ij) in v’s right subtree which fail
to report the correct value dj written by the write operation write(ij , dj) in
v’s left subtree. If either |Pv(Zv)| ≥ (1/100)nr/(w2d) or |F | ≥ (1/8)n/2d+1,
then she writes down a 0-bit, followed by nr/2d+1 bits giving a straight-
forward encoding of dj , dj+1, . . . , dj+n/2d+1−1. Otherwise, she writes down a
1-bit and proceeds to the next step.

2. She now writes down the contents and addresses of all memory cells whose
address is in Pv(Zv). Let Z`

v denote operations in v’s left subtree and let Z0
v

denote the prefix of Zv containing all operations up to just before Z`
v. The

contents she writes down is the contents as they were just after processing the
prefix Z0

v ◦ Z`
v. She also writes down the m client memory bits as they were

immediately after processing Z0
v ◦Z`

v. Finally, she also writes down |F | using

lg n bits as well as lg
(
n/2d+1

|F |
)

bits specifying which read operations in v’s

right subtree that fail together with |F |r bits specifying the correct answers
to the failing read operations. The first part costs |Pv(Zv)|(lgK + w) ≤
|Pv(Zv)|2w ≤ (1/25)nr/2d+1 where [K] is the address space of memory
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cells. Writing down the client memory costs m bits and writing down the
failing read’s and their correct answers costs at most

lg n+ |F |r + lg

(
n/2d+1

|F |

)
≤ lg n+ (1/8)nr/2d+1 + lg

(
n/2d+1

(1/8)n/2d+1

)
≤ lg n+ (1/8)nr/2d+1 · (1 + lg(8e)/r)

≤ lg n+ (3/4)nr/2d+1

≤ (4/5)nr/2d+1.

Thus Alice’s message has length at mostm+(21/25)nr/2d+1 if we she reaches
step 2.

Decoding. The decoder Bob is given the message from Alice as well as R. His
task is to recover

dj , dj+1, . . . , dj+n/2d+1−1 .

He proceeds as follows:

1. He starts by checking the first bit of the encoding. If this is a 0-bit, the
remaining part is an encoding of dj , dj+1, . . . , dj+n/2d+1−1 and he is done.
Otherwise, he proceeds to the next step.

2. Bob runs the operations in Z0
v on D, using the randomness R. Note that

these operations are fixed (they all access array entry 0) and are thus known
to Bob. He now skips all the instructions Z`

v in v’s left subtree (which are
unknown to him). He sets the client memory to what Alice told him it was
after processing Z0

v ◦Z`
v. He then overwrites all memory cells that appear in

Pv(Zv) (Alice sent the addresses and contents of these as they were right after
processing Z0

v ◦ Z`
v). Let Zr

v denote the operations in v’s right subtree. He
then starts processing the operations Zr

v using the randomness R, starting
with the client memory contents that Alice sent him. We claim that this
will give exactly the same execution as when Alice executed Zr

v . To see this,
consider any memory cell with address s and look at the first time it is probed
during Bob’s simulation of Zr

v . There are two cases: either the contents were
overwritten due to Alice’s message. In this case, the contents are consistent
with Alice’s execution. Otherwise, the probe must be assigned to some node
w ∈ T (Zv) other than v. If w is an ancestor of v, then the cell cannot have
been updated during Z`

v (by definition of how we assign probes to nodes in
T ) and Bob has the correct contents from his own simulation of Z0

v . If w
is a descendant of v, it means that the cell was already probed during Zr

v ,
contradicting that this was the first probe to the cell. Since Bob can finish
the simulation (using the randomness R), he gets the same set of answers to
all read operations in v’s right subtree as Alice did. Finally, he uses the last
part of Alice’s message to correct the answers to all read operations in Zr

v

which fail. He is now done since the answers to the read operations in Zr
v

reveal dj , dj+1, . . . , dj+n/2d+1−1.
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Analysis. What remains is to show that the above encoding length is less than
nr/2d+1 in expectation, yielding the sought contradiction. If G denotes the event
that Alice writes a 0-bit, we have that the expected length of the encoding is no
more than:

1 + Pr[G] · nr/2d+1 + (1− Pr[G])(m+ (21/25)nr/2d+1).

Since 5 ≤ d ≤ (1/2) lg(nr/m), we have

m ≤ nr/22d = (nr/2d+1)/2d−1 ≤ (1/16)(nr/2d+1) .

Therefore the above is no more than:

1 + Pr[G] · nr/2d+1 + (1− Pr[G])(1/16 + 21/25)nr/2d+1 ≤
1 + Pr[G] · nr/2d+1 + (1− Pr[G])(91/100)nr/2d+1.

Since the failure probability of D is no more than 1/32, it follows from Markov’s
inequality and linearity of expectation that Pr[|F | ≥ (1/8)n/2d+1] ≤ 1/4. By a
union bound, we have

Pr[G] ≤ Pr[|Pv(Zv)| ≥ (1/100)nr/(w2d)] + Pr[|F | ≥ (1/8)n/2d+1]

≤ 1/2 + 1/4 ≤ 3/4.

This means that the expected length of our encoding is no more than

1 + (3/4) · nr/2d+1 + (1/4)(91/100)nr/2d+1 < nr/2d+1.

This gives our sought contradiction and completes the proof of Theorem 2.

4 Conclusion and Future Work

It is 22 years since Goldreich and Ostrovsky proved the ORAM lower bound [GO96]
assuming statistical security and “balls in bins”. No progress was done on strength-
ening the bound for two decades. Two years ago, Boyle and Naor asked the
question, Is There an Oblivious RAM Lower Bound? [BN16]. We have answered
this question in the affirmative by eliminating both restrictions of the Goldreich-
Ostrovsky lower bound.

The oblivious cell probe model and our lower bound for the array main-
tenance problem and online ORAMs open up a number of exciting questions.
A number of papers (cf. [WNL+14])) have designed oblivious data structures.
There is no reason why our proof technique cannot also be applied to prove lower
bounds for such oblivious data structures.
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