
Correcting Subverted Random Oracles

Alexander Russell1, Qiang Tang2, Moti Yung3, and Hong-Sheng Zhou4

1 University of Connecticut, acr@cse.uconn.edu
2 New Jersey Institute of Technology, qiang@njit.edu

3 Columbia University, moti@cs.columbia.edu
4 Virginia Commonwealth University, hszhou@vcu.edu

Abstract. The random oracle methodology has proven to be a powerful
tool for designing and reasoning about cryptographic schemes, and can
often act as an effective bridge between theory and practice. In this pa-
per, we focus on the basic problem of correcting faulty—or adversarially
corrupted—random oracles, so that they can be confidently applied for
such cryptographic purposes.

We prove that a simple construction can transform a “subverted” random
oracle—which disagrees with the original one at a negligible fraction of
inputs—into a construction that is indifferentiable from a random func-
tion. Our results permit future designers of cryptographic primitives in
typical kleptographic settings (i.e., with adversaries who may subvert the
implementation of cryptographic algorithms but undetectable via black-
box testing) to use random oracles as a trusted black box, in spite of not
trusting the implementation. Our analysis relies on a general rejection
re-sampling lemma which is a tool of possible independent interest.

1 Introduction

The random oracle methodology [7] has proven to be a powerful tool for designing
and reasoning about cryptographic schemes. It consists of the following two steps:
(i) design a scheme Π in which all parties (including the adversary) have oracle
access to a common truly random function, and establish the security of Π in
this favorable setting; (ii) instantiate the random oracle in Π with a suitable
cryptographic hash function (such as SHA256) to obtain an instantiated scheme
Π ′. The random oracle heuristic states that if the original scheme Π is secure,
then the instantiated scheme Π ′ is also secure. While this heuristic can fail
in various settings [19] the basic framework remains a fundamental design and
analysis tool. In this work we focus on the problem of correcting faulty—or
adversarially corrupted—random oracles so that they can be confidently applied
for such cryptographic purposes.

Specifically, given a function h̃ drawn from a distribution which agrees in most
places with a uniform function, we would like to produce a corrected version that
has stronger uniformity properties. Our problem shares some features with the
classical “self-checking and self-correcting program” paradigm [9,10,11]: we wish
to transform a program that is faulty at a small fraction of inputs (modeling an

evasive adversary) to a program that is correct at all points. In this light, our
model can be viewed as an adaptation of the classical theory that considers the
problem of “self-correcting a probability distribution.” Notably, in our setting the
functions to be corrected are structureless—specifically, drawn from the uniform
distribution—rather than heavily structured. Despite that, the basic procedure
for correction and portions of the technical development are analogous.

One particular motivation for correcting random oracles in a cryptographic
context arises from recent work studying security in the kleptographic setting. In
this setting, the various components of a cryptographic scheme may be subverted
by an adversary so long as the tampering cannot be detected via blackbox test-
ing. This is a challenging setting for a number of reasons highlighted by [6,49,50]
: one particular difficulty is that the random oracle paradigm is directly under-
mined. In terms of the discussion above, the random oracle—which is eventually
to be replaced with a concrete function—is subject to adversarial subversion
which complicates even the first step (i) of the random oracle methodology above.
Our goal is to provide a generic approach that can rigorously “protect” random
oracles from subversion.

1.1 Our contributions

We first give two concrete attacking scenarios where hash functions are sub-
verted in the kleptographic setting. We then express the security properties
by adapting the successful framework of indifferentiability [41,23] to our setting
with adversarial subversion. This framework provides a satisfactory guarantee of
modularity—that is, that the resulting object can be directly employed by other
constructions demanding a random oracle. We call this new notion “crooked”
indifferentiability to reflect the role of adversary in the modeling; see below. (A
formal definition appears in Section 2.)

We prove that a simple construction involving only public randomness can
boost a “subverted” random oracle into a construction that is indifferentiable
from a random function. (Section 3, 4). We remark that our technical develop-
ment establishes a novel “rejection re-sampling” lemma, controlling the distribu-
tion emerging from adversarial re-sampling of product distributions. This may
be a technique of independent interest. We expand on these contributions below.

Consequences of kleptographic hash subversion. We first illustrate the
damages that are caused by using hash functions that are subverted at only a
negligible fraction of inputs with two concrete examples:

(1) Chain take-over attack on blockchain. For simplicity, consider a proof-of-work
blockchain setting where miners compete to find a solution s to the “puzzle”
h(pre||transactions||s) ≤ d, where pre denotes the hash of previous block, trans-
actions denotes the set of valid transactions in the current block, and d denotes
the difficulty parameter. Here h is intended to be a strong hash function. Note
that, the mining machines use a program h̃(·) (or a dedicated hardware module)
which could be designed by a clever adversary. Now if h̃ has been subverted so

2

that h̃(∗||z) = 0 for a randomly chosen z—and h̃(x) = h(x) in all other cases—
this will be difficult to detect by prior black-box testing; on the other hand, the
adversary who created h̃ has the luxury of solving the proof of work without
any effort for any challenge, and thus can completely control the blockchain. (A
fancier subversion can tune the “backdoor” z to other parts of the input so that
it cannot be reused by other parties; e.g., h̃(w||z) = 0 if z = f(w) for a secret
pseudorandom function known to the adversary.)

(2) System sneak-in attack on password authentication. In Unix-style system,
during system initialization, the root user chooses a master password α and the
system stores the digest ρ = h(α), where h is a given hash function normally
modeled as a random oracle. During login, the operating system receives input
x and accepts this password if h(x) = ρ. An attractive feature of this practice
is that it is still secure if ρ is accidentally leaked. In the presence of klepto-
graphic attacks, however, the module that implements the hash function h may
be strategically subverted, yielding a new function h̃ which destroys the security
of the scheme above: for example, the adversary may choose a relatively short
random string z and define h̃(y) = h(y) unless y begins with z, in which case
h̃(zx) = x. As above, h and h̃ are indistinguishable by black-box testing; on
the other hand, the adversary can login as the system administrator using ρ
and its knowledge of the backdoor z (without knowing the actual password α,
presenting zρ instead).

The model of “crooked” indifferentiability. The problem of cleaning de-
fective randomness has a long history in computer science. Our setting requires
that the transformation must be carried out by a local rule and involve an expo-
nentially small amount of public randomness (in the sense that we wish to clean
a defective random function h : {0, 1}n → {0, 1}n with only a polynomial length
random string). The basic framework of correcting a subverted random oracle is
the following:

First, a function h : {0, 1}n → {0, 1}n is drawn uniformly at random. Then,
an adversary may subvert the function h, yielding a new function h̃. The sub-
verted function h̃(x) is described by an adversarially-chosen (polynomial-time)
algorithm H̃h(x), with oracle access to h. We insist that h̃(x) 6= h(x) only at
a negligible fraction of inputs.5 Next, the function h̃ is “publicly corrected” to
a function h̃R (defined below) that involves some public randomness R selected
after h̃ is supplied.6

5 We remark that tampering with even a negligible fraction of inputs can have devas-
tating consequences in many settings of interest: e.g., the blockchain and password
examples above. Additionally, the setting of negligible subversion is precisely the
desired parameter range for existing models of kleptographic subversion and secu-
rity. In these models, when an oracle is non-negligibly defective, this can be easily
detected by a watchdog using a simple sampling and testing regimen, see e.g., [49].

6 We remark that in many settings, e.g., the model of classical self-correcting programs,
we are permitted to sample fresh and “private” randomness for each query; in our
case, we may only use a single polynomial-length random string for all points. Once
R is generated, it is made public and fixed, which implicitly defines our corrected

3

We wish to show that the resulting function (construction) is “as good as”
a random oracle, in the sense of indifferentiability. We say a construction CH

(having oracle access to an ideal primitive H) is indifferentiable from another
ideal primitive F , if there exists a simulator S so that (CH , H) and (F ,S) are
indistinguishable to any distinguisher D.

To reflect our setting, an H-crooked-distinguisher D̂ is introduced; the H-
crooked-distinguisher D̂ first prepares the subverted implementation H̃ (after
querying H first); then a fixed amount of (public) randomness R is drawn and
published; the construction C uses only subverted implementation H̃ and R.
Now following the indifferentiability framework, we will ask for a simulator

S, such that (C H̃H (·, R), H) and (F ,SH̃(R)) are indistinguishable to any H-

crooked-distinguisher D̂ who even knows R. A similar security preserving theo-
rem [41,23] also holds in our model. See Section 2 for details.

The construction. The construction depends on a parameter ` = poly(n)
and public randomness R = (r1, . . . , r`), where each ri is an independent and
uniform element of {0, 1}n. For simplicity, the construction relies on a family of
independent random oracles hi(x), for i ∈ {0, . . . , `}. (Of course, these can all
be extracted from a single random oracle with slightly longer inputs by defining
h̃i(x) = h̃(i, x) and treating the output of hi(x) as n bits long.) Then we define

h̃R(x) = h̃0

(⊕̀
i=1

h̃i(x⊕ ri)

)
= h̃0

(
g̃R(x)

)
.

Note that the adversary is permitted to subvert the function(s) hi by choosing
an algorithm Hh∗(x) so that h̃i(x) = Hh∗(i, x). Before diving into the analysis,
let us first quick demonstrate how some simpler constructions fail.

Simple constructions and their shortcomings. Although during the stage of man-
ufacturing the hash functions h̃∗ = {h̃i}`i=0, the randomness R := r1, . . . , r` are
not known to the adversary, they become public in the second query phase. If the
“mixing” operation is not carefully designed, the adversary could choose inputs
accordingly, trying to “peel off” R. We discuss a few examples:

1. h̃R(x) is simply defined as h̃1(x⊕ r1). A straightforward attack is as follows:
the adversary can subvert h1 in a way that h̃1(m) = 0 for a random input
m; the adversary then queries m⊕ r1 on h̃R(·) and can trivially distinguish
h̃ from a random function.

2. h̃R(x) is defined as h̃1(x⊕r1)⊕h̃2(x⊕r2). Now a slightly more complex attack
can still succeed: the adversary subverts h1 so that h̃1(x) = 0 if x = m||∗,
that is, when the first half of x equals to a randomly selected string m with
length n/2; likewise, h2 is subverted so that h̃2(x) = 0 if x = ∗||m, that is,
the second half of x equals m. Then, the adversary queries m1||m2 on h̃R(·),

function h̃R(·). This latter requirement is necessary in our setting as random oracles
are typically used as a public object—in particular, our attacker must have full
knowledge of R.

4

where m1 = m⊕ r1,0, and m2 = m⊕ r2,1, and r1,0 is the first half of r1, and
r2,1 is the second half of r2. Again, trivially, it can be distinguished from a
random function.
This attack can be generalized in a straightforward fashion to any ` ≤ n/λ:
the input can be divided in into consecutive substrings each with length λ,
and the “trigger” substrings can be planted in each chunk.

Challenges in the analysis. To analyze security in the “crooked” indifferentia-
bility framework, our simulator needs to ensure consistency between two ways

of generating output values: one is directly from the construction CH̃
h

(x,R);
the other calls for an “explanation” of F—a truly random function—via re-
construction from related queries to H (in a way consistent with the subverted
implementation H̃). To ensure a correct simulation, the simulator must suitably

answer related queries (defining one value of CH̃
h

(x,R)). We develop a theo-
rem establishing an unpredictability property of the internal function g̃R(x) to
guarantee the success of simulation. In particular, we prove that for any input x
(if not yet “fully decided” by previous queries), the output of g̃R(x) is unpred-
icatable to the distinguisher even if she knows the public randomness R (even

conditioned on adaptive queries generated by D̂).
Section 4 develops the detailed security analysis for the property of the inter-

nal function g̃R(x). The proof of correctness for this construction is complicated
by the fact that the “defining” algorithm H̃ is permitted to make adaptive
queries to h during the definition of h̃; in particular, this means that even when
a particular “constellation” of points (the hi(x ⊕ ri)) contains a point that is
left alone by H̃ (which is to say that it agrees with hi()) there is no guarantee
that

⊕
i hi(x ⊕ ri) is uniformly random. This suggests focusing the analysis on

demonstrating that the constellation associated with every x ∈ {0, 1}n will have
at least one “good” component, which is (i.) not queried by H̃h(·) when eval-
uated on the other terms, and (ii.) answered honestly. Unfortunately, actually
identifying such a good point with certainty appears to require that we examine
all of the points in the constellation for x, and this interferes with the standard
“exposure martingale” proof that is so powerful in the random oracle setting
(which capitalizes on the fact that “unexamined” values of h can be treated as
independent and uniform values).

To sidestep this difficulty, we prove a “resampling” lemma, which lets us ex-
amine all points in a particular constellation, identify one “good” one of interest,
and then resample this point so as to “forget” about all possible conditioning
this value might have. The resampling lemma gives a precise bound on the effects
of such conditioning.

Immediate applications: Our correction function can be easily applied to
save the faulty hash implementation in several important application scenarios,
as explained in the motivational examples.

(1) For proof-of-work based blockchains, as discussed above, miners may rely
on a common library h̃ for the hash evaluation, perhaps cleverly implemented by
an adversary. Here h̃ is determined before the chain has been deployed. We can

5

then prevent the adversary from capitalizing on this subversion by applying our
correction function. In particular, the public randomness R can be embedded in
the genesis block; the function h̃R(·) is then used for mining (and verification)
rather than h̃.

(2) The system sneak-in can also be resolved immediately by applying our
correcting random oracle. During system initialization (or even when the oper-
ating system is released), the system administrator generates some randomness
R and wraps the hash module h̃ (potentially subverted) to define h̃R(·). The
password α then gives rise to the digest ρ = h̃R(α) together with the random-
ness R. Upon receiving input x, the system first “recovers” h̃R(·) based on the
previously stored R, and then tests if ρ = h̃R(x). The access will be enabled
if the test is valid. As the corrected random oracle ensures the output to be
uniform for every input point, this remains secure in the face of subversion.7

1.2 Related Work

Related work on indifferentiability. The notion of indifferentiability was proposed
by Maurer et al. [41], as an extension of the classical concept of indistinguisha-
bility when one or more oracles are publicly available (such as a random oracle).
It was later adapted by Coron et al. [23] and generalized to several other variants
in [33,34,29,53,47]. Notably, a line of elegant work demonstrated the equivalence
of the random oracle model and the ideal cipher model; in particular, the Feistel
construction (with a small constant number of rounds) is indifferentiable from an
ideal cipher, see [24,25,26]. Our work adapts the indifferentiability framework to
the setting where the construction uses only a subverted implementation, which
we call “crooked indifferentiability,” where the construction aims to be indiffer-
entiable from another repaired random oracle.

Related work on self-correcting programs. The theory of program self-testing,
and self-correcting, was pioneered by the work of Blum et al. [9,10,11]. This
theory addresses the basic problem of program correctness by verifying relation-
ships between the outputs of the program on randomly selected inputs; a similar
problem is to turn an almost correct program into one that is correct at every
point with overwhelming probability. Rubinfeld’s thesis [48] is an authoritative
survey of the basic framework and results. Our results can be seen as a distri-
butional analogue of this theory but with two main differences: (i). we insist on
using only public randomness drawn once for the entire “correction”; (ii). our
target object is a distribution, rather than a particular function.

Related work on random oracles. The random oracle methodology [7] can signif-
icantly simplify both cryptographic constructions and proofs, even though there
exist schemes which are secure using random oracles, but cannot be instanti-
ated in the standard model, [19]. On the other hand, efforts have been made to
identify instantiable assumptions/models in which we may analyze interesting

7 Typical authentication of this form also uses password “salt,” but this doesn’t change
the structure of the attack or the solution.

6

cryptographic tasks [16,20,18,12,13,14,39,4]. Also, we note that research efforts
have also been made to investigate weakened idealized models [45,38,40,37]. Fi-
nally, there are several recent nice works about random oracle in the auxiliary
input model (or with pre-processing) [31,51]. Our model shares some similarities
that the adversary may embed some preprocessed information into the subverted
implementation, but our subverted implementation can further misbehave. Our
results strengthen the random oracle methodology in the sense that using our
construction, we can even tolerate a faulty hash implementation.

Related work on kleptographic security. Kleptographic attacks were originally in-
troduced by Young and Yung [54,55]; In such attacks, the adversary provides
subverted implementations of the cryptographic primitive, trying to learn se-
cret without being detected. In recent years, several remarkable allegations of
cryptographic tampering [46,42], including detailed investigations [22,21], have
produced a renewed interest in both kleptographic attacks and in techniques
for preventing them [8,6,30,43,32,27,2,5,52,3,1,28,49,50,15]. None of those work
considered how to actually correct a subverted random oracle.

Concurrently, Fischlin et al [36] also considered backdoored (keyed) hash
functions, and how to immunize them particularly for the settings of HMAC
and HKDF. They focused on preserving some weaker property of weak pseu-
dorandomness for the building block of the compression function. We aim at
correcting all the properties of a subverted random oracle, and moreover, our
correction function can be applied to immunize backdoored public hash func-
tions, which was left open in [36].

Similar constructions in other context. Our construction follows the simple in-
tuition by mixing and input and output by XORing multiple terms. This share
similarities in constructions in several other scenarios, e.g., about hardness am-
plification, notably the famous Yao XOR lemma, and for weak PRF [44]; and
randomizers in the bounded storage model [35]. Our construction has to have an
external layer of h0 to wrap the XOR of terms, and our analysis is very different
from them due to that our starting point of a subverted implementation.

2 The Model: Crooked Indifferentiability

2.1 Preliminary: Indifferentiability

The notion of indifferentiability introduced by Maurer et al. [41] has been found
very useful for studying the security of hash function and many other primitives,
especially model them as idealized objectives. This notion is an extension of the
classical notion of indistinguishability, when one or more oracles are publicly
available. The indifferentiability notion in [41] is given in the framework of ran-
dom systems providing interfaces to other systems. Coron et al. [23] demonstrate
an equivalent indifferentiability notion for random oracles but in the framework
of Interactive Turing Machines (as in [17]). The indifferentiability formulation
in this subsection is essentially taken from [23]. In the next subsection, we will
introduce our new notion, crooked indifferentiability.

7

Defining indifferentiability. We consider ideal primitives. An ideal primitive is
an algorithmic entity which receives inputs from one of the parties and returns
its output immediately to the querying party. We now proceed to the definition
of indifferentiability [41,23]:

Definition 1 (Indifferentiability [41,23]). A Turing machine C with oracle
access to an ideal primitive G is said to be (tD, tS , q, ε)-indifferentiable from an
ideal primitive F , if there is a simulator S, such that for any distinguisher D, it
holds that : ∣∣Pr[DC ,G = 1]− Pr[DF,S = 1]

∣∣ ≤ ε .
The simulator S has oracle access to F and runs in time at most tS . The distin-
guisher D runs in time at most tD and makes at most q queries. Similarly, C G is
said to be (computationally) indifferentiable from F if ε is a negligible function
of the security parameter λ (for polynomially bounded tD and tS). See figure 1.

C G F S

D

Fig. 1. The indifferentiability notion: the distinguisher D either interacts with algo-
rithm C and ideal primitive G, or with ideal primitive F and simulator S. Algorithm
C has oracle access to G, while simulator S has oracle access to F .

As illustrated in Figure 1, the role of the simulator is to simulate the ideal
primitive G so that no distinguisher can tell whether it is interacting with C and
G, or with F and S; in other words, the output of S should look “consistent”
with what the distinguisher can obtain from F . Note that normally the simulator
does not see the distinguisher’s queries to F ; however, it can call F directly when
needed for the simulation.

Replacement. It is shown in [41] that if C G is indifferentiable from F , then C G

can replace F in any cryptosystem, and the resulting cryptosystem is at least as
secure in the G model as in the F model.

We use the definition of [41] to specify what it means for a cryptosystem to be
at least as secure in the G model as in the F model. A cryptosystem is modeled
as an Interactive Turing Machine with an interface to an adversary A and to a
public oracle. The cryptosystem is run by an environment E which provides a
binary output and also runs the adversary. In the G model, cryptosystem P has

8

oracle access to C (which has oracle access to G), whereas attacker A has oracle
access to G. In the F model, both P and SA (the simulator) has direct oracle
access to F . The definition is illustrated in Figure 2.

C G

P A

E

F

P SA

E

Fig. 2. The environment E interacts with cryptosystem P and attacker A. In the G
model (left), P has oracle access to C whereas A has oracle access to G. In the F
model, both P and SA have oracle access to F .

Definition 2. A cryptosystem P is said to be at least as secure in the G model
with algorithm C , as in the F model, if for any environment E and any attacker
A in the G model, there exists an attacker SA in the F model, such that:

Pr[E(PC ,AG) = 1]− Pr[E(PF ,SFA) = 1] ≤ ε.

where ε is a negligible function of the security parameter λ, and the notation
E(PC ,AG) defines the output of E after interacting with P,A as on the left side
of Figure 2 (similarly we can define the right hand side). Moreover, a cryptosys-
tem is said to be computationally at least as secure, etc., if E, A and SA are
polynomial-time in λ.

We have the following security preserving (replacement) theorem, which says
that when an ideal primitive is replaced by an indifferentiable one, the security
of the “bigger” cryptosystem remains:

Theorem 1 ([41,23]). Let P be a cryptosystem with oracle access to an ideal
primitive F . Let C be an algorithm such that C G is indifferentiable from F .
Then cryptosystem P is at least as secure in the G model with algorithm C as
in the F model.

2.2 Crooked indifferentiability

The ideal primitives that we focus on in this paper are random oracles. A ran-
dom oracle [7] is an ideal primitive which provides a random output for each

9

new query, and for the identical input queries the same answer will be given.
Next we will formalize a new notion called crooked indifferentiability to charac-
terize subversion. For simplicity, our formalization here is for random oracles, we
remark that the formalization can be easily extended for other ideal primitives.

Crooked indifferentiability for random oracles. Let us briefly recall our
goal: as mentioned in the Introduction, we are considering to repair a sub-
verted/faulty random oracle, such that the corrected construction can be used
as good as a random oracle. It is thus natural to consider the indifferentiability
notion. However, we need to adjust the notion to properly model the subversion
and to avoid trivial impossibility.

We use H to denote the original random oracle and H̃z to be the subverted
implementation (where z could be the potential backdoor hardcoded in the im-
plementation and we often ignore it using H̃ for simplicity) . There will be several
modifications to the original indifferentiability notion. (1) The deterministic con-
struction C will have the oracle access to the random oracle via the subverted
implementation H̃, not via the original ideal primitive H; This creates lots of
difficulty (and even impossibility) for us to develop a suitable construction. For
that reason, the construction is allowed to access to trusted but public random-
ness r (see remark 1 below). (2) The simulator will also have the oracle access to
the subverted implementation H̃ and also the public randomness r. Item (2) is
necessary as it is clearly impossible to have an indifferentiability definition with
a simulator that has no access to H̃, as the distinguisher can simply make query
an input such that C will use a value that is modified by H̃ while S has no way
to reproduce it. More importantly, we will show below that, the security will still
be preserved to replace an ideal random oracle with a construction satisfying our
definition (with an augmented simulator). We will prove the security preserv-
ing (i.e., replacement) theorem from [41] and [23] similarly with our adapted
notions. (3) To model the whole process of the subversion and correction, we
consider a two-stage adversary: subverting and distinguishing. For simplicity, we
simply consider them as parts of one distinguisher, and do not use separate the
notations and state passing.

Definition 3 (H-crooked indifferentiability). Consider a distinguisher D̂
and the following multi-phase real execution. Initially, the distinguisher D̂ who
has oracle access to ideal primitive H, publishes a subverted implementation of H
(denoted as H̃). Secondly, a uniformly random string r is sampled and published.
Thirdly, a deterministic construction C is then developed: the construction C
has random string r as input, and has the oracle access to H̃ (the crooked version

of H). Finally, the distinguisher D̂, also having random string r as input, and

the oracle access to the pair (C , H), returns a decision bit b. Often, we call D̂,
the H-crooked-distinguisher.

In addition, consider the corresponding multi-phase ideal execution with the
same H-crooked-distinguisher D̂. In the ideal execution, ideal primitive F is
provided. The first two phases are the same (as that in the real execution). In
the third phase, a simulator S will be developed: the simulator has a random

10

string r as input, and has the oracle access to H̃, as well as the ideal primitive
F . In the last phase, the H-crooked-distinguisher D̂, after having random string
r as input, and having the oracle access to an alternative pair (F ,S), returns a
decision bit b.

We say that construction C , is (tD̂, tS , q, ε)-H-crooked-indifferentiable from
ideal primitive F , if there is a simulator S so that for any H-crooked-distinguisher
D̂, (let u be the coins of D̂), it satisfies that the real execution and the ideal ex-
ecution are indistinguishable. Specifically,∣∣∣∣ Pr
u,r,H

[
H̃ ← D̂ : D̂C H̃(r),H(λ, r) = 1

]
− Pr
u,r,F

[
H̃ ← D̂ : D̂F,S

H̃,F (r)(λ, r) = 1
]∣∣∣∣ ≤ ε(λ) .

Here H : {0, 1}λ → {0, 1}λ and F : {0, 1}k → {0, 1}k denote random func-
tions. See figure 3 for detailed illustration of the last phase in both real and ideal
executions (the distinguishing).

C H̃ H F
S

H̃

D̂

Fig. 3. The H-crooked indifferentiability notion: the distinguisher D̂, in the first phase,
manufactures and publishes a subverted implementation denoted as H̃, for ideal prim-
itive H; then in the second phase, a random string r is published; after that, in the
third phase, construction C , or simulator S is developed; the H-crooked-distinguisher
D̂, in the last phase, either interacting with algorithm C and ideal primitive H, or with
ideal primitive F and simulator S, return a decision bit. Here, algorithm C has oracle
access to H̃, while simulator S has oracle access to F and H̃.

Remark 1 (The necessity of public randomness). It appears difficult to achieve
feasibility without randomness. Intuitively: suppose the corrected hash is repre-
sented as g

(
H̃(f(x))

)
, i.e., g(·), f(·) are correction functions, f will be applied

to each input x before calling H̃, and g will be further applied to the corre-
sponding output; then the attacker can plant a trigger using f(z) for a random
backdoor z, such that H̃ (f(z)) = 0. It is easy to see that the attacker who has
full knowledge of (z, g(0)) and can use this pair to distinguish, as F(z) would be
a random value that would not hit g(0) with a noticeable probability. Similarly,
we can see that it is also infeasible if the randomness is generated before the
faulty implementation is provided. For this reason, we allow the model to have

11

a public randomness that is generated after H̃ is supplied, but such randomness
would be available to everyone, including the attacker.

Remark 2 (Comparison with preprocessing). There have been several recent nice
works [31,51] about random oracle with preprocessing, in which the adversary
can have some auxiliary input compressing the queries. While in the first phase
of our model, we also allow the adversary to generate such an auxiliary string
as part of the backdoor z (or part of the instruction of H̃). We further allow
the crooked implementation to deviate from the original random oracle. In this
sense, the preprocessing model for random oracle can be considered to defend
against a similar attacker than us, but the attacker would provide an honest
implementation (only treating the backdoor as the auxiliary input). We note
that their construction using simple salting mechanism [51] cannot correct a
subverted random oracle as in our model: the distinguisher plants a trigger z into
the inputs that H̃(z||∗) = 0 for a randomly chosen z. In this way, the salt would
be subsumed into the ∗ part and has no effect on the faulty implementation.

Remark 3 (Extensions). For simplicity, our definition is mainly for random ora-
cle. It is not very difficult to extend our crooked indifferentiability notion to the
other setting such as ideal cipher, as long as we represent the interfaces properly,
while the multi-phase executions can be similarly defined. Another interesting
extension is to consider a global random oracle (while in the current definition,
there would be an independent instance in the real and ideal execution). We
leave those interesting questions to be explored in future works.

Replacement with crooked indifferentiability. Security preserving (re-
placement) has been shown in the indifferentiability framework [41]: if C G is
indifferentiable from F , then C G can replace F in any cryptosystem, and the re-
sulting cryptosystem in the G model is at least as secure as that in the F model.
We next show that the replacement property can also hold in our crooked indif-
ferentiability framework. Recall that, in the “standard” indifferentiability frame-
work [41,23], a cryptosystem can be modeled as an Interactive Turing Machine
with an interface to an adversary A and to a public oracle. There the cryp-
tosystem is run by a “standard” environment E (see Fig. 2). In our crooked
indifferentiability framework, a cryptosystem also has the interface to an ad-
versary A and to a public oracle. However, now the cryptosystem is run by a
environment Ê that can “crook” the oracle.

Consider an ideal primitive G. Similar to the G-crooked-distinguisher, we
can define the G-crooked-environment Ê as follows: Initially, the G-crooked-
environment Ê manufactures and then publishes a subverted implementation
of the ideal primitive G, denoted as G̃. Then Ê runs the attacker A, and the
cryptosystem P is developed. In the G model, cryptosystem P has oracle access
to C whereas attacker A has oracle access to G; note that, C has oracle access
to G̃, not directly to G. In the F model, both P and SA (the simulator) have or-

acle access to F . Finally, the G-crooked-environment Ê returns a binary decision
output. The definition is illustrated in Figure 4.

12

C G̃ G

P A

Ê

F

P SA

Ê

Fig. 4. The environment Ê interacts with cryptosystem P and attacker A. In the G
model (left), P has oracle access to C (who has oracle access to G) whereas A has
oracle access to G; In the F model, both P and SA have oracle access to F .

Definition 4. Consider ideal primitives G and F . A cryptosystem P is said to
be at least as secure in the G-crooked model with algorithm C as in the F model,
if for any G-crooked-environment Ê and any attacker A in the G-crooked model,
there exists an attacker SA in the F model, such that:

Pr[Ê(PC G̃ ,AG) = 1]− Pr[Ê(PF ,SFA) = 1] ≤ ε.

where ε is a negligible function of the security parameter λ, and Ê(PC G̃ ,AG)

describes the output of Ê running the experiment in the G-world (the left side of

Fig. 4), and similarly for Ê(PF ,SFA).

We now demonstrate the following theorem which shows that security is
preserved when replacing an ideal primitive by a crooked-indifferentiable one:

Theorem 2. Let P be a cryptosystem with oracle access to an ideal primitive
F . Let C be an algorithm such that C G is crooked-indifferentiable from F . Then
cryptosystem P is at least as secure in the G-crooked model with algorithm C as
in the F model.

Proof. The proof is very similar to that in [41,23]. Let P be any cryptosystem,

modeled as an Interactive Turing Machine. Let Ê be any crooked-environment,
and A be any attacker in the G-crooked model. In the G-crooked model, P has
oracle access to C (who has oracle access to G̃, not directly to G.), whereas A has

oracle access to ideal primitive G; moreover, the crooked-environment Ê interacts
with both P and A. This is illustrated in Figure 5 (left part).

Since C is crooked-indifferentiable from F (see Figure 3), one can replace

(C G̃ ,G) by (F ,S) with only a negligible modification of the G-crooked-environment

Ê ’s output distribution. As illustrated in Figure 5, by merging attacker A and

13

simulator S, one obtains an attacker SA in the F model, and the difference in
Ê ’s output distribution is negligible.

C G̃ G

P A

Ê

D̂

F
S

G̃

P A

Ê

D̂

SA

Fig. 5. Construction of attacker SA from attacker A and simulator S.

3 The Construction

Now we proceed to give the construction. Given subverted implementations of
the hash functions {h̃i}i=0,...,`, (the original version of each is hi(·) could be
considered as h(i, ·)), the corrected function is defined as:

h̃R(x) = h̃0(g̃R(x)) = h̃0

(⊕̀
i=1

h̃i(x⊕ ri)

)
.

where R = (r1, . . . , r`) are sampled uniformly after {h̃i(·)} is provided, and then
revealed to the public, and the internal function g̃R(·) is defined below:

g̃R(x) =
⊕̀
i=1

h̃i(x⊕ ri).

We wish to show that such a construction will be indifferentiable to an actual
random oracle (with the proper input/output length). This implies that the
distribution of values taken by h̃R(·) at inputs that have not been queried have
negligible distance from the uniform distribution.

Theorem 3. Suppose h : {0, . . . , `} × {0, 1}n → {0, 1}n defines a family of
random oracles hi : {0, 1}n → {0, 1}n as h(i, ·), for i = 0, . . . , `, and ` ≥ 3n+ 1.

14

Consider a (subversion) algorithm H̃ and H̃h(x) defines a subverted random
oracle h̃. Assume that for every h (and every i),

Pr
x∈{0,1}n

[h̃(i, x) 6= h(i, x)] = negl(n) . (1)

The construction h̃R(·) is (tD̂, tS , q, ε)-indifferentiable from a random oracle
F : {0, 1}n → {0, 1}n, for any tD̂, with tS = poly(q), ε = negl(n) and q is the

number of queries made by the distinguisher D̂ as in Definition 3.

Roadmap for the proof. We first describe the simulator algorithm. The main
challenge for the simulator is to ensure the consistency of two ways of generat-
ing the output values of h̃R(·), (it could also be reconstructed by querying the
original random oracle directly together with the subverted implementation h̃ to
replace the potentially corrupted terms). The idea for simulation is fairly simple:
for an input x, F (x) would be used to program h0 on input g̃R(x).

There are two obstacles that hinder the simulation: (1) for some x, h0 has
been queried on g̃R(x) before the actual programing step, thus the simulator has
to abort; (2) the distinguisher queries on some input x such that g̃R(x) falls into
the incorrect portion of inputs to h̃0.

To bound the probability of these two events, we first establish the property
of the internal function g̃R(·) that no adversary can find an input value that
falls into a small domain (or for any input x, the output is unpredicatable to the
adversary if he has not made any related queries.). See Theorem 4 below. Note
that the bound is conditioned on adaptive queries of the distinguisher.

Theorem 4 (Informal). Suppose the subverted implementation disagrees with
the original oracle at only a negligible fraction of inputs, then with an over-
whelming probability in R, conditioned on the h(q1), . . . , h(qs) (made by any D̂),
for all x outside the “queried” set {t | hi(t⊕ ri) was queried}, and every event
E ⊂ {0, 1}n,

Pr
h

[g̃R(x) ∈ E] ≤ poly(n)
√

Pr[E] + negl(n).

In particular, if |E| is exponentially small in {0, 1}n, the probability g̃R(x) falls
into E would be negligible for any x.

Next, our major analysis will focus on proving this theorem for g̃R(·).
We first set down and prove a “rejection resampling” lemma. This is in-

strumental in our approach to Theorem 5 (the formal version of Theorem 4),
showing that this produces unpredictable values, even to an adaptive adversary
with access to the (public) randomness R;

Surveying the proof in more detail, recall that a value g̃R(x) is determined
as the XOR of a “constellation” of values

⊕
h̃i(x ⊕ ri); intuitively, if we could

be sure that (a) at least one of these terms, say x ⊕ ri, was not queried by
H̃h(·) when evaluated on the other terms and, (b) this isolated term x⊕ ri was
answered “honestly” (that is, h̃i(x⊕ ri) = hi(x⊕ ri)), then it seems reasonable
to conclude that the resulting value, the XOR of the results, is close to uniform.

15

However, applying this intuition to rigorously prove Theorem 5 faces a few
challenges. Perhaps the principal difficulty is that it is not obvious how to “par-
tially expose” the random oracle h to take advantage of this intuition: specifically,
a traditional approach to proving such strong results is to expose the values taken
by the h(x) “as needed,” maintaining the invariant that the unexposed values
are uniform and conditionally independent on the exposed values.

In our setting, we would ideally like to expose all but one of the values of a
particular constellation {hi(x⊕ri)} so as to guarantee that the last (unexposed)
value has the properties (a) and (b) above. While randomly guessing an ordering
could guarantee this with fairly high probability ≈ 1− 1/` we must have such a
favorable event take place for all x, and so must somehow find a way to guarantee
exponentially small failure probabilities. The rejection resampling lemma,
discussed above, permits us to examine all the points in a particular constel-
lation, identify a good point (satisfying (a) and (b)) and then “pretend” that
we never actually evaluated the point in question. In this sense, the resampling
lemma quantifies the penalty necessary for “unexposing” a point of interest.

A less challenging difficulty is that, even conditioned on h̃i(x⊕ri) = hi(x⊕ri),
this value may not be uniform, as the adversary may choose to be “honest”
based on some criteria depending on x or, even, other adaptively-queried points.
Finally, of course, the subversion algorithm H̃h(·) is fully-adaptive, and only
needs to disrupt g̃R(x) at a single value of x.

4 Security Proof

We begin with an abstract formulation of the properties of our construction and
the analysis, and then transition to the detailed description of the simulator
algorithm and its effectiveness.

4.1 The simulator algorithm

The main task of the simulator is to ensure the answers to {hi}-queries to be
consistent with the value of F (·), since for each input x, h̃R(x) is determined by
a sequence of related queries to {hi} and H̃, (or simply the backdoor z) and the
value of R. The basic idea is to program the external layer h0 using values of
F (x), such that the value F (x) is set for h0(g̃R(x)). The value g̃R(x) is obtained
by S executing the subverted implementations {h̃i}.

Let us define the simulator S (answering queries in two stages) as below:
In the first stage, A makes random oracle queries when manufacturing the

subverted implementations {h̃i}i=0,...,`.
On input queries x1, . . . , xq1 (at A’s choice on which random oracle to query)

that A makes before outputting the implementations (and the backdoor), S
answers all those using uniform strings respectively. S maintains a table. See
Table. 1. (w.l.o.g, we simply assume the adversary asks all the hash queries for
each value xi, if not, the simulator asks himself to prepare the table.) S and D
also both receive a random value for R.

16

RO query xi h0(xi) h1(xi) . . . h`(xi)

x1 v1,0 v1,1 . . . v1,`
x2 v2,0 v2,1 . . . v2,`
...

...
...

... . . .

xq1 vq1,0 vq1,1 . . . vq1,`

Table 1. RO queries in phase-I

In the second stage, the distinguisher D now having input R, will ask both
queries to the construction and the random oracles. The simulator S now also
has these extra information of R and oracle access to the implementation h̃ and
will answer the random oracle queries to ensure consistency. In particular:

On input query mj to the kj-th random oracle hkj , S defines the adjusted
query m′j := mj ⊕ rkj , and prepares answers for all related queries, i.e., for each
i, the input m′j ⊕ ri to hi; and the input g̃R(m′j) to h0.

- If kj > 0:

S runs the implementation h̃i on m′j⊕ri = mj⊕rkj⊕ri, for all i ∈ {1, . . . , `},
to derive the value g̃R(m′j) =

⊕`
i=1 h̃i(m

′
j ⊕ ri). During the execution of h̃i

on those inputs, S also answers the random oracle queries (or read from
Table 1) on those values if the implementation makes any. In more detail,

1. S first checks in both tables whether m′j ⊕ ri has been queried for hi
(Table 2 first), if queried in either of them, S returns the corresponding
answer; if not queried, S simply returns a random value uj,i as answer
and records it in Table 2;

2. S checks whether g̃R(m′j) has been queried for h0. If not, S queries F
on m′j and gets a response F (m′j). S then checks whether m′j has been
queried in stage-I, (i.e., check Table 1). If yes and the corresponding value
vj,0 does not equal to F (m′j), S aborts; otherwise, S sets F (m′j) = uj,0
as the answer for h0(g̃R(m′j)).

- If kj = 0:
S checks whether mj has been queried for h0 in stage-II, i.e., there exists an
m′t in Table 2 such that g̃R(m′t) = mj . If yes, S simply uses the corresponding
value ut,0 as answer; If not, S checks whether it has been queried in stage-I,
S returns the value of vi,0 if mj has been queried. Otherwise, S chooses a
random value vj,0 as the response and records it in Table 2.

Probability analysis. Let us define the event that S aborts as Abort. According
to the description, S aborts only when the distinguisher D finds an input m
such that the g̃R(m) = x has either been queried for h0 in stage-I, or queried
in stage-II before any of {m⊕ ri}i=1,...,` has been queried for hi. We can define
T0 = {x|x is queried for h0}, and following Theorem 5 (to be proven below),

Pr[Abort] ≤ |T0|
2n ≤

q+q1
2n ≤ negl(n) for any polynomially large q, q1.

17

Adjusted query m′
i h1(m′

i ⊕ r1) . . . h`(m
′
i ⊕ r`) g̃R(m′

i) h0

(
g̃R(m′

i)

)
m′

1 = m1 ⊕ rk1 u1,1 . . . u1,` g̃R(m′
1) u1,0

m′
2 = m2 ⊕ rk2 u2,1 . . . u2,` g̃R(m′

2) u2,0

...
... . . .

...
...

...

m′
q = mq ⊕ rkq uq,1 . . . uq,` g̃R(m′

q) uq,0

Table 2. Phase-II queries: The headers are adjusted random oracle queries m′
i =

mi ⊕ rki if mi is queried for hki , and ui,0 = F (mi).

We also define the event Bad as that the distinguisher finds an input m, such
that h̃0(g̃R(m)) 6= h0(g̃R(m)), also we define T1 = {m|h̃0(g̃R(m)) 6= h0(g̃R(m))}.
Following Theorem 5, Pr[Bad] ≤ |T1|

2n + negl(n) ≤ negl(n). The latter inequality

comes from the condition h̃ disagrees with h only at negligible fraction of inputs.
Furthermore, it is easy to see, conditioned on S does not abort, and Bad does

not happen, the simulation is perfect.
In the rest of the paper, we will focus on proving our main theorem about

the property of the internal function g̃R(·).

4.2 A rejection resampling lemma

We first prove a general rejection re-sampling lemma, and use it as a machinery to
prove our main theorem for g̃R(·). Let Ω1, . . . , Ωk be a family of sets and let Ω =
Ω1 × · · · ×Ωk. We treat Ω as a probability space under the uniform probability
law: for an event E ⊂ Ω, we let µ(E) = |E|/|Ω| denote the probability of E. For
an element x = (x1, . . . , xk) ∈ Ω and an index i, we define the random variable
Rix = (x1, . . . , xi−1, y, xi+1, . . . , xk) where y is drawn uniformly at random from
Ωi. We say that such a random variable arises by “resampling” x at the index i.

We consider the effect that arbitrary “adversarial” resampling can have on
the uniform distribution. Specifically, for a function A : Ω → {1, . . . , k}, we con-
sider the random variable RA(X)X, where X is a uniformly distributed random
variable and the index chosen for resampling is determined by A (as a function
of X). By this device, the function A implicitly defines a probability law µA on
Ω, where the probability of an event E is given by

µA(E) = Pr[RA(X)X ∈ E] .

Lemma 1 (Rejection re-sampling). Let X be a random variable uniform on
Ω = Ω1× · · · ×Ωk. Let A : Ω → {1, . . . , , k} and define Z = RA(X)X and µA as
above. Then, for any event E,

µ(E)2

k
≤ µA(E) ≤ k · µ(E) .

Remark 4. Jumping ahead, such a resampling lemma will be used to define a
good event E such that one term of h̃i(x ⊕ ri) will be uniformly chosen (not

18

correlated with any other term), thus yields a uniform distribution for the sum-
mation. The actual adversarial distribution µA(E) is thus bounded not too far
from µ(E). Let us first prove this useful lemma.

Proof. Consider an event E ⊂ X. To simplify our discussion of the adversarial re-
sampling process discussed above, we remark that the random variables RiX and
RA(X)X can be directly defined over the probability space Ω×Ω: Consider two
independent random variables, X and Y , each drawn uniformly on Ω; then, for
any i the random variable RiX can be described (X1, . . . , Xi−1, Yi, Xi+1, . . . , Xk)
and RA(X)X = (Z1, . . . , Zk) where

Zi =

{
Yi if i = A(X),

Xi otherwise.

Note that for any fixed i, the probability law of RiX is the uniform law on Ω.

Upper bound. It follows that for an event E

µA(E) = Pr
X,Y

[RA(X)X ∈ E] ≤ Pr
X,Y

[∃i, RiX ∈ E] ≤ k · µ(E) ,

which establishes the claimed upper bound on µA(E).

Lower bound. As for the lower bound, define

Bi = {x ∈ Ω | A(x) = i} and Ei = E ∩Bi .

As the Bi, Ei partition Ω,E respectively, and
∑
i µA(Ei) = µA(E). Observe that

Pr
X,Y

[RA(X)X ∈ E] =
∑
i

Pr
X,Y

[RA(x)X ∈ Ei] ≥
∑
i

Pr
X,Y

[X ∈ Bi and RiX ∈ Ei]

≥
∑
i

Pr
X,Y

[X ∈ Ei and RiX ∈ Ei] .

(2)

To complete the proof, we will prove that for any i and for any event F

Pr
X,Y

[X ∈ F and RiX ∈ F] ≥ Pr[F]2 . (3)

Putting aside the proof of (3) for a moment, observe that applying (3) to the
events Ei in the expansion (2) above yields the following by Cauchy-Schwarz.

Pr
X,Y

[RA(X)X ∈ E] ≥
∑
i

Pr[Ei]
2 ≥ Pr[E]2

k

Finally, we return to establish (3). Observe that for an event F ,

PrX,Y [X ∈ F and RiX ∈ F]

=
1

|Ωi|
∑

(x1,...,xk)∈Ω

Pr[X ∈ F and RiX ∈ F | ∀j 6= i,Xj = xj] Pr[∀j 6= i,Xj = xj] .

19

(The leading 1/|Ωi| term cancels the sum over xi, which not referenced in the
argument of the sum.) Under such strong conditioning, however, the two events
X ∈ F and RiX ∈ F are independent and, moreover, have the same probability.
(Conditioned on the other coordinates, the event depends only on coordinate i
of the result that is uniform and independent for the two random variables.) As

Pr[∀j 6= i,Xj = xj] =
1∏

i 6=j |Ωj |

we may rewrite the sum above as

PrX,Y [X ∈ F and RiX ∈ F]

=
1

|Ωi|
∑

(x1,...,xk)∈Ω

Pr[X ∈ F and RiX ∈ F | ∀j 6= i,Xj = xj] ·
1∏

i6=j |Ωj |

=
1

|Ω|
∑

(x1,...,xk)∈Ω

Pr[X ∈ F and RiX ∈ F | ∀j 6= i,Xj = xj]

=
1

|Ω|
∑

(x1,...,xk)∈Ω

Pr[X ∈ F | ∀j 6= i,Xj = xj]
2

≥ 1

|Ω|2

 ∑
(x1,...,xk)∈Ω

Pr[X ∈ F | ∀j 6= i,Xj = xj]

2

= Pr[X ∈ F]2 ,

where the inequality is Cauchy-Schwarz.

We remark that these bounds are fairly tight. For the lower bound—the case
of interest in our applications—let Ei ⊂ Ωi be a family of events with small
probability ε and E = {(ω1, . . . , ωk, ωk+1) | ∃ unique i ≤ k, ωi ∈ Ei} ⊂

∏k+1
i Ωi.

When ε � 1/k, Pr[E] ≈ kε while Pr[RA(X)X ∈ E] ≈ kε2 = (kε)2/k for the
strategy which, in case the event occurred, redraws the offending index and,
in case the event did not occur, redraws the k + 1st “dummy” index. For the
upper bound, consider an event E consisting of a single point x in the hypercube
{0, 1}k; then Pr[E] = 2−k and Pr[RA(X)X ∈ E] ≥ 2−k(k+ 1)/2 for the strategy
which re-randomizes any coordinate on which the sample and x disagree (the
strategy can be defined arbitrarily on the point x itself).

4.3 Establishing pointwise unpredictability

In this section, we focus our attention on the “internal” function (for ` > 3n)

g̃R(x) =
⊕̀
i=1

h̃i(x⊕ ri) .

In particular, we will prove that for each x, the probability that the adversary
can force the output of g̃R(x) to fall into some range E is polynomial in the

20

density of the range (that is, the probability that a uniform element lies in E).
Thus, the output will be unpredictable to the adversary if she has not queried
the corresponding random oracles.

Intuition about the analysis. As discussed above, we want to show that for
every x, there exist at least one term hi(x⊕ri) satisfying: (i) hi(x⊕ri) is answered
honestly (that is, hi(x⊕ri) = h̃i(x⊕ri); (ii) hi(x⊕ri) is not correlated with other
terms. In order to ensure condition (ii), we proceed in two steps. We first turn to
analyze the probability that hi(x⊕ri) has not been queried by Hh∗(x⊕rj) for all
other index j. This is still not enough to demonstrate perfect independence, as
the good term is subject to the condition of (i), but it suffices for our purposes. As
discussed above, for analytical purposes we consider an exotic distribution that
calls for this “good” term to be independently re-sampled and apply rejection
re-sampling lemma to ensure the original (adversarial) distribution is not too far
from the exotic one. We first recall the theorem for the internal function:

Theorem 5. Suppose h : {0, . . . , `} × {0, 1}n → {0, 1}n defines a family of
random oracles hi : {0, 1}n → {0, 1}n as h(i, ·), for i = 0, . . . , `, and ` ≥ 3n+ 1.
Consider a (subversion) algorithm H and Hh(x) defines a subverted random
oracle h̃. Assume that for every h (and every i),

Pr
x∈{0,1}n

[h̃(i, x) 6= h(i, x)] = negl(n) .

Then, with overwhelming probability in R, h, and conditioned on the h(q1), . . . , h(qs)

(made by any D̂), for all x outside the “queried” set {t | hi(t⊕ ri) was queried}
and every event E ⊂ {0, 1}n,

Pr
h

[g̃R(x) ∈ E] ≤ poly(n)
√

Pr[E] + negl(n).

Proof. Throughout the estimates, we will assume that ` > 3n. Here, we overload
the notation h∗ to denote the collection of functions h1, . . . , h`.

We begin by considering the simpler case where no queries are made, and
just focus on controlling the resulting values vis-a-vis a particular event E. At
the end of the proof, we explain how to handle an adaptive family of queries.

Guaranteeing honest answers. First, we ensure that with high probability
in R and h∗, for every x, there is a contributing term h̃i(x⊕ ri) that is likely (if
the random variable hi(x⊕ ri) is redrawn according to the uniform distribution)
to be “honest” in the sense that h̃i(x ⊕ ri) = hi(x ⊕ ri). The reason that this
simple property does not follow straightforwardly is due to the fact that h̃i
may adaptively define the ”dishonest” points which are not fixed during the
manufacturing of h̃i.

To begin, let us consider the following random variables defined by random
selection of h∗ (denoting the {hi}) and R, (later used to bound the number of
dishonest terms):

di(α) =

{
1 if h̃i(α) 6= hi(α),

0 otherwise;
and Di(α) = Ehi(α)[di(α)] .

21

(Throughout E[·] denotes expectation. For a given h∗ and an element α, the
value Di(α) is defined by redrawing the value of hi(α) uniformly at random;
equivalently, Di(α) is the conditional expectation of di(α) obtained by setting
all other values of h∗() except hi(α).) Note that by assumption, for each i,

Eh∗ Eα[Di(α)] = Eh∗ Eα Ehi(α)[di(α)] = Eh∗ Eα[di(α)] ≤ ε ,

where α is chosen uniformly and ε is the (negligible) disagreement probability
of (1) above.

We introduce several events that play a basic role in the proof.
Flat functions. We say that h∗ is flat if, for each i, Eα[Di(α)] ≤ ε1/3,

where α is drawn uniformly.
Note that Pr[h∗ not flat] = Pr[∃i ∈ [`],Eα[Di(α)] > ε1/3], thus

Pr[h∗ not flat] ≤ ` · Eh∗ Eα[Di(α)]/ε1/3 = `ε2/3

by Markov’s inequality and the union bound. Further, observe that if h∗ is flat,
then for any x ∈ {0, 1}n, any 0 < k ≤ `, and random choices of R = {r1, . . . , r`},

ER
∑
I⊂[`],
|I|=k

∏
i

Di(x⊕ ri) =
∑
I⊂[`],
|I|=k

∏
i

Eri Di(x⊕ ri) ≤
(
`

k

)
εk/3 ≤ (`3ε)k/3 .

Next, we will use this property to show that with a sufficiently large `, e.g.,
` = 3n, then for each x, we can find an index i such that Di(x⊕ ri) is small.

Honesty under resampling. For a tuple R = (r1, . . . , r`), functions h∗,
and an element x ∈ {0, 1}n, we say that the triple (R, h∗, x) is honest if∑

I⊂[`],
|I|=3n

∏
i

Di(x⊕ ri) ≤ 23n(`3ε)n .

If R and h∗ are “universally” honest, which is to say that (R, h∗, x) is honest for
all x ∈ {0, 1}n, we simply say (R, h∗) is honest. Then PrR[(R, h∗) is not honest] =
PrR[∃x, (R, h∗, x) is not honest] . When h∗ is flat, we have the following:

Pr
R

[(R, h∗) is not honest] ≤ 2n · ER
(∑

I⊂[`],
|I|=3n

∏
i

Di(x⊕ ri)
)
/23n(`3ε)n ≤ 2−2n

by Markov’s inequality (on the random variable
∑

I⊂[`],
|I|=3n

∏
iDi(x⊕ ri)) and the

union bound. Observe that if (R, h∗) is honest, then for every x,

max
I⊂[`]
|I|=3n

∏
i

Di(x⊕ ri) ≤ 23n(`3ε)n .

It follows that, for every set I of size 3n, there exists an element i ∈ I so that

Di(x⊕ ri) ≤ 3n
√

23n(`3ε)n = 2` 3
√
ε.

22

That said, conditioned on h∗ being flat, with an overwhelming probability
(that is, 1− negl(n)) in R, the pair (R, h∗) is honest and so gives rise to at least
one small Di(x⊕ri) for each x (recall that the smaller Di(α) is, the fewer points
that hi disagrees h̃i).

Unfortunately, merely ensuring that some term of each “constellation” {h̃i(x⊕
ri)} is honest with high probability is not enough—it is possible that a clever
adversary can adapt other terms to an honest term to interfere with the final
value of g̃R(x). The next part focuses on controlling these dependencies.

Controlling dependence among the terms. We now transition to controlling
dependence between various values of h̃i(x). In particular, for every x we want
to ensure that there exists some i so that hi(x⊕ ri) was never queried by H̃h∗(·)
when evaluated on all other x⊕ rj , i.e., for all j ∈ [`] and j 6= i.

Note that the set of queries made by H̃h∗(u) is determined entirely by h∗ and
u: thus, conditioned on a particular h∗, the event (over R) that H̃h∗(u) queries
hs(x ⊕ rs) and the event that H̃h∗(u′) queries ht(x ⊕ rt) are independent (for
any u, u′ and s 6= t). We introduce the following notation for these events: for a
pair of indices i, j (i 6= j), we define

Qi→j(x) =

{
1 if H̃h∗(x⊕ ri) queries hj(x⊕ rj),
0 otherwise.

In light of the discussion above, for an element x and a fixed value of h∗, consider
a subset T ⊂ [`] and a function s : T → [`]; we treat such a function as a
representative for the event that each “target” t ∈ T was queried by a “source”
s(t). (Note that there could be multiple such functions s(·) for T). We define

Qs(x) =
∏
t∈T

Qs(t)→t(x) .

We also introduce a couple of new notions for the ease of presentation:
Independent fingerprints. We say that a representative s : T → [`] is

independent if s(T) ∩ T = ∅, which is to say that the range of the function lies
in [`] \ T . For any such independent fingerprint s(·), note that (for any x, h∗):

ER[Qs(x)] = ER

[∏
t∈T

Qs(t)→t(x)

]
=
∏
t∈T

ER
[
Qs(t)→t(x)

]
≤
(
τ(n)

2n

)|T |
, (4)

where τ(n) denotes the running time (and, hence, an upper bound on the number
of queries) of H̃h(x) on inputs of length n.

We will next use such notion to bound the number of bad terms that were
queried by some other term.

Dangerous set. For a fixed x, h∗, and R, we say that a set T ⊂ [`] is
dangerous if every element t in T is queried by some H̃h∗(x⊕ ri) for i 6= t.

We claim that if T is a dangerous set then we can always identify an inde-
pendent fingerprint s : T ′ → [`] for a subset T ′ ⊂ T with |T ′| ≥ |T |/2.

23

To see this, we build T ′ as follows: write T = {t1, . . . , tm} and consider the
elements in order t1, . . . , tm; for each element ti, we add it to T ′, if ti is queried
by some elements in T 8, pick one of them, denoted as tj (for j > i), define
s(ti) = tj , and remove tj from T . Observe now that (i) each element in T ′ maps
to a value (or was queried by a term) outside of T ′; (ii) each element ti added
to T ′ removes at most two elements of T (ti and s(ti)), and hence |T ′| ≥ |T |/2.

If follows that for a set T the number of such possible independent fingerprints
(whose image is at least half the size of T) is bounded by:

∑
m≥|T |/2

(
|T |
m

)
(`− 1) · · · (`−m) ≤ 2|T |`|T |

We conclude from (4) that for any fixed set T (and any fixed x and h∗)

Pr
R

[T is dangerous] ≤ Pr[Qs(x) occurs for some independent fingerprint]

≤ 2|T |`|T |
(
τ(n)

2n

)|T |/2
=

(
4`2τ(n)

2n

)|T |/2
.

By taking the union bound over all sets T of size k, it follows immediately that

Pr
R

[
k of the hi(x⊕ ri) are queried by some other {h̃j(x⊕ rj)}j 6=i,j∈[`]

]
≤
(
`

k

)(
4`2τ(n)

2n

)k/2
≤ `k

(
4`2τ(n)

2n

)k/2
≤
(

4`4τ(n)

2n

)k/2
. (5)

The above bound guarantees that, for any fixed x, with overwhelming probabil-
ity, there are `− k terms that were never queried by any other terms.

k-sparsity: Finally, we say that the pair (R, h∗) is k-sparse if for all x, the
set of queries made by Hh∗(x⊕ ri) includes no more than k of the hi(x⊕ ri).

Applying the union bound over all 2n strings x to (5), we conclude that, for
even constant k (say k = 5), we have

Pr
h∗,R

[(R, h∗) is not k-sparse] ≤ 2n
(

4`4τ(n)

2n

)k/2
≤ 2−n

Θ(k)

.

With the preparatory work behind us, we turn to guaranteeing that each x
possesses a good term (one that is both well behaved under resampling and not
queried by other terms).

Establishing existence of a good term. Next, we wish to show that for any
event E with Pr[E] = µ(E), and for any x,

Pr
h∗,R

[g̃R(x) ∈ E] ≤ poly(n)
√
µ(E) + negl(n) .

8 We overload the notation a bit, here the elements in T simply denote the indices of
the terms.

24

In particular, if E has negligible density, the probability that g̃R(x) ∈ E is
likewise negligible.

We say that R is flat-honest if Prh∗ [(R, h∗) not honest | h∗ is flat] ≤ 2−n .
Observe that by Markov’s inequality a uniformly selected R is flat-honest with
probability 1− 2−n.

We also say R is uniformly-k-sparse if Prh∗ [(R, h∗) is not k-sparse] ≤ 2−n .
Assuming k is a sufficiently large constant (e.g., 5), note that by Markov’s in-
equality a random R is uniformly-k-sparse with probability 1− 2−n.

Now we know that selection of a uniformly random R = (r1, . . . , r`), with
probability 1 − 2n−1, is both uniformly-k-sparse (for the constant k discussed
above) and flat-honest. We condition, for the moment, on such a choice of R.
In this case, a random function h∗ is likely to be both k-sparse and honest: it
follows that for every x there is some term hi(x⊕ri) that is not queried by H to
determine the value of the other terms and, moreover, it is equal to h̃i(x⊕ri) with
an overwhelming probability. We say that such a pair (R, h∗) is unpredictable;
otherwise, we say that (R, h∗) is predictable.

Pr
h∗

[h∗ predictable (for R)] = Pr
h∗

[(R, h∗) not k-sparse or not honest]

≤ Pr
h∗

[(R, h∗) not k-sparse] +

Pr
h∗

[(R, h∗) not honest and h∗ flat] +

Pr
h∗

[(R, h∗) not honest and h∗ not flat]

≤ Pr
h∗

[(R, h∗) not k-sparse] +

Pr
h∗

[(R, h∗) not honest | h∗ flat] +

Pr
h∗

[h∗ not flat]

≤ 2−n + 2−n + `ε2/3 .

(6)

For each x, we can be sure there is at least one term h̃i(x ⊕ ri) which is
typically answered according to hi(x ⊕ ri) (i.e., answered honestly) and never
queried by the other terms. Unfortunately, to identify this term, we needed to
evaluate h̃ on the whole constellation of points; the rejection resampling lemma
lets us correct for this with a bounded penalty.

To complete the analysis, we consider the following experiment: conditioned
on R, consider the probability that g̃R(x) ∈ E when h∗ is drawn as follows:

– if (R, h∗) is unpredictable, there is a (lexicographically first) index i for which
hi(x⊕ ri) is queried by no other h̃j(x⊕ rj) and is honest. Now, redraw the
value of hi(x⊕ ri) uniformly at random.

These rules define a distribution on h∗ that is no longer uniform. Note, however,
that redrawing hi(x⊕ ri) does not affect the values of h̃i(x⊕ rj) (for distinct j);

25

as g̃R(x) =
⊕

i h̃i(x⊕ ri), under this exotic distribution (for any x),

Pr
resampled h∗

[
g̃R(x) ∈ E R unif. k-sparse

& flat honest

]
≤ µ(E) + (2 · 2−n + `ε2/3) + 2`ε1/3 ,

where the 2`ε1/3 term arises because we have only the guarantee that Di(x) ≤
2`ε1/3 from the condition on honesty.

However, based on the rejection resampling lemma above, we conclude

Pr
h∗

[
g̃R(x) ∈ E R unif. k-sparse

& flat honest

]
≤
√
`
(
µ(E) + 2 · 2−n/2 + 3`ε1/3

)
≤ O(

√
`µ(E) +

√
`2−n/4 + `ε1/6) .

(7)

and, hence, that

Pr
h∗,R

[g̃R(x) ∈ E] ≤ 2−n +O
(√

`µ(E) +
√
`2−n/4 + `ε1/6

)
= O

(√
`µ(E) +

√
`2−n/4 + `ε1/6

)
,

where the 2−n term comes from the cases that a randomly chosen R is not
flat-honest or universal-k-sparse.

Conditioning on adaptive queries. Finally, we return to the problem of han-
dling adaptive queries. With R and z fixed, the queries generated by Qh∗(R, z)
depend only on h∗ and we may ramify the probability space of h according to the
queries and responses of Q; we say α = ((q1, a1), . . . , (qt, at)) is a transcript for
Q if Q queries h∗ at q1, . . . , qt and receives the responses a1, . . . , at. We remark
that if E is an event for which Prh[E | R, z] ≤ ε, then by considering the natural
martingale given by iterative exposure of values of h∗ at the points queried by
Qh(R, z), we have that ε ≥ Pr[E | R, z] =

∑
α Pr[E | α,R, z] · Pr[α | R, z].

In particular, events with negligible probability likewise occur with negligible
probability for all but a negligible fraction of transcripts α. Thus, the global
properties of h discussed in the previous proof are retained even conditioned on
a typical transcript α.

We require one amplification of the high-probability structural statements
developed above. Note that, with overwhelming probability in R and h, every
constellation {x ⊕ ri} (an argument to hi) contains only a constant number of
points that are queried by more than a 2−n fraction of other points in the domain
of h∗. (Indeed, the fraction of points in the domain of h∗ that are queried by
Hh(z, x) for at least w(n) values of x can be no more than poly(n)/w(n), where
the polynomial is determined by the running time of H.) We say that a pair R, z
is diffuse if a randomly selected h has this property with probability 1− 2−n/2;
note that a random pair (R, z) is diffuse with probability 1− 2−n/2.

Consider then conditioning on the event that (R, z) is flat-honest, uniformly-
4-sparse, and diffuse; note that in this case, with high probability in h every x
has an member of its constellation which is not queried by other members of
the constellation, only queried by H() at a vanishing fraction of other points in

26

the domain, and has Di(x ⊕ ri) ≤ 2` 3
√
ε. We emphasize that these properties

are global properties, holding for all x in the domain of h. In particular, we can
apply the argument above to any x for which none of the qi touch its constellation
{x⊕ ri}. This concludes the proof.

5 Conclusions

We initiate the study of correcting subverted random oracles, where each sub-
verted version disagrees with the original random oracle at a negligible fraction of
inputs. We demonstrate that such an attack is devastating in several real-world
scenarios. We give a simple construction that can be proven indifferentiable from
a random oracle. Our analysis involves developing a new machinery of rejection
resampling lemma which may be with independent interests. Our work provides
a general tool to transform a buggy implementation of random oracle into a
well-behaved one which can be directly applied to the kleptographic setting.

There are many interesting problems worth further exploring, such as better
constructions, correcting other ideal objectives under subversion and more.

Acknowledgement. The authors thank Jonathan Katz for suggesting the indif-
ferentiability framework as a modeling tool, and we thank anonymous reviewers
for valuable comments.

References

1. H. Abelson, R. J. Anderson, S. M. Bellovin, J. Benaloh, M. Blaze, W. Diffie,
J. Gilmore, M. Green, S. Landau, P. G. Neumann, R. L. Rivest, J. I. Schiller,
B. Schneier, M. A. Specter, and D. J. Weitzner. Keys under doormats. Commun.
ACM, 58(10):24–26, 2015.

2. G. Ateniese, B. Magri, and D. Venturi. Subversion-resilient signature schemes. In
I. Ray, N. Li, and C. Kruegel:, editors, ACM CCS 15, pages 364–375. ACM Press,
Oct. 2015.

3. M. Bellare and V. T. Hoang. Resisting randomness subversion: Fast determinis-
tic and hedged public-key encryption in the standard model. In E. Oswald and
M. Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages
627–656. Springer, Heidelberg, Apr. 2015.

4. M. Bellare, V. T. Hoang, and S. Keelveedhi. Instantiating random oracles via
UCEs. In R. Canetti and J. A. Garay, editors, CRYPTO 2013, Part II, volume
8043 of LNCS, pages 398–415. Springer, Heidelberg, Aug. 2013.

5. M. Bellare, J. Jaeger, and D. Kane. Mass-surveillance without the state: Strongly
undetectable algorithm-substitution attacks. In I. Ray, N. Li, and C. Kruegel:,
editors, ACM CCS 15, pages 1431–1440. ACM Press, Oct. 2015.

6. M. Bellare, K. G. Paterson, and P. Rogaway. Security of symmetric encryption
against mass surveillance. In J. A. Garay and R. Gennaro, editors, CRYPTO 2014,
Part I, volume 8616 of LNCS, pages 1–19. Springer, Heidelberg, Aug. 2014.

7. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In V. Ashby, editor, ACM CCS 93, pages 62–73. ACM Press,
Nov. 1993.

27

8. S. M. Bellovin, M. Blaze, S. Clark, and S. Landau. Going bright: Wiretapping with-
out weakening communications infrastructure. IEEE Security & Privacy, 11(1):62–
72, 2013.

9. M. Blum. Designing programs that check their work, November 1988. Technical
Report TR-88-009, International Computer Science Institure. Available at http:

//www.icsi.berkeley.edu/pubs/techreports/tr-88-009.pdf.

10. M. Blum and S. Kannan. Designing programs that check their work. In 21st ACM
STOC, pages 86–97. ACM Press, May 1989.

11. M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to
numerical problems. In 22nd ACM STOC, pages 73–83. ACM Press, May 1990.

12. A. Boldyreva, D. Cash, M. Fischlin, and B. Warinschi. Foundations of non-
malleable hash and one-way functions. In M. Matsui, editor, ASIACRYPT 2009,
volume 5912 of LNCS, pages 524–541. Springer, Heidelberg, Dec. 2009.

13. A. Boldyreva and M. Fischlin. Analysis of random oracle instantiation scenarios for
OAEP and other practical schemes. In V. Shoup, editor, CRYPTO 2005, volume
3621 of LNCS, pages 412–429. Springer, Heidelberg, Aug. 2005.

14. A. Boldyreva and M. Fischlin. On the security of OAEP. In X. Lai and K. Chen,
editors, ASIACRYPT 2006, volume 4284 of LNCS, pages 210–225. Springer, Hei-
delberg, Dec. 2006.

15. J. Camenisch, M. Drijvers, and A. Lehmann. Anonymous attestation with sub-
verted TPMs. In J. Katz and H. Shacham, editors, CRYPTO 2017, Part III,
volume 10403 of LNCS, pages 427–461. Springer, Heidelberg, Aug. 2017.

16. R. Canetti. Towards realizing random oracles: Hash functions that hide all partial
information. In B. S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS, pages
455–469. Springer, Heidelberg, Aug. 1997.

17. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, Oct.
2001.

18. R. Canetti and R. R. Dakdouk. Extractable perfectly one-way functions. In
L. Aceto, I. Damg̊ard, L. A. Goldberg, M. M. Halldórsson, A. Ingólfsdóttir, and
I. Walukiewicz, editors, ICALP 2008, Part II, volume 5126 of LNCS, pages 449–
460. Springer, Heidelberg, July 2008.

19. R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited
(preliminary version). In 30th ACM STOC, pages 209–218. ACM Press, May 1998.

20. R. Canetti, D. Micciancio, and O. Reingold. Perfectly one-way probabilistic hash
functions (preliminary version). In 30th ACM STOC, pages 131–140. ACM Press,
May 1998.

21. S. Checkoway, S. Cohney, C. Garman, M. Green, N. Heninger, J. Maskiewicz,
E. Rescorla, H. Shacham, and R.-P. Weinmann. A systematic analysis of the
Juniper Dual EC incident. In Proceedings of ACM CCS 2016, 2016. Full version
available at http://eprint.iacr.org/2016/376.

22. S. Checkoway, R. Niederhagen, A. Everspaugh, M. Green, T. Lange, T. Ristenpart,
D. J. Bernstein, J. Maskiewicz, H. Shacham, and M. Fredrikson. On the practical
exploitability of dual EC in TLS implementations. In Proceedings of the 23rd
USENIX Security Symposium, San Diego, CA, USA, August 20-22, 2014., pages
319–335, 2014.

23. J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-Damg̊ard revisited:
How to construct a hash function. In V. Shoup, editor, CRYPTO 2005, volume
3621 of LNCS, pages 430–448. Springer, Heidelberg, Aug. 2005.

28

http://www.icsi.berkeley.edu/pubs/techreports/tr-88-009.pdf
http://www.icsi.berkeley.edu/pubs/techreports/tr-88-009.pdf
http://eprint.iacr.org/2016/376

24. J.-S. Coron, T. Holenstein, R. Künzler, J. Patarin, Y. Seurin, and S. Tessaro. How
to build an ideal cipher: The indifferentiability of the Feistel construction. Journal
of Cryptology, 29(1):61–114, Jan. 2016.

25. D. Dachman-Soled, J. Katz, and A. Thiruvengadam. 10-round Feistel is indif-
ferentiable from an ideal cipher. In M. Fischlin and J.-S. Coron, editors, EURO-
CRYPT 2016, Part II, volume 9666 of LNCS, pages 649–678. Springer, Heidelberg,
May 2016.

26. Y. Dai and J. P. Steinberger. Indifferentiability of 8-round Feistel networks. In
M. Robshaw and J. Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS,
pages 95–120. Springer, Heidelberg, Aug. 2016.

27. J. P. Degabriele, P. Farshim, and B. Poettering. A more cautious approach to
security against mass surveillance. In G. Leander, editor, FSE 2015, volume 9054
of LNCS, pages 579–598. Springer, Heidelberg, Mar. 2015.

28. J. P. Degabriele, K. G. Paterson, J. C. N. Schuldt, and J. Woodage. Backdoors in
pseudorandom number generators: Possibility and impossibility results. In M. Rob-
shaw and J. Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages
403–432. Springer, Heidelberg, Aug. 2016.

29. G. Demay, P. Gaži, M. Hirt, and U. Maurer. Resource-restricted indifferentiability.
In T. Johansson and P. Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of
LNCS, pages 664–683. Springer, Heidelberg, May 2013.

30. Y. Dodis, C. Ganesh, A. Golovnev, A. Juels, and T. Ristenpart. A formal treatment
of backdoored pseudorandom generators. In E. Oswald and M. Fischlin, editors,
EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 101–126. Springer, Hei-
delberg, Apr. 2015.

31. Y. Dodis, S. Guo, and J. Katz. Fixing cracks in the concrete: Random oracles
with auxiliary input, revisited. In J. Coron and J. B. Nielsen, editors, EURO-
CRYPT 2017, Part II, volume 10211 of LNCS, pages 473–495. Springer, Heidel-
berg, May 2017.

32. Y. Dodis, I. Mironov, and N. Stephens-Davidowitz. Message transmission with
reverse firewalls—secure communication on corrupted machines. In M. Robshaw
and J. Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 341–372.
Springer, Heidelberg, Aug. 2016.

33. Y. Dodis and P. Puniya. On the relation between the ideal cipher and the random
oracle models. In S. Halevi and T. Rabin, editors, TCC 2006, volume 3876 of
LNCS, pages 184–206. Springer, Heidelberg, Mar. 2006.

34. Y. Dodis and P. Puniya. Feistel networks made public, and applications. In
M. Naor, editor, EUROCRYPT 2007, volume 4515 of LNCS, pages 534–554.
Springer, Heidelberg, May 2007.

35. S. Dziembowski and U. M. Maurer. Optimal randomizer efficiency in the bounded-
storage model. Journal of Cryptology, 17(1):5–26, Jan. 2004.

36. M. Fischlin, C. Janson, and S. Mazaheri. Backdoored hash functions: Immunizing
hmac and hkdf. Cryptology ePrint Archive, Report 2018/362, 2018. http://

eprint.iacr.org/2018/362.
37. J. Katz, S. Lucks, and A. Thiruvengadam. Hash functions from defective ideal

ciphers. In K. Nyberg, editor, CT-RSA 2015, volume 9048 of LNCS, pages 273–
290. Springer, Heidelberg, Apr. 2015.

38. A. Kawachi, A. Numayama, K. Tanaka, and K. Xagawa. Security of encryption
schemes in weakened random oracle models. In P. Q. Nguyen and D. Pointcheval,
editors, PKC 2010, volume 6056 of LNCS, pages 403–419. Springer, Heidelberg,
May 2010.

29

http://eprint.iacr.org/2018/362
http://eprint.iacr.org/2018/362

39. E. Kiltz, A. O’Neill, and A. Smith. Instantiability of RSA-OAEP under chosen-
plaintext attack. In T. Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages
295–313. Springer, Heidelberg, Aug. 2010.

40. M. Liskov. Constructing an ideal hash function from weak ideal compression func-
tions. In E. Biham and A. M. Youssef, editors, SAC 2006, volume 4356 of LNCS,
pages 358–375. Springer, Heidelberg, Aug. 2007.

41. U. M. Maurer, R. Renner, and C. Holenstein. Indifferentiability, impossibility
results on reductions, and applications to the random oracle methodology. In
M. Naor, editor, TCC 2004, volume 2951 of LNCS, pages 21–39. Springer, Heidel-
berg, Feb. 2004.

42. J. Menn. Exclusive: Secret contract tied NSA and security industry pioneer.
Reuters, December 2013.

43. I. Mironov and N. Stephens-Davidowitz. Cryptographic reverse firewalls. In E. Os-
wald and M. Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS,
pages 657–686. Springer, Heidelberg, Apr. 2015.

44. S. Myers. Efficient amplification of the security of weak pseudo-random function
generators. In B. Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS,
pages 358–372. Springer, Heidelberg, May 2001.

45. A. Numayama, T. Isshiki, and K. Tanaka. Security of digital signature schemes in
weakened random oracle models. In R. Cramer, editor, PKC 2008, volume 4939
of LNCS, pages 268–287. Springer, Heidelberg, Mar. 2008.

46. N. Perlroth, J. Larson, and S. Shane. N.S.A. able to foil basic safeguards of privacy
on web. The New York Times, 2013. http://www.nytimes.com/2013/09/06/us/

nsa-foils-much-internet-encryption.html.
47. T. Ristenpart, H. Shacham, and T. Shrimpton. Careful with composition: Lim-

itations of the indifferentiability framework. In K. G. Paterson, editor, EURO-
CRYPT 2011, volume 6632 of LNCS, pages 487–506. Springer, Heidelberg, May
2011.

48. R. A. Rubinfeld. A Mathematical Theory of Self-checking, Self-testing and Self-
correcting Programs. PhD thesis, University of California at Berkeley, Berkeley,
CA, USA, 1991. UMI Order No. GAX91-26752.

49. A. Russell, Q. Tang, M. Yung, and H.-S. Zhou. Cliptography: Clipping the power of
kleptographic attacks. In J. H. Cheon and T. Takagi, editors, ASIACRYPT 2016,
Part II, volume 10032 of LNCS, pages 34–64. Springer, Heidelberg, Dec. 2016.

50. A. Russell, Q. Tang, M. Yung, and H.-S. Zhou. Generic semantic security against
a kleptographic adversary. In B. M. Thuraisingham, D. Evans, T. Malkin, and
D. Xu, editors, ACM CCS 17, pages 907–922. ACM Press, Oct. / Nov. 2017.

51. S. G. Sandro Coretti, Yevgeniy Dodis and J. Steinberger. Random oracles and
non-uniformity. In Advances in Cryptology - EUROCRYPT 2018., 2018.

52. B. Schneier, M. Fredrikson, T. Kohno, and T. Ristenpart. Surreptitiously weak-
ening cryptographic systems. Cryptology ePrint Archive, Report 2015/097, 2015.
http://eprint.iacr.org/2015/097.

53. P. Soni and S. Tessaro. Public-seed pseudorandom permutations. In J. Coron and
J. B. Nielsen, editors, EUROCRYPT 2017, Part II, volume 10211 of LNCS, pages
412–441. Springer, Heidelberg, May 2017.

54. A. Young and M. Yung. The dark side of “black-box” cryptography, or: Should we
trust capstone? In N. Koblitz, editor, CRYPTO’96, volume 1109 of LNCS, pages
89–103. Springer, Heidelberg, Aug. 1996.

55. A. Young and M. Yung. Kleptography: Using cryptography against cryptogra-
phy. In W. Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages 62–74.
Springer, Heidelberg, May 1997.

30

http://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html
http://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html
http://eprint.iacr.org/2015/097

	Correcting Subverted Random Oracles

