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Abstract. Determining the security of AES is a central problem in
cryptanalysis, but progress in this area had been slow and only a hand-
ful of cryptanalytic techniques led to significant advancements. At Euro-
crypt 2017 Grassi et al. presented a novel type of distinguisher for AES-
like structures, but so far all the published attacks which were based
on this distinguisher were inferior to previously known attacks in their
complexity. In this paper we combine the technique of Grassi et al. with
several other techniques to obtain the best known key recovery attack
on 5-round AES in the single-key model, reducing its overall complex-
ity from about 232 to about 222.5. Extending our techniques to 7-round
AES, we obtain the best known attacks on AES-192 which use practical
amounts of data and memory, breaking the record for such attacks which
was obtained 18 years ago by the classical Square attack.

1 Introduction

The Advanced Encryption Standard (AES) is the best known and most widely
used secret key cryptosystem, and determining its security is one of the most
important problems in cryptanalysis. Since there is no known attack which can
break the full AES significantly faster than via exhaustive search, researchers
had concentrated on attacks which can break reduced round versions of AES.
Such attacks are important for several reasons. First of all, they enable us to
assess the remaining security margin of AES, defined by the ratio between the
number of rounds which can be successfully attacked and the number of rounds
in the full AES. In addition, they enable us to develop new attack techniques
which may become increasingly potent with additional improvements. Finally,
there are many proposals for using reduced round AES (and especially its 4 or
5 rounds versions) as components in larger schemes, and thus successful crypt-
analysis of these variants can be used to attack those schemes. Examples of such
proposals include ZORRO [17], LED [21] and AEZ [22] which use 4-round AES,
and WEM [7], Hound [16], and ELmD [3] which use 5-round AES.

Over the last twenty years, dozens of papers on the cryptanalysis of reduced-
round AES were published, but only a few techniques led to significant reductions
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in the complexity of key recovery attacks. In the standard model (where the at-
tack uses a single key rather than related keys), these techniques include the
Square attack [8, 15], impossible differential cryptanalysis [1, 23], the Demirci-
Selçuk attack [10, 12], and the Biclique attack [2]. In most of these cases, it took
several years -- and a series of subsequent improvements — from the invention
of the technique until it was developed into its current form. For example, im-
possible differential cryptanalysis was applied to AES already in 2000 [1] as an
attack on 5-round AES, but it was only very recently that Boura et al. [6] im-
proved it into its best currently known variant which breaks 7-round AES with
an overall complexity of about 2107. The Demirci-Selçuk attack was presented
in 2005 [10] with a huge memory complexity of over 2200, and it took 8 years
before Derbez et al. [12] enhanced it in 2013 into an attack on 7-round AES with
an overall complexity which is just below 2100. Therefore, the development of
any new attack technique is a major breakthrough with potentially far reaching
consequences.

The latest such development happened in 2017, when Grassi et al. [20] pub-
lished a new property of AES, called multiple-of-8, which had not been observed
before by other researchers. At first, it was not clear whether the new observation
can at all lead to attacks on AES which are competitive with respect to previ-
ously known results. This question was partially resolved by Grassi [19], who
used this observation to develop a new type of attack which can break 5-round
AES in data, memory and time complexities of 232. However, a variant of the
Square attack [15] can break the same variant with comparable data and time
complexities but with a much lower memory complexity of 29. Consequently, the
new technique did not improve the best previously known attack on 5 rounds,
and its extensions to more than 5 rounds (see [19]) were significantly inferior to
other attacks.

In this paper we greatly improve Grassi’s attack, and show how to attack
5-round AES in data, memory and time complexities of less than 222.5, which is
about 500 times faster than any previous attack on the same variant. Due to the
exceptionally low complexity of our attack, we could verify it experimentally by
running it on real data generated from hundreds of randomly chosen keys. As
we expected, the success rate of our full key recovery attack rose sharply from
0.24 to 1 as we increased the amount of available data from 222 to 223 in tiny
increments of 20.25.

By extending our technique to larger versions of AES, we obtain new attacks
on AES-192 and AES-256 which have the best time complexity among all the
attacks on 7-round AES which have practical data and memory complexities.

Low data and memory attacks were studied explicitly in a number of papers
(e.g., [4, 5, 12]), but progress in applying such attacks to AES had been even
slower than the progress in the “maximum complexity” metric. While some re-
sults were obtained on variants with up to 5 rounds, the best such attack on 6
and more rounds is still the improved Square attack presented by Ferguson et
al. [15] in 2000. We use the observation of Grassi et al., along with the dissection
technique [14] and several other techniques, to beat this 18-year old record and
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develop the best attacks on 7-round AES in this model. In particular, our attack
on 7-round AES with 192-bit keys requires 230 data, 232 memory and 2153 time,
which outperforms the Square attack in all three complexity measures simulta-
neously.

A summary of the known and new key recovery attacks in the single key
model on 5 and 7 rounds of AES appears in Tables 1 and 2, respectively. The
specified complexities describe how difficult it is to find some of the key bytes.
Since our new attacks can find with the same complexity any three key bytes
which share the same generalized diagonal, we can rerun them several times for
different diagonals to find the full key with only slightly elevated complexities.

Attack Data Memory Time
(Chosen plaintexts) (128-bit blocks) (encryptions)

MitM [11] 8 256 264

Imp. Polytopic [25] 15 241 270

Partial Sum [26] 28 small 238

Square [9] 211 small 244

Square [9] 233 232 234

Improved Square [15] 233 small 233

Yoyo [24] 211.3 ACC small 231

Imp. Diff. [1] 231.5 238 233

Mixture Diff. [19] 232 232 232

Our Attack (Sect. 4) 222.25 220 222.5

ACC Adaptive Chosen Plaintexts and Ciphertexts
Table 1. Attacks on 5-Round AES (partial key recovery)

The paper is organized as follows. In Section 2 we briefly describe AES and
introduce our notations, and in Section 3 we describe the new 4-round distin-
guisher which was discovered and used by Grassi. In Section 4 we show how to
exploit this distinguisher in a better way to obtain improved attacks on 5-round
AES. We extend the attack to 6-round AES in Section 5, and then extend it
again to 7 rounds in Section 6. In Section 7 we explore other points on the
time-memory-data tradeoff curve. Section 8 summarizes our paper.

2 Brief Introduction to the AES

2.1 A Short Description of AES

The Advanced Encryption Standard (AES) [9] is a substitution-permutation
network which has 128 bit plaintexts and 128, 192, or 256 bit keys. Its 128 bit
internal state is treated as a byte matrix of size 4x4, where each byte represents
a value in GF (28). An AES round (described in Figure 1) applies four operations
to this state matrix:
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AES Variant Attack Data Memory Time
(Chosen Plaintexts) (128-bit blocks) (encryptions)

AES-128 Imp. Diff. [6] 2105 274 2106.88

MitM [13] 297 298 299

AES-192 MitM [13] 297 298 299

MitM [12] 232 2129.7 2129.7

Collision [18] 232 280 2140

Square [15] 236.2 236.2 2155

Our Attack (Sect. 6) 230 232 2153

Our Attack (Sect. 7) 232 240 2145

AES-256 MitM [13] 297 298 299

MitM [12] 232 2133.7 2133.7

Collision [18] 232 280 2140

Square [15] 236.4 236.4 2172

Our Attack (Sect. 6) 230 248 2161.6

Table 2. Attacks on 7-Round AES (full key recovery)

– SubBytes (SB) — applying the same 8-bit to 8-bit invertible S-box 16 times
in parallel on each byte of the state,

– ShiftRows (SR) — cyclically shifting the i’th row by i bytes to the left,
– MixColumns (MC) — multiplication of each column by a constant 4x4 ma-

trix over the field GF (28), and
– AddRoundKey (ARK) — XORing the state with a 128-bit subkey.

An additional AddRoundKey operation is applied before the first round, and
in the last round the MixColumns operation is omitted.

For the sake of simplicity we shall denote AES with n-bit keys by AES-n.
The number of rounds depends on the key length: 10 rounds for 128-bit keys, 12
rounds for 192-bit keys, and 14 rounds for 256-bit keys. The rounds are numbered
0, . . . , Nr − 1, where Nr is the number of rounds. We use ‘AES’ to denote all
three variants of AES.

The key schedule of AES transforms the key into Nr+1 128-bit subkeys. We
denote the subkey array by W [0, . . . , 4 ·Nr+3], where each word of W [·] consists
of 32 bits. When the length of the key is Nk 32-bit words, the user supplied key
is loaded into the first Nk words of W [·], and the remaining words of W [·] are
updated according to the following rule:

– For i = Nk, . . . , 4 ·Nr + 3, do
• If i ≡ 0 mod Nk then W [i] = W [i − Nk] ⊕ SB(W [i − 1] ≪ 8) ⊕
RCON [i/Nk],

• else if Nk = 8 and i ≡ 4 mod 8 then W [i] = W [i− 8]⊕ SB(W [i− 1]),
• Otherwise W [i] = W [i− 1]⊕W [i−Nk],

where ≪ denotes rotation of the word by 8 bits to the left, and RCON [·] is an
array of predetermined constants.
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2.2 Notations

In the sequel we use the following definitions and notations.
The state matrix at the beginning of round i is denoted by xi, and its bytes

are denoted by 0, 1, 2, . . . , 15, as described in Figure 1. Similarly, the state matrix
after the SubBytes and the ShiftRows operations of round i are denoted by x′i
and x′′i , respectively. The difference between two values in state xi is denoted by
∆(xi). We use this notation only when it is clear from the context which are the
values whose difference we refer to.

We denote the subkey of round i by ki, and the first (whitening) key by k−1,
i.e., ki = W [4 · (i + 1)]||W [4 · (i + 1) + 1]||W [4 · (i + 1) + 2]||W [4 · (i + 1) + 3].
In some cases, we are interested in interchanging the order of the MixColumns
operation and the subkey addition. As these operations are linear they can be
interchanged, by first XORing the data with an equivalent subkey and only
then applying the MixColumns operation. We denote the equivalent subkey for
the altered version by ui, i.e., ui = MC−1(ki). The bytes of the subkeys are
numbered by 0, 1, . . . , 15, in accordance with the corresponding state bytes.

In cases when we interchange the order of the MixColumns operation of
round i and the subkey addition, we denote the state right after the subkey
addition (and just before the MixColumns operation) by x̄i.

The plaintext is sometimes denoted by x−1, and so x0 = x−1 ⊕ k−1.
The j’th byte of the state xi is denoted xi,j . When several bytes j1, . . . , j`

are considered simultaneously, they are denoted xi,{j1,...,j`}. When a full col-
umn is considered, it is denoted xi,Col(j), and if several columns are considered
simultaneously, we denote them by xi,Col(j1,...,j`).

Sometimes we are interested in ‘shifted’ columns, i.e., the result of the ap-
plication of ShiftRows to a set of columns. This is denoted by xi,SR(Col(j1,...,j`)).
Similarly, a set of ‘inverse shifted’ columns (i.e., the result of the application of
SR−1 to a set of columns) is denoted by xi,SR−1(Col(j1,...,j`)).

In the attacks on 5-round AES (both Grassi’s attack and our attack), we
consider encryptions of a quartet of values. To simplify notations, while the
plaintext/ciphertext pairs are denoted by (Pj , Cj), j = 1, . . . , 4, we denote the
intermediate values by (xi, yi, zi, wi), where xi corresponds to the encryption
process of P1 and so x−1 = P1, yi corresponds to the encryption process of P2

and so y−1 = P2, etc.
In the attacks on 6-round and 7-round AES, we consider encryptions of sev-

eral (e.g., 4 or 8) pairs of values. To simplify notations, in this case we denote
the plaintext pairs by (Pj , P̂j), j = 1, . . . , 8, the corresponding ciphertext pairs

by (Cj , Ĉj), j = 1, . . . , 8, and the corresponding pairs of intermediate values by

(xji,`, x̂
j
i,`), for j = 1, . . . , 8.

In all attacks, we exploit plaintext pairs (P, P̂ ) for which the corresponding
intermediate values satisfy ∆(x′′4,SR(Col(0))) = 0 (i.e., have a zero difference in the

first shifted column just before the MixColumns operation of round 4). Hence,
throughout the paper we call such pairs good pairs.

Finally, we measure the time complexity of all the attacks in units which are
equivalent to a single encryption operation of the relevant reduced round variant
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of AES. We measure the space complexity in units which are equivalent to the
storage of a single plaintext (namely, 128 bits). To be completely fair, we count
all operations carried out during our attacks, and in particular we do not ignore
the time and space required to prepare the various tables we use.

3 The 4-round Distinguisher of Grassi

In this section we present the distinguisher for 4-round AES, which serves as
the basis to all our attacks. The distinguisher was presented by Grassi [19], as
a variant of the 5-round distinguisher introduced at Eurocrypt’17 by Grassi et
al. [20]. Note that the distinguisher holds in a more general setting than the one
presented here. For sake of simplicity, we concentrate on the special case used
in our attacks.

Definition 1. Let xi, yi be two intermediate values at the input to round i of
AES, such that xi,Col(1,2,3) = yi,Col(1,2,3) (i.e., xi and yi may differ only in the
first column). We say that (zi, wi) is a mixture of (xi, yi) if for each j = 0, 1, 2, 3,
the unordered pairs (xi,j , yi,j) and (zi,j , wi,j) are equal. That is, either the j’th
bytes of zi and wi are equal to those of xi and yi, respectively, or they are
swapped. In such a case, (xi, yi, zi, wi) is called a mixture quadruple.

Remark 1. Note that for each (xi, yi) such that xi,j 6= yi,j for all j = 0, 1, 2, 3,
there are 7 possible (unordered) mixtures that can be represented by vectors
in {0, 1}4 which record whether zi,j is equal to xi,j or to yi,j , for j = 0, 1, 2, 3.
For example, (1000) corresponds to the mixture (zi, wi) such that zi,Col(0) =
(xi,0, yi,1, yi,2, yi,3) and wi,Col(0) = (yi,0, xi,1, xi,2, xi,3).

Observation 1. Let (xi, yi, zi, wi) be a mixture quadruple of intermediate values
at the input to round i of AES. Then the corresponding intermediate values
(xi+2, yi+2, zi+2, wi+2) sum up to zero, i.e.,

xi+2 ⊕ yi+2 ⊕ zi+2 ⊕ wi+2 = 0. (1)

Consequently, if for j ∈ {0, 1, 2, 3} we have xi+2,SR−1(Col(j))⊕yi+2,SR−1(Col(j)) =
0, then the corresponding intermediate values (x′′i+3, y

′′
i+3, z

′′
i+3, w

′′
i+3) (i.e., just

before the MixColumns operation of round i+ 3) satisfy

x′′i+3,SR(Col(j)) ⊕ y
′′
i+3,SR(Col(j)) = z′′i+3,SR(Col(j)) ⊕ w

′′
i+3,SR(Col(j)) = 0.

Proof. Let (xi, yi, zi, wi) be as in the assumption. The mixture structure is pre-
served through the SubBytes operation of round i, and then ShiftRows spreads
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the active bytes between the columns, such that each column contains exactly one
of them. As a result, for each j ∈ {0, 1, 2, 3}, the unordered pairs (x′′i,Col(j), y

′′
i,Col(j))

and (z′′i,Col(j), w
′′
i,Col(j)) are equal. This property is clearly preserved by Mix-

Columns and by the subsequent AddRoundKey and SubBytes operations. It
follows that the intermediate values (x′i+1, y

′
i+1, z

′
i+1, w

′
i+1) sum up to zero. As

ShiftRows, MixColumns, and AddRoundKey are linear operations, this implies
xi+2 ⊕ yi+2 ⊕ zi+2 ⊕ wi+2 = 0.

Now, if for some j we have xi+2,SR−1(Col(j)) ⊕ yi+2,SR−1(Col(j)) = 0, then
by the round structure of AES we have xi+3,Col(j) ⊕ yi+3,Col(j) = 0, and thus,
x′′i+3,SR(Col(j))⊕y

′′
i+3,SR(Col(j)) = 0. Furthermore, by (1) we have zi+2,SR−1(Col(j))⊕

wi+2,SR−1(Col(j)) = 0, and thus by the same reasoning as for (x, y), we get
z′′i+3,SR(Col(j)) ⊕ w

′′
i+3,SR(Col(j)) = 0, as asserted.

Grassi [19] used his distinguisher to mount an attack on 5-round AES with
data, memory, and time complexities of roughly 232. The attack algorithm is
given in Algorithm 1.

Algorithm 1 Grassi’s 5-Round Attack

1: Ask for the encryption of 232 chosen plaintexts in which SR−1(Col(0)) assumes all
232 possible values and the rest of the bytes are constant.

2: Find a pair of ciphertexts (C1, C2) = (x5, y5) with zero difference in SR(Col(0)).
3: for each guess of k−1,SR−1(Col(0)) do
4: Partially encrypt the corresponding plaintexts (P1, P2) = (x−1, y−1) through

AddRoundKey and round 0 to obtain (x1, y1).
5: Let (z1, w1) be a mixture of (x1, y1), partially decrypt it to find the correspond-

ing plaintext pair (P3, P4) = (z−1, w−1), and denote the corresponding ciphertexts
by (C3, C4) = (z5, w5).

6: if (z5, w5) does not satisfy z5,SR(Col(0)) ⊕ w5,SR(Col(0)) = 0 then
7: discard the key guess k−1,SR−1(Col(0)).
8: end if
9: end for

10: Repeat Steps (1)–(8) for the other three columns, and check the remaining key
guesses by trial encryption.

The structure of chosen plaintexts is expected to contain about 263 · 2−32 =
231 pairs for which the ciphertexts have a zero difference in SR(Col(0)). The
adversary can find one of them easily in time 232, using a hash table. Step 3 of
the attack requires only a few operations for each key guess. Since (x1, y1, z1, w1)
form a mixture quadruple, by Observation 1 we know that if (x5, y5) have zero
difference in SR(Col(0)), then we must have z5,SR(Col(0)) ⊕ w5,SR(Col(0)) = 0.
(Note that the MixColumns operation in the last round is omitted, and thus,
the difference in the state z5 is equal to the difference in the state z′′4 discussed
in Observation 1.) Therefore, if the condition fails, we can safely discard the key
guess. The probability of a random key to pass this filtering is 2−32, and thus,
we expect only a few key guesses to remain. Thus, the data, memory, and time
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complexities for recovering 32 key bits are 232, and for recovering the full key
are 234.

4 Improved Attack on 5-Round AES

In this section we present our improved attack on 5-round AES, which requires
less than 222.5 data, memory, and time to recover 24 key bits and less than 225.5

data, memory, and time to recover the full key. This is the first attack on 5-
round AES whose all complexities are below 232. The attack was fully verified
experimentally.

Our attack is based on Grassi’s attack and enhances it using several observa-
tions. First we present and analyze the observations, then we present the attack
algorithm and analyze its complexity, and finally we describe the experiments
we performed to verify the attack.

4.1 The Observations behind the Attack

1. Reducing the data complexity to 224. Our first observation is that we
can reduce the amount of data significantly, and still find the mixture quadruple
we need for Grassi’s attack. Indeed, as mentioned above, when we start with 232

plaintexts, it is expected that the data contains about 231 mixture quadruples,
while we need only one mixture quadruple for the attack.

Instead, we may start with 224 plaintexts taken arbitrarily from the structure
of size 232 used in Grassi’s attack. These plaintexts form 247 pairs, and we expect
that in 215 of them, the ciphertexts have zero difference in SR(Col(0)). Fix one
such pair, (C1, C2) = (x5, y5). For each guess of the 32 bits of k−1,SR−1(Col(0)),
and for each of the 7 possible types of mixture, the probability that the mixture of
(x1, y1) is contained in our data set is (224/232)2 = 2−16. As there are 215 possible
pairs (x5, y5) and 7 possible types of mixture, we expect that with probability

1 − (1 − 2−16)7·2
15 ≈ 0.97, that the data contains a mixture quadruple with

respect to the correct value of k−1,SR−1(Col(0)), which is sufficient for mounting
the attack. Hence, the data complexity can be reduced to 224 chosen plaintexts.
As the memory is used only to store and filter the data, the memory complexity
is reduced to 224, as well.

However, if we simply apply Grassi’s attack with the reduced number of
plaintexts, its time complexity is increased significantly due to the need to go
over the 215 pairs of (x5, y5) for each key guess. This will be resolved in the next
observations.
2. Reducing the time complexity by changing the order of operations.
Our second observation is that if (x1, y1, z1, w1) is a mixture quadruple then
x1 ⊕ y1 ⊕ z1 ⊕ w1 = 0, and consequently, x′′0 ⊕ y′′0 ⊕ z′′0 ⊕ w′′0 = 0 as well.
This allows to perform a preliminary check of whether (x1, y1, z1, w1) can be
a mixture quadruple, by checking a local condition for each of the bytes in
k−1,SR−1(Col(0)) separately (i.e., bytes 0,5,10,15). That is, given a quartet of
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Algorithm 2 Efficient Guessing of k−1,SR−1(Col(0))

1: for each each guess of k−1,0 do
2: Compute the corresponding differences x′′0,0 ⊕ y′′0,0 and z′′0,0 ⊕ w′′0,0.
3: if x′′0,0 ⊕ y′′0,0 6= z′′0,0 ⊕ w′′0,0 then
4: Discard the guess of k−1,0.
5: end if
6: end for
7: Repeat the above steps for bytes 5,10,15 of k−1 and bytes 1,2,3 of x′′, y′′, z′′, and

w′′, respectively.
8: for each remaining guess of k−1,{SR−1(Col(0))} do
9: Encrypt the quartet through round 0.

10: Check whether the values (x1, y1, z1, w1) constitute a mixture quadruple.
11: end for

plaintexts (P1, P2, P3, P4), we can perform the check whether it is a mixture
quadruple using Algorithm 2.

We can use this procedure to replace the guess of k−1,SR−1(Col(0)) performed
in Grassi’s attack. Specifically, as described above, given 224 plaintexts, we expect
215 pairs in which the ciphertexts have zero difference in SR(Col(0)). We take
all 229 pairs of such pairs, and the procedure is applied for each of them.

As Steps 1–7 offer a 32-bit filtering condition, it is expected that only a few
suggestions of the key k−1,SR−1(Col(0) pass to Steps 8–11. Then, each suggestion is
checked using a 1-round partial encryption. It is clear that if the data set contains
a mixture quadruple (which occurs with a decent probability as described above),
then the procedure will succeed for the right guess of k−1,SR−1(Col(0). For a wrong
guess, the probability to pass Steps 1 and 2 is 2−64, and so all wrong guesses are
expected to be discarded.

Let us analyze the complexity of the attack. In Steps 1–6 we go over the 28

possible values of k−1,0, and check the condition for each of them separately. The
same goes for each repetition of Step 7. The complexity of Steps 8-11 is even
lower. Hence, the overall complexity of the attack is 229 ·28 ·4 = 239 applications
of a single S-box, which are roughly equivalent to 233 encryptions.

3. Reducing the time complexity even further by using a precomputed
table. We can further reduce the time complexity of this step using a precom-
puted table of size 221.4 bytes. To construct the table, we consider each quartet
of inputs to SubBytes of the form (0, a, b, c), where (a, b, c) are arranged in in-
creasing order (e.g., as numbers in base 2).1 For each quartet, we go over the 28

values of the key byte k̂ and store in the entry (a, b, c) of the table the values of

k̂ for which

SB(k̂)⊕ SB(a⊕ k̂)⊕ SB(b⊕ k̂)⊕ SB(c⊕ k̂) = 0. (2)

1 As the quartets in which in some byte, not all four values are distinct, are less than
7% of the quartets, we can remove them from the analysis for sake of simplicity,
with a negligible effect on the attack’s complexity.
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It is expected that a single value of k̂ satisfies Condition (2). Now, if we are
given a quartet (x, y, z, w) of plaintext bytes and want to find the value of k−1,0
such that the four intermediate values after SubBytes sum up to zero, we do the
following:

1. Consider the quartet (0, y ⊕ x, z ⊕ x,w ⊕ x).
2. Reorder it using the binary ordering to obtain (0, a, b, c) with a < b < c.

Then access the table at the entry (a, b, c) and retrieve the value k̂.

3. Set k−1,0 = k̂ ⊕ x.

The key k−1,0 we found is indeed the right one, since the values after the addition

of k0,−1 are (k̂, k̂ ⊕ y, k̂ ⊕ z, k̂ ⊕ w), and thus Condition (2) means exactly that
the four values after SubBytes sum up to zero.

The table requires 224/3! ≈ 221.4 bytes of memory. In a naive implementation,
its generation requires 221.4 · 28 = 229.4 applications of a single S-box and a few
more XOR operations, which is less than 223.4 5-round encryptions. However, it
can be generated much faster, as follows.

Instead of going over all triplets (a, b, c) and for each of them going over

all values of k̂, we go over triplets a, b, k̂. For each of them, we compute t =
SB(k̂)⊕ SB(a⊕ k̂)⊕ SB(b⊕ k̂). We know that Condition 2 holds for (a, b, c, k̂)

if and only if SB(c ⊕ k̂) = t, or equivalently, c = SB−1(t) ⊕ k̂. (Note that

this value may not be unique). Therefore, we write k̂ in the table entry/entries

of (a, b, SB−1(t) ⊕ k̂) and move to the next value of k̂. In this way, the table
generation requires less than 224 S-box applications, which is negligible with
respect to other steps of the attack.

Once the table is constructed, Step 1 of the procedure described in Improve-
ment 2 can be performed by 4 table lookups. Hence, the total time complexity of
the attack is reduced to 229 times (4 table lookups + one round of encryption),
which is less than 229 encryptions.
4. Reducing the overall complexity to 222.25 by a wise choice of plain-
texts. So far, we reduced the data and memory complexity to 224 and the time
complexity to 229. We show now that all three parameters can be reduced to
about 222.25 by a specific choice of the plaintexts.

Recall that in Improvement 1 we assumed that the 224 plaintexts are arbi-
trarily taken from the structure of size 232 used in Grassi’s attack (in which
SR−1(Col(0)) assume all possible values and the rest of the bytes are constant).
Instead of doing this, we choose all plaintexts such that byte 0 is constant in all
of them. We claim that this significantly increases the probability of a plaintext
quartet to form a mixture quadruple.

Indeed, let us fix (P1, P2) and a type of mixture, and estimate the probabil-
ity that for another pair (P3, P4), the intermediate values (x1, y1, z1, w1) form a
mixture quadruple of the fixed type. The check can be performed in two steps,
like in the procedure described in Improvement 2. First we check whether the
corresponding intermediate values (x1, y1, z1, w1) sum up to zero (a 32-bit con-
dition), and only then we check that the quadruple is indeed a mixture (which
is a 31-bit condition, since as we already know that the four values sum up to
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zero, once the condition for z1 holds, the condition for w1 holds for free, and
there are two possibilities for the ordering between z1 and w1). As described in
Improvement 2, the first condition is translated to four independent conditions
of the form x′′0,j⊕y′′0,j⊕z′′0,j⊕w′′0,j = 0, for j ∈ {0, 1, 2, 3}. In our case, due to the
choice of plaintexts, the condition in byte 0 holds for free! Therefore, the overall
probability is boosted from 2−63 to 2−55.

On the other hand, we note that only three of the 7 types of mixture are
possible in this case. Indeed, in the mixtures of types (1000), (0100), (0010) and
(0001), there are two of the values (x1, y1, z1, w1) which differ in a single byte.
As all four values x′′0 , y

′′
0 , z
′′
0 , w

′′
0 agree on byte 0, this is impossible since the

branching number of the MixColumns operation is 5 (which means that for any
pair of inputs/outputs to MC, the number of bytes in which the inputs differ
plus the number of bytes in which the outputs differ is at least 5).

Therefore, the probability of (P3, P4) taken from our structure to lead into
a mixture quadruple with (P1, P2) is expected to be 3 · 2−55. This allows us
to reduce the data complexity, and consequently, also the memory and time
complexities.

Assume that we start with 222.25 plaintexts, taken arbitrarily from the 224

plaintexts that assume all values in bytes 5, 10, 15 and have all other bytes con-
stant. These plaintexts form (222.25)2/2 = 243.5 unordered pairs, and thus, 286

unordered pairs of pairs. The probability that a pair-of-pairs gives rise to a mix-
ture quadruple is 3 ·2−55. Hence, we expect 3 ·2−55 ·286 = 3 ·231 mix quadruples.
With a ‘decent’ probability, in at least one of them, the ciphertexts (C1, C2) have
zero difference in SR(Col(0)), and thus, it can be used for the attack.

In the attack, we first insert the ciphertexts into a hash table to find the pairs
for which the ciphertexts have zero difference in SR(Col(0)). It is expected that
243.5 · 2−32 = 211.5 pairs are found. Then, for each of the (211.5)2/2 = 222 pairs-
of-pairs, we check whether the corresponding intermediate values (x1, y1, z1, w1)
constitute a mixture quadruple, as described in Improvement 3. Thus, the time
complexity is reduced by a factor of 27 (as we have to check 222 quartets instead
of 229), and so the time complexity is less than 222 encryptions, which is less
than the time required for encrypting the plaintexts.

5. Reducing the data complexity a bit further by checking several
columns instead of one. Finally, the data complexity can be reduced a bit
further by considering not only plaintext pairs for which the ciphertexts have
zero difference in SR(Col(0)), but also pairs for which the ciphertexts satisfy
the same condition for one of the columns 1,2,3. This increases the probability
of a quartet to be useful for the attack by a factor of 4, and thus, allows us to
reduce the data complexity by another factor of 41/4 =

√
2. On the other hand,

this requires to use four hash tables to filter the ciphertexts (each corresponding
to a different shifted column of the ciphertext), and thus, increases the memory
complexity by a factor of 4. As this is not a clear improvement but rather a
data/memory tradeoff, we do not include it in the attack algorithm below.
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4.2 The Attack Algorithm and its Analysis

The algorithm of our 5-round attack is given in Algorithm 3.

Algorithm 3 Efficient 5-Round Attack

Preprocessing
1: Initialize an empty table T .
2: for all a < b < c do
3: Store in T [a, b, c] all bytes values k̂ which satisfy SB(k̂)⊕ SB(a⊕ k̂)⊕ SB(b⊕

k̂)⊕ SB(c⊕ k̂) = 0.
4: end for

Online phase
5: Ask for the encryption of 222.25 chosen plaintexts in which bytes 5, 10, 15 assume

different values and the rest of the bytes are constant.
6: Store in a list L all ciphertext pairs (C1, C2) such that C1,SR(Col(0))⊕C2,SR(Col(0)) =

0.
7: for all pairs of pairs (C1, C2), (C3, C4) ∈ L do
8: Let the corresponding plaintexts be (P1, P2, P3, P4) = (x−1, y−1, z−1, w−1), re-

spectively.
9: Compute the values (y−1,5 ⊕ x−1,5, z−1,5 ⊕ x−1,5, w−1,5 ⊕ x−1,5), and sort the

three bytes in an increasing order to obtain (a, b, c).
10: for each value k̂ in T [a, b, c] do
11: Store in L5 the value k−1,5 = k̂ ⊕ x−1,5.
12: end for
13: Repeat the above steps for bytes 10 and 15 (with lists L10 and L15, respectively).
14: for all subkey candidates (k−1,5 ∈ L5, k−1,10 ∈ L10, k−1,15 ∈ L15) do
15: Partially encrypt (P1, P2, P3, P4) through round 0 and compute

x1, y1, z1, w1.
16: if (x1, y1, z1, w1) does not constitute a mixture quadruple then
17: Discard subkey candidate.
18: end if
19: end for
20: end for
21: Output all guesses of k−1,5, k−1,10, k−1,15 which remained.

As described in Improvement 4, T can be prepared in time of 221.4 S-box
evaluations, and contains 221.4 byte values. Steps 5,6 can be easily performed
in time 222.25 using a hash table of size 222.25 24-bit values, which are less than
220 128-bit blocks. The expected size of the list L is 243.5 · 2−32 = 211.5. Hence,
Steps 7–20 are performed for 222 pairs of pairs. As described in Improvement 4,
these steps take less than a single encryption for each quartet, and thus, their
total complexity is less than 222 encryptions. Therefore, the data complexity
of the attack is 222.25 chosen plaintexts, the memory complexity is 220 128-bit
blocks, and the time complexity is dominated by encrypting the plaintexts.

It is clear from the algorithm that if the data contains a mixture quadruple
for which the ciphertexts (P1, P2) have zero difference in SR(Col(0)), then for
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the right value of k−1,{5,10,15}, this quadruple will be found and so the right key
will remain. The probability of a wrong key suggestion to remain is extremely
low, as in the attack we examine ((222.25)2/2)2/2 = 286 quartets and the filtering
condition is on about 117.4 bits (which consist of 64 bits on the ciphertext side –
requiring zero difference in SR(Col(0)) for two ciphertext pairs, and 53.4 bits on
the plaintext side – requiring that the values (x1, y1, z1, w1) constitute a mixture
quadruple). So, the probability for a wrong key to pass the filtering is 2−31.4.
As there are 224 possible key suggestions, with a high probability no wrong keys
remain.

Note that the attack does not recover the value of k−1,0 since the question
whether a quartet of plaintexts in the structure evolves into a mixture quadruple
does not depend on k−1,0.

In order to recover the full key, we repeat the attack for each of the four
columns on the plaintext side, and apply it once again for the first column, with
byte 15 as the ‘constant byte’ instead of byte 0. This recovers 4 ·24+8 = 104 bits
of the key, and the rest of the key can be recovered by exhaustive key search.
Therefore, for full key recovery we need data complexity of 5·222.25 ≈ 224.6 chosen
plaintexts, memory complexity of 220 128-bit blocks (as the memory can be
reused between the attacks), and time complexity of less than 225.5 encryptions.

It is clear from the above analysis that the attack succeeds with a high prob-
ability, that can be made very close to 100% by increasing the data complexity
by a factor of 2. To achieve the exact value, we fully implemented the attack
experimentally.

4.3 Experimental Verification

We have successfully implemented the 5-round attack. To verify our attack suc-
cess probability and its dependence on the data complexity, we performed the
following experiment. We took four possible amounts of data, 222, 222.25, 222.5,
and 223 chosen plaintexts, and for each of them we ran the attack which recovers
3 key bytes for 200 different keys. The results we obtained were the following: For
222 plaintexts, the attack succeeded 100 times. For 222.25 plaintexts, the attack
succeeded 143 times. For 222.5 plaintexts, the attack succeeded 187 times, and
for 223 plaintexts, the attack succeeded in all 200 experiments.

Based on these experiments, we calculated the success probability of full key
recovery as p5, where p is the probability of recovering three key bytes (as in order
to recover the full key we have to perform 5 essentially independent variants of
the attack). Similarly, we calculated the probability when two diagonals in the
ciphertext are examined as 1−(1−p)2, since the attack fails only if two essentially
independent applications of the basic attack fail.

The full details are given in Table 3. As can be seen in the table, with 222.5

chosen plaintexts, checking a single diagonal on the ciphertext side is already
sufficient for a success rate of over 93% for recovering the first 3 key bytes, and
over 70% for recovering the entire key. With 222.25 plaintexts, checking a single
diagonal in the ciphertext is sufficient for recovering 3 key bytes with success rate
of over 70%, but if we want success rate of over 65% for recovering the entire
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Structure size One diagonal Two diagonals
Key material 3 Bytes Full key 3 Bytes Full key

222 0.5 0.031 0.75 0.24
222.25 0.715 0.187 0.919 0.655
222.5 0.935 0.715 0.996 0.979
223 1 1 1 1

Table 3. Success probability of the attack for different data complexities

key, we have to check another diagonal on the ciphertext side, which slightly
increases the memory complexity to 221 128-bit blocks.

The experimental results clearly support our analysis presented above. We
note that the significant increase of the success rate when the data complexity
is increased very moderately follows from the fact that the attack examines
quartets, and so multiplying the data by a modest factor of 20.25 doubles the
number of quartets that can be used in the attack.

5 Attacks on 6-Round AES

In this section we present attacks on 6-round AES. We start with a simple ex-
tension of Grassi’s attack to 6 rounds, and then we present several improvements
that allow reducing the attack complexity significantly. Our best attack has data
and memory complexities of 227.5 and time complexity of 281. These results are
not very interesting on their own sake, as they are clearly inferior to the improved
Square attack on the same variant of AES [15]. However, a further extension of
the same attack techniques will allow us obtaining an attack on 7-round AES-
192, which clearly outperforms all known attacks on reduced-round AES-192
with practical data and memory complexities (including the improved Square
attack).

5.1 An Extension of Grassi’s Attack to 6 Rounds

Recall that in Grassi’s attack on 5-round AES, we take a structure of 232 plain-
texts that differ only in SR−1(Col(0)), and search for ciphertext pairs that have
zero difference in SR(Col(0)). Actually, the 4-round distinguisher underlying the
attack guarantees a zero difference only in the state x′′4,SR(Col(0)), but as the 5th
round is the last one, the MixColumns operation is omitted, and so, the zero
difference can be seen in the ciphertext.

When we consider 6-round AES, in order to recover the state x′′4,SR(Col(0)) by
partial decryption we must guess all 128 key bits. However, we can recover one
of these 4 bytes by guessing only four equivalent key bytes. Indeed, if we guess
k5,SR(Col(0)) and interchange the order between the MixColumns and AddRound-
Key operations of round 4, we can partially decrypt the ciphertexts through
round 5 and MixColumns to obtain the value of byte 0 before MixColumns. As
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AddRoundKey does not affect differences, this allows us evaluating differences
at the state x′′4,0.

By the distinguisher, the difference in this byte for both pairs in the mixture
quadruple is zero. However, this is only an 16-bit filtering. In order to obtain
an additional filtering, we recall that by Remark 1, each pair has 7 mixtures.
Checking the condition for all of them, we get a 64-bit filtering, that is sufficient
for discarding almost all wrong key guesses. The attack is given in Algorithm 4.

Algorithm 4 Attacking 6-Round AES

1: Ask for the encryption of 232 chosen plaintexts in which SR−1(Col(0)) assumes all
232 possible values and the rest of the bytes are constant.

2: for each guess of k−1,SR−1(Col(0)) do

3: Select arbitrarily 232 plaintexts pairs (P i
1 , P̂

i
1) from the structure.

4: for each pair (x1
−1, y

1
−1) = (P1, P̂1) do

5: Partially encrypt (x1
−1, x̂

1
−1) through round 0, obtain (x1

1, x̂
1
1).

6: Let the 7 mixtures of (x1
1, x̂

1
1) be (x2

1, x̂
2
1), . . . , (x8

1, x̂
8
1).

7: Partially decrypt the 7 mixtures to obtain the plaintext pairs (P2, P̂2) =
(x2
−1, x̂

2
−1), . . . , (P8, P̂8) = (x8

−1, x̂
8
−1).

8: for each value of k5,SR(Col(0)) do

9: Take all ciphertext pairs (C1, Ĉ1), . . . , (C8, Ĉ8).
10: Partially decrypt them through rounds 5,4.

11: if for all 1 ≤ j ≤ 8: xj′′

4,0⊕ x̂j′′

4,0 = 0 (i.e., all 8 pairs have a zero difference
in byte 0 before the MixColumns of round 4) then

12: Store k5,SR(Col(0)) in a list L1.
13: end if
14: end for
15: if L1 is empty then
16: Discard the pair (P1, P̂1).
17: else
18: Repeat the same procedure for k5,SR(Col(1)), with respect to the byte

x′′4,7 and L2.
19: if L2 is not empty then
20: Repeat the same procedure for k5,SR(Col(2)) and k5,SR(Col(3)), with

respect to bytes x′′4,10 and x′′4,15, respectively.
21: Output the remaining key suggestion.
22: else
23: Discard the pair (P1, P̂1).
24: end if
25: end if
26: end for . If no pairs remain, move to the next guess of k−1,SR−1(Col(0)).
27: end for

For the right key guess, it is expected that after 232 pairs (P1, P̂1), we will
encounter a good pair (i.e., a pair for which the difference in the state x′′4,SR(Col(0))

is zero), and then by the distinguisher, the difference in the same state for
all other 7 mixtures is zero as well. Hence, the right key is expected to be
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suggested. (Concretely, the probability that the right key is not suggested is

(1−2−32)2
32 ≈ e−1). For wrong key guesses, for each pair (P1, P̂1), the probability

to pass the filtering of Step 10 is 2−64, and thus, the probability that there exists
a guess of k5,SR(Col(0)) that passes it is 2−32. Hence, for all values of (P1, P̂1)
except a few values, the list L1 remains empty and the pair is discarded after
Step 15. For the few remaining pairs, the probability that there exists a guess of
k5,SR(Col(1)) that passes the filtering of Step 17 is again 2−32, and so, for all but
very few guesses of k−1,{SR−1(Col(0))}, all pairs are discarded. The few remaining
guesses are easily checked by trial encryption.

The most time consuming part of the attack is Steps 9,10, which are per-
formed for 264 key guesses and 232 plaintext pairs. (Note that Step 17 is per-
formed for a much smaller number of pairs, and thus is negligible.) Steps 9,10
essentially consist of partial decryption of one column through round 5 for 16 val-
ues – which is clearly less than a single 6-round encryption. Therefore, the time
complexity of the attack is 264 · 232 = 296 encryptions. The memory complex-
ity is 232 (dominated by storing the plaintexts), and the success probability is
1−e−1 = 0.63. The attack recovers the full subkey k5, which yields immediately
the full secret key via the key scheduling algorithm.2

5.2 Improvements of the 6-Round Attack

In this section we present two improvements of the 6-round attack described
above, which allow us to reduce its complexity significantly. While the resulting
attack is still inferior to some previously known attacks on 6-round AES, we
describe the improvements here since they will be used in our attack on 7-round
AES, and will be easier to understand in the ‘simpler’ case of the 6-round variant.
1. Using the meet-in-the-middle (MITM) approach. We observe that
instead of guessing the subkey k5,{0,7,10,13}, we can use a MITM procedure.
Indeed, the difference in the byte x′′4,0 (which we want to evaluate in the attack)
is a linear combination of the differences in the four bytes x5,0, x5,1, x5,2, x5,3.
Specifically, by the definition of MixColumns−1, we have

∆(x′′4,0) = 0Ex ·∆(x5,0)⊕ 0Bx ·∆(x5,1)⊕ 0Dx ·∆(x5,2)⊕ 09x ·∆(x5,3),

and thus the equation ∆(x′′4,0) = 0 can be written in the form

0Ex ·∆(x5,0)⊕ 0Bx ·∆(x5,1) = 0Dx ·∆(x5,2)⊕ 09x ·∆(x5,3). (3)

Hence, instead of guessing the four key bytes k5,{0,7,10,13} which allow us to
compute the values of x5,0, x5,1, x5,2, x5,3 and to check the 64-bit condition on
the differences in x′′4,0, we can do the following:

1. Guess bytes k5,{0,7} and compute x5,0, x5,1. Store in a table the contribution
of these bytes to Equation (3), i.e., the concatenation of the values 0Ex ·
∆(xj5,0)⊕ 0Bx ·∆(xj5,1) for j = 1, . . . , 8.

2 We assume, for sake of simplicity, that the attack is mounted on AES-128. When
the attack is applied to AES-192 or AES-256, the rest of the key can be recovered
easily by auxiliary techniques.
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2. Guess bytes k5,{10,13} and compute x5,2, x5,3. Compute the contribution
of these bytes to Equation (3), i.e., the concatenation of the values 0Dx ·
∆(xj5,2)⊕ 09x ·∆(xj5,3) for j = 1, . . . , 8, and search it in the table.

3. For each match in the table, store in L1 the combination k5,{0,7,10,13}. If

there are no matches in the table, discard the pair (P1, P̂1).

This meet-in-the-middle procedure is clearly equivalent to guessing k5,{0,7,10,13}
and checking the condition on x′′4,0 directly. The time complexity of the proce-

dure, for each pair (P1, P̂1), is 2·216 evaluations of two S-boxes for 16 ciphertexts,
and 2 · 216 lookups into a table of size 216, which are less than 216 encryptions.

This procedure can replace Steps 7–10 in the attack presented above, while
all other parts of the attack remain unchanged. (Of course, Step 17 can be
replaced similarly, but its complexity is anyway negligible.) This reduces the
time complexity of the attack to 232 ·232 ·216 = 280 encryptions, without affecting
the data and memory complexities.

2. Reducing the data complexity by using less mixtures. We would like to
reduce the data complexity by considering only part of the structure of size 232,
as we did in Improvement 1 of the 5-round attack. In order to get a significant
reduction in the data complexity, we first need to reduce the number of mixtures
used in the attack.

We observe that we may use 3 mixtures of each pair instead of all possible
7 mixtures. As a result, the filtering in Step 10 above is reduced to 32 bits, and
thus, for each pair (P1, P̂1), about one value of k5,{0,7,10,13} is inserted into the
list L1. Similarly, in Steps 17,19 it is expected that a few suggestions of the
entire key k5 remain for each pair (P1, P̂1). These suggestions are easily checked
by trial encryption.

How does this modification affect the time complexity? On the one hand,
Steps 9,10 are now repeated four times for each pair (P1, P̂1). On the other hand,
each application of this step becomes twice faster since the partial decryptions
are performed for 8 ciphertexts instead of 16. Hence, the overall time complexity
becomes 4· 12 ·2

80 = 281 encryptions. The memory complexity remains unchanged,
and so is the success probability.

The reduction of the number of mixtures allows us reducing the data com-
plexity effectively, similarly to the reduction we did in Improvement 1 of the
5-round attack. Note that the entire structure of 232 plaintext contains 263 pairs,
and about 231 of them are good and so can be used in the attack. Hence, if we
take a random subset S of the structure of size α232, the probability that one of
these 231 good pairs, along with at least three of its 7 mixtures, is included in S,
is approximately 231α8 ·

(
7
3

)
≈ 236α8. Hence, if we take α = 2−4.5, with a good

probability the plaintext set S contains a pair that can be used in the attack.

Formally, the changes required in the attack algorithm are only in Steps 1–6,
and are the following:

1. Take a structure of 227.5 chosen plaintexts with the same value in all bytes
but those of SR−1(Col(0)).
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2. For each guess of subkey k−1,SR−1(Col(0)), go over all pairs of plaintexts

(P1, P̂1) in S, and for each of them do the following:

(a) Partially encrypt (P1, P̂1) = (x1−1, x̂
1
−1) through AddRoundKey and

round 0 to obtain (x11, x̂
1
1). Consider all 7 mixtures of (x11, x̂

1
1) (denoted by

(x21, x̂
2
1), . . . , (x81, x̂

8
1)), and partially decrypt them to find the correspond-

ing plaintext pairs (P2, P̂2) = (x2−1, x̂
2
−1), . . . , (P8, P̂8) = (x8−1, x̂

8
−1).

Check whether for at least three of them, both plaintexts are included
in S. If yes, continue as in the original attack. If no, discard the pair
(P1, P̂1).

The complexity of checking all pairs (P1, P̂1) is less than 254 encryptions, which is
negligible with respect to other steps of the attack. Since the expected number of
pairs that are not discarded instantly is 232, the attack complexity is the same as
the original attack – 281 encryptions. The success probability is 1−(1−2−32)2

32 ≈
1− e−1 = 0.63, as in the original attack.

To summarize, the data and memory complexity of the improved attack is
227.5, and its time complexity is 281 encryptions. Both improvements will be
used in the 7-round attacks presented in the next section.

6 Attacks on 7-Round AES-192 and AES-256

In this section we present our new attacks on 7-round AES. First we present the
attack on AES-256, which extends the 6-round attack by another round using a
MITM technique, and then uses dissection [14] to reduce the memory complexity
of the attack. Then we show how in the case of AES-192, the key schedule can be
used (in conjunction with a more complex dissection attack) to further reduce the
data and time complexities of the attack. Our best attack on AES-192 recovers
the full key with data complexity of 230, memory complexity of 232, and time
complexity of 2153, which is better than all previously known attacks on reduced-
round AES-192 with practical data and memory complexities.

6.1 Basic Attack on AES-192 and AES-256

The basic attack is a further extension by one round of the 6-round attack.
Recall that in the 6-round attack we guess the subkey bytes k5,{0,7,10,13} and
check whether the state bytes x5,{0,1,2,3} satisfy a linear condition (Equation 3).
When we consider 7-round AES, in order to check this condition we have to
guess the entire subkey k6 and bytes 0, 7, 10, 13 of the equivalent subkey u5. Of
course, this leads to an extremely high time complexity. In addition, the filtering
condition – which is on only 64 bits (i.e., 8 pairs with zero difference in a single
byte) – is far from being sufficient for discarding such a huge amount of key
material.

In order to improve the filtering condition, we attack two columns simultane-
ously. That is, we guess the entire subkey k6 and bytes 0, 7, 10, 13 and 1, 4, 8, 14
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of u5 and check linear conditions on both state bytes x5,{0,1,2,3} (which is Equa-
tion 3) and state bytes x5,{4,5,6,7} (which is the following equation:

0Dx ·∆(x5,5)⊕ 09x ·∆(x5,6) = 0Bx ·∆(x5,4)⊕ 0Ex ·∆(x5,7), (4)

that corresponds to the condition ∆(x′′4,7) = 0). Thus, we have 4 more key bytes
to guess, but the filtering is increased to 128 bits.

In order to reduce the time complexity, we extend the MITM procedure
described in Section 5.2 to cover round 6 as well. Specifically, we modify the
MITM procedure described in Improvement 1 of Section 5.2 as follows:

1. Guess bytes k6,SR(Col(0,3)) and u5,{0,1,13,14}, and compute x5,0, x5,1 and x5,5, x5,6.
Store in a table the contribution of bytes x5,0, x5,1 to Equation (3) (i.e., the

concatenation of the values 0Ex ·∆(xj5,0)⊕0Bx ·∆(xj5,1) for j = 1, . . . , 8), and
the contribution of bytes x5,5, x5,6 to Equation (4) (i.e., the concatenation

of the values 0Dx ·∆(xj5,5)⊕09x ·∆(xj5,6) for j = 1, . . . , 8) – 128 bits in total.
2. Guess bytes k6,SR(Col(1,2)) and u5,{4,7,8,10}, and compute x5,2, x5,3 and x5,4, x5,7.

Compute the contribution of bytes x5,2, x5,3 to Equation (3) and the contri-
bution of bytes x5,4, x5,7 to Equation (4), and search it in the table.

3. For each match in the table, store in L1 the combination k6, u5,{0,1,4,7,8,10,13,14}.

After the MITM procedure, for each guess of k−1,SR−1(Col(0)) and for each pair

(P1, P̂1), we remain with 2192 ·2−128 = 264 key suggestions. To discard the wrong
ones, we repeat the attack for Col(2) of x5 (where now the only key bytes we
need to guess are u5,{2,5,8,15} and we can again use MITM), and for Col(3) of
x5 (where the only key bytes we need to guess are u5,{3,6,9,12} and we can again
use MITM). In total, we have a 256-bit filtering, and so we obtain on average
2256 ·2−256 = 1 suggestions for the entire subkeys u5, k6, which of course yield the
secret key. The remaining suggestions can be checked easily by trial encryption.

What is the time complexity of the attack? The most time consuming op-
eration is the first MITM procedure which is performed for 232 guesses of
k−1,SR−1(Col(0)) and for 232 pairs (P1, P̂1), and consists of 296 times decrypt-
ing a full AES round and one column of another round, for 16 ciphertexts, plus
2 · 296 table lookups. Estimating a table lookup as one full AES round (follow-
ing common practice), the total time complexity is 232 · 232 · 296 · 3 = 2161.6

encryptions.
The memory complexity is 296, required for the MITM procedure. The data

complexity of the attack is 232 chosen plaintexts. However, it can be reduced
using Improvement 2 described in Section 5.2. Instead of taking the full structure
of 232 plaintexts, we can take an arbitrary subset of 230 plaintexts. As discussed
above, there are 231 good pairs that can be used in the attack, and given a pair,
the probability that it belongs to S along with all its 7 mixtures is approximately
231 · (2−2)16 = 1/2. In addition, if the attack fails for all pairs, we can repeat
the attack with other shifted columns of x′′4 instead of x′′4,SR(0). As described in
Improvement 5 in Section 4.1, this increases the number of good pairs by a factor
of 4 – which means that on average, 2 pairs will be included in S along with all
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their 7 mixtures. Therefore, starting with 230 plaintexts, the success probability
of the attack is still above 1− e−1 = 0.63.

We do not present the attack algorithm here, as it will be subsumed by the
improved attack algorithm we present in the next subsection.

6.2 Improved Attack on AES-192 and AES-256 Using Dissection

In this section we show that the memory complexity of the attack described
above can be reduced from 296 to 248 without affecting the data and time com-
plexities, using the dissection technique [14].

For ease of exposition, we first briefly recall the generic dissection attack on
4-encryption (denoted in [14] Dissect2(4, 1)) and then present its application in
our case.

The algorithmDissect2(4, 1) is given four plaintext/ciphertext pairs (P1, C1),
. . . , (P4, C4) to a 4-round cipher. It is assumed that the block length is n bits,
and that in each round i (for i = 0, 1, 2, 3) there is an independent n-bit key ki.
The algorithm finds all values of (k0, k1, k2, k3) that comply with the 4 plain-
text/ciphertext pairs (the expected number of keys is, of course, one), in time
O(22n) and memory O(2n). Instead of using the notations of [14], we will be
consistent with our notations, and denote the plaintexts by (x0, y0, z0, w0) and
the intermediate values before round i by (xi, yi, zi, wi).

The dissection algorithm is the following:

1. Given plaintexts (x0, y0, z0, w0) = (P1, P2, P3, P4) and their corresponding
ciphertexts (x4, y4, z4, w4) = (C1, C2, C3, C4), for each candidate value of x2:

2. (a) Run a standard MITM attack on 2-round encryption with (x0, x2) as a
single plaintext/ciphertext pair, to find all keys (k0, k1) which ‘encrypt’
x0 to x2. For each of these 2n values, partially encrypt y0 = P2 using
(k0, k1), and store in a table the corresponding values of y2, along with
the values of (k0, k1).

(b) Run a standard MITM attack on 2-round encryption with (x2, x4) as a
single plaintext/ciphertext pair, to find all keys (k2, k3) which ‘encrypt’
x2 to x4. For each of these 2n values, partially decrypt C2 using (k2, k3)
and check whether the suggested value for y2 appears in the table. If so,
check whether the key (k0, k1, k2, k3) suggested by the table and the cur-
rent (k2, k3) candidate encrypts P3 and P4 into C3 and C4, respectively.

We call the two 2-round MITM procedures internal ones, and the final MITM
step external.

The time complexity of each of the two internal 2-round MITM attacks is
about 2n, and so is the time complexity of the external MITM procedure. As
these procedures are performed for each value of x2, the time complexity of the
attack is O(22n) operations. The memory complexity is O(2n), required for each
of the MITM procedures. Note that the time complexity of the attack is not
better than the complexity of a simple MITM attack on a 4-round cipher with
independent round keys. The advantage of dissection is the significant reduction
in memory complexity – from 22n to O(2n).
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While this may not be clear at a first glance, a standard MITM attack can be
transformed into a Dissect2(4, 1) attack whenever each of the two parts of the
MITM procedure can be further subdivided into two parts whose contributions
are independent, given that a ‘partial guess in the middle’ (like the guess of x2
above) can be performed. This is the case in our attack.

Note that the contribution of the first part of the MITM procedure described
above to each of Equations (3),(4) can be represented as the XOR of two in-
dependent contributions: the contribution of state bytes x5,0 and x5,5, which
can be computed by guessing k6,SR(Col(0)) and u5,{0,1}, and the contribution of
state bytes x5,1 and x5,6 which can be computed by guessing k6,SR(Col(3)) and
u5,{13,14}. The second half can be divided similarly. The contribution of each side
to Equations (3),(4) plays the role of the guessed intermediate value. Hence, we
introduce the following auxiliary notations. For 1 ≤ j ≤ 8, let

aj = 0Ex ·∆(xj5,0)⊕ 0Bx ·∆(xj5,1) = 0Dx ·∆(xj5,2)⊕ 09x ·∆(xj5,3) (5)

denote the contributions of the two sides to Equation (3) for ciphertext pair
(Cj , Ĉj), and let

bj = 0Dx ·∆(xj5,5)⊕ 09x ·∆(xj5,6) = 0Bx ·∆(x5,4)⊕ 0Ex ·∆(x5,7) (6)

denote the contributions of the two sides to Equation (4) for ciphertext pair
(Cj , Ĉj).

This allows us to mount the following attack:

1. Constructing the plaintext pool. Take a structure S of 230 chosen plain-
texts with the same value in all bytes but those of SR−1(Col(0)).

2. For each guess of subkey k−1,SR−1(Col(0)), go over all chosen pairs of plain-

texts (P1, P̂1) in S, and for each of them do the following:
(a) Checking that the pair can be used in the attack, i.e., the pair

and all its 7 mixtures are in the plaintext pool. Partially en-
crypt (P1, P̂1) = (x1−1, x̂

1
−1) through AddRoundKey and round 0 to

obtain (x11, x̂
1
1). Consider all 7 mixtures of (x11, x̂

1
1), which we denote

(x21, x̂
2
1), . . . , (x81, x̂

8
1), and partially decrypt them to find the correspond-

ing plaintext pairs (P2, P̂2) = (x2−1, x̂
2
−1), . . . , (P8, P̂8) = (x8−1, x̂

8
−1).

Check whether for all of them, both plaintexts are included in S. If
no, discard the pair (P1, P̂1).

(b) For each candidate value of (a1, a2, a3, a4, a5, a6) do the following:
(c) First internal MITM procedure:

i. Guess bytes k6,SR(Col(0)) and u5,0, and compute x5,0. Store in a ta-
ble the contribution of the byte x5,0 to Equation (3) for the pairs

(C1, Ĉ1), . . . , (C6, Ĉ6), i.e., the concatenation of the values 0Ex ·
∆(xj5,0)⊕ aj for j = 1, . . . , 6 – 48 bits in total.

ii. Guess bytes k6,SR(Col(3)) and u5,13, and compute x5,1. Compute the

contribution of the byte x5,1 to Equation (3) for the pairs (C1, Ĉ1), . . . ,

(C6, Ĉ6), i.e., the concatenation of the values 0Bx ·∆(xj5,1) for j =
1, . . . , 6, and check it in the table.



22 Achiya Bar-On et al.

iii. For each value found in the table, use the suggested value of k6,SR(Col(0,3))

and u5,{0,13}, guess bytes u5,{1,14}, and partially decrypt the cipher-
texts to obtain the values (a7, a8, b1, b2, . . . , b8). Store them in a table,
together with the suggestion for k6,SR(Col(0,3)) and u5,{0,1,13,14}.

(d) Second internal MITM procedure:
i. Guess bytes k6,SR(Col(1)) and u5,7, and compute x5,3. Store in a ta-

ble the contribution of the byte x5,3 to Equation (3) for the pairs

(C1, Ĉ1), . . . , (C6, Ĉ6), i.e., the concatenation of the values 09x·∆(xj5,3)⊕
aj for j = 1, . . . , 6 – 48 bits in total.

ii. Guess bytes k6,SR(Col(2)) and u5,10, and compute x5,2. Compute the

contribution of the byte x5,2 to Equation (3) for the pairs (C1, Ĉ1), . . . ,

(C6, Ĉ6), i.e., the concatenation of the values 0Dx ·∆(xj5,1) for j =
1, . . . , 6, and check it in the table.

iii. For each value found in the table, use the suggested value of k6,SR(Col(1,2))

and u5,{7,10}, guess bytes u5,{4,8}, and partially decrypt the cipher-
texts to obtain the values (a7, a8, b1, b2, . . . , b8). Check whether the
vector exists in the table. If yes, store in a table L the suggested
value of k5 and u5,{0,1,4,7,8,10,13,14}.

(e) Completing the attack: For each remaining key suggestion, repeat the
attack for the two last shifted columns of u5, with respect to the state
bytes x′′4,10 and x′′4,13, to filter wrong key guesses and obtain suggestions
for the entire k6 and u5. For each remaining suggestion, use k6, u5 to
retrieve the full key and check it by trial encryption.

The memory complexity of the attack is 248 80-bit values (required in Step 2(c)),
which are less than 248 128-bit blocks. As for the time complexity, for each guess
of k−1,{0,5,10,15}, each pair (P1, P̂1), and each guessed 48-bit value (a1, . . . , a6),
the internal MITM procedures take 240 time and the external MITM proce-
dure consists of 248 times decrypting a full AES round and one column of
another round, for 16 ciphertexts, plus 2 · 296 table lookups. Estimating a ta-
ble lookup as one full AES round, the total time complexity of this step is
232 · 232 · 248 · 248 · 3 = 2161.6 encryptions. The complexity of all other steps is
negligible.

Therefore, the data complexity of the attack is 230 chosen plaintexts, the
memory complexity is 248 128-bit blocks, and the time complexity is 2161.6 en-
cryptions. The success probability is 1− e−1 = 0.63.

6.3 Improved Attacks on AES-192 Exploiting the Key Schedule

While in the attack on AES-256 the subkeys we guess in the last two rounds are
independent, in the case of AES-192 there exists a strong relation between u5
and k6. Specifically, by the AES key schedule we have

k5,Col(1) = k6,Col(2) ⊕ k6,Col(3), (7)

and
k5,Col(0) = k6,Col(2) ⊕ SB(k6,Col(1) ≪ 8)⊕RCON [5]. (8)
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Since u5,Col(j) = MC−1(k5,Col(j)) for each j, two columns of u5 can be expressed
as combinations of bytes of k6. As these two columns contain half of the bytes
of u5 guessed in the attack, we will be able to use them to enhance the filtering
condition. Specifically, this enables us to attack a single column in x5 (and
so guess only bytes u5,SR(Col(0)) and the entire k6, a total of 160 key bits),
and use Equations (7) and (8) as additional filtering conditions in the MITM
procedure, thus increasing the filtering to 80 bits. This allows us to reduce the
time complexity of the attack to 2152 and the memory complexity of the attack
to 240, without affecting the data complexity.

By using a much more complex variant of the dissection attack, we can
further reduce the memory complexity to 232 without affecting the data and
time complexities, thus obtaining an attack which recovers the full secret key
in 230 data, 232 memory, and 2153 time, which outperforms the classical Square
attack in all three complexity parameters. The details will be presented in the
full version of the paper.

7 An Alternative Improvement for the 6-Round and
7-Round Attacks

As we mentioned in several places, an obvious point in which Grassi’s attack can
be enhanced is deploying the fact that while the structure of size 232 contains
231 good pairs, we need only one good pair (along with its mixtures) to apply
the attack. So far, we exploited the abundance of good pairs to reduce the data
complexity – we took a smaller structure of plaintexts, which was sufficiently
large so that at least one good pair, along with the required mixtures, is included
in our structure.

In this section we suggest an alternative way to exploit the abundance of good
pairs – ask that the good pair we use in the attack will satisfy some additional
property, which will allow reducing the time complexity of the attack. We first
demonstrate the improvement on the 6-round attack, and then we apply it (or
more precisely, a variant of it) to the 7-round attack on AES-192.

An alternative improvement to the 6-round attack. Recall that in the 6-
round attack, we guess bytes k−1,SR−1(Col(0)), go over 232 plaintext pairs (P1, P̂1),
and perform a MITM attack on 4 bytes of the subkey k5. Now, instead of taking
any ciphertext pair which corresponds to a plaintext pair (P1, P̂1), we add a
restriction on the ciphertext pair, that can be checked easily. Specifically, we
require that in the ciphertext pair (C1, Ĉ1), there is a zero difference in the
entire shifted column SR(Col(0)). Among the 263 ciphertext pairs, about 231

satisfy this extra condition. But importantly, out of the 231 good pairs, about 27

satisfy this condition, since in the good pairs, we already know that ∆(x′′4,0) = 0,
and so 8 bits out of the 32 bits of the extra condition are satisfied for sure. Thus,
among the pairs that satisfy the extra condition, the probability of a pair to be
good is enhanced from 2−32 to 2−24.
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This implies that instead of checking 232 pairs (P1, P̂1) as we do in the basic
attack, it is sufficient to check 224 pairs that satisfy the extra condition. We can
thus modify Steps 1–3 of the attack as follows:

1. Consider a structure of 232 chosen plaintexts in which SR−1(Col(0)) assume
all 232 possible values and the rest of the bytes are constant. Insert the cor-
responding ciphertexts into a hash table indexed by bytes SR(Col(0)) of the
ciphertext, and extract all plaintext pairs (P1, P̂1) for which the correspond-
ing ciphertexts have difference zero in SR(Col(0)).

Then the attack is applied without change, with the advantage that it is sufficient
to apply Step 2 for 224 pairs instead of 232. This reduces the time complexity by
a factor of 28, without affecting the other parameters of the attack.

While this improvement cannot be completely combined with the data com-
plexity reduction described in Improvement 2 of Section 5 (as once we case an
additional restriction, the number of good pairs we can use is reduced signifi-
cantly), the data complexity can still be slightly reduced. Note that after the
initial filtering of Step 1, the data still contains 27 good pairs, while we need
only a single pair. By the same argument as in Improvement 2, if we take a
subset S of size α232, the probability that one of these 27 remaining good pairs,
along with at least three of its 7 mixtures (that do not need to satisfy the basic
filtering condition!), is included in S, is approximately 27α8 ·

(
7
3

)
≈ 212α8. Hence,

if we take α = 2−1.5, with a good probability the plaintext set S contains a good
pair that can be used in the attack.

Therefore, overall we obtain an attack with data and memory complexity of
230.5, and time complexity of 273 encryptions.
An alternative improvement to the attack on 7-round AES-192. Recall
that in the first step of the attack, we guess bytes k−1,SR−1(Col(0)), go over 232

plaintext pairs (P1, P̂1), and perform a MITM attack on 4 bytes of the subkey
u5 and the entire subkey k6 (a total of 160 subkey bits), with an 80-bit filtering.
After that step, we are left with 2144 key suggestions and have to find a source
for additional filtering. We obtain this filtering by examining x5,Col(1) and using
the condition ∆(x′′4,7) = 0. Since we already know the subkey bytes u5,{1,4}, we
can guess bytes u5,{11,14}, partially decrypt the ciphertexts to find the values
x5,Col(1), and obtain a 64-bit filtering by checking the condition on the state
∆(x′′4,7), for all 8 pairs. Naively, this increases the time complexity to 2160. In
Section ?? we suggested either to perform a MITM procedure on these two key
bytes, or to retrieve them instantly using a large precomputed table. The former
suggestion increases the time complexity to 2153, while the latter increases the
memory complexity to 2144. We show how to obtain the additional filtering
without increasing neither the time nor the memory complexity.

As in the 6-round attack, we add a requirement on the good pairs. Specifi-
cally, we require that in the ciphertext pair (C1, Ĉ1), there is a zero difference in
the entire shifted column SR(Col(2)). As a result, we know that in the interme-
diate values that correspond to (C1, Ĉ1), we have ∆(x5,7) = 0. In addition, as
we know u5,{1,4}, we can compute ∆(x5,{4,5}) for the same pair. Furthermore,
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assuming that (C1, Ĉ1) is a good pair, we also know that its intermediate val-
ues satisfy ∆(x′′4,7) = 0. Now, consider the MixColumns operation in round 4,

Column 1 in the encryption process of (C1, Ĉ1). We know the difference in three
bytes after MixColumns and in one byte before MixColumns. By the structure
of MixColumns, this allows to retrieve the input and output differences in all
other bytes, by simply solving a system of linear equations. In particular, we
retrieve ∆(x5,6). On the other hand, we can obtain the difference ∆(x′5,6) by
partial decryption. This gives us the input and output differences to the Sub-
Bytes operation in round 5, byte 6, which allows us to retrieve the actual values
in the state x′5,6 by a single lookup into a precomputed table of size 216. Finally,
from the value x′5,6 we can recover u5,14 by partial decryption, and then we can

repeat the above procedure with one of the other pairs (Cj , Ĉj) to retrieve u5,11,
using the fact that we can compute the difference ∆(x5,{4,5,6}) with the subkey
material we already know.

As a result, we obtain the subkey bytes u5,{11,14} and can apply the additional
filtering, without increasing neither the time nor the memory complexity. To
summarize, the data complexity of the attack is 232 (note that we cannot reduce
the data complexity in this attack, since only very few good pairs satisfy our
additional restriction on (C1, Ĉ1) and so we must keep all of them available),
the memory complexity is 240 and the time complexity is 2145.6 (where both the
memory and the time complexities are dominated by the first step of the MITM
procedure).

8 Summary

In this paper we developed and experimentally verified the best known key re-
covery attack on 5-round AES, reducing its total complexity from 232 to 222.5.
We then extended the attack to 7-round AES, obtaining the best key recovery
attacks on the 192 and 256 bit versions of this cryptosystem which have practical
data and memory complexities. The main problems left open by our results is
whether it is possible to extend our new attacks to larger versions of AES, and
whether it is possible to use our results to attack other primitives which use
reduced-round AES (e.g., 5-round AES) as a component.
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