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Abstract. We devise a new partitioned simulation technique for MPC
where the simulator uses different strategies for simulating the view of
aborting adversaries and non-aborting adversaries. The protagonist of
this technique is a new notion of promise zero knowledge (ZK) where the
ZK property only holds against non-aborting verifiers. We show how to
realize promise ZK in three rounds in the simultaneous-message model
assuming polynomially hard DDH (or QR or N*"-Residuosity).

We demonstrate the following applications of our new technique:

— We construct the first round-optimal (i.e., four round) MPC protocol
for general functions based on polynomially hard DDH (or QR or
N*"_Residuosity).

— We further show how to overcome the four-round barrier for MPC
by constructing a three-round protocol for “list coin-tossing” — a
slight relaxation of coin-tossing that suffices for most conceivable
applications — based on polynomially hard DDH (or QR or Nthe
Residuosity). This result generalizes to randomized input-less func-
tionalities.

Previously, four round MPC protocols required sub-exponential-time
hardness assumptions and no multi-party three-round protocols were
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known for any relaxed security notions with polynomial-time simulation
against malicious adversaries.

In order to base security on polynomial-time standard assumptions, we
also rely upon a leveled rewinding security technique that can be viewed
as a polynomial-time alternative to leveled complexity leveraging for
achieving “non-malleability” across different primitives.

1 Introduction

Provably secure protocols lie at the heart of the theory of cryptography. How can
we design protocols, not only so that we cannot devise attacks against them, but
so that we can prove that no such attacks exist (under well-studied complexity
assumptions)? The goal of achieving a proof of security has presented many
challenges and apparent trade-offs in secure protocol design. This is especially
true with regards to the goal of minimizing rounds of interaction, which has
been a long-standing driver of innovation in theoretical cryptography. We begin
by focusing on one such challenge and apparent trade-off in the context of zero-
knowledge (ZK) protocols [19], one of the most fascinating and broadly applicable
notions in cryptography.

Recall that in a ZK protocol, a prover should convince a verifier that some
statement is true, without revealing to the verifier anything beyond the valid-
ity of the statement being proven. It is known that achieving zero knowledge
with black-box simulatiorﬂ is impossible with three or fewer rounds of simul-
taneous message exchange [I7/T4]. A curious fact emerges, however, when we
take a closer look at the proof of this impossibility result. It turns out that
three-round ZK is impossible when considering verifiers that essentially behave
completely honestly, but that sometimes probabilistically refuse to finish the
protocol. This is bizarre: ZK protocols are supposed to prevent the verifier from
learning information from the prover; how can behaving honestly but aborting
the protocol early possibly help the verifier learn additional information? Indeed,
one might think that we can prove that such behavior cannot possibly help the
verifier learn additional information. Counter-intuitively, however, it turns out
that such early aborts are critical to the impossibility proofs of [I7U14]. This
observation is the starting point for our work; now that we have identified a key
(but counter-intuitive) reason behind the impossibility results, we want to lever-
age this understanding to bypass the impossibility result in a new and useful
way.

Promise Zero Knowledge. Our main idea is to consider adversarial verifiers that
promise not to abort the protocol early with noticeable probability. However,

5 In this work, we focus on black-box simulation. However, no solutions for three-
round ZK from standard assumptions with non-black-box simulation [2] are presently
known either. [6] showed how to construct 3 round ZK using non-black-box simu-
lation from the non-standard assumption that keyless multi-collision resistant hash
functions exist.



we do not limit ourselves only to adversarial verifiers that behave honestly; we
consider adversarial verifiers that may deviate from the prescribed protocol arbi-
trarily, as long as this deviation does not cause the protocol to abort. A promise
zero-knowledge protocol is one that satisfies the correctness and soundness guar-
antees of ordinary zero-knowledge protocols, but only satisfies the zero knowledge
guarantee against adversarial verifiers that “promise” not to abort with notice-
able probability. The centerpiece of our work is a construction of three-round
promise zero-knowledge protocol, in the simultaneous message model, for prov-
ing statements where the statement need not be decided until the last (third)
round, but where such statements should come from a distribution such that both
a statement and a witness for that statement can be sampled in the last round.
We call this primitive a distributional delayed-input promise zero-knowledge ar-
gument. Our construction requires only on DDH/QR/N**-Residuosity assump-
tion. Interestingly, in our construction, we rely upon information learned from
the verifier in the third round, to simulate its view in the third round!

Partitioned Simulation, and Applications to MPC. But why should we care
about promise ZK? Actual adversaries will not make any promise regarding
what specific types of adversarial behavior they will or will not engage in. How-
ever, recall our initial insight — early aborting by an adversary should, generally
speaking, only hurt the adversary, not help it. We know due to the impossibility
results of [I7JT4], that we cannot leverage this insight to achieve three-round
standard ZK (with black-box simulation). Our goal instead, then, is to use our
insight to replace ZK with promise ZK for the construction of other secure pro-
tocols. Specifically, we consider the most general goal of secure protocol design:
secure multi-party computation (MPC), as we discuss further below.

To do so, we devise a novel partitioned simulation strategy for leveraging
promise ZK. At a high-level, we split the simulation into two disjoint cases,
depending upon whether or not the adversary is an aborting adversary (i.e., one
who aborts with high probability). In one case, we will exploit promise ZK. In
the other, we exploit the intuition that early aborting should only harm the
adversary, to devise alternate simulation strategies that bypass the need for
ZK altogether, and instead essentially rely on a weaker notion called strong
witness indistinguishability, that was recently constructed in three rounds (in
the “delayed-input” setting) in [24].

Secure Multi-Party Computation. The notion of secure multiparty computation
(MPC) [34/18] is a unifying framework for general secure protocols. MPC allows
mutually distrusting parties to jointly evaluate any efficiently computable func-
tion on their private inputs in such a manner that each party does not learn
anything beyond the output of the function.

The round complexity of MPC has been extensively studied over the last
three decades in a long sequence of works [I8/4126125129, 7, ? ROITAITI7I8. ?]. In this
work, we study the problem of round-optimal MPC against malicious adversaries
who may corrupt an arbitrary subset of parties, in the plain model without
any trust assumptions. The state-of-the-art results on round-optimal MPC for



general functions are due to Ananth et al. [I] and Brakerski et al. [7], both of
which rely on sub-exponential-time hardness assumptions. (See Section for a
more elaborate discussion on related works.) Our goal, instead is to base security
on standard, polynomial-time assumptions.

We now highlight the main challenge in basing security on polynomial-time
assumptions. In the setting of four round protocols in the simultaneous-message
model, a rushing adversary may always choose to abort after receiving the honest
party messages in the last round. At this point, the adversary has already re-
ceived enough information to obtain the purported output of the function being
computed. This suggests that we must enforce “honest behavior” on the par-
ties within the first three rounds in order to achieve security against malicious
adversaries. As discussed above, three-round zero knowledge is impossible, and
this is precisely why we look to our new notion of promise ZK and partitioned
simulation to resolve this challenge.

However, this challenge is exacerbated in the setting of MPC as we must not
only enforce honest behavior but also ensure non-malleability across different
cryptographic primitives that are being executed in parallel within the first three
rounds. We show how to combine our notions of promise ZK with new simulation
ideas to overcome these challenges, relying only on polynomial-time assumptions.

Coin Tossing. Coin-tossing allows two or more participants to agree on an un-
biased coin (or a sequence of unbiased coins). Fair multiparty coin-tossing is
known to be impossible in the dishonest majority setting [10]. Therefore, while
current notions of secure coin-tossing require that the protocol have a (pseudo)-
random outcome, the adversary is additionally allowed to abort depending on
the outcome of the toss.

Presently, secure multiparty coin-tossing is known to require at least four
rounds w.r.t. black-box simulation [T425]. In this work, we seek to overcome
this barrier.

Towards this, our key observation is that coin-tossing is perfectly suited
for application of partitioned simulation. The definition of secure coin-tossing
roughly requires the existence of a simulator that successfully forces externally
sampled random coin, and produces a distribution over adversary’s views that
is indistinguishable from a real execution. To account for the adversary aborting
or misbehaving based on the outcome, the simulator is allowed to either force
an external coin, or force an abort as long as the simulated distribution remains
indistinguishable from the real one. Crucially, in the case of an adversary that
always aborts before the end of the protocol, the prescribed output of any se-
cure coin-tossing protocol is also abort: therefore, the simulator never needs to
force any external coin against such an adversary! Simulating the view of such
adversaries that always abort is thus completely trivial. This leaves the case
of non-aborting adversaries, which is exactly the setting that promise ZK was
designed for.

Using promise ZK, we design a three-round protocol for “list coin-tossing” —a
notion that is slightly weaker that regular coin-tossing, but nevertheless, suffices
for nearly all important applications of coin-tossing (see below for a discussion).



Therefore, promise ZK gives us a way to overcome the four-round barrier for
secure coin-tossing [14125].

1.1 Our Results

We introduce the notion of promise ZK proof systems and devise a new parti-
tioned simulation strategy for round-efficient MPC protocols. Our first result is
a three-round distributional delayed-input promise ZK argument system based
on DDH/QR/N*"-Residuosity.

Theorem 1 (Informal). Assuming DDH/QR/N"-Residuosity, there erists a
three round distributional delayed-input promise ZK argument system in the
simultaneous-message model.

Round-Optimal MPC. We present two applications of partitioned simulation to
round-optimal MPC. We first devise a general compiler that converts any three-
round semi-malicious MPC protocol, where the first round is public-coin (i.e., the
honest parties simply send random strings in the first round), into a four-round
malicious secure MPC protocol. Our compiler can be instantiated with standard
assumptions such as DDH or Quadratic Residuosity or N**-Residuosity. The
resulting protocol is optimal in the number of rounds w.r.t. black-box simulation
[14]. A three round semi-malicious protocol with the aforementioned property
can be obtained based on DDH/QR,/N*" Residuosity [I55].

Theorem 2 (Informal). Assuming DDH/QR/N"-Residuosity, there erists a
four round MPC protocol for general functions with black-box simulation.

List Coin-Tossing. We also study the feasibility of multiparty coin-tossing in
only three rounds. While three round coin-tossing is known to be impossible
[14], somewhat surprisingly, we show that a slightly relaxed variant that we
refer to as list coin-tossing is, in fact, possible in only three rounds.

Very briefly, in list coin-tossing, the simulator is allowed to receive polynomi-
ally many random string samples from the ideal functionality (where the exact
polynomial may depend upon the adversary), and it may choose any one of them
as its output. It is not difficult to see that this notion already suffices for most
conceivable applications of coin-tossing, such as implementing a common ran-
dom string setup. For example, consider the setting where we want to generate
a CRS in the setup algorithm of a non-interactive zero knowledge (NIZK) ar-
gument system. Now, in the ideal world, instead of running a simulator which
“forces” one particular random string given by the ideal functionality, we can
substitute it with the simulator of a list coin tossing protocol that receives poly-
nomially many random strings from the ideal functionality and “forces” one of
them as the CRS. This would still suffice for the NIZK argument system.

We achieve the following result:

Theorem 3 (Informal). Assuming DDH/QR/N'"-Residuosity, there exists a
three round multiparty list coin-tossing protocol with black-box simulation. This



can be generalized to randomized inputless functionalities where security is de-
fined analogously to list coin-tossing.

Finally, we note that by applying the transformatiorﬁ of [14] on the protocol
from Theorem [3]for the two-party case, we can obtain a four round two-party list
coin-tossing protocol in the unidirectional-message model. This result overcomes
the barrier of five rounds for standard two-party coin-tossing established by [25].

Corollary 1 (Informal). Assuming DDH/QR/N"-Residuosity, there exists a
four round two-party list coin-tossing protocol in the unidirectional-message model
with black-box simulation.

Leveled Rewinding Security. While promise ZK addresses the issue of proving
honest behavior within three rounds, it does not address non-malleability is-
sues that typically plague security proofs of constant-round protocols in the
simultaneous-message model. In particular, when multiple primitives are being
executed in parallel, we need to ensure that they are non-malleable w.r.t. each
other. For example, we may require that a primitive A remains “secure” while
the simulator (or a reduction) is (say) trying to extract adversary’s input from
primitive B via rewinding.

In the works of [II7], such issues are addressed by using complexity lever-
aging. In particular, they rely upon multiple levels of complexity leveraging to
establish non-malleability relationships across primitives, e.g., by setting the se-
curity parameters such that primitive X is more secure than primitive Y that is
more secure than primitive Z, and so on. Such a use a complexity leveraging is,
in fact, quite common in the setting of limited rounds (see, e.g., [9]).

We instead rely upon a leveled rewinding security technique to avoid the
use of complexity leveraging and base security on polynomial-time assumptions.
Roughly, in our constructions, primitives have various levels of “bounded rewind-
ing” security that are carefully crafted so that they enable non-malleability rela-
tionships across primitives, while still enabling rewinding-based simulation and
reductions. E.g., a primitive X may be insecure w.h.p. against 1 rewind, how-
ever, another primitive Y may be secure against 1 rewind but insecure against 2
rewinds. Yet another primitive Z may be secure against 2 rewinds but insecure
against 3 rewinds, and so on. We remark that leveled rewinding security with a
“single level” was previously used in [22]; here we extend this idea to “multiple
levels”.

1.2 Related Work

Concurrent Work. In a concurrent and independent work, Halevi et al. [23]
construct a four round MPC protocol against malicious adversaries in the plain

5 The work of Garg et al. [14] establishes an impossibility result for three round multi-
party coin-tossing by transforming any three round two-party coin-tossing protocol
in the simultaneous-message model into a four round two-party coin-tossing pro-
tocol in the unidirectional-message model, and then invoking [25] who proved the
impossibility of four round two-party coin-tossing.



model based on different assumptions than ours. In particular, they rely upon
enhanced trapdoor permutations and public-key encryption schemes that ad-
mit affine homomorphisms with equivocation (which in turn can be based on
LWE/DDH/QR; see [23]). They do not consider the problems of promise ZK
and list coin-tossing. We discuss more related work in the full version of the

paper.

2 Technical Overview

In this section, we provide an overview of the main ideas underlying our results.

2.1 Promise Zero Knowledge

Recall that the notion of promise ZK is defined in the simultaneous-message
model, where in every round, both the prover and the verifier send a message
simultaneouslym Crucially, the ZK property is only defined w.r.t. a set of admis-
sible verifiers that promise to send a “valid” non-aborting message in the last
round with some noticeable probability.

We construct a three round distributional promise ZK protocol with black-
box simulation based on DDH/QR/N*-Residuosity. We work in the delayed-
input setting where the statement being proven is revealed to the (adversarial)
verifier only in the last roundE| Further, we work in the distributional setting,
where statements being proven are sampled from an efficiently sampleable public
distribution, i.e., it is possible to efficiently sample a statement together with a
witness.

For simplicity of presentation, here we describe our construction using an
additional assumption of two-round WI proofs, a.k.a. Zaps [I2]. In our actual
construction of promise ZK, we replace the Zaps with three round delayed-input
WI proofs with some additional security guarantees that we construct based on
Assuming DDH/QR/N**-Residuosity[7]

Our construction of promise ZK roughly follows the FLS paradigm [I3] for
ZK:

e First, the prover and the verifier engage in a three round “trapdoor genera-
tion phase” that determines a secret “trapdoor” that is known to the verifier
but not the prover.

" An adversarial prover or verifier can be rushing, i.e., it may wait to receive a message
from the honest party in any round before sending its own message in that round.

8 In our actual construction, we consider a slightly more general setting where a state-
ment x has two parts (x1,22): the first part 1 is revealed in the second round while
the second part z2 is revealed in the third round. This generalization is used in our
applications of promise ZK, but we ignore it here for simplicity of presentation.

9 In particular, replacing Zaps with delayed-input WI proofs relies on leveled rewinding
security technique with multiple levels that we describe in Section We do not
discuss it here to avoid repetition.



e Next, in a proof phase, the prover commits to 0 in a (three round) delayed-
input extractable commitment and proves via a Zap that either the pur-
ported statement is true or that it committed to the trapdoor (instead of
0).

By appropriately parallelizing both of these phases, we obtain a three round
protocol in the simultaneous-message model. Below, we discuss the challenges in
proving soundness and promise ZK properties.

Proving Soundness. In order to argue soundness, a natural strategy is to
rewind the cheating prover in the second and third round to extract the value it
has committed in the extractable commitment. If this value is the trapdoor, then
we can (hopefully) break the hiding property of the trapdoor generation phase
to obtain a contradiction. Unfortunately, this strategy doesn’t work as is since
the trapdoor generation phase is parallelized with the extractable commitment.
Thus, while extracting from the extractable commitment, we may inadvertently
also break the security of the trapdoor generation phase! Indeed, this is the key
problem that arises in the construction of non-malleable protocols.

To address this, we observe that in order to prove soundness, it suffices to
extract the trapdoor from the cheating prover with some noticeable probability
(as opposed to overwhelming probability). Now, suppose that the extractable
commitment scheme is such that it is possible to extract the committed value
via k rewinds (for some small integer k) if the “main thread” of execution is
non-aborting with noticeable probability. Then, we can still argue soundness if
the trapdoor generation has a stronger hiding property, namely, security under
k rewinds (but is insecure under more than k rewinds to enable simulation; see
below). This is an example of leveled rewinding security technique with a single
level; later we discuss its application with multiple levels.

We note that standard extractable commitment schemes such as [31I32] (as
well as their delayed-input variants) achieve the above extraction property for
k = 1. This means that we only require the trapdoor generation phase to main-
tain hiding property under 1 rewinding. Such a scheme can be easily constructed
from one-way functions.

Proving Promise ZK. In order to prove the promise ZK property, we construct
a simulator that learns information from the verifier in the third round, in order
to simulate its view in the third round! Roughly, our simulator first creates
multiple “look-ahead” execution threadﬁ with the adversarial verifier in order
to extract the trapdoor from the trapdoor generation phase. Note that unlike
typical ZK protocols where such a look-ahead thread only consists of partial
protocol transcript, in our case, each look-ahead thread must contain a full
protocol execution since the trapdoor generation phase completes in the third
round.

10 Throughout, whenever the simulator rewinds, we call each rewound execution a look-
ahead thread. The messages that are eventually output by the simulator constitute
the main thread.



Now, since the adversarial verifier may be rushing, the simulator must first
provide its third round message (namely, the second message of Zap) on each
look-ahead thread in order to learn the verifier’s third round message. Since the
simulator does not have a trapdoor yet, the only possibility for the simulator
to prepare a valid third round message is by behaving honestly. However, the
simulator does not have a witness for the statement proven by the honest prover.
Thus, it may seem that we have run into a circularity.

This is where the distributional aspect of our notion comes to the rescue.
Specifically, on the look-ahead execution threads, the simulator simply samples
a fresh statement together with a witness from the distribution and proves the
validity of the statement like an honest prover. Once it has extracted the trap-
door, it uses its knowledge to cheat (only) on the main thread (but continues to
behave honestly on each look-ahead thread)ﬂ

2.2 Four Round Secure Multiparty Computation

We now describe the main ideas underlying our compiler from any three round
semi-malicious MPC protocol IT (where the first round is public coin) to a four
round malicious-secure MPC protocol Y. For simplicity of presentation, in the
discussion below, we ignore the first round of I, and simply treat it as a two
round protocol.

Starting Ideas. Similar to several previous works, our starting idea is to follow
the GMW paradigm [I8] for malicious security. This entails two main steps: (1)
Enabling extraction of adversary’s inputs, and (2) Forcing honest behavior on
the adversary in each round of IT. A natural idea to implement the first step
is to require each party to commit to its input and randomness via a three
round extractable commitment protocol. To force honest behavior, we require
each party to give a delayed-input ZK proof together with every message of IT
to establish that it is “consistent” with the input and randomness committed in
the extractable commitment.

In order to obtain a four-round protocol X, we need to parallelize all of these
sub-protocols appropriately. This means that while the proof for the second mes-
sage of IT can be given via a four round (delayed-input) regular ZK proof, we
need a three round proof system to prove the well-formedness of the first mes-
sage of II. However, as discussed earlier, three-round ZK proofs are known to
be impossible w.r.t. black-box simulation [I7IT4] and even with non-black box
simulation, are not known from standard assumptions.

Promise ZK and Partitioned Simulation. While [1I[7] tackled this issue by
using sub-exponential hardness, we address it via partitioned simulation to base
security on polynomial-time assumptions. Specifically, we use different mecha-
nisms for proving honest behavior depending upon whether or not the adversary

11 The idea of using a witness to continue simulation is an old one [3]. Most recently,
[24] used this idea in the distributional setting.



is aborting in the third round. For now, let us focus on the case where the ad-
versary does not abort in the third round of X; later we discuss the aborting
adversary case.

For the non-aborting case, we rely upon a three-round (delayed-input) dis-
tributional promise ZK to prove well-formedness of the first message of II. As
we discuss below, however, integrating promise ZK in our construction involves
overcoming several technical challenges due to specific properties of the promise
ZK simulator (in particular, its requirement to behave honestly in look-ahead
threads)E We also remark that in our actual construction, to address non-
malleability concerns [I1], the promise ZK and the standard ZK protocols that
we use are suitably “hardened” using three-round non-malleable commitments
[21127] to achieve simulation soundness [33] in order to ensure that the proofs
given by the adversarial parties remain sound even when the proofs given by hon-
est parties are simulated. For simplicity of discussion, however, here we largely
ignore this point, and instead focus on the technical ideas that are more unique
to our construction.

We now proceed to discuss the main technical challenges underlying our con-
struction and its proof of security.

How to do “Non-Malleable” Input Extraction? Let us start with the issue
of extraction of adversary’s input and trapdoors (for simulation of ZK proofs).
In the aforementioned protocol design, in order to extract adversary’s input and
trapdoors, the simulator rewinds the second and third rounds. Note, however,
that this process also rewinds the input commitments of the honest parties since
they are executed in parallel. This poses the following fundamental challenge:
we must somehow maintain privacy of honest party’s inputs even under rewinds,
while still extracting the inputs of the adversarial parties.

A plausible strategy to address this issue is to cheat in the rewound executions
by sending random third round messages in the input commitment protocol on
behalf of each honest party. This effectively nullifies the effect of rewinding on
the honest party input commitments. However, in order to implement such a
strategy, we need the ability to cheat in the ZK proofs since they are proving
“well-formedness” of the input commitmentsH

Unfortunately, such a strategy is not viable in our setting. As discussed in
the previous subsection, in order to simulate the promise ZK on the main thread,
the simulator must behave “honestly” on the rewound execution threads. This
suggests that we cannot simply “sidestep” the issue of rewinding and instead
must somehow make the honest party input commitments immune to rewind-
ing. Yet, we must do this while still keeping the adversary input commitments

12 Qur construction of four round MPC, in fact, uses promise ZK in a non-black-box
manner for technical reasons. We ignore this point here as it is not important to the
discussion.

13 Indeed, 1] implement such a strategy in their security proof by relying on sub-
exponential hardness assumptions.
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extractable. Thus, it may seem that we have reached an impasse.

Leveled Rewinding Security to the Rescue. In order to break the symme-
try between input commitments of honest and adversarial parties, we use the
following sequence of observations:

e The security of the honest party input commitments is only invoked when we
switch from a hybrid experiment (say) H; to another experiment H;; inside
our security proof. In order to argue indistinguishability of H; and H;41
by contradiction, it suffices to build an adversary that breaks the security
of honest party input commitments with some noticeable probability (as
opposed to overwhelming probability).

e This means that the reduction only needs to generate the view of the adver-
sary in hybrids H; and H;;; with some noticeable probability. This, in turn,
means that the reduction only needs to successfully extract the adversary’s
inputs and trapdoor (for generating its view) with noticeable probability.

e Now, recall that the trapdoor generation phase used in our promise ZK
construction is secure against one rewind. However, if we rewind two times,
then we can extract the trapdoor with noticeable probability.

e Now, suppose that we can construct an input commitment protocol that
maintains hiding property even if it is rewound two times, but guarantees
extraction with noticeable probability if it is rewound three times. Given
such a commitment scheme, we resolve the above problem as follows: the
reduction rewinds the adversary three times, which ensures that with no-
ticeable probability, it can extract both the trapdoor and the inputs from
the adversary. In the first two rewound executions, the reduction generates
the third round messages of the honest party input commitments honestly.
At this point, the reduction already has the trapdoor. Now, in the third
rewound execution, it generates random third messages in the honest party
input commitments and uses the knowledge of the trapdoor to cheat in the
proof.

The above strategy allows us to extract the adversary’s inputs with noticeable
probability while still maintaining privacy of honest party inputs. To complete
this idea, we construct a new extractable commitment scheme from injective one-
way functions that achieves the desired “bounded-rewinding security” property.

Taking a step back, note that in order to implement the above strategy, we
created two levels of rewinding security: while the trapdoor generation phase is
secure against one rewind (but insecure against two rewinds), the input commit-
ment protocol is secure against two rewinds (but insecure against three rewinds).
We refer to this technique as leveled rewinding security with multiple levels, and
this is precisely what allows us to avoid the use of leveled complexity leveraging.

Using Promise ZK. In the works of [I7], the simulator behaves honestly in the
first three rounds using random inputs for the honest parties. We depart from this
proof strategy, and instead, require our simulator to cheat even in the first three

11



rounds on the main threadE Indeed, such a simulation strategy seems necessary
for our case since the recent two-round semi-malicious MPC protocols of [I55] —
which we use to instantiate our compiler — require a cheating simulation strategy
even in the first round.

To implement this proof strategy, we turn to promise ZK. However, recall that
promise ZK simulator works by behaving honestly in the look-ahead threads.
When applied to our MPC construction, this means that we must find a way to
behave honestly on the look-ahead threads that are used for extracting inputs
and trapdoors from the adversary. However, at first it is not immediately clear
how to implement such a strategy. Clearly, our final simulator cannot use honest
party inputs on the look-ahead threads to behave honestly.

Instead, our simulator uses random inputs to behave honestly on the look-
ahead threads. The main challenge then is to argue that when we switch from
using real honest inputs (in an intermediate hybrid) to random inputs on the
look-ahead threads, the probability of extraction of adversary’s inputs and trap-
doors remains unchanged. Crucially, here, we do not need to consider a joint
view across all the look-ahead threads, and instead, it suffices to argue the indis-
tinguishability of adversary’s view on each look-ahead thread (when we switch
from real input to random input) one at a time. We rely upon techniques from
the work of Jain et al. [24] for this indistinguishability argument. The same proof
technique is also used to argue security in the case when the adversary aborts
in the third round with overwhelming probability. We discuss this next.

Aborting Adversary Case. In the case where the adversary aborts in the
third round with overwhelming probability, we cannot rely upon promise ZK
since there is no hope for extraction from such an aborting adversary (which
is necessary for simulating promise ZK). Therefore, in this case, the simulator
simply behave honestly on the main thread using random inputs (as in [II7]).
The main challenge then is to switch in an indistinguishable manner from honest
behavior in the first three rounds using real inputs to honest behavior using
random inputs, while relying only on polynomial-time assumptions.

We address this case by relying upon techniques from [24]. We remark that
we cannot directly use the three-round strong WI argument system of [24] since
it requires the instance being proven to be disclosed to the verifier only in the
third round of the protocol. This is not true in our case, since the instance also
consists of the transcript of the three-round extractable commitment (and other
sub-protocols like the trapdoor generation). Nevertheless, we are able to use
ideas from [24] in a non-black-box manner to enable our security proof; we refer
the reader to the technical sections for more details.

Other Issues. We note that since our partitioned simulation technique crucially
relies upon identifying whether an adversary is aborting or not, we have to take

14 We emphasize that this strategy is only used in the case where the adversary does

not abort in the third round. As we discuss below, we use a different strategy in the
aborting adversary case.
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precaution during simulation to avoid the possibility of the simulator running in
exponential time. For this reason, we use ideas first developed in [I7] and later
used in many subsequent works, to ensure that the running time of our simulator
is expected polynomial-time.

Finally, we note that the above discussion is oversimplified, and omits several
technical points. We refer the reader to the technical sections for full details.

2.3 List Coin-Tossing

We now describe the main ideas underlying our construction of three round
multiparty list coin-tossing. We start by describing the basic structure of our
protocol:

e We start with a two-round semi-honest multiparty coin-tossing protocol
based on injective one-way functions. Such a protocol can be constructed
as follows: In the first round, each party i commits to a string r; chosen
uniformly at random, using a non-interactive commitment scheme. In the
second round, each party reveals r; without the decommitment information.
The output is simply the XOR of all the r; values.

e To achieve malicious security, we “compile” the above semi-honest protocol
with a (delayed-input) distributional promise ZK protocol. Roughly speak-
ing, in the third round, each party ¢ now proves that the value r; is the one it
had committed earlier. By parallelizing the two sub-protocols appropriately,
we obtain a three round protocol.

We first note that as in the case of our four round MPC protocol, here also we
need to “harden” the promise ZK protocol with non-malleability properties. We
do so by constructing a three-round simulation-extractable promise ZK based on
DDH/QR/N*-Residuosity and then using it in the above compiler. Nevertheless,
for simplicity of discussion, we do not dwell on this issue here, and refer the reader
to the technical sections for further details.

We now describe the main ideas underlying our simulation technique. As in
the case of four round MPC, we use partitioned simulation strategy to split the
simulation into two cases, depending upon whether the adversary aborts or not
in the third round.

Aborting Case. If the adversary aborts in the third round, then the simulator
simply behaves honestly using a uniformly random string r; on behalf of each
honest party i. Unlike the four round MPC case, indistinguishability can be
argued here in a straightforward manner since the simulated transcript is identi-
cally distributed as a real transcript. The main reason why such a strategy works
is that since the parties do not have any input, there is no notion of “correct
output” that the simulator needs to enforce on the (aborting) adversary. This is
also true for any randomized inputless functionality, and indeed for this reason,
our result extends to such functionalities. Note, however, that this is not true
for general functionalities where each party has an input.
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Non-Aborting Case. We next consider the case where the adversary does not
abort in the third round with noticeable probability. Note that in this case,
when one execution thread completes, the simulator learns the random strings
r; committed to by the adversarial parties by simply observing the adversary’s
message in the third round.

At this point, the simulator queries the ideal functionality to obtain the ran-
dom output (say) R and then attempts to “force” it on the adversary. This
involves simulating the simulation-extractable promise ZK and sending a “pro-
grammed” value 7} on behalf of one of the honest parties so that it leads to the
desired output R. Now, since the adversary does not abort in the last round
with noticeable probability, it would seem that after a polynomial number of
trials, the simulator should succeed in forcing the output. At this point, it may
seem that we have successfully constructed a three round multiparty coin-tossing
protocol, which would contradict the lower bound of [14]!

We now explain the flaw in the above argument. As is typical to security with
abort, an adversary’s aborting behavior may depend upon the output it receives
in the last round. For example, it may always choose to abort if it receives an
output that starts with 00. Thus, if the simulator attempts to repeatedly force
the same random output on the adversary, it may never succeed.

This is where list coin-tossing comes into the picture. In list coin-tossing,
the simulator obtains a polynomial number of random strings from the ideal
functionality, as opposed to a single string in regular coin-tossing. Our simulator
attempts to force each of (polynomially many) random strings one-by-one on
the adversary, in the manner as explained above. Now, each of the trials are
independent, and therefore the simulator is guaranteed to succeed in forcing one
of the random strings after a polynomial number of attempts.

Organization. We define some preliminaries in and some building
blocks for our protocols in [Section 4] In [Section 5| we define and construct
Simulation-Extractable Promise ZK. Due to lack of space, our three round List
Coin Tossing protocol and our four round maliciously secure MPC protocol are
described in the full version of the paper.

3 Preliminaries

Here, we recall some preliminaries that will be useful in the rest of the paper.
Throughout this paper, we will use A to denote the security parameter, and
negl(\) to denote any function that is asymptotically smaller than m for any
polynomial poly(-). We will use PPT to describe a probabilistic polynomial time
machine. We will also use the words “rounds” and “messages” interchangeably,

whenever clear from context.

3.1 Secure Multiparty Computation

In this work we follow the standard real/ideal world paradigm for defining secure
multi-party computation. We refer the reader to [I6] for the precise definition.
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Semi-malicious adversary. An adversary is said to be semi-malicious if it follows
the protocol correctly, but with potentially maliciously chosen randomness.

3.2 Delayed-Input Interactive Arguments
In this section, we describe delayed-input interactive arguments.

Definition 1 (Delayed-Input Interactive Arguments). An n-round delayed-
input interactive protocol (P, V') for deciding a language L is an argument system
for L that satisfies the following properties:

— Delayed-Input Completeness. For every security parameter A € N, and
any (r,w) € Ry, such that |z| < 2%,

Pr[(P,V)(1*,2,w) = 1] = 1 — negl()\).

where the probability is over the randomness of P and V. Moreover, the
prover’s algorithm initially takes as input only 1%, and the pair (z,w) is
given to P only in the beginning of the n’th round.

— Delayed-Input Soundness. For any PPT cheating prover P* that chooses x*
(adaptively) after the first n — 1 messages, it holds that if x* ¢ L then

Pr[(P*,V)(1*,2%) = 1] = negl()).
where the probability is over the random coins of V.

Remark 1. We note that in a delayed-input interactive argument satisfying [Def]
completeness and soundness also hold when (part of) the instance is
available in the first (n — 1) rounds.

We will also consider delayed-input interactive arguments in the simultaneous-
message setting, that satisfy soundness against rushing adversaries.

3.3 Extractable Commitments

Here onwards until we will discuss protocols where only one party
sends a message in any round.

Definition 2 (Extractable Commitments). Consider any statistically bind-
ing, computationally hiding commitment scheme (C, R). Let Trans(C(m,r¢), R(rr))
denote a commitment transcript with committer input m, committer randomness
ro and receiver randomness rgr, and let Decom(7,m,rc) denote the algorithm
that on input a commitment transcript T, committer message m and random-
ness ro outputs 1 or 0 to denote whether or not the decommitment was accepted
(we explicitly require the decommitment phase to not require receiver randomness
rR),

Then (C, R) is said to be extractable if there exists an expected PPT oracle
algorithm &, such that for any PPT cheating committer C* the following holds.
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Let Trans(C*, R(rg)) denote a transcript of the interaction between C* and R.
Then £ (Trans(C*, R(rRr))) outputs m,rc such that over the randomness of £
and of sampling Trans(C*, R(rr)):

Pr[(3m # m,7¢) such that Decom(r,m,7c) = 1] = negl(\)

Remark 2. The notion of extraction described in is often referred
to as over-extraction. This is because the extractor £ is allowed to output any
arbitrary value if Trans(C*, R(rg)) does not contain a commitment to any valid
message. On the other hand, if Trans(C*, R(rg)) is a valid commitment to some
message m, & must output the correct committed message m.

Definition 3 (k-Extractable Commitments). An extractable commitment
satz’sfying is said to be k-extractable if there exists a polynomial p(-)
such that the extractor £ (Trans(C*, R(rg))) with k — 1 queries to C*, outputs
m,re such that over the randomness of € and of sampling Trans(C*, R(rg)):

Pr[Decom(r,m,rc) = 1] > p(\)

Delayed-Input Extractable Commitments. We say that an extractable commit-
ment is delayed-input if the committer uses the input message m only in the last
round of the protocol.

Theorem 4. [31[32] For any constant K > 0, assuming injective one-way
functions, there exists a three round delayed-input K -extractable commitment

scheme satisfying [Definition 3

3.4 Non-Malleable Commitments

We start with the definition of non-malleable commitments by Pass and Rosen [30]
and further refined by Lin et al [28] and Goyal [20]. (All of these definitions build
upon the original definition of Dwork et al. [I1]).

In the real experiment, a man-in-the-middle adversary MIM interacts with
a committer C' in the left session, and with a receiver R in the right session.
Without loss of generality, we assume that each session has identities or tags,
and require non-malleability only when the tag for the left session is different
from the tag for the right session.

At the start of the experiment, the committer C receives an input val and
MIM receives an auxiliary input z, which might contain a priori information
about val. Let MIM ¢ gy(val, z) be a random variable that describes the value
val committed by MIM in the right session, jointly with the view of MIM in the
real experiment.

In the ideal experiment, a PPT simulator S directly interacts v/vith MIM. Let
Simc,r) (1%, z) denote the random variable describing the value val committed
to by S and the output view of S.
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In either of the two experiments, if the tags in the left and right interaction

are equal, then the value val committed in the right interaction, is defined to be
1.

We define a strengthened version of non-malleable commitments for use in
this paper.

Definition 4 (Special Non-malleable Commitments). A three round com-
mitment scheme (C, R) is said to be special non-malleable if:

— For every synchronizinﬁ PPT MIM, there exists a PPT simulator S such
that the following ensembles are computationally indistinguishable:

{M|M<C,R> (val, Z)},\eN,vale{o,l}&ze{o,l}* and {Sim<C,R> <1A7 Z)}AGN,vale{0,1}*,ze{o,1}*

— (C, R) is delayed-input, that is, correctness holds even when the committer
obtains his input only in the last round.

— (C, R) satisfies last-message pseudorandomness, that is, for every non-uniform
PPT receiver R*, it holds that {REALE (1*)}x and {REALT (1*)} are com-
putationally indistinguishable, where for b € {0,1}, the random wvariable
REAL,I,%*(V‘) is defined via the following experiment.

1. Run C(1*) and denote its output by (comy, o), where o is its secret state,
and comy is the message to be sent to the receiver.

2. Run the receiver R*(1*,comy), who outputs a message coms.

3. If b =0, run C(o,coms) and send its message coms to R*. Otherwise,
if b =1, compute coms < {0,1}™ and send it to R*. Here m = m(\)
denotes |coms|.

4. The output of the experiment is the output of R*.

— (C, R) satisfies 2-extractability according to|Definition 5

Goyal et al. [2I] construct three-round special non-malleable commitments

satisfying based on injective OWF's.

Imported Theorem 1 ([21]) Assuming injective one-way functions, there ex-

ists a three round non-malleable commitment satisfying [Definition /4|

4 Building Blocks

We now describe some of the building blocks we use in our constructions.

15 A synchronizing adversary is one that sends its message for every round before
obtaining the honest party’s message for the next round.
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4.1 Trapdoor Generation Protocol

In this section, we define and construct a primitive called Trapdoor Generation
Protocol. In such a protocol, a sender S (a.k.a. trapdoor generator) communi-
cates with a receiver R. The protocol satisfies two properties: (i) Sender security,
i.e., no cheating PPT receiver can learn a valid trapdoor, and (ii) Extraction,
i.e., there exists an expected PPT algorithm (a.k.a. extractor) that can extract
a trapdoor from an adversarial sender via rewinding.

We construct a three-round trapdoor generation protocol where the first
message sent by the sender determines the set of valid trapdoors, and in the
next two rounds the sender proves that indeed it knows a valid trapdoor. Such
schemes are known in the literature based on various assumptions [BII32g].
Here, we consider trapdoor generation protocols with a stronger sender security
requirement that we refer to as 1-rewinding security. Below, we formally define
this notion and then proceed to give a three-round construction based on one-
way functions. Our construction is a minor variant of the trapdoor generation
protocol from [§].

Syntazx. A trapdoor generation protocol
TDGen = (TDGeny, TDGens, TDGens, TDOut, TDValid, TDExt)

is a three round protocol between two parties - a sender (trapdoor generator) S
and receiver R that proceeds as below.

1. Round 1 - TDGeny(+):
S computes and sends tdf%R < TDGen(rg) using a random string rg.
2. Round 2 - TDGeny(-):
R computes and sends td¥ % < TDGen, (td 7 ; rp) using randomness r.
3. Round 3 - TDGens(-):
S computes and sends td3 ¥ « TDGens(td5 % rg)
4. Output - TDOut(-)
The receiver R outputs TDOut(tdy 7%, tdZ79 td5 7).
5. Trapdoor Validation Algorithm - TDValid(-):
Given input (t, tdf ) output a single bit 0 or 1 that determines whether
the value t is a valid trapdoor corresponding to the message td; sent in the
first round of the trapdoor generation protocol.

In what follows, for brevity, we set td; to be tdf%R. Similarly we use tds and
tds instead of td5 " and td3 %, respectively. Note that the algorithm TDValid
does not form a part of the interaction between the trapdoor generator and
the receiver. It is, in fact, a public algorithm that enables public verification of
whether a value t is a valid trapdoor for a first round message td;.
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FExtraction. There exists a PPT extractor algorithm TDExt that, given a set of
valued™¥| (tdy, {td}, td5}2_,) such that td3, td3, td3 are distinct and TDOut(td1, tdb,
tdy) =1 for all ¢ € [3], outputs a trapdoor t such that TDValid(t, td;) = 1.

1-Rewinding Security. We define the notion of I-rewinding security for a trap-
door generation protocol TDGen. Consider the following experiment between a
sender S and any (possibly cheating) receiver R*.

Experiment E:

— R interacts with S and completes one execution of the protocol TDGen. R*
receives values (tdq, tds) in rounds 1 and 3 respectively.

— Then, R* rewinds S to the beginning of round 2.

— R* sends S a new second round message td; and receives a message td3 in
the third round.

— At the end of the experiment, R* outputs a value t*.

Definition 5 (1-Rewinding Security). A trapdoor generation protocol TDGen =
(TDGeny, TDGeng,

TDGeng, TDOut, TDValid) achieves 1-rewinding security if, for every non-uniform
PPT receiver R* in the above experiment F,

Pr[TDValid(t*, td;) = 1] = negl(}),

where the probability is over the random coins of S, and where t* is the output
of R* in the experiment E, and tdy is the message from S in round 1.

Construction We describe our construction of a three round trapdoor genera-
tion protocol based on one way functions in the full version of the paper.

4.2 WI with Non-adaptive Bounded Rewinding Security

We define the notion of three-round delayed-input witness indistinguishable (WT)
argument with “bounded-rewinding security,” and construct such a primitive
assuming the existence of polynomially hard DDH (or QR or N**-Residuosity).
In the non-delayed-input setting, such a primitive was implicitly constructed and
used previously by Goyal et al. [22HZ|

We formally define three-round delayed-input WI with non-adaptive bounded-
rewinding security here. In the full version, we describe a construction for the
same. For our applications, we instantiate the rewinding parameter B with the
value 6.

16 These values can be obtained from the malicious sender via an expected PPT rewind-
ing procedure. The expected PPT simulator in our applications performs the neces-
sary rewindings and then feeds these values to the extractor TDExt.

17 Specifically, they consider non-delayed-input WI with 1-rewinding security.
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Definition 6 (3-Round Delayed-Input WI with Non-adaptive Bounded
Rewinding Security). Fiz a positive integer B. A delayed-input 3-round inter-
active argument (as defined in Deﬁnitz’on for an NP language L, with an NP
relation Ry is said to be WI with Non-adaptive B-Rewinding Security if for every
non-uniform PPT interactive Turing Machine V*, it holds that {REALY (1*)}x
and {REALY” (1M}, are computationally indistinguishable, where for b € {0,1}
the random variable REAL,‘)/* (1*) is defined via the following experiment. In what
follows we denote by Py the prover’s algorithm in the first round, and similarly
we denote by Ps his algorithm in the third round.

Experiment REAL;‘)/* (1*):

1. Run Py(1%) and denote its output by (rwiy, o), where o is its secret state,
and rwiy is the message to be sent to the verifier.

2. Run the verifier V*(1*, rwiy ), who outputs { (", wi)}ie[B,l], 2B wl wP and
a set of messages {rwié}ie[B].

3. For eachi € [B—1], run P3(o, rwiy, 2%, w?), and fori = B, run Ps(o, rwib, z°, w})
where Py is the (honest) prover’s algorithm for generating the third message
of the WI protocol, and send its message {rwik};c(p to V*.

In the full version, we prove the following theorem:

Theorem 5. Assuming DDH/QR/N'"-Residuosity, there exists a three round
delayed-input witness-indistinguishable argument system with non-adaptive (B =
6)-rewinding security.

5 Promise Zero Knowledge

In this section, we introduce our new notion of promise zero knowledge inter-
active arguments. Unlike the standard notion of zero knowledge interactive ar-
guments that is defined in the unidirectional-message model of communication,
promise ZK is defined in the simultaneous-message model, where in every round,
both the prover and the verifier simultaneously send a message to each other.
Crucially, in promise ZK, the zero knowledge property is only required to hold
against a specific class of “valid” verifiers (that do not send invalid messages).

Validity Check. First, we enhance the syntax for simultaneous-message interac-
tive arguments to include an additional algorithm Valid. That is, a simultaneous-
message interactive argument is denoted by (P, V, Valid). The notions of com-
pleteness and soundness remain intact as before. Looking ahead, the intuition
behind introducing the new algorithm is that we want to capture those verifiers
who send a “valid” message in every round (including the last round). We do
this by using the Valid algorithm.

This algorithm Valid is protocol specific. For example, if the honest verifier
is instructed to prove knowledge of a trapdoor that he generated, and the proof
fails, then his messages are not valid. Importantly, even if only the verifier’s

20



last message is invalid, and even though the prover does not need to explicitly
respond to this messagﬁ we refer to this transcript as invalid. We denote by
Valid the (public verification) algorithm which checks whether the transcript,
including the verifier’s last message, is valid or not, that is,

Valid(Trans(P(z,w),V*)) =1

if and only if all the messages sent by V* appear to be valid, given the transcript.
The correctness requirement of this algorithm is that if the verifier’'s messages
are generated honestly according to the protocol, then

Pr[Valid(Trans(P(z,w),V)) =1] = 1.

Looking ahead, in our protocols, at the end of each execution of the ZK protocol,
the prover will check whether the verifier sent “valid” messages, and if not, the
prover will abort.

5.1 Definitions

We now proceed to describe our notion of promise zero knowledge. Roughly
speaking, we define promise ZK similarly to standard ZK, with two notable
differences: First, promise ZK is defined in the simultaneous-message model.
Second, the zero knowledge property is only defined w.r.t. a special class of
verifiers who generate a valid transcript, with some noticeable probability. In
order to define this notion, we need to have an estimation of the probability that
the cheating verifier sends an invalid message throughout the protocol.

Validity Approximation. Consider a delayed-input simultaneous message interac-
tive argument system (P, V,Valid). Consider any verifier V*, and any efficiently
sampleable distribution D = {D,}, where D, samples pairs (x,w) such that
r €{0,1}* and (z,w) € R,

In what follows we denote by P = (Py, P,), a prover that is split into two
parts. First, (viewy« 1,st) ¢ P;(1*) is obtained, and then Py(x,w,st) continues
the rest of the P algorithm with V*. This is done primarily because we would
like to approximate the the validity probability of V* conditioned on viewy ;.

Let Trans(Ps(x, w, st), V*) denote the protocol transcript between Py and V*:
that is, Trans(P, V*) = (viewy- 1, Trans(Ps(z, w, st), V*)). Let

Qiew, -, = Pr[Valid(viewy - 1, Trans(Py(z, w,st), V")) = 1|(viewy« 1,st) < P (1%)]

where the probability is over the generation of (z,w) < D, and the coins of Ps.
We emphasize that gyiew, . , depends on D and on V*, we omit this dependence
from the notation to avoid cluttering.

18 We use this promise ZK protocol as a building block in our MPC protocols, and in
these protocols, the party acting as prover does indeed read this last ZK message
sent by the verifier, and based on its validity decides whether to abort the MPC
protocol. See, for example, Section ?77.
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Definition 7. For any constant c € N, a PPT oracle algorithm pExtract, is said
to be a validity approximation algorithm, if the following holds for all malicious
verifiers V* and for all efficiently sampleable distributions D = {Dy}:

- If pExtractX*’D(viewV*J,st) =0, then quiew,., <2-A7°
— Otherwise, iprxtractl/*’D(viewV*,l,st) =p, thenp > A" and § < Qiewy =, <
2-p.

We now formalize our notion of promise ZK. We note that this only considers
the delayed-input distributional setting. For simplicity of exposition, we restrict
ourselves to 3-round protocols since this work is only concerned with construc-
tions and applications of 3-round promise zero-knowledge. We note that this
definition can be extended naturally to any number of rounds.

Definition 8 (Promise Zero Knowledge). A 3-round distributional delayed-
input simultaneous-message interactive argument (P, V,Valid) for a language L is
said to be promise zero knowledge against delayed-input verifiers if there exists an
oracle machine Sim = (Simy, Simg, Sim3) such that for every constant ¢ € N, and
any validity approximation algorithm pExtract,, for every polynomials v = v(\)
and v = VU()\), for every efficiently sampleable distribution D = {Dy} such that
Supp(Dy) = {(z,w) : * € LN{0,1} " w € Rp(x) where z = (x2,73),w =
(wa,w3)}, for any delayed-input PPT verifier V* that obtains x; in round i and
any z € {0,1}PYN " conditions 1 and 2 (defined below) hold for REALy~ and
IDEALy « (defined below).

— REALy« is computed as follows:
o Sample (viewy 1,st) < Pi(1%).
o Sample (x,w) < Dy where x = (z2,3).
o FEzxecute the interaction (viewy- 1, (Pa(x, w,st), V*(viewy« 1))), where V*
obtains x; in round 1.
o The output of the experiment is the view of V* in the execution (x, (P(x,w),
V*(viewy« 1))).
— IDEALy~ is computed as follows:
Sample (viewy« 1,st) < Pi(1}).
Compute p = pExtrath* (viewy« 1,st).
Sample (z,w) < Dy where x = (2, x3).
Ifp=0,
* Execute the interaction (viewy- 1, (Pa(z, w, st), V*(viewy 1))), where
V* obtains x; in round i.
« The output of the experiment is (z, (P(z,w), V*(viewy~ 1))).
o FElse, execute Simv*(m,viewv*’l,st,p) — (viewy« o, viewy« 3), which op-
erates as follows:
x Compute Sim‘l/* (viewy« 1,st,p) — sty.

x Then compute Simy  (z2,viewy- 1,st1) — (Viewy« 9, sty).
x Finally, compute Simg (23, viewy« 1, viewy = g,sta) to output (viewy« 3).

Conditions 1 and 2 are defined as follows:
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1. No PPT distinguisher can distinguish REALy « from IDEALy « with advantage
greater than A™°.

2. For any input x = (x2,x3), the running time of SimY (viewmim, 1, St, p) s
polynomial in A and linear in %, and the running times ofSim;/* (22, viewy 1, st)
and Simg*(mg,viewv*’l,vieWV*’Q,stg) are polynomial in A and independent
of p.

Going forward, we use promise ZK argument to refer to a distributional
promise zero-knowledge simultaneous-message argument system, satisfying delayed-
input completeness and soundness, as well as zero-knowledge against delayed-

input verifiers according to [Definition §

Defining Simulation-Sound Promise ZK in the multi-party setting. We now con-
sider a man-in-the-middle adversary that interacts in promise zero-knowledge
protocols as follows: It opens polynomially many sessions where it plays the role
of the verifier interacting with an honest prover; these are called “left” sessions,
and we denote by v the number of such left sessions. We note that in all left ses-
sions, the honest prover proves the same statement with the same witness. It can
simultaneously initiate polynomially many sessions where it plays the role of the
prover interacting with an honest verifier: these are called “right” sessions, and
we denote by 7 the number of such right sessions. We restrict ourselves to syn-
chronous (rushing) adversaries, that for each round j, send all their j’th round
messages (in all sessions), before observing any of the honest parties messages
for the next round of the protocol.

We formalize the notion of simulation-soundness against a rushing man-in-
the-middle adversary below, where we use a to denote any random variable a
that corresponds to a right session.

Redefining Validity Approzimation. Similarly to before, we need to approximate
the probability that the messages sent by a man-in-the-middle adversary in the
left execution are valid, conditioned on all messages in the first round of the
protocol. We consider v “left” sessions and v “right” sessions. Similar to the set-
ting of promise ZK, we denote by P = (P;, P»), an honest prover for the “left”
sessions that is split into two parts, P; generates the first round message, and
P, generates the messages of the second and third rounds. Below, we abuse no-
tation and use P, P, P> not only to denote the interaction of the honest prover
in a single session, but also to denote the interaction of the honest prover in
all v left sessions, using independent randomness for each such execution. Let
Transies; (Pa(z, w, viewmim 1, st), MIM) denote all the transcripts in the “left” ses-
sions between Pa(x,w, viewpmim, 1, st) and MIM, which can be decomposed as fol-
lows: Transjes; (P, MIM) = (viewmim,1, Transies (P (2, w, viewmim, 1, st), MIM)). For
any viewmm,1 sampled according to honest prover and verifier strategy as de-
scribed above, let quiewym . =

Pr[VaIid(viewM|M,1, Transleft(Pg(x,w,viewM|M71,st), M|M)) = 1|(viewM|M,1,st) — Pl(lA)]
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where Valid above refers to the AND of all the validity tests for each of the v left
sessions, and the probability is over the generation of (z,w) < D) and the coins
of each of the v instantiations of P». We emphasize that guiewyy, depends on
D and on MIM, we omit this dependence from the notation to avoid cluttering.
We re-define the algorithm pExtract, from to depend additionally
on the honest verifier first messages in the right sessions.

Definition 9. For any constant c € N, a PPT oracle algorithm pExtract, is said
to be a validity approximation algorithm, if the following holds for all MIM and
for all efficiently sampleable distributions D = {Dx}, with probability at least
1 — 272 over the coins of the algorithm, we have that:

- If pExtractE’”M’D(vieWle,st) =0, then Quiewym, < 2-A7¢.

— Else, if pExtractylM’D(vieWWMJ,st) =p, then p > A"¢ and § < Quiewyn, <
2-p.

Remark 3. We briefly describe a canonical polynomial-time validity approxima-
tion algorithm for any constant ¢ € N:

1. pExtractE’“M’D(vieWWMJ,st) executes A2 - A¢ independent executions of all

sessions with MIM, using freshly sampled instance-witness pairs from the
distribution D) to complete the left executions in the role of the honest
provers, and acting as honest verifiers in the right sessions.

2. Let p be the number of these executions that resulted in all left executions
begin valid. We call such executions successful trials.

3. If p < A2, output 0.

4. Otherwise, output p/(A\? - X°).

We now informally analyze this algorithm:

— Observe that if pExtractEA'M’D(viewMNJ,st) outputs zero, this means that

fewer than A2 trials succeeded. On the other hand, if Quiewgmr = 2+ A76,
then the expected number of successful trials is at least 2A2. By a Chernoff
bound, except with probability at most 27, at least A\? trials must succeed
if quiewyyy,, = 2 A7¢. Thus, the first condition is satisfied.
— Observe that if pExtractylM’D(viewMN,l,st) outputs a nonzero value, then
this value must be at least A~¢ by construction. And again, the required

condition on Gyiewyy , follows immediately from a Chernoff bound.

For simplicity, we restrict ourselves to 3 rounds in the definition below. This
suffices for our construction and applications.

Definition 10 (Simulation-Sound Promise Zero Knowledge). A 3-round
publicly-verifiable promise zero-knowledge argument against delayed-input ver-
ifiers (P, V,Valid) is said to be simulation-sound if there exists an oracle ma-
chine Sim = (Simy, Simg, Sims) such that, for every constant ¢ € N, and any
validity approzimation algorithm pExtract,, for every polynomials v = v(\) and
v =v(\), for every efficiently sampleable distribution D = {(Xx, Wx)} such that
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Supp((X,W),) = {(z,w) : 2 € LN {0,1}*,w € Ry(x) where z = (z2,23)},
and every distribution X3 such that X\ and X; are computationally indistin-
guishable, for any PPT synchronous MIM that initiates v “left” sessions and U
“right” sessions, we require the following to hold. Let

SimMIM (.’1?/, VieWM||v|)1, St7p) — (VieW,\/|||\/|)27 viewM|M,3, {5l}z€[17])

where viewmim,1 are all the messages sent in the first round (both left and right
executions) with MIM, and st denotes all the corresponding secret states of the

honest parties, and p = pExtractg/"N"D (viewmim, 1, St).

— For any input 2’ = (x4, x}), we have that SimM™M(

by first computing

x', viewmim, 1, st, p) operates

Simg/'"vI (viewmim,1,st, p) — sty

then computing
Simg/”M(a:é, VieWM|M71, Stl) — (viewM|M72, Stg)
and then computing

Simg/”M(xé,xé,vieWM|M71,vieWM|M,2,stg) = (VieWM||\/|73, {51}16[5])

Here, viewmim,2 and viewwm,z denotes the set of all messages sent in the
second and third round (respectively) of the multi-party execution with MIM.
We require that {Z;} (which is part of the output of Sim™™ ) is consisten
with (Viewmim,2, Viewminv 3)-
— For any input «' = (2b,x}), we require that the running time of SimY™(
viewmim 1,St, p) is polynomial in A and linear in %, while the running times

. MIM . . MIM . .
of Simy " (5, viewmim, 1, St1) and Simg (x5, T, Viewmim, 1, Viewmim 2, Sta) are

polynomial in X\, independent of p.
— IfPr [pExtractzmM(vieme,l,st) > )\_c} > \7¢, then we have:

(x',vieme,l, IDEALMIM (aj’,viewM|M,1, St)‘ pExtractE/“M (viewM|M,1,st) > )\_C) ~
(1‘, VieW|\/|||\/|’17 REALviM (1‘7 w, VieWM||\/|’1, St)‘ pExtractE’”M (VieW|\/|||\/|’17 St) > )\_C)

where (x,w) < (X, W),, ' < XY, and (viewmm,1,st) is generated by simu-
lating all the messages sent in the first round of the execution with MIME
where viewmim,1 denotes all the simulated messages and st denotes the secret
states of all the honest parties, and

;o . . .
IDEALMim (2, viewmim, 1, st) = (viewmim, 1, Viewmim, 2, Viewmim,s),

19 Note that (viewmim, 2, viewmim,3) includes the instances {51}7 and we add the instances
explicitly to the output of Sim™™ only so that we will be able to refer to it later.

20 Note that this can be simulated easily since the protocol is delayed-input which
means that the parties do not use their private inputs to compute their first round
message.
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where the variables (viewmim 2, viewmim,3) are computed by running SiliM(J;’

viewmim 1, St, p) forp = pExtractEMM’D(vieWWMJ, st). The experiment REALpm
(x,w,viewpmm,1) is computed by running a real world execution with MIM,
where the provers in the “left” sessions uses the input (z,w) and where the
first round messages are viewmm,1, and by Valid(Transies (P (2, w, st))) we
mean that all left sessions in the execution of REALym are valid.

— Over the randomness of Sim, of generating (viewmim,1,st) and over o’ < X7,

)

Z 1 _A_Ca

Prl \/ (Acc("lfr\a_rTsi) = O) \/ /\ z, €L

i€[V] 1€[V]

where {'Fr\a?si} is the transcript of the i’th right execution when (viewmm,1,
viewmim 2, Viewmim,z) are computed in IDEALpmm (2, viewmim,1,St) as above,
and Acc(Trans;) = 0 denotes the event that the (publicly verifiable) transcript

Trans; causes an honest verifier to reject.

5.2 Constructing Simulation Sound Promise ZK

In this section, we describe our construction of Simulation Sound Promise ZK.
Formally, we prove the following theorem:

Theorem 6. Assuming the existence of polynomially hard DDH/QR /N - Residuosity,
there exists a three round simulation-sound promise ZK argument according to

[Definition 10,

The Protocol Let P and V denote the prover and verifier, respectively. Let L
be any NP language with an associated relation Ry. Let Dy = (X, W)) be any
efficiently sampleable distribution on Rj,.

Building Blocks. Our construction relies on the following cryptographic primi-
tives.

— TDGen = (TDGeny, TDGeng, TDGeng, TDOut) is the three-message trapdoor

generation protocol from that is 3-extractable according to
with corresponding extractor TDExt.

— RWI = (RWIy, RWIy, RWI3, RWIy) is the three round delayed-input witness
indistinguishable argument with non-adaptive bounded rewinding security
for B = 6 from The fourth algorithm RWI, is the final verifica-
tion algorithm.

— NMCom = (NMCom;, NMComz, NMComj) denotes a special non-malleable

commitment according to
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NP Languages. We define the following relation R’ that will be useful in our
construction. Parse instance st = (z, c,td ), where ¢ = (¢, ca, c3). Parse witness
w = (w, t,r). Then, R'(st,w) =1 if and only if :

<R(x,w) = 1) V (TDVaIid(tdl,t) =1Ac; = NMCom;(r) Acg =
NMComs(t, c1, ca;r) |. We denote the corresponding language by L'.

That is, either :

1. « is in the language L with witness w, OR,

2. the third non-malleable commitment (ci,cg,c3) is to a value t that is a
valid trapdoor for the message td; generated using the trapdoor generation
algorithms.

We construct a three round protocol m5E~FPZK = (P, V, Valid) for L in
The completeness of this protocol follows from the correctness of the underlying
primitives.

5.3 Security Proof

Due to lack of space, we defer the proof of our protocol to the full version.
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