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Abstract. Trapdoor functions (TDFs) are a fundamental primitive in
cryptography. Yet, the current set of assumptions known to imply TDFs
is surprisingly limited, when compared to public-key encryption. We
present a new general approach for constructing TDFs. Specifically, we
give a generic construction of TDFs from any Chameleon Encryption
(Döttling and Garg [CRYPTO’17]) satisfying a novel property which
we call recyclability. By showing how to adapt current Computational
Diffie-Hellman (CDH) based constructions of chameleon encryption to
yield recyclability, we obtain the first construction of TDFs with secu-
rity proved under the CDH assumption. While TDFs from the Decisional
Diffie-Hellman (DDH) assumption were previously known, the possibility
of basing them on CDH had remained open for more than 30 years.
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1 Introduction

Trapdoor functions (TDFs) are a fundamental primitive in cryptography, his-
torically pre-dating the complexity-based development of public key encryption
(PKE) [11, 28]. Informally, TDFs are a family of functions, where each func-
tion in the family is easy to compute given the function’s index key, and also
easy to invert given an associated trapdoor key. The security requirement is that
a randomly chosen function from the family should be hard to invert without
knowledge of a trapdoor key.

A salient difference between TDFs and PKE lies in their inversion (decryp-
tion) algorithms: while the inversion algorithm of a TDF recovers the entire
pre-image in full, the decryption algorithm of a PKE only recovers the corre-
sponding plaintext, and not necessarily the randomness. This full-input recovery
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feature of TDFs is useful in may applications. For example, suppose we have two
image points y1 := F(ik1, x1) and y2 := F(ik2, x2) of a trapdoor function F, and
we want to convince Alice — who is given both y1 and y2 but only a trapdoor
key tk1 for ik1 — that x1 = x2. This will be easy for Alice to do herself: re-
trieve x1 from y1 using the trapdoor key tk1 and check whether y1 = F(ik1, x1)
and y2 = F(ik2, x1).3 This is a very useful property, especially in the context of
chosen-ciphertext (CCA2) security, and is in fact the main reason behind the
success of building CCA2-secure PKE in a black-box way from various forms of
TDFs [27, 29, 23]. In contrast, enabling this technique based on PKE [25] re-
quires the use of expensive non-interactive zero knowledge proofs [4, 16], which
in turn require strong assumptions and lead to non-black-box constructions.

The deterministic structure of TDFs, however, comes with a price, making
the construction of TDFs more challenging than that of PKE. This belief is
justified by an impossibility result of Gertner, Malkin and Reingold [18] showing
that TDFs cannot be built from PKE in a black-box way. As another evidence,
while it was known from the 80’s how to build semantically-secure PKE from the
Decisional Diffie-Hellman (DDH) assumption [32, 20, 15], it took two decades to
realize TDFs based on DDH [27].

Despite the fundamental nature of TDFs and extensive research on this no-
tion [3, 1, 27, 2, 29, 23, 17, 31] a long-standing question has remained open:

Can trapdoor functions be based on the Computational Diffie-Hellman (CDH)
Assumption?

The main difficulty of the above question is that all known DDH-based con-
structions of TDFs, e.g., [27, 17], exploit properties of DDH, such as pseudoran-
domness of low rank matrices of group elements, which do not hold in the CDH
setting (see Section 1.1).

Apart from being a natural question, it has the following theoretical mo-
tivation: since we know that TDFs are not necessary in a black-box sense for
PKE [18], there may be computational assumptions that imply PKE but not
TDFs. Thus, it is important to understand whether TDFs can be obtained from
all existing computational assumptions that imply PKE. This provides insights
into the hardness nature of TDFs as well as our computational assumptions.

1.1 Lack of CDH-Based Techniques for TDF

Diffie-Hellman related assumptions (even DDH) do not naturally lend themselves
to a TDF construction. The main reason why it is more difficult to build TDFs
from such assumptions, compared to, say, factoring related assumptions, is that
we do not know of any generic trapdoors for the discrete log problem. Indeed, a
long standing open problem in cryptography is whether PKE can be based on
the sole hardness of the discrete log problem. To see how this makes things more

3 Here we also need to assume that certifying whether a given point is in the domain
of a trapdoor function can be done efficiently.
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difficult, consider ElGamal encryption: to encrypt a group element gm under a
public key (g, g1), we return (gr, gr1 · gm), where r is a random exponent. The
decryption algorithm can recover gm but not r because computing r is as hard
as solving the discrete log problem.

Known DDH-based TDF constructions [27, 17] get around the above obstacle
by designing their TDFs in such a way that during inversion, one will only need
to solve the discrete log problem over a small space, e.g., recovering a bit b from
gb. The main idea is as follows: the index key ik of their TDF is gM, where g
is a generator of the group G of order p and M ∈ Zn×np is a random n × n

invertible matrix and gM denotes entry-wise exponentiation. Let tk := M−1 be
the trapdoor key. Using ik, the evaluation algorithm on input x ∈ {0, 1}n may
use the algebraic property of the group to compute y := gMx ∈ Gn. Now using
tk and y one can compute gx ∈ Gn, hence retrieving x.

To argue about one-wayness, one uses the following property implied by
DDH: the matrix gM is computationally indistinguishable from a matrix gM1 ,
where M1 is a random matrix of rank one. If the index key is now set to gM1

and if we have 2n � p, then even an unbounded adversary cannot retrieve the
original x from y. This argument is used to establish one-wayness for the TDF.

Unfortunately, the above rank indistinguishability property used to prove
one-wayness is not known (and not believed) to be implied by CDH. Thus,
designing TDFs based on CDH requires new techniques.

Finally, we mention that even from the Computational Bilinear Assump-
tion [6] (i.e., pairing-based CDH) no TDF constructions are known. The closest
is a result of Wee [30], showing that trapdoor relations, which are much weaker
than TDFs, can be built from CDH. Roughly, trapdoor relations are a relaxed
version of TDFs, in that the function might not be efficiently computable on in-
dividual points but one may sample efficiently a random input element together
with its corresponding image.

1.2 Our Results and Techniques

We give the first construction of TDFs under the CDH assumption. Our con-
struction is black-box and is obtained through a general construction of TDFs
from a primitive we call a recyclable one-way function with encryption (OWFE).
Moreover, we show that an adaptive strengthening of our notion of recyclable
OWEF yields a black-box construction of CCA2-secure PKE.

An OWFE is described by a one-way function fpp : {0, 1}n → {0, 1}ν , where
pp is a public parameter, together with encapsulation/decapsulation algorithms
(E,D). Specifically, E takes as input pp, an image y ∈ {0, 1}ν of fpp, an index
i ∈ [n] and a selector bit b ∈ {0, 1}, and produces an encapsulated ciphertext
ct and a corresponding key bit e ∈ {0, 1}. The algorithm D allows anyone to
retrieve e from ct using any pre-image x of y whose ith bit is b. For security,

letting y := fpp(x), we require if (ct, e)
$←− E(pp, y, (i, b)) and xi 6= b, then even

knowing x one cannot recover e from ct with probability better than 1
2 +negl(λ),
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where λ is the security parameter. That is, for any x ∈ {0, 1}n, i ∈ [n], we have

(x, ct, e)
c≡ (x, ct, e′), where e′

$←− {0, 1}, (ct, e)
$←− E(pp, f(pp, x), (i, 1 − xi)) and

c≡ denotes computational indistinguishability. Our OWFE notion is a weakening
of the hash encryption notion [13] in that we do not require f to be collision
resistant. The following is a variant of the CDH-based construction of [13].

CDH-based instantiation of OWFE [13]. Let G be a group of prime order
p. The public parameter is a 2 × n matrix of random group elements pp :=( g1,0,g2,0,...,gn,0
g1,1,g2,1,...,gn,1

)
and y := f(pp, x ∈ {0, 1}n) =

∏
j∈[n]

gj,xj .

To perform E(pp, y, (i, b)), sample ρ
$←− Zp and return (ct, e), where

ct :=
(
g′1,0,g

′
2,0,...,g

′
n,0

g′1,1,g
′
2,1,...,g

′
n,1

)
, where g′i,1−b := ⊥, g′i,b := gρi,b

and for all j 6= i : g′j,0 := gρj,0 and g′j,1 := gρj,1

and e := HC(yρ), where HC is a hardcore bit function. The function D is now
derived easily. See the main body for the proof of security.

Recyclability. Our recyclability notion asserts that the ciphertext part output,
ct, of the key encapsulation algorithm E is independent of the corresponding
image input part y. That is, letting E1 and E2 refer to the first and second
output of E, for any values of y1 and y2, we always have E1(pp, y1, (i, b); ρ) =
E1(pp, y2, (i, b); ρ). It is easy to verify that the above CDH-based OWFE satisfies
this property. Thus, we may drop y as an input to E1 and obtain the following:

Property 1. Letting x ∈ {0, 1}n, xi = b, ct := E1(pp, (i, b); ρ) and y := f(pp, x):

D(pp, x, ct) = E2(pp, y, (i, b); ρ).

1.3 Sketch of our OWFE-Based Construction and Techniques

Let (K, f,E,D) be a recyclable OWFE scheme.4 Our TDF construction is based
on a new technique that we call bits planting. Briefly, the input X to our TDF
consists of a domain element x ∈ {0, 1}n of f(pp, ·) and a blinding string b ∈
{0, 1}n×r, for some r that we will specify later. The output Y is comprised of
y := f(pp, x), as well as a matrix of bits in which we copy all the bits of b in the
clear but in hidden spots determined by x; we fill up the rest of the matrix with
key bits that somehow correspond to bit-by-bit encryption of x under y. To an
adversary, the matrix is “unrevealing,” with no indicative signs of what spots
corresponding to the blinding part — which contain b in the clear. However,
using our designed trapdoor, an inverter can pull out both x and b from Y with
all but negligible probability.

4 K is the public-parameter generation algorithm. See Definition 3.
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Warm-up Construction. We first give a warm up construction in which our
inversion algorithm only recovers half of the input bits (on average). Our TDF
input is of the form (x,b) ∈ {0, 1}n×{0, 1}n. This warm-up construction contains
most of the ideas behind the full-blown construction.

– Key generation: The trapdoor key is tk :=
( ρ1,0,...,ρn,0
ρ1,1,...,ρn,1

)
a matrix of ran-

domness values, and the index key is ik := pp,
(

ct1,0,...,ctn,0

ct1,1,...,ctn,1

)
, formed as:

ik := pp,

(
ct1,0 := E1(pp, (1, 0); ρ1,0), . . . , ctn,0 := E1(pp, (n, 0); ρn,0)
ct1,1 := E1(pp, (1, 1); ρ1,1), . . . , ctn,1 := E1(pp, (n, 1); ρn,1)

)
.

– Evaluation F(ik,X): Parse ik := pp,
(

ct1,0,...,ctn,0

ct1,1,...,ctn,1

)
and parse the input X as

(x ∈ {0, 1}n,b := b1 · · · bn ∈ {0, 1}n). Set y := f(pp, x). For i ∈ [n] set Mi as
follows:

Mi :=

(
D(pp, x, cti,0)

bi

)
∗
=

(
E2(pp, y, (i, 0); ρi,0)

bi

)
if xi = 0

Mi :=

(
bi

D(pp, x, cti,1)

)
∗
=

(
bi

E2(pp, y, (i, 1); ρi,1)

)
if xi = 1

(1)

The matrix Mi is computed using the deterministic algorithm D and the
equalities specified as

∗
= follow by Property (1).

Return Y := (y,M1|| . . . ||Mn).
– Inversion F−1(tk,Y): Parse Y := (y,M1|| . . . ||Mn) and tk :=

( ρ1,0, ..., ρn,0
ρ1,1, ..., ρn,1

)
.

Set

(M′1|| . . . ||M′n) :=

(
E2(pp, y, (1, 0); ρ1,0), . . . ,E2(pp, y, (n, 0); ρn,0)
E2(pp, y, (1, 1); ρ1,1), . . . ,E2(pp, y, (n, 1); ρn,1)

)
. (2)

Output (x,b := b1 . . . bn), where we retrieve xi and bi as follows. If M′i,1 =
Mi,1 and M′i,2 6= Mi,2 (where Mi,1 is the first element of of Mi), then set
xi := 0 and bi := Mi,2. If M′i,1 6= Mi,1 and M′i,2 = Mi,2, then set xi := 1 and
bi := Mi,1. Else, set xi := ⊥ and bi := ⊥.

One-Wayness (Sketch). We show (ik,Y)
c≡ (ik,Ysim), where (ik,Y) is as above

and

Ysim := y,

(
E2(pp, y, (1, 0); ρ1,0), . . . ,E2(pp, y, (n, 0); ρn,0)
E2(pp, y, (1, 1); ρ1,1), . . . ,E2(pp, y, (n, 1); ρn,1)

)
.

Noting that we may produce (ik,Ysim) using only pp and y, the one-wayness of
f(pp, ·) implies it is hard to recover x from (ik,Ysim), and so also from (ik,Y).

Why (ik,Y)
c≡ (ik,Ysim)? Consider Ysim,1, whose first column is the same as

Ysim and whose subsequent columns are the same as Y. We prove (x, ik,Y)
c≡

(x, ik,Ysim,1); the rest will follow using a hybrid argument.

Letting M1 be formed as in Equations 1, to prove (x, ik,Y)
c≡ (x, ik,Ysim,1) it

suffices to show
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x,

(
E1(pp, y, (1, 0); ρ1,0)
E1(pp, (1, 1); ρ1,1)

)
,M1

c≡ x,

(
E1(pp, (1, 0); ρ1,0)
E1(pp, (1, 1); ρ1,1)

)
,

(
E2(pp, y, (1, 0); ρ1,0)
E2(pp, y, (1, 1); ρ1,1)

)
.

(3)

We prove Equation 3 using the security property of OWFE, which says

(x,E1(pp, (1, 1− x1); ρ), b′)
c≡ (x,E1(pp, (1, 1− x1); ρ),E2(pp, y, (1, 1− x1); ρ)) ,

(4)

where b′
$←− {0, 1} and ρ is random. We give an algorithm that converts

a sample from either side of Equation 4 into a sample from the same side of

Equation 3. On input (x, ct1, b1), sample (ct2, b2)
$←− E(pp, y, (1, x1)) and

– if x1 = 0, then return x,
(
ct2
ct1

)
,
(
b2
b1

)
;

– else if x1 = 1, then return x,
(
ct1
ct2

)
,
(
b1
b2

)
.

The claimed property of the converter follows by inspection. Finally, we mention
that the argument used to prove Equation 3 builds on a technique used by
Brakerski et al. [7] to build circularly-secure PKE.

Correctness. F−1 recovers on average half of the input bits: F−1 fails for an
index i ∈ [n] if bi = E2(pp, y, (i, 1 − xi); ρi,1−xi). This happens with probability
1
2 because bi is a completely random bit.

Boosting correctness. To boost correctness, we provide r blinding bits for each
index i of x ∈ {0, 1}n. That is, the input to the TDF is (x,b) ∈ {0, 1}n×{0, 1}rn.
We will also expand ik by providing r encapsulated ciphertexts for each position
(i, b) ∈ [n] × {0, 1}. This extra information will bring the inversion error down
to 2−r. We will show that one-wayness is still preserved.

On the role of blinding. One may wonder why we need to put a blinding
string b in the TDF input. Why do not we simply let the TDF input be x and
derive multiple key bits for every index i of x by applying D to the corresponding
ciphertexts provided for that position i in the index key ik; the inverter can still
find the matching bit for every index. The reason behind our design choice is
that by avoiding blinders, it seems very difficult (if not impossible) to give a
reduction to the security of the OWFE scheme.

1.4 CCA2 Security

Rosen and Segev [29] show that an extended form of one-wayness for TDFs,
which they term k-repetition security, leads to a black-box construction of CCA2-
secure PKE. Informally, a TDF is k-repetition secure if it is hard to recover
a random input X from F(ik1,X), . . . ,F(ikk,X), where ik1, . . . , ikk are sampled
independently. They show that k-repetition security, for k ∈ Θ(λ), suffices for
CCA2 security.
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We give a CCA2 secure PKE by largely following [29], but we need to over-
come two problems. The first problem is that our TDF is not k-repetition se-
cure, due to the blinding part of the input. We overcome this by observing that
a weaker notion of k-repetition suffices for us: one in which we should keep x
the same across all k evaluations but may sample b freshly each time. A similar
weakening was also used in [26].

The second problem is that our inversion may fail with negligible probability
for every choice of (ik, tk) and a bit care is needed here. In particular, the simu-
lation strategy of [29] will fail if the adversary can create an image Y, which is a
true image of a domain point X, but which the inversion algorithm fails to invert.
To overcome this problem, we slightly extend the notion of security required by
OWFE, calling it adaptive OWFE, and show that if our TDF is instantiated
using this primitive, it satisfies all the properties needed to build CCA2 secure
PKE.

Comparison with related CCA2 constructions. We note that CCA2-
secure PKE constructions from CDH are already known, e.g., [9, 30, 22], which
are more efficient than the one obtained by instantiating our construction using
CDH. We presented a CCA-2 secure construction just to show the black-box
utility of our base general primitive. The recent results of [13, 12, 7, 14], com-
bined with [8], show that CCA-secure PKE can be built from a related primitive
called chameleon/batch encryption, but in a non-black-box way.

1.5 Discussion

Black-box power of chameleon encryption. Our work is a contribution
toward understanding the black-box power of the notion of chameleon encryp-
tion. Recent works [13, 12, 7] show that chameleon encryption (and its variants)
may be used in a non-black-box way to build strong primitives such as identity-
based encryption (IBE). The work of Brakerski et al. [7] shows also black-box
applications of (a variant of) this notion, obtaining in turn circularly-secure and
leakage-resilient PKE from CDH. Our work furthers the progress in this area,
by giving a black-box construction of TDFs.

Related work. Hajiabadi and Kapron [21] show how to build TDFs from any
reproducible circularly secure single-bit PKE. Informally, a PKE is reproducible
if given a public key pk′, a public/secret key (pk, sk) and a ciphertext c :=
PKE.E(pk′, b′; r), one can recycle the randomness of c to obtain PKE.E(pk, b; r)
for any bit b ∈ {0, 1}. Brakerski et al. [7] recently built a circularly secure
single-bit PKE using CDH. Their construction is not reproducible, however. (The
following assumes familiarity with [7].) In their PKE, a secret key x of their PKE
is an input to their hash function and the public key y is its corresponding image.
To encrypt a bit b they (a) additively secret-share b into (b1, . . . , bn), where
n = |x| and (b) form 2n ciphertext cti,b, where cti,b encrypts bi using y relative
to (i, b). Their scheme is not reproducible because the randomness used for step
(a) cannot be recycled and also half of the randomness used to create hash
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encryption ciphertexts in step (b) cannot be recycled. (This half corresponds to
the bits of the target secret key w.r.t. which we want to recycle randomness.) It
is not clear whether their scheme can be modified to yield reproducibility.

Open problems. Our work leads to several open problems. Can our TDF be
improved to yield perfect correctness? Our current techniques leave us with a
negligible inversion error. Can we build lossy trapdoor functions (LTDF) [27]
from recyclable-OWFE/CDH? Given the utility of LTDFs, a construction based
on CDH will be interesting. Can we build deterministic encryption based on
CDH matching the parameters of those based on DDH [5]?

2 Preliminaries

Notation. We use λ for the security parameter. We use
c≡ to denote compu-

tational indistinguishability between two distributions and use ≡ to denote two

distributions are identical. For a distribution D we use x
$←− D to mean x is sam-

pled according to D and use y ∈ D to mean y is in the support of D. For a set

S we overload the notation to use x
$←− S to indicate that x is chosen uniformly

at random from S.

Definition 1 (Trapdoor Functions (TDFs)). Let w = w(λ) be a polynomial.
A family of trapdoor functions TDF with domain {0, 1}w consists of three PPT
algorithms TDF.K, TDF.F and TDF.F−1 with the following syntax and security
properties.

– TDF.K(1λ): Takes the security parameter 1λ and outputs a pair (ik, tk) of
index/trapdoor keys.

– TDF.F(ik,X): Takes an index key ik and a domain element X ∈ {0, 1}w and
outputs an image element Y.

– TDF.F−1(tk,Y): Takes a trapdoor key tk and an image element Y and outputs
a value X ∈ {0, 1}w ∪ {⊥}.

We require the following properties.

– Correctness: For any (ik, tk) ∈ TDF.K(1λ)

Pr[TDF.F−1(tk,TDF.F(ik,X)) 6= X] = negl(λ), (5)

where the probability is taken over X
$←− {0, 1}w.

– One-wayness: For any PPT adversary A

Pr[A(ik,Y) = X] = negl(λ), (6)

where (ik, tk)
$←− TDF.K(1λ), X

$←− {0, 1}w and Y = TDF.F(ik,X).
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A note about the correctness condition. Our correctness notion relaxes that
of perfect correctness by allowing the inversion algorithm to fail (with respect to
any trapdoor key) for a negligible fraction of evaluated elements. This relaxation
nonetheless suffices for all existing applications of perfectly-correct TDFs. Our
correctness notion, however, implies a weaker notion under which the correctness
probability is also taken over the choice of the index/trapdoor keys. This makes
our result for constructing TDFs stronger.

Definition 2 (Computational Diffie-Hellman (CDH) Assumption). Let
G be a group-generator scheme, which on input 1λ outputs (G, p, g), where G
is the description of a group, p is the order of the group which is always a
prime number and g is a generator of the group. We say that G is CDH-hard
if for any PPT adversary A: Pr[A(G, p, g, ga1 , ga2) = ga1a2 ] = negl(λ), where

(G, p, g)
$←− G(1λ) and a1, a2

$←− Zp.

3 Recyclable One-Way Function with Encryption

We will start by defining the notion of a one-way function with encryption. This
notion is similar to the chameleon encryption notion of Döttling and Garg [13].
However, it is weaker in the sense that it does not imply collision-resistant hash
functions.

Next, we will define a novel ciphertext-randomness recyclability property
for one-way function with encryption schemes. We will show that a variant of
the chameleon encryption construction of Döttling and Garg [13] satisfies this
ciphertext-randomness recyclability property.

3.1 Recyclable One-Way Function with Encryption

We provide the definition of a one-way function with encryption. We define the
notion as a key-encapsulation mechanism with single bit keys.

Definition 3 (One-Way Function with Encryption (OWFE)). An OWFE
scheme consists of four PPT algorithms K, f, E and D with the following syntax.

– K(1λ): Takes the security parameter 1λ and outputs a public parameter pp
for a function f from n bits to ν bits.

– f(pp, x): Takes a public parameter pp and a preimage x ∈ {0, 1}n, and outputs
y ∈ {0, 1}ν .

– E(pp, y, (i, b); ρ): Takes a public parameter pp, a value y, an index i ∈ [n], a
bit b ∈ {0, 1} and randomness ρ, and outputs a ciphertext ct and a bit e.5

– D(pp, x, ct): Takes a public parameter pp, a value x and a ciphertext ct, and
deterministically outputs e′ ∈ {0, 1} ∪ {⊥}.

We require the following properties.

5 ct is assumed to contain (i, b).
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– Correctness: For any pp ∈ K(1λ), any i ∈ [n], any x ∈ {0, 1}n and any
randomness value ρ, the following holds: letting y := f(pp, x), b := xi and
(ct, e) := E(pp, y, (i, b); ρ), we have e = D(pp, x, ct).

– One-wayness: For any PPT adversary A:

Pr[f(pp,A(pp, y)) = y] = negl(λ),

where pp
$←− K(1λ), x

$←− {0, 1}n and y := f(pp, x).
– Security for encryption: For any i ∈ [n] and x ∈ {0, 1}n:

(x, pp, ct, e)
c≡ (x, pp, ct, e′)

where pp
$←− K(1λ), (ct, e)

$←− E(pp, f(pp, x), (i, 1− xi)) and e′
$←− {0, 1}.

Definition 4 (Recyclability). We say that an OWFE scheme (f,K,E,D) is
recyclable if the following holds. Letting E1 and E2 refer to the first and second
output of E, the value of E1(pp, y, (i, b); ρ) is always independent of y. That is,
for any pp ∈ K(1λ), y1, y2 ∈ {0, 1}ν , i ∈ [n], b ∈ {0, 1} and randomness ρ:
E1(pp, y1, (i, b); ρ) = E1(pp, y2, (i, b); ρ).

We now conclude the above definitions with two remarks.

Note 1 (Simplified Recyclability). Since under the recyclability notion the
ciphertext output ct of E is independent of the input value y, when referring to
E1, we may omit the inclusion of y as an input and write ct = E1(pp, (i, b); ρ).

Note 2. If the function f(pp, ·) is length decreasing (e.g., f(pp, ·) : {0, 1}n 7→
{0, 1}n−1), then the one-wayness condition of Definition 3 is implied by the com-
bination of the security-for-encryption and correctness conditions. In our defi-
nition, however, we do not place any restriction on the structure of the function
f, and it could be, say, a one-to-one function. As such, under our general defi-
nition, the one-wayness condition is not necessarily implied by those two other
conditions.

3.2 Adaptive One-Way Function with Encryption

For our CCA application we need to work with an adaptive version of the no-
tion of OWFE. Recall by Note 1 that a ciphertext ct does not depend on the
corresponding y. The security for encryption notion (Definition 3) says if (ct, e)
is formed using an image y := f(pp, x) and parameters (i, b), and if xi 6= b, then
even knowing x does not help an adversary in distinguishing e from a random
bit. The adaptive version of this notion allows the adversary to choose x after
seeing ct. This notion makes sense because ct does not depend on the image y,
and so ct may be chosen first.

Definition 5 (Adaptive OWFE). We say that E = (K, f,E,D) is an adaptive
one-way function with encryption scheme if E is correct in the sense of Defini-
tion 3, f is one-way in the sense of Definition 3 and that E is adaptively secure
in the following sense.
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– Adaptive Security: For any PPT adversary A, we have the following: the
probability that AdapOWFE[t = 1](E ,A) outputs 1 is 1

2 + negl(λ), where the
experiment AdapOWFE[t] is defined in Fig. 1.

Experiment AdapOWFE[t](E ,A := (A1,A2,A3)):

1. (i∗ ∈ [n], b∗ ∈ {0, 1}, st1)
$←− A1(1λ)

2. Sample pp
$←− K(1λ) and ρ1, . . . , ρt

$←− {0, 1}∗
3. Set ct1 := E1(pp, (i∗, b∗); ρ1), . . . , ctt := E1(pp, (i∗, b∗); ρt)

4. (x, st2)
$←− A2(st1, pp, ct1, . . . , ctt).

5. If xi∗ = b∗, HALT.
6. For j ∈ [t]: ej := E2(pp, y, (i∗, b∗); ρj), where y = f(pp, x).

7. ch
$←− {0, 1}. If ch = 0, set e′ := (e1, . . . , et); else, e′

$←− {0, 1}t.
8. out

$←− A3(st2, e′).
9. Output 1 if out = ch and 0 otherwise.

Fig. 1: The AdapOWFE[t](E ,A) Experiment

We remind the reader that in Step 3 of Fig. 1 the algorithm E1 does not take
any y as input because of Note 1. The following lemma is obtained using a
straightforward hybrid argument, so we omit the proof.

Lemma 1. Let E = (K, f,E,D) be an adaptive OWFE scheme. For any poly-
nomial t := t(λ) and any PPT adversary A, we have Pr[AdapOWFE[t](E ,A) =
1] ≤ 1

2 + negl(λ).

3.3 Construction from CDH

We give a CDH-based construction of a recyclable adaptive OWFE based on a
group scheme G (Definition 2), which is a close variant of constructions given
in [10, 13].

– K(1λ): Sample (G, p, g)
$←− G(1λ). For each j ∈ [n] and b ∈ {0, 1}, choose

gj,b
$←− G. Output

pp := G, p, g,
(
g1,0, g2,0, . . . , gn,0
g1,1, g2,1, . . . , gn,1

)
. (7)

– f(pp, x): Parse pp as in Equation 7, and output y :=
∏
j∈[n]

gj,xj .

– E(pp, y, (i, b)): Parse pp as in Equation 7. Sample ρ
$←− Zp and proceed as

follows:
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1. For every j ∈ [n]\{i}, set cj,0 := gρj,0 and cj,1 := gρj,1.
2. Set ci,b := gρi,b and ci,1−b := ⊥.

3. Set e := HC(yρ).6

4. Output (ct, e) where ct :=

(
c1,0, c2,0, . . . , cn,0
c1,1, c2,1, . . . , cn,1

)
.

– D(pp, x, ct): Parse ct :=

(
c1,0, c2,0, . . . , cn,0
c1,1, c2,1, . . . , cn,1

)
. Output HC(

∏
j∈[n]

cj,xj ).

Lemma 2. Assuming that G is CDH-hard and n ∈ ω(log p), the construction
described above is an adaptive one-way function with encryption scheme satisfy-
ing the recyclability property.

Proof. We start by proving one-wayness.

One-wayness. The fact that fpp for a random pp is one-way follows by the
discrete-log hardness (and hence CDH hardness) of G. Let g∗ be a random

group element for which we want to find r∗ such that gr
∗

= g∗. Sample i1
$←− [n]

and b1
$←− {0, 1} and set gi1,b1 := g∗. For all i ∈ [n] and b ∈ {0, 1} where

(i, b) 6= (i1, b1), sample ri,b
$←− Zp and set gi,b := gri,b . Set pp :=

(
g1,0, . . . , gn,0
g1,1, . . . , gn,1

)
.

Sample x′ at random from {0, 1}n subject to the condition that x′i1 = 1− b1. Set
y :=

∏
j∈[n] gj,x′j . Call the inverter adversary on (pp, y) to receive x ∈ {0, 1}n.

Now if n ∈ ω(log p), then by the leftover hash lemma with probability negligibly
close to 1

2 we have xi1 = b1, allowing us to find r∗ from ri,b’s.

Recyclability We need to show that the ciphertext output ct of E is independent
of the input value y. This follows immediately by inspection.

Notation. For a matrix M :=

(
a1,0, a2,0, . . . , an,0
a1,1, a2,1, . . . , an,1

)
, i ∈ [n] and b ∈ {0, 1}, we

define the matrix M′ := M|(i, b) to be the same as M except that instead of ai,b
we put ⊥ in M′. If M is matrix of group elements, then Mr denotes element-wise
exponentiation to the power of r.

Security for encryption. We show if G is CDH-hard, then the scheme is
adaptively secure. Suppose that there exists an adversary A for which we have
Pr[AdapOWFE[t = 1](E ,A)] = 1

2 + 1
q >

1
2 + negl(λ). Using standard techniques

we may transform A into a predictor B who wins with probability at least 1
2 + 1

q
in the following experiment:

1. (i∗, b∗)
$←− B(1λ).

6 We assume that the HC(·) is a hardcore bit function. If a deterministic hard-core
bit for the specific function is not known then we can use the Goldreich-Levin [19]
construction. We skip the details of that with the goal of keeping exposition simple.
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2. Sample

pp :=

(
g1,0, g2,0, . . . , gn,0
g1,1, g2,1, . . . , gn,1

)
$←− G2×n. (8)

3. Sample ρ
$←− Zp and set ct := ppρ|(i∗, b∗).

4. (x, b)
$←− B(pp, ct).

5. B wins if xi∗ = b∗ and b = HC(yρ), where y :=
∏
j∈[n]

gj,xj .

Using the Goldreich-Levin theorem we know that there should be an adversary
B1 that wins with non-negligible probability in the following:

1. (i∗, b∗)
$←− B1(1λ).

2. Sample

pp :=

(
g1,0, g2,0 . . . , gn,0
g1,1, g2,1, . . . , gn,1

)
$←− G2×n. (9)

3. Sample ρ
$←− Zp and set ct := ppρ|(i∗, b∗).

4. (x, g∗)
$←− B1(pp, ct).

5. B1 wins if xi∗ = b∗ and g∗ = yρ, where y :=
∏
j∈[n]

gj,xj .

We now show how to use B1 to solve the CDH problem.

CDH Adversary A1(g, g1, g2):

– Run B1(1λ) to get (i∗, b∗).

– For any j ∈ [n] \ {i∗} and b ∈ {0, 1} sample αj,b
$←− Zp and set gj,b = gαj,b .

Set gi∗,b∗ := g1 and gi∗,1−b∗ = gα, where α
$←− Zp. Set

pp :=

(
g1,0, g2,0 . . . , gn,0
g1,1, g2,1, . . . , gn,1

)
.

– Set g′i∗,1−b∗ = g2 and g′i∗,b∗ = ⊥. For any j ∈ [n] \ {i∗} and b ∈ {0, 1} set

g′j,b = g
(α−1·αj,b)
2 . Set

ct :=

(
g′1,0, g

′
2,0 . . . , g

′
n,0

g′1,1, g
′
2,1, . . . , g

′
n,1

)
. (10)

– Run B1(pp, ct) to get (x, g∗). If xi 6= b∗i then return ⊥. Otherwise
• Set

gu :=
g∗∏i∗−1

j=1 g′j,xj ·
∏n
j=i∗+1 g

′
j,xj

.

• Return gαu .

By inspection one may easily verify that whenever B1 wins, A1 also wins.
The proof is now complete. ut
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4 TDF Construction

In this section we describe our TDF construction. We first give the following
notation.

Extending the notation for D. For a given pp, a sequence ct := (ct1, . . . , ctr)
of encapsulated ciphertexts and a value x, we define D(pp, x, ct) to be the con-
catenation of D(pp, x, cti) for i ∈ [r].

Algorithm Perm. For two lists u1 and u2 and a bit b we define Perm(u1,u2, b)
to output (u1,u2) if b = 0, and (u2,u1) otherwise.

Construction 3 (TDF Construction).

Base Primitive. A recyclable OWFE scheme E = (K, f,E,D). Let Rand be the
randomness space of the encapsulation algorithm E.

Construction. The construction is parameterized over two parameters n =
n(λ) and r = r(λ), where n is the input length to the function f, and r will be
instantiated in the correctness proof. The input space of each TDF is {0, 1}n+nr.
We will make use of the fact explained in Note 1.

– TDF.K(1λ):
• Sample pp← K(1λ).
• For each i ∈ [n] and selector bit b ∈ {0, 1}:

ρi,b := (ρ
(1)
i,b , . . . , ρ

(r)
i,b )

$←− Randr

cti,b := (E1(pp, (i, b); ρ
(1)
i,b ), . . . ,E1(pp, (i, b); ρ

(r)
i,b ))).

• Form the index key ik and the trapdoor key tk as follows:

ik := (pp, ct1,0, ct1,1, . . . , ctn,0, ctn,1) (11)

tk := (pp,ρ1,0,ρ1,1, . . . ,ρn,0,ρn,1) . (12)

– TDF.F(ik,X):
• Parse ik as in Equation 11 and parse

X := (x ∈ {0, 1}n,b1 ∈ {0, 1}r, . . . ,bn ∈ {0, 1}r).

• Set y := f(pp, x).
• For all i ∈ [n] set

ei := D(pp, x, cti,xi).

• Return
Y :=

(
y,Perm(e1,b1, x1), . . . ,Perm(en,bn, xn)

)
.

– TDF.F−1(tk,Y):

• Parse tk as in Equation 12 and Y := (y, b̃1,0, b̃1,1, . . . , b̃n,0, b̃n,1).
• Reconstruct x := x1 · · · xn bit-by-bit and b := (b1, . . . ,bn) vector-by-

vector as follows. For i ∈ [n]:
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∗ Parse ρi,0 := (ρ
(1)
i,0 , . . . , ρ

(r)
i,0 ) and ρi,1 := (ρ

(1)
i,1 , . . . , ρ

(r)
i,1 ).

∗ If

b̃i,0 =
(
E2(pp, y, (i, 0); ρ

(1)
i,0 ), . . . ,E2(pp, y, (i, 0); ρ

(r)
i,0 )
)

and

b̃i,1 6=
(
E2(pp, y, (i, 1); ρ

(1)
i,1 ), . . . ,E2(pp, y, (i, 1); ρ

(r)
i,1 )
)
, (13)

then set xi = 0 and bi = b̃i,1.
∗ Else, if

b̃i,0 6=
(
E2(pp, y, (i, 0); ρ

(1)
i,0 ), . . . ,E2(pp, y, (i, 0); ρ

(r)
i,0 )
)

and

b̃i,1 =
(
E2(pp, y, (i, 1); ρ

(1)
i,1 ), . . . ,E2(pp, y, (i, 1); ρ

(r)
i,1 )
)
, (14)

then set xi = 1 and bi = b̃i,0.
∗ Else, halt and return ⊥.

• If y 6= f(pp, x), then return ⊥. Otherwise, return (x,b).

We will now give the correctness and one-wayness statements about our TDF,
and will prove them in subsequent subsections.

Lemma 3 (TDF Correctness). The inversion error of our constructed TDF
is at most n

2r . That is, for any (ik, tk) ∈ TDF.K(1λ) we have

β := Pr[TDF.F−1(tk, (TDF.F(ik,X))) 6= X] ≤ n

2r
, (15)

where the probability is taken over X := (x,b1, . . . ,bn)
$←− {0, 1}n+nr. By choos-

ing r ∈ ω(log λ) we will have a negligible inversion error.

For one-wayness we will prove something stronger: parsing X := (x, . . . ),
then recovering any x′ satisfying f(pp, x) = f(pp, x′) from (ik,TDF.F(ik,X)) is
infeasible.

Lemma 4 (One-Wayness). The TDF (TDF.K,TDF.F,TDF.F−1) given in Con-
struction 3 is one-way. That is, for any PPT adversary A

Pr[A(ik,Y) = x′ and f(pp, x′) = y] = negl(λ), (16)

where (ik := (pp, . . . ), tk)
$←− TDF.K(1λ), X := (x, . . . )

$←− {0, 1}n+nr and Y :=
(y, . . . ) := TDF.F(ik,X).

By combining Lemmas 2, 3 and 4 we will obtain our main result below.

Theorem 4 (CDH Implies TDF). There is a black-box construction of TDFs
from CDH-hard groups.
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4.1 Proof of Correctness: Lemma 3

Proof. Let X := (x,b1, . . . ,bn)
$←− {0, 1}n+nr be as in the lemma and

Y := TDF.F(ik,X) := (y, b̃1,0, b̃1,1, . . . , b̃n,0, b̃n,1). (17)

By design, for all i ∈ [n]: b̃i,1−xi = bi. Parse

tk := (ρ1,0,ρ1,1, . . . ,ρn,0,ρn,1) ,

ρi,b := (ρ
(1)
i,b , . . . , ρ

(r)
i,b ), for i ∈ [n] and b ∈ {0, 1}.

Consider the execution of TDF.F−1(tk,Y). By the correctness of our recy-
clable OWFE E we have the following: the probability that TDF.F−1(tk,Y) 6= X
is the probability that for some i ∈ [n]:

bi =
(
E2(pp, y, (i, 1− xi); ρ

(1)
i,1−xi), . . . ,E2(pp, y, (i, 1− xi); ρ

(r)
i,1−xi)

)
. (18)

Now since bi, for all i, is chosen uniformly at random and independently of
x, the probability of the event in Equation 18 is 1

2r . A union bound over i ∈ [n]
gives us the claimed error bound. ut

4.2 Proof of One-wayness: Lemma 4

We will prove Lemma 4 through a couple of hybrids, corresponding to the real
and a simulated view. We first give the following definition which will help us
describe the two hybrids in a compact way.

Definition 6. Fix pp, x ∈ {0, 1}n and y := f(pp, x). We define two PPT algo-
rithms Real and Sim, where Real takes as input (pp, x) and Sim takes as input
(pp, y). We stress that Sim does not take x as input.

The algorithm Real(pp, x) outputs (CT,E) and the algorithm Sim(pp, y) out-
puts (CT,Esim), sampled in the following way.

– Sample

(
ρ1,0, . . . , ρn,0
ρ1,1, . . . , ρn,1

)
$←− Rand2×n.

– Set

CT :=

(
ct1,0, . . . , ctn,0
ct1,1, . . . , ctn,1

)
:=

(
E1(pp, (1, 0); ρ1,0), . . . ,E1(pp, (n, 0); ρn,0)
E1(pp, (1, 1); ρ1,1), . . . ,E1(pp, (n, 1); ρn,1)

)
.

– Set

E :=

(
b1,0, . . . , bn,0
b1,1, . . . , bn,1

)
,

where, for all i ∈ [n]:

• if xi = 0, then bi,0 := D(pp, x, cti,0) and bi,1
$←− {0, 1}.

• if xi = 1, then bi,0
$←− {0, 1} and bi,1 := D(pp, x, cti,1).

– Set

Esim :=

(
E2(pp, y, (1, 0); ρ1,0), . . . ,E2(pp, y, (n, 0); ρn,0)
E2(pp, y, (1, 1); ρ1,1), . . . ,E2(pp, y, (n, 1); ρn,1)

)
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We now prove the following lemma which will help us to prove the indistin-
guishability of the two hybrids in our main proof.

Lemma 5. Fix polynomial r := r(λ) and let x ∈ {0, 1}n. We have

(pp, x,CT1,E1, . . . ,CTr,Er)
c≡ (pp, x,CT1,Esim,1, . . . ,CTr,Esim,r), (19)

where pp
$←− K(1λ), and for all i ∈ [r], we sample (CTi,Ei)

$←− Real(pp, x) and

(CTi,Esim,i)
$←− Sim(pp, f(pp, x)).

Proof. Fix x ∈ {0, 1}n and let y := f(pp, x). For the purpose of doing a hybrid
argument we define two algorithms SReal and SSim below.

– SReal(i, pp, x): sample ρ0, ρ1
$←− Rand and return (ct, e), where

ct :=

(
ct0
ct1

)
:=

(
E1(pp, (i, 0); ρ0)
E1(pp, (i, 1); ρ1)

)
(20)

and e is defined as follows:

• if xi = 0, then e :=

(
D(pp, x, ct0)

b

)
, where b

$←− {0, 1};

• if xi = 1, then e :=

(
b

D(pp, x, ct1)

)
, where b

$←− {0, 1}.

– SSim(i, pp, y): Return (ct, esim), where ct is sampled as in Equation 20 and
esim is sampled as

esim :=

(
E2(pp, y, (i, 0); ρ0)
E2(pp, y, (i, 1); ρ1)

)
.

We will show that for all i ∈ [n] and x ∈ {0, 1}n

(pp, x, ct, e)
c≡ (pp, x, ct, esim), (21)

where

pp
$←− K(1λ), (ct, e)

$←− SReal(i, pp, x) and (ct, esim)
$←− SSim(i, pp, f(pp, x)).

From Equation 21 using a simple hybrid argument the indistinguishability claimed
in the lemma (Equation 19) is obtained. Note that for the hybrid argument we
need to make use of the fact that that x is provided in both sides of Equation 21,
because we need to know x to be able to build the intermediate hybrids between
those of Equation 19. Thus, in what follows we will focus on proving Equation 21.

To prove Equation 21, first note that by the correctness of the OWFE scheme
E , we have

(pp, x, ct, e) ≡ (pp, x, ct, e′),

where ct and e are sampled according to SReal(i, pp, x) as above (using ran-
domness values ρ0 and ρ1), and e′ is sampled as:
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– if xi = 0, then e′ :=

(
E2(pp, y, (i, 0); ρ0)

b

)
, where b

$←− {0, 1};

– if xi = 1, then e′ :=

(
b

E2(pp, y, (i, 1); ρ1)

)
, where b

$←− {0, 1}.

Thus, we will prove

(pp, x, ct, e′)
c≡ (pp, x, ct, esim). (22)

We derive Equation 22 from the security-for-encryption requirement of the
scheme (K, f,E,D).

Recall that the security for encryption requirement asserts that no PPT

adversary can distinguish between (x, ct1, e1) and (x, ct1, e2), where pp
$←− K(1λ),

(ct1, e1)
$←− E(pp, f(pp, x), (i, 1 − xi)) and e2

$←− {0, 1}. Let us call (x, ct1, e1) the
simulated challenge and (x, ct1, e2) the random challenge.

To build the reduction we show the existence of a procedure Turn that gener-
ically turns a simulated challenge into a sample of SSim(i, pp, x) and turns a
random challenge into a sample of SReal(i, pp, y).

The algorithm Turn(x, ct, e) returns (ct1, e1), formed as follows:

– Sample ρ
$←− Rand. Then

• if xi = 0, then return

ct1 =

(
E1(pp, (i, 0); ρ)

ct

)
e1 =

(
E2(pp, y, (i, 0); ρ)

e

)
• if xi = 1, then return

ct1 =

(
ct

E1(pp, (i, 0); ρ)

)
e1 =

(
e

E2(pp, y, (i, 0); ρ)

)
It should be clear by inspection that the output of Turn(x, ct, e) is identically
distributed to SReal(i, pp, x) if (x, ct, e) is a random challenge (defined above),
and identically distributed to SSim(i, pp, x) if (x, ct, e) is a simulated challenge.
The proof is now complete. ut

Proof (of Lemma 4). To prove Lemma 4 we define two hybrids and will use the
notation viewi to refer to the view sampled in Hybrid i.

Hybrid 0. The view (ik,Y) is produced honestly as in the real executions of the
scheme TDF. That is,

– Sample pp
$←− K(1λ), x

$←− {0, 1}n and let y := f(pp, x).

– For all j ∈ [r] sample (CT(j),E(j))
$←− Real(pp, x). Parse

CT(j) :=

(
ct

(j)
1,0, . . . , ct

(j)
n,0

ct
(j)
1,1, . . . , ct

(j)
n,1

)
E(j) :=

(
b
(j)
1,0, . . . , b

(j)
n,0

b
(j)
1,1, . . . , b

(j)
n,1

)
.
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– For all i ∈ [n] and d ∈ {0, 1} set

cti,d := (ct
(1)
i,d , . . . , ct

(r)
i,d )

bi,d := (b
(1)
i,d , . . . , b

(r)
i,d ).

– Form the view (ik,Y) as follows:

((pp, ct1,0, ct1,1, . . . , ctn,0, ctn,1)︸ ︷︷ ︸
ik

, (y,b1,0,b1,1, . . . ,bn,0,bn,1)︸ ︷︷ ︸
Y

) (23)

Hybrid 1. The view (ik,Y) is produced the same as Hybrid 0 except that for

all j ∈ [r] we sample (CT(j),E(j)) now as (CT(j),E(j))
$←− Sim(pp, y).

We prove that the two views are indistinguishable and then we will show
that inverting the image under view1 is computationally infeasible.

Indistinguishability of the views: By Lemma 5 we have view0
c≡ view1.

The reason is that the view in either hybrid is produced entirely based on
(CT(1),E(1), . . . ,CT(r),E(r)) and that this tuple is sampled from the distribution
Real(pp, x) in one hybrid and from Sim(pp, y) in the other.

One-wayness in Hybrid 1: We claim that for any PPT adversary A

Pr[A(view1) = x′ and f(pp, x′) = y] = negl(λ). (24)

Recall that view1 := (ik,Y) is the view in Hybrid 1 and that the variables pp
and y are part of ik := (pp, . . . ) and Y := (y, . . . ). The proof of Equation 24
follows from the one-wayness of f, taking into account the fact that view1 in its
entirety is produced solely based on pp and y := f(pp, x) (and especially without
knowing x). This is because all the underlying variables (CT(j),E(j)) — for all

j — are produced as (CT(j),E(j))
$←− Sim(pp, y), which can be formed without

knowledge of x.

Completing the Proof of Lemma 4. Let view0 := (ik,Y) and parse ik :=
(pp, . . . ) and Y := (y, . . . ). For any PPT adversary A we need to show that the
probability that A on input view0 outputs x′ ∈ {0, 1}n such that f(pp, x′) = y is
negligible. We know that B fails to compute such a string x′ with non-negligible
probability if the view ((pp, . . . ), (y, . . . )) is sampled according to view1. Since

view0
c≡ view1, the claim follows. ut

4.3 Extended One-Wayness

For our CCA2 application we need to prove a stronger property than the stan-
dard one-wayness for our constructed TDF. This extension requires that if we
evaluate m correlated inputs under m independent functions from the TDF fam-
ily, the result still cannot be inverted.
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Lemma 6 (Extended One-Wayness). Let TDF = (TDF.K,TDF.F,TDF.F−1)
be the TDF built in Construction 3 based on an arbitrary parameter r = r(λ).
Let m := m(λ). For any PPT adversary A

Pr[A(view := (ik1, . . . , ikm,Y1, . . . ,Ym)) = x] = negl(λ),

where x
$←− {0, 1}n and for i ∈ [m], (iki, tki)

$←− TDF.K(1λ), bi
$←− {0, 1}nr

and Yi := TDF.F(iki, x||bi). Thus, there exists a hardcore function HC such that
HC(x) remains pseudorandom in the presence of view.

Proof. For any PPT adversary A we need to show that the probability that
A(view) outputs x is negligible. It is easy to verify by inspection that the distri-
bution of view can be perfectly formed based on the view (ik∗,Y∗) of an inverter
against the one-wayness of the trapdoor function (TDF.K,TDF.F,TDF.F−1) of
Construction 3 but under the new parameter r′ = m× r. Invoking Lemma 4 our
claimed one-wayness extension follows. ut

5 CCA2-Secure Public-Key Encryption

In this section we show how to use our constructed TDF to build a CCA2 secure
PKE. For the proof of CCA2 security we need to assume that the OWFE scheme
underlying the TDF is adaptively secure (Definition 5).

Notation. Let TDF := (TDF.K,TDF.F,TDF.F−1) be as in Section 4. We will
interpret the input X to the TDF as (x, s), where x ∈ {0, 1}n corresponds to f’s
pre-image part and s ∈ {0, 1}n1 corresponds to the blinding part. In particular,
if r is the underlying parameter of the constructed TDF as in Construction 3,
then n1 = n× r.

Ingredients of our CCA2-secure PKE. Apart from a TDF with the above
syntax, our CCA2 secure construction also makes use of a one-time signature
scheme SIG = (SIG.K,SIG.Sign,SIG.Ver) with prefect correctness, which in turn
can be obtained from any one-way function. A one-time signature scheme SIG
with message space {0, 1}η is given by three PPT algorithms SIG.K, SIG.Sign and
SIG.Ver satisfying the following syntax. The algorithm SIG.K on input a security
parameter 1λ outputs a pair (vk, sgk) consisting of a verification key vk and a
signing key sgk. The signing algorithm SIG.Sign on input a signing key sgk and
a message m ∈ {0, 1}η outputs a signature σ. For correctness, we require that
for any (vk, sgk) ∈ SIG.K(1λ), any message m ∈ {0, 1}η and any signature σ ∈
SIG.Sign(sgk,m): SIG.Ver(vk,m, σ) = >. The one-time unforgeability property
requires that the success probability of any PPT adversary A in the following

game be at most negligible. Sample (vk, sgk)
$←− SIG.K(1λ) and give vk to A.

Now, A(vk) may call a signing oracle SgnOracle[sgk](·) only once, where the

oracle SgnOracle[sgk](·) on input m returns σ
$←− SIG.Sign(sgk,m). Finally, A(vk)

should return a pair (m′, σ′) of message/signature and will win if (m, σ) 6= (m′, σ′)
and that SIG.Ver(vk,m′, σ′) = >.
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Our CCA2 primitive. We will build a CCA2 secure single-bit PKE, which by
the result of [24] can be boosted into many-bit CCA2 secure PKE. Since we deal
with single-bit CCA2 PKE, we may assume without loss of generality that the
CCA adversary issues all her CCA oracles after seeing the challenge ciphertext.

We will now describe our CCA2-secure PKE scheme.

Construction 5 (CCA2 Secure PKE). The construction is parameterized
over a parameter m := m(λ), which denotes the size of the verification key of
the underlying signature scheme SIG. Let HC be a bit-valued hardcore function
whose existence was proved in Lemma 6.

– PKE.K(1λ): For i ∈ [m] and b ∈ {0, 1}, sample (ikbi , tk
b
i )

$←− TDF.K(1λ). Form
(pk, sk) the public/secret key as follows:

pk := (ik01, ik
1
1, . . . , ik

0
m, ik

1
m), sk := (tk01, tk

1
1, . . . , tk

0
m, tk

1
m). (25)

– PKE.E(pk, b): Parse pk as in Equation 25. Sample (vk, sgk)
$←− SIG.K(1λ),

x
$←− {0, 1}n and set

X1 := (x, s1
$←− {0, 1}n1), . . . , Xm := (x, sm

$←− {0, 1}n1). (26)

Let b′ = b⊕ HC(x) and for i ∈ [m] let Yi = TDF.F(ikvkii ,Xi). Return

c := (vk,Y1, . . . ,Ym, b
′,Sign(sgk,Y1|| . . . ||Ym||b′)) . (27)

– PKE.D(sk, c): Parse sk as in Equation 25 and parse

c := (vk,Y1, . . . ,Ym, b
′, σ). (28)

• Set msg := Y1|| · · ·Ym||b′. If SIG.Ver(vk,msg, σ) = ⊥, then return ⊥.
• Otherwise, for i ∈ [m] set Xi := TDF.F−1(tkvkii ,Yi). Check that for all

i ∈ [n]: Yi = TDF.F(ikvkii ,Xi). If not, return ⊥.
• If there exists x ∈ {0, 1}n and s1, . . . , sm ∈ {0, 1}n1 such that for all
i ∈ [m], Xi = (x, si), then return b′ ⊕ HC(x). Otherwise, return ⊥.

Correctness. If the underlying signature scheme SIG = (SIG.K,SIG.Sign,SIG.Ver)
is correct and also that the underlying TDF (TDF.K,TDF.F,TDF.F−1) is cor-
rect in the sense of Definition 1, the above constructed PKE is correct in a
similar sense: for any (pk, sk) ∈ PKE.K(1λ) and plaintext bit b ∈ {0, 1} we have
Pr[PKE.D(sk,PKE.E(pk, b))] = negl(λ). The proof of this is straightforward.

6 Proof of CCA2 Security

We will prove the following theorem.

Theorem 6 (CCA2 security). Let (TDF.K,TDF.F,TDF.F−1) be the TDF that
results from Construction 3 based on a recyclable OWFE (K, f,E,D). Assuming
(K, f,E,D) is adaptively secure, the PKE given in Construction 5 is CCA2 secure.

We need to show that the probability of success of any CCA2 adversary is
the CCA2 game is at most 1

2 + negl(λ). Fix the adversary A in the remainder of
this section. We give the following event that describes exactly the success of A.
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Event Success. Let (pk, sk)
$←− PKE.K(1λ), bplain

$←− {0, 1}, c $←− PKE.E(pk, bplain).
Run the adversary A on (pk, c) and reply to any query c′ 6= c of A with
PKE.D(sk, c′). We say that the event Success holds if A outputs bplain.

Road Map. To prove Theorem 6, in Section 6.1 we define a simulated experi-
ment Sim and we show that the probability of success of any CCA2 adversary in
this experiment is 1

2 + negl(λ). Next, in Section 6.2 we will show that the proba-
bilities of success of any CCA2 adversary in the real and simulated experiments
are negligibly close, establishing Theorem 6.

6.1 Simulated CCA2 Experiment

We now define a simulated way of doing the CCA2 experiment. Roughly, our
simulator does not have the full secret key (needed to reply to CCA2 queries
of the adversary), but some part of it. Our simulation is enabled a syntactic
property of our constructed TDF. We first state the property and then prove
that it is satisfied by our TDF. We require the existence of an efficient algorithm
Recover for our constructed TDF (TDF.K,TDF.F,TDF.F−1) that satisfies the
following property.

Algorithm Recover: The input to the algorithm is an index key ik, a pre-
fix input x ∈ {0, 1}n and a possible image Y. The output of the algorithm
is X ∈ {0, 1}n+n1 ∪ {⊥}. As for correctness we requite the following. For any
(ik, ∗) ∈ TDF.K(1λ), x ∈ {0, 1}n and Y both the following two properties hold:

– if for no s ∈ {0, 1}n1 TDF.F(ik, x||s) = Y, then Recover(ik, x,Y) = ⊥
– if for some s, TDF.F(ik, x||s) = Y, then Recover(ik, x,Y) returns (x, s).

Lemma 7 (Existence of Recover). There exists an efficient algorithm Recover
with the above properties for our constructed TDF .

Proof. To build Recover, first parse the given inputs as follows: ik = (pp, . . . ),

x ∈ {0, 1}n and Y := (y, b̃1,0, b̃1,1, . . . , b̃n,0, b̃n,1). Do the following steps:

1. For all i ∈ [n] set bi := b̃i,1−xi .
2. Let s = b1|| · · · ||bn
3. Check if Y = TDF.F(ik, x||s). If the check holds, return (x, s). Otherwise,

return ⊥.

The correctness of the algorithm Recover follows by inspection. ut

Sim(ik1, . . . , ikm,Y1, . . . ,Ym, b): The simulated experiment differs from the real
experiment in that the challenger does not know the trapdoor keys of half of
the index keys that are given to the CCA adversary as part of the public key.
The challenger, however, tries to produce accurate answers based on her partial
knowledge.

Formally, do the following steps.
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1. Initializing the CCA Adversary:

(a) Sample (vk, sgk)
$←− SIG.K(1λ).

(b) For all i ∈ [m] set ikvkii := iki and sample (ik1−vkii , tk1−vkii )
$←− TDF.K(1λ).

(c) Sample a challenge bit bplain
$←− {0, 1} and let b1 := bplain ⊕ b. Set

msg := Y1|| · · · ||Ym||b1.

Sample σ
$←− SIG.Sign(sgk,msg) and set

pk := (ik01, ik
1
1, . . . , ik

0
m, ik

1
m), c := (vk,Y1, . . . ,Ym, b1, σ).

Run the CCA2 adversary A on (pk, c).
2. Simulating the CCA responses:

Respond to a CCA2-oracle query c′ := (vk′,Y′1, . . . ,Y
′
m, b

′, σ′) as follows:
(a) Letting msg′ := Y′1|| · · · ||Y′m||b′ if Ver(vk′,msg′, σ′) = ⊥, then return ⊥.

Otherwise, if vk′ = vk, then halt and return ⊥.
(b) Otherwise, let Q consist all of all indices i ∈ [m] for which we have

vk′i 6= vki. For i ∈ Q set X′i := TDF.F−1(tk
vk′i
i ,Y′i) and check if Y′i =

TDF.F(ik
vk′i
i ,X′i); if this fails for any i ∈ Q, then return ⊥. Now if there

exists x′ ∈ {0, 1}n such that for all i ∈ Q we have X′i = (x′, ∗) then
continue with the following steps and otherwise return ⊥.

(I) for all j ∈ [m] \Q, let X′j := Recover(ik
vk′j
j , x′,Y′j). Reply to the query

c′ with HC(x′) if for all j we have X′j 6= ⊥; otherwise, reply to the
query with ⊥.

3. Forming the output of the experiment: The experiment outputs 1 if A
outputs bplain; otherwise, the experiments outputs 0.

Event Successsim. The event that Sim(ik1, . . . , ikm,Y1, . . . ,Ym, b) outputs 1

where x
$←− {0, 1}n, b := HC(x) and for i ∈ [m], (iki, tki)

$←− TDF.K(1λ),

si
$←− {0, 1}nr and Yi := TDF.K(iki, x||si).

We now show that the probability of the event Successsim is 1
2 + negl(λ). We

will then show in the next section that the probability of the event Success is
close to that of Successsim, hence obtaining our main result.

Lemma 8.

α := Pr[Successsim] ≤ 1

2
+ negl(λ). (29)

Proof. This lemma follows by Lemma 6. Suppose the input to Sim is sampled

exactly as done in the event Successsim, except that we sample b
$←− {0, 1} (in-

stead of setting b := HC(x)). In this case the output of the simulation is 1 with
probability 1/2. Now Lemma 6 implies that α = 1

2 + negl(λ) (Equation 29), and
the proof is complete. ut
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6.2 Relating the Simulated and Real Experiments

We will now show that the probabilities of the events Success and Successsim
are negligibly close, hence obtaining Theorem 6 from Lemma 8. To this end, we
define below two events Forge and Spoof, and show that the difference of the
probabilities of Success and Successsim is at most the sum of the probabilities
of Forge and Spoof. We will then show that both these events happen with
negligible probability.

Event Forge: In the experiment Sim(ik1, . . . , ikm,Y1, . . . ,Ym, b) we let Forge be
the event that A issues a CCA2 query

c′ := (vk′,Y′1, . . . ,Y
′
m, b

′, σ′)

such that vk = vk′ and Ver(vk,Y′1|| · · · ||Y′m||b′, σ′) = >. Recall that vk is part of
the challenge ciphertext c := (vk, . . . ) given to the adversary.

Informally, the event Spoof below describes a situation in which a decryption
query during the execution of Sim is answered with a non ⊥ string, but the same
query may be replied to with ⊥ under the real decryption oracle.

Event Spoof: Let c := (vk, . . . ) be the challenge ciphertext formed during
Sim(ik1, . . . , ikm,Y1, . . . ,Ym, b). We let Spoof be the event that A issues a CCA2
query

c′ := (vk′,Y′1, . . . ,Y
′
m, b

′, σ′)

for which the following holds. Let Q be the set of indices i ∈ [m] for which we
have vki 6= vk′i. For some h ∈ Q and for some w ∈ [m] \ Q we have

– TDF.F−1(tk
vk′h
h ,Y′h) = (x′, ∗) 6= ⊥; and

– s′j := Recover(ikvk
′
w

w , x′,Y′w) 6= ⊥ but TDF.F−1(tkvk
′
w

w ,Y′w) = ⊥.

We will now prove the following three lemmas.

Lemma 9. We have

|Pr[Success]− Pr[Successsim]| ≤ Pr[Forge] + Pr[Spoof].

Lemma 10.

Pr[Forge] ≤ negl(λ).

Lemma 11.

Pr[Spoof] ≤ negl(λ).

Let us first derive the proof of Theorem 6 and then prove each of the lemmas.
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Proof of Theorem 6 Follows from Lemmas 8 and 9, taking into account the
fact that the experiment Real(1λ) is the real CCA2 experiment. ut

We prove Lemmas 9 and 10 and will prove Lemma 11 in Section 6.3.

Proof (of Lemma 9). First of all, note that the input (pk, c) given to the CCA2
adversary under the simulated experiment is identically distributed to that under
the real CCA2 experiment. Thus, any possible difference between the simulated
and real experiments must be due to the ways in which decryption queries are
answered. We will now show that if at any point a decryption query is answered
to differently under Sim and Real, then either Forge or Spoof must happen. First,
in order for a query c′ to be answered differently, either (1) the query c′ is replied
to with ⊥ under Sim and with some b′ ∈ {0, 1} under Real; or (2) c′ is replied to
with some b′ ∈ {0, 1} under Sim and with ⊥ under Real. In particular, we cannot
have a situation in which c′ is replied to with some b′ ∈ {0, 1} under Sim and
with 1− b′ under Real. The reason for this is that if both experiments reply to
a query with something other than ⊥, then the underlying recovered pre-image
x′ must be the same, hence both will end up replying with the same bit.

Let c := (vk, . . . ) be the challenge ciphertext of the underlying CCA2 adver-
sary and c′ := (vk′,msg′, σ′) be an issued query. We now consider all possible
cases:

– If Sim replies to c′ := (vk′,msg′, σ′) with ⊥, then one of the following must
hold.

• SIG.Ver(vk′,msg′, σ′) = ⊥: in this case Real also replies to with ⊥;
• SIG.Ver(vk′,msg′, σ′) = > and vk = vk′: in this case the event Forge

happens;
• Sim returns ⊥ as a result of Step 2b of the execution of Sim: that is,

TDF.F−1(tk
vk′i
i ,Y′i) = ⊥: in this case Real also replies with ⊥

• Sim replies with ⊥ as a result of Step (I): in this case by correctness of
Recover we will know Real will also reply with ⊥.

– If Real replies to c′ with ⊥ and Sim replies to c′ with some b′ ∈ {0, 1}, then
we may easily verify that the event Spoof must necessarily hold. We omit
the details. ut

Proof (of Lemma 10). Suppose Pr[Forge] > negl(λ). We show how to build an ad-
versary B against the one-time unforgeability of SIG = (SIG.K,SIG.Sign,SIG.Ver).
Build BSgnOracle[sgk](·)(vk) as follows. Sample the input (ik1, . . . , ikm,Y1, . . . ,Ym, b)
to Sim and form the tuple msg as in the execution of Sim on this input. Then
request a signature σ for the message msg by calling SgnOracle[sgk](·) on msg.
Form (pk, c) as in Sim and run the CCA2 adversary A on (pk, c). Let q be the

number queries that A asks. Choose i
$←− [q] to be a guess for the index of the first

query for which the event Forge occurs and output the pair of message/signature
contained in that query. Note that B can perfectly reply to all the previous i− 1
queries of A, because all of those can be replied to without knowing sgk. If
α := Pr[Forge], then B will win with probability at least α

q . ut
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6.3 Proof of Lemma 11

The proof of Lemma 11 is based on a property of our TDF that we now state
and prove. Informally, if the OWFE scheme used in our TDF construction is
adaptively secure, then the constructed TDF has the property that given a
random index key ik, it is infeasible to produce an image element which is in the
range of the trapdoor function TDF.F(ik, ·), but which “inverts” to ⊥.

Lemma 12. Let TDF = (TDF.K,TDF.F,TDF.F−1) be the TDF built in Sec-
tion 4, with the underlying parameter r := r(λ) ∈ ω(log λ), based on a recyclable
OWFE scheme OWFE = (K, f,E,D). Assuming OWFE is adaptive (Definition 5),
for any PPT adversary A:

Pr[(X,Y)
$←− A(ik) s.t. Y = TDF.F(ik,X),TDF.F−1(tk,Y) = ⊥] = negl(λ), (30)

where (ik, tk)
$←− TDF.K(1λ).

Proof. Let Surprise be the event of the lemma. Parse

ik := (pp, ct1,0, ct1,1, . . . , ctn,0, ctn,1), tk := (ρ1,0,ρ1,1, . . . ,ρn,0,ρn,1), (31)

and for all i′ ∈ [n] and b′ ∈ {0, 1} parse

cti′,b′ := (ct
(1)
i′,b′ , . . . , ct

(r)
i′,b′) (32)

ρi′,b′ := (ρ
(1)
i′,b′ , . . . , ρ

(r)
i′,b′).

Recall that for all i′ ∈ [n], b′ ∈ {0, 1} and j ∈ [r] we have

ct
(j)
i′,b′ = E1(pp, (i′, b′); ρ

(j)
i′,b′). (33)

Also, parse (X,Y), the output of A(ik), as

X := (x ∈ {0, 1}n,b1 ∈ {0, 1}r, . . . ,bn ∈ {0, 1}r) (34)

Y := (y,b1,0 ∈ {0, 1}r,b1,1 ∈ {0, 1}r, . . . ,bn,0 ∈ {0, 1}r,bn,1 ∈ {0, 1}r).

If the event Surprise happens, then by definition we have Y = TDF.F(ik,X)
and TDF.F−1(tk,Y) = ⊥. Thus, by definition of TDF.F−1, for some i ∈ [n] we
must have

bi =
(
E2(pp, y, (i, 1− xi); ρ

(1)
i,1−xi), . . . ,E2(pp, y, (i, 1− xi); ρ

(r)
i,1−xi)

)
. (35)

We show how to use Equation 35 to break the adaptive security of OWFE.

We show how to build an adversary against the adaptive security of OWFE in

the sense of Lemma 1. Sample i
$←− [n] and b

$←− {0, 1}— The value of b will serve
as a guess bit for 1− xi (see Equation 35). Give the pair (i, b) to the challenger
to receive (pp, ct1, . . . , ctr). Set cti,b := (ct1, . . . , ctr) and sample all other cti′,b′ ,
for (i′, b′) 6= (i, b), as in Equation 32 and form the index ik as in Equation 31.
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Call A(ik) to receive (X,Y) and parse them as in Equation 34. If xi = b then
return ⊥. Otherwise, give x to the challenger to receive some e′ ∈ {0, 1}r. If
e′ = bi then return 0, and otherwise return 1.

If the probability of the event Surprise is non-negligible, then A wins with a
probability non-negligibly greater than 1

2 . The reason is if e′ was generated uni-
formly at random from {0, 1}r, then the probability that e′ = bi is 1

2r = negl(λ).
On the other hand, if e′ was generated as a result of true encapsulation encryp-
tions (see the description of the game in Lemma 1), then the probability that
e′ = bi is the probability of the event in Equation 35, which is non-negligible.
Thus, we break the adaptive security of OWFE, a contradiction to Lemma 1. ut

Proof (of Lemma 11). The proof of this lemma follows easily from Lemma 12,
so we will give a sketch of the proof. Let β := Pr[Spoof]. We show how to build
an adversary B in the sense of Lemma 12 that wins with probability β

poly(λ) .

Recall h and w from the event Spoof. The adversary B(ik) acts as follows.

– Sample (vk, sgk)
$←− SIG.K(1λ).

– Guess w
$←− [m]

– Set ikvkww := ik. Also, sample (ik1−vkww , tk1−vkww )
$←− TDF.K(1λ)

– For all i ∈ [m] \ {w} and b ∈ {0, 1}, sample (ikbi , tk
b
w)

$←− TDF.K(1λ).

– Sample x
$←− {0, 1}n, b := HC(x) and for i ∈ [m], Yi := TDF.K(ikvkii , x||si).

– Sample bplain
$←− {0, 1} and set b1 := bplain ⊕ b.

– Set the challenge public key and ciphertext (pk, c) as in Sim and run the
CCA2 adversary A on (pk, c).

Now guess η to be the index of the first query of A that causes Spoof to

happen and guess h
$←− [m] be the underlying index defined in the event Forge.

Note that B can perfectly simulate the response all the first η − 1 queries of A
as in Sim. The reason is that B has the trapdoor key for all ik1−vkii , and so it can
perform as in Sim.
The ηth query. Letting the ηth query be

c′ := (vk′,Y′1, . . . ,Y
′
m, b

′
ciph, σ

′)

B acts as follows: set (x′, sh) := TDF.F−1(tk
vk′h
h ,Y′h) and X′w := Recover(ik, x′,Y′w).

Finally, B returns (X′w,Y
′
w).

It is now easy to verify if Spoof occurs and that all the guesses of the adversary
B were correct (i.e., the guessed values for h, w and vk′w) — which happens with
probability 1

poly(λ) — the adversary B wins in the sense of Lemma 12. ut
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