
Threshold Cryptosystems From
Threshold Fully Homomorphic Encryption∗

Dan Boneh1, Rosario Gennaro2, Steven Goldfeder3, Aayush Jain4, Sam Kim1

Peter M. R. Rasmussen4, and Amit Sahai4

1 Stanford University
2 City College of New York

3 Princeton University
4 UCLA and Center for Encrypted Functionalities

Abstract. We develop a general approach to adding a threshold func-
tionality to a large class of (non-threshold) cryptographic schemes. A
threshold functionality enables a secret key to be split into a number of
shares, so that only a threshold of parties can use the key, without recon-
structing the key. We begin by constructing a threshold fully-homomorphic
encryption scheme (ThFHE) from the learning with errors (LWE) problem.
We next introduce a new concept, called a universal thresholdizer, from
which many threshold systems are possible. We show how to construct a
universal thresholdizer from our ThFHE. A universal thresholdizer can be
used to add threshold functionality to many systems, such as CCA-secure
public-key encryption (PKE), signature schemes, pseudorandom func-
tions, and others primitives. In particular, by applying this paradigm to a
(non-threshold) lattice signature system, we obtain the first single-round
threshold signature scheme from LWE.

1 Introduction

Threshold cryptography [26, 28, 25] is a general technique used to protect a
cryptographic secret by splitting it into N shares and storing each share on a
different server. Any subset of t servers can use the secret without re-constructing
it. However, an adversary that compromises t− 1 servers should not be able to
recover or use the secret. Two examples of threshold tasks are:

– Threshold signatures: distribute the signing key of a signature system
among N servers, so that any t servers can generate a signature. The scheme
must provide anonymity and succinctness. Anonymity means that the same
signature is produced, no matter which subset of t servers is used. Succinctness
means that the signature size can depend on the security parameter, but
must be independent of N and t.

– Threshold decryption: distribute the decryption key of a CCA-secure
public-key encryption scheme among N servers, so that any t servers can
decrypt. The scheme must be succinct, meaning that ciphertext size must be
independent of N and t.

∗The full version of this paper is available at [12].

Moreover, the time to verify signatures or encrypt messages should be independent
of N and t. Other threshold tasks include threshold (H)IBE key generation,
threshold ABE key generation, threshold pseudorandom functions, and many
others (see Section 1.2). All have similar anonymity, succinctness, and efficiency
requirements.

A common goal for threshold systems is to minimize the amount of interaction
in the system, and in particular, construct one-round schemes. For example, in
the case of signatures, an entity called a combiner wishes to sign a message m.
The combiner sends m to all N servers, and some t of them reply. The combiner
combines the t replies, and obtains the signature. No other interaction is allowed.
In particular, the servers may not communicate with one another, or interact
further with the combiner. Similarly, for threshold decryption, the combiner sends
the ciphertext to all N servers, some t servers reply, and the combiner combines
the replies to obtain the plaintext. No other interaction is allowed. We will often
refer to the servers as partial signers or partial decryptors.

Many signature and encryption schemes have been thresholdized. For example,
RSA signatures and encryption [28, 25, 31, 50], Schnorr signatures [52], (EC)DSA
signatures [30, 29], BLS signatures [14, 9], Cramer-Shoup encryption [21], Regev
encryption [7], and many more [51, 27, 10]. Despite this great success, thresholdiz-
ing many basic lattice-based cryptographic primitives has been challenging. For
example, it is still an open problem to construct lattice-based one-round threshold
signatures or CCA-secure threshold PKE satisfying strong succinctness proper-
ties, as discussed in related work (Section 1.2). Thresholdizing more advanced
lattice-based primitives, such as fully homomorphic encryption or functional
encryption, has been largely unexplored.

1.1 Our Contributions

Our main contributions are twofold. First, we define the notion of threshold fully
homomorphic encryption (ThFHE) and construct it from the learning with errors
assumption (LWE). As in a threshold PKE, a threshold FHE scheme allows the
decryption key to be split into shares such that any t-out-of-N partial decryptions
can be combined into a complete decryption of a given ciphertext in a single round.
Furthermore, an evaluated ciphertext should be compact meaning that its size is
independent of the original message and the number of decryptors N (Section 5.1).
Second, we present a general framework for universally thresholdizing many (non-
threshold) cryptographic schemes using threshold-FHE. This framework lets us
resolve the long-standing problem of one-round threshold signatures from lattices.

Threshold FHE. A general obstacle to constructing succinct threshold cryp-
tosystems from lattice assumptions is the noise blow up that results from a
multiplication by a large Lagrange coefficient, which prevents correct reconstruc-
tion of the message by the combiner.1 We handle this difficulty in two different

1In the weaker model where the set of t servers that will respond to the combiner is
known ahead of time, there exist simple methods to preserve correctness. In this work,

2

ways. Our first method relies on linear secret sharing schemes where the recon-
struction coefficients are always binary. We show that this class of secret sharing
schemes is compatible with the decryption operation of a fully homomorphic
encryption scheme and is also expressive enough to contain threshold access
structures, along with other more general structures. In our second method, to
achieve better efficiency, we focus on using the standard t-out-of-N Shamir secret
sharing scheme, but we modify the noise distribution such that a multiplication
by a Lagrange coefficient does not blow up the noise too much. By combining our
methods with a suitable FHE scheme, we obtain a secure ThFHE (Section 5.2
and 5.3) with strong compactness properties.

A universal thresholdizer. Our second contribution is a general framework
for universally thresholdizing many (non-threshold) cryptographic schemes using
a ThFHE. For this, we define a new primitive called a universal thresholdizer.
We show how to construct a universal thresholdizer with strong compactness
properties from our ThFHE scheme (Section 7). A universal thresholdizer takes
in a cryptographic key and produces a number of key shares that can be used to
individually evaluate a cryptographic function. Each of these individual evaluation
shares can then be combined to result in the final evaluation of the function.
We require that the scheme guarantees privacy meaning that no t − 1 key
shares or their evaluation shares reveal any information about the original key.
Furthermore, we require that the scheme satisfies robustness, meaning that a
maliciously generated evaluation share can always be detected.

With these guarantees, a universal thresholdizer scheme can be used to
thresholdize many different types of systems. For example, we can take any (non-
threshold) signature scheme as a black box and construct from it a one-round
threshold signature scheme (Section 8.1). Since a universal thresholdizer can
be proven secure based on LWE, and because there are known (non-threshold)
signature schemes based on LWE [32, 15, 41], we obtain the first one-round
threshold signature scheme based on LWE that is both succinct and anonymous.
This resolves a long-standing open problem in lattice-based cryptography.

Beyond signatures, a universal thresholdizer can be composed with an existing
CCA-secure PKE scheme [47, 32, 45, 1, 42] to obtain the first lattice-based (one-
round) threshold CCA-secure PKE where the public key size and encryption
time are independent of the number of servers . Similarly, composing universal
thresholdizer with a functional encryption scheme gives functional encryption with
threshold key generation. A universal thresholdizer, on its own, gives a function
secret sharing scheme [16, 17] that can support threshold access structures . We
provide the details of these constructions in [12].

Decentralized threshold FHE. Our basic ThFHE scheme requires a trusted
setup procedure to split the secret FHE key into shares. In Section 6, we define a
decentralized threshold fully homomorphic encryption (dThFHE). In a dThFHE
scheme, each decryption server generates its own public/secret key pair. At

we work in the traditional model of threshold cryptography where the combiner does
not know the set of t servers ahead of time.

3

encryption time, the encryptor specifies a set of public keys and a threshold
t to produce a ciphertext that can only be decrypted by combining t partial
decryptions corresponding to the specific public keys. We construct a dThFHE
in Section 6. However, while it achieves the added flexibility of decentralized
key generation, our dThFHE scheme does not satisfy as strong compactness
properties as our ThFHE and universal thresholdizer. We leave improving the
compactness of our dThFHE as an important open problem following from our
work.

1.2 Related Work on Threshold Lattice Systems

Before describing our results, we first survey the existing work on threshold
lattice cryptosystems.

Non-compact systems. We begin with threshold systems that have public key
and ciphertext/signature sizes that are linear in N . Bendlin and Damg̊ard [7] gave
a threshold version of Regev’s CPA-secure encryption scheme [48], and Myers
et al. [44] applied the technique to fully homomorphic encryption. Xie et al. [54]
gave a threshold CCA secure PKE scheme from lossy trapdoor functions, which
can be instantiated from LWE [47]. In all these schemes, both the size of the
public key and the ciphertext scales at least linearly in the number of decryptors.
For signatures, Cayrel et al. [22] gave a lattice-based threshold ring signature
scheme in which at least t signers are needed to create an anonymous signature.
In this system, each signer has its own public key, and the verification time of a
signature grows linearly with the number of signers.

Online/offline systems. The threshold Gaussian sampling protocol of Bendlin
et al. [8] as well as the commitment and zero-knowledge protocols of Baum
et al. [5] provide compact threshold cryptosystems. However, the limitation of
these systems is that the servers can only perform an a priori bounded number
of online non-interactive decryption/signing operations before they must perform
an offline interactive step.

MPC systems. Recent advances in low-round MPC from LWE [3, 23, 36, 43,
19, 46] give t-out-of-N threshold cryptosystems for a restricted set of t. In these
constructions, each party that is involved in the protocol encrypts an input to
a joint function using an FHE scheme and broadcasts the ciphertexts to other
parties. Then, each party homomorphically evaluates on the ciphertexts that it
receives and participates in a single round distributed decryption protocol. If a
trusted authority thresholdizes an FHE key at setup and distributes the keys to
each servers, then the single round distributed decryption protocol can be used
to construct a threshold FHE scheme. A crucial limitation of these single-round
distributed decryption protocols, however, is that in order for decryption to be
successful, all parties must participate in the decryption protocol. Even if only a
single party is corrupt or is absent from the protocol, the rest of the parties cannot
recover the encrypted message, which results in only an N -out-of-N threshold
FHE scheme.

4

We note that a t-out-of-N threshold FHE for small thresholds can be con-
structed from a N -out-of-N scheme generically. For each

(
N
t

)
sets of size t, a

trusted authority can thresholdize an FHE key using a t-out-of-t scheme and
provide the corresponding key shares to each parties that are contained in the
set. To decrypt a ciphertext, each party can provide the partial decryptions using
each of the key shares it has, which a combiner can re-combine only when at
least t users provide a correct partial decryption. We note, however, that such
extension clearly does not work for larger values of t.

Fully-thresholdized systems. Very few existing lattice cryptosystems over-
come all the limitations described above. One exception is threshold distributed
PRFs [13] built from key-homomorphic PRFs [13, 4, 20].

Decentralized key generation. Generally, in threshold cryptosystems, the key
shares for each parties must be generated either by a trusted authority or via
a highly interactive multiparty computation. In this work, we study threshold
cryptosystems with non-interactive decentralized key generation. In the setting of
functional encryption, a non-interative decentralized key generation for threshold
access structures was considered in [18].

2 Overview of the Main Construction

In this section, we provide an overview of the main threshold fully homomor-
phic encryption (ThFHE) construction and its applications to thresholdizing
cryptographic systems through a universal thresholdizer. We provide the full
ThFHE construction in Section 5.2 and 5.3. We define and construct a universal
thresholdizer scheme in Section 7 and discuss its applications in greater depth in
Section 8.

2.1 Distributing FHE Decryption

Our starting point is a standard LWE based fully homomorphic encryption
schemes such as GSW [33]. Recall that a ciphertext ct is a matrix in Zn×mq and a
secret key sk is a vector in Znq for appropriately chosen LWE parameters n,m, q.
To decrypt a ciphertext ct, the decryptor takes a specific column ctm of the
ciphertext matrix and computes its inner product with the secret key sk. That
is, the decryptor computes 〈ctm, sk〉 ∈ Zq. If the resulting value is small, the
underlying plaintext is interpreted as 0; otherwise, it is interpreted as 1.

Since inner product is linear, one might try to thresholdize FHE decryption
by applying Shamir t-out-of-N secret sharing to sk. This will produce N keys
sk1, . . . , skN , one for each user. Then to decrypt a ciphertext ct, each user can
compute the inner product 〈ctm, ski〉 as its partial decryption. The combiner can

then compute the Lagrange coefficients λ
(S)
i for some subset S ⊆ {1, . . . , N} of

size t and recombine the shares as∑
i∈S

λ
(S)
i ·

〈
ctm, ski

〉
=
〈
ctm,

∑
i∈S

λ
(S)
i · ski

〉
=
〈
ctm, sk

〉
.

5

Unfortunately, this construction is insecure. For i ∈ {1, . . . , N}, every time
decryptor i computes a partial decryption, it leaks information about its secret
share ski by publishing the inner product of ski with a public vector ctm.

One way to resolve this issue is for decryptor i to add small additive noise to
the inner product

pi = 〈ctm, ski〉+ noise.

However, for a t-out-of-N threshold scheme, this additive error prevents correct
reconstruction of the key. The Lagrange coefficients, when interpreted as elements
in Zq, are large and therefore, blow up the noise when multiplied to the partial
decryptions.

Problem with Bit Decomposition. A typical solution to the problem of noise
blow-up is called bit decomposition. For example, every decryptor can compute
the inner product and scale it by powers of two as

p
(j)
i = 2j · 〈ctm, ski〉+ noise(j), for j = 1, . . . , log2 q.

It sends {p(j)i }j to the combiner. Using the binary representation of the Lagrange
coefficients, the combiner can recombine the shares without blowing up the
noise. However, such bit decomposition introduces a problem in the security

proof. In order to prove that the partial decryption shares {p(j)i }j do not leak
information about the underlying key ski, it should be possible to statistically
simulate them given only t−1 secret keys of the other parties and the plaintext m.
Interpreting the t− 1 partial decryptions of the other parties and the message m
as t shares of decryptor i’s partial decryption, we can simulate the inner product

λ
(S)
i · 〈ctm, ski〉+ noise, but not the individually scaled inner products {p(j)i }j .

The difficulty with the simulation is, in fact, warranted as there are direct
attacks that can recover information about the key share ski from the scaled partial
decryptions. One such attack can be described as follows. Consider an adversary
that has access to a number of partial decryptions produced by decryptor i on
ciphertexts ct1, . . . , ctn ∈ Znq where the ciphertexts form a linearly independent
set as vectors over Zq. Then, since the matrix C = [ct1| . . . , |ctn] ∈ Zn×nq is full
rank, there exists a vector u ∈ Znq such that C · u = e1 for the elementary basis
vector e1 = (1, 0, . . . , 0). To recover the first vector position of ski ∈ Znq , the
adversary can bit-decompose the vector u and linearly combine the noisy inner
products

{
〈
2j · ct1, ski

〉
+ noise(j)}j∈log q

{
〈
2j · ct2, ski

〉
+ noise(j)}j∈log q
...

{
〈
2j · ctn, ski

〉
+ noise(j)}j∈log q

to form 〈e1, ski〉+noise. Since u is bit-decomposed, noise remains small and hence,
the high-ordered bits of the first vector position of ski is leaked. The adversary
can then repeat the attack (with different elementary basis vectors ei) to recover

6

the high-ordered bits of the rest of the components of ski, which can completely
compromise security.

As such attack demonstrates, managing the noise blow up to achieve both
correct decryption and security is difficult. In this work, we show how to handle
this noise blow up in two different ways. We provide the high level overview of
the two techniques below.

Using {0, 1}-LSSS. In our first method, instead of coping with the Lagrange
coefficients directly in the construction itself, we abstract it out by using a different
secret sharing scheme. Specifically, we first define a class of access structures,
denoted {0, 1}-LSSS, that consists of the set of access structures that can be
supported by a linear secret sharing scheme where the reconstruction coefficients
are always binary (Definition 4.4). More precisely, for a fixed access structure,
such secret sharing scheme divides a secret sk into a set of shares sk1, . . . , skN
such that each ski itself consists of a set of individual shares in Zq, ski = {si,j}j∈[`]
for some fixed bound `. Then, we require that for any set S ⊆ [N] that satisfies
the access structure, there exists a subset of the individual shares S′ ⊆

⋃
i∈S ski

such that
∑
S′ si,j = sk. With such requirement, it is straightforward to construct

a correct threshold FHE scheme for {0, 1}-LSSS following the approach outlined
above. For simulatability, we use the fact that for a linear secret sharing scheme
for {0, 1}-LSSS, there exists a maximal invalid share set S∗ ⊆

⋃
i∈[N] ski such

that S∗ itself does not reveal any information about the secret sk or any other
individual shares si,j ∈

⋃
i∈[N] ski, but any set that strictly contains S∗ completely

determines the secret sk as well as all individual shares si,j ∈
⋃
i∈[N] ski. With

careful analysis (Section 5.2), we show that this property allows the simulation
of each partial decryptions.

The remaining question is how expressive is the class {0, 1}-LSSS? Two
obvious access structures which are contained in {0, 1}-LSSS are undirected
s-t-connectivity and N -out-of-N , but other than these, it is not clear what other
useful access structures are contained in {0, 1}-LSSS. However, we show that,
in fact, the class is fairly large and contains the set of access structures defined
by monotone Boolean formulas [40]. A classic result of Valiant [53, 34] shows
that every threshold function can be expressed as a polynomial size monotone
formula. Therefore, a {0, 1}-LSSS contains the set of threshold access structures
that we need.

We start with the observation that the set of access structures defined by
monotone Boolean formulas with input fan-out 1 (special monotone Boolean
formula) belongs to {0, 1}-LSSS through a folklore algorithm [6, 37] Let C :
{0, 1}N → {0, 1} be a special monotone Boolean formula with an associated tree
T whose internal nodes are assigned either AND or OR, and the N leaf nodes are
INPUT gates that are assigned xi. Then, we can define a linear secret sharing
scheme for s ∈ Zq described as follows.

1. Assign the root r of T with the secret to be shared s.
2. If r is an INPUT gate, then simply return. Otherwise:

– If r is an AND gate, then additively secret share k by sampling α
r← Zq

and define two shares s` = α and sr = k− α.

7

– If r is an OR gate, then duplicate k into shares by setting s` = k and
sr = k.

3. For each child node v` and vr, let T` and Tr be the sub-trees having v` and
vr as roots respectively. Then, recurse on the sub-trees T` and Tr with secrets
s` and sr respectively.

At the end of the recursive process, each leaf node that is assigned xi is assigned
with a secret share si. It is not difficult to see that for x ∈ {0, 1}N , the secret
s can be reconstructed from the set of shares {si}xi=1 if and only if C(x) = 1.
Furthermore, given {si}xi=1 for C(x) = 1, the reconstruction procedure consists
of simply identifying a subset of the shares S ⊆ {si}xi=1 (for the OR gates), and
summing up the shares s =

∑
i∈S si (for the AND gates). In Section 4.1, we prove

that this construction indeed yields a correct and secure secret sharing scheme
for special monotone Boolean formulas.

Our next observation is that the secret sharing mechanism above can also be
used for regular monotone Boolean formulas, which have multiple input fan-out.
Consider a monotone Boolean formula C : {0, 1}N → {0, 1} with multiple input
fan-out that is bounded by `. Then, we can derive a new special monotone Boolean
formula C̃ : {0, 1}`N → {0, 1} by letting every fan-out of an input gate of C to be
a separate input. Now, applying the secret sharing mechanism above to C̃ yields
a set of shares {si}i∈[`N] shares. Partitioning this set into the corresponding input
xi in C, we get a set of N shares {si,j} that still abides to the syntax of a linear
secret sharing scheme required for {0, 1}-LSSS. Furthermore, since the circuit C
can still be evaluated from C̃, the secret s can be reconstructed from the union
of the set of shares

⋃
i∈S{si,j} for any satisfying set S.

It remains to prove that this secret sharing scheme is secure under collusion.
If so, then we obtain a secure ThFHE scheme. We indeed show that this is the
case.

Clearing out denominators. Although the use of {0, 1}-LSSS to achieve thresh-
old decryption results in a clean construction that does not require any significant
modification to the existing fully homomorphic construction, the use of monotone
Boolean formulas to express threshold access structure introduces significant
overhead to the resulting ThFHE construction. In particular, the size of the
key shares ski for i = 1, . . . , N is at least Ω(N4), introducing significant space
overhead. In Section 5.3, we introduce another approach where the share sizes
are quasilinear Õ(N).2

The high level idea of our second method is to use the technique of “clearing out
the denominators” [50, 2]. The observation is that since the Lagrange coefficients
are rational numbers, we can scale them to be integers. In particular, for a

t-out-of-N secret sharing, for any set S of size t and i ∈ S, the term (N !)2 · λ(S)i

is an integer. This means that even when interpretted as an element in Zq, the

term (N !)2 · λ(S)i is bounded by a fixed positive integer. Hence, by modifying the
construction so that every signer first scales the noise that it adds by (N !)2, and
sufficiently increasing the modulus of the scheme to support its additional noise

2We describe the precise trade-offs between the two methods in [12].

8

growth, we can preserve correct reconstruction. In fact, with careful analysis
(Section 5.3), such a ThFHE construction can be made secure.

An evident limitation of the method above is the increase in the modulus
and hence, an increase in the size of the ciphertext. Since the size of elements
in Zq increases by logN ! = O(N logN) bits, the size of the ciphertext depends
linearly on the number of servers N , violating our compactness requirement
(Definition 5.2). However, we show that any non-compact ThFHE can be boosted
to a compact one by combining it with any compact (non-threshold) FHE. The
idea is to first construct the notion of universal thresholdizer (Definition 7.1) via
a (non-compact) ThFHE scheme and then use the thresholdizer to thresholdize a
compact FHE. We provide a high level description of the universal thresholdizer
in Section 2.2 and provide the formal details of this boosting step in the full
version [12].

2.2 Universal Thresholdizer: A General Tool

We next put our new ThFHE to use. We define a new primitive called a universal
thresholdizer (UT) that can be used to thresholdize many existing systems
including signatures (Section 8.1). The resulting systems are secure one-round
threshold systems that also provide robustness guarantees against malicious key
share holders. Our universal thresholdizer abstraction provides a modular design
for threshold systems and also simplifies the proof of security.

A UT scheme consists of a setup algorithm, an evaluation algorithm, and a
combining algorithm. The setup of a UT scheme takes in a secret message x and
divides it into a set of shares s1, . . . , sN , which are distributed to N users. On
input a circuit C, each user can independently compute an evaluation share yi of
C(x) using their shares si. For a set S = {yi} for which |S| ≥ t, the evaluation
shares can be combined to produce y = C(x). For robustness, we define an extra
verification algorithm that given C and yi, checks whether yi was computed
correctly.

The privacy guarantee of a UT scheme states that the shares s1, . . . , sN as
well as the evaluation shares yi can be simulated only given access to the circuit
C and C(x). The robustness guarantee of a UT scheme simply states that it is
hard for an adversary to produce an improperly computed evaluation share yi
for a circuit C such that the verification algorithm accepts.

With these security guarantees, it is easy thresholdize existing cryptographic
functions. To demonstrate the idea, consider the case of distributed PRF where
a key k can be divided into a number of key shares such that independent PRF
evaluations using these key shares can be combined into a final PRF evaluation.
To construct a distributed PRF F̃ from a regular PRF F : K × X → Y, we

sample a key k
r← K and invoke UT setup with k to generate the key shares

s1, . . . , sN . Then, to evaluate F̃ on an input x ∈ X , each party generates the
evaluation share yi for the circuit Cx(k) = F (k, x). The evaluation share can
then be combined in a threshold manner to produce the final PRF evaluation
y = F (k, x).

9

The robustness of F̃ follows from the robustness condition of UT straightfor-
wardly. To prove pseudorandomness of F̃ , we simply erase the original PRF key
k from the security experiment by invoking the privacy simulator of UT. This
allows us to reduce pseudorandomness directly to the underlying PRF security
game of F .

In Section 7.2, we construct a robust universal thresholdizer using non-
interactive zero knowledge proofs (NIZK). We note that constructing NIZKs
from lattices is still an open problem. However, our setting allows the use of
NIZK with preprocessing [24, 39], which can be constructed from lattices [38]. A
better way to ensure robustness is using homomorphic signatures (Section 7.3).
Because homomorphic signatures [11, 35] give more compact proofs than NIZKs,
we can get partial evaluations yi whose size is independent of the original secret
message x and the size of circuit C that is used for the evaluation. Unlike NIZK,
homomorphic signatures can be constructed from the SIS problem [35].

3 Preliminaries

Basic Notations. For an integer n, we write [n] to denote the set {1, . . . , n}.
We use bold lowercase letters (e.g. v,w) to denote vectors and bold uppercase
letters (e.g. A,B) to denote matrices. Throughout this work, we will always use
infinity norm for vectors. This means that for a vector x, the norm ‖x‖ is the
maximal absolute value of an element in x. For any set X, we denote P(X) as
the power set of X. For any Y, Z ∈ {0, 1}n, we say that Y ⊆ Z if for each index
i ∈ [n] such that Yi = 1, we have Zi = 1.

We write λ for the security parameter. We say that a function ε(λ) is negligible
in λ if ε(λ) = o(1/λc) for every c ∈ N, and we write negl(λ) to denote a negligible
function in λ. For a distribution X over a finite domain Ω, we write ω ← X to
denote that ω is sampled at random according to distribution X. For a uniform

distribution, we simply write ω
r← Ω. For a distribution ensemble χ = χ(λ)

over the integers, and an integer bound B = B(λ), we say that χ is B-bounded
if Prx←χ(λ)[|x| ≤ B(λ)] = 1. In the full version of this paper [12], we provide
additional preliminaries in statistical distance, lattice cryptography, as well as
definitions of basic cryptographic primitives.

4 Secret Sharing for Threshold Access Structures

In this section, we provide general results on secret sharing that we use throughout
this work. We provide additional background on basic notations and terms that
we use in the full version [12]. In Section 4.1, we define threshold access structures
and recall Shamir secret sharing. In Section 4.2, we define a special class of
access structures that we call {0, 1}-LSSS and show that it contains the class of
threshold access structures.

10

4.1 Threshold Access Structures

In this section, we define the class of threshold access structures TAS and describe
Shamir secret sharing [49].

Definition 4.1 (TAS). Let P = {P1, . . . , PN} be a set of parties. An access
structure At is called a threshold access structure if for every set of parties S ⊆ P ,
we have S ∈ At if and only if |S| ≥ t. We define TAS to be the class of all access
structures At for all t ∈ N.

Instead of defining the algorithms of Shamir secret sharing formally, we just
describe the properties of the scheme that we need.

Theorem 4.2 (Shamir Secret Sharing). Let P = {P1, . . . , PN} be a set of
parties and let TAS be the class of threshold access structures on P . Then, there
exists a linear secret sharing scheme SS with secret space K = Zp for some prime
p satisfying the following properties:

– For any secret k ∈ Zp and At ∈ TAS, each share for party Pi consists of a
single element wi ∈ Zp. For convenience of notation, we denote w0 = k.

– For every i, j ∈ [N] ∪ {0} and set S ⊂ [N] ∪ {0} of size t, there exists an
efficiently computable Lagrange coefficients λSi,j ∈ Zq such that

wj =
∑
i∈S

λSi,j · wi.

For our purposes, we want the Lagrange coefficients to be “low-norm” values.
However, a regular Lagrange coefficient have no bound on its norm. Therefore,
for our construction, we take advantage of the fact that the Lagrange coefficients
can be defined to be rational numbers and therefore, we can “clear out their
denominators” [50, 2].

Lemma 4.3 ([2]). Let P = {P1, . . . , PN} be a set of parties, TAS the class of
threshold access structures on P , and SS a Shamir secret sharing scheme with
secret space Zp for some prime p with (N !)3 ≤ p. Then, for any set S ⊂ [N]∪{0}
of size t, and for any i, j ∈ [N], the product (N !)2 · λSi,j is an integer and is
bounded ∣∣(N !)2 · λSi,j

∣∣ ≤ (N !)3.

4.2 Access Structures {0, 1}-LSSS

In this section, we define a special class of access structures that we denote
by {0, 1}-LSSS that is contained in LSSS. This is the class of access structures
that can be supported by a linear secret sharing scheme where the recovery
coefficients are always binary. We show that the class {0, 1}-LSSS contains the
class of threshold access structures. In Section 5.2, we construct a threshold fully
homomorphic encryption scheme for these classes of access structures.

11

Definition 4.4 ({0, 1}-LSSS). Let P = {P1, . . . , PN} be a set of parties. The
class of access structure {0, 1}-LSSSN is the collection of access structures A ∈
LSSSN for which there exists an efficient linear secret sharing scheme SS =
(SS.Share,SS.Combine) over the secret space K = Zp satisfying the following
property:

– Let k be a shared secret and {wj}j∈Ti
be the share of party Pi for i ∈ [N].

Then, for every set S ∈ A, there exists a subset T ⊆
⋃
i∈S Ti such that

k =
∑
j∈T wj.

We call a linear secret sharing scheme that satisfies the properties above as a
special linear secret sharing scheme.

We note that for any special linear secret sharing scheme SS, and for any minimal
valid share set T ⊆ [`], we have that

∑
j∈T wj = k.

Now, the fact that every access structure A ∈ {0, 1}-LSSS is efficient follows
directly from the efficiency of the LSSS class. However, it is less clear that the
set T of the definition above can be computed efficiently given any S ⊆ A. We
show that this is indeed the case in the following lemma. We provide the proof
in the full version [12].

Lemma 4.5. Let P = {P1, . . . , PN} be a set of parties, and SS a special lin-
ear secret sharing scheme for {0, 1}-LSSS. Then, for any access structure A ∈
{0, 1}-LSSS, and S ∈ A, the set T ⊆ S as specified in Definition 4.4 can be
computed efficiently.

We now state the main theorem of this section.

Theorem 4.6. TAS ⊆ {0, 1}-LSSS.

To prove the lemma, we first define the class of access structures induced by
monotone Boolean formulas.

Definition 4.7 (Monotone Boolean Formula). A monotone Boolean for-
mula C : {0, 1}N → {0, 1} is a Boolean circuit with the following properties:

– There is a single output gate.
– Every gate is one of AND or OR gate with fan-in 2 and fan-out 1.
– The input wires can have multiple fan-out.

Definition 4.8 (MBF). Let P = {P1, . . . , PN} be a set of parties and C :
{0, 1}N → {0, 1} a monotone Boolean formula. An access structure AC is called
a monotone boolean formula access structure if for every set of parties S ⊆ P , we
have S ∈ A if and only if C(x) = 1. We define MBF to be the class of all access
structures AC for all monotone Boolean formula C.

Now, Theorem 4.6 is implied by the following.

Theorem 4.9 ([53, 34]). TAS ⊆ MBF.

Theorem 4.10 ([40]). MBF ⊆ {0, 1}-LSSS.

Although Theorem 4.10 is folklore, we provide the formal proof in the full
version [12].

12

5 Threshold Fully Homomorphic Encryption

In this section, we present the definition of threshold fully homomorphic encryp-
tion (ThFHE) for any class of access structures. Then, in Sections 5.2 and 5.3,
we construct ThFHE for the class of threshold access structure TAS. In the full
version of this work [12], we provide the performance comparisons of the two
constructions.

5.1 Definitions

Definition 5.1 (Threshold Fully Homomorphic Encryption (ThFHE)).
Let P = {P1, . . . , PN} be a set of parties and let S be a class of efficient access
structures on P . A threshold fully homomorphic encryption scheme for S is a
tuple of PPT algorithms ThFHE = (ThFHE.Setup,ThFHE.Encrypt,ThFHE.Eval,
ThFHE.PartDec,ThFHE.FinDec) with the following properties:

– ThFHE.Setup(1λ, 1d,A)→ (pk, sk1, . . . , skN): On input the security parameter
λ, a depth bound d, and an access structure A, the setup algorithm outputs a
public key pk, and a set of secret key shares sk1, . . . , skN .

– ThFHE.Encrypt(pk, µ) → ct: On input a public key pk, and a single bit
plaintext µ ∈ {0, 1}, the encryption algorithm outputs a ciphertext ct.

– ThFHE.Eval(pk, C, ct1, . . . ctk) → ĉt: On input a public key pk, circuit C :
{0, 1}k → {0, 1} of depth at most d, and a set of ciphertexts ct1, . . . , ctk, the
evaluation algorithm outputs a ciphertext ĉt.

– ThFHE.PartDec(pk, ct, ski) → pi: On input a public key pk, a ciphertext ct,
and a secret key share ski, the partial decryption algorithm outputs a partial
decryption pi related to the party Pi.

– ThFHE.FinDec(pk, B)→ µ̂: On input a public key pk, and a set B = {pi}i∈S
for some S ⊆ {P1, . . . , PN}, the final decryption algorithm outputs a plaintext
µ̂ ∈ {0, 1,⊥}.

As in a standard FHE scheme, we require that a ThFHE scheme satisfies com-
pactness, correctness, and security.

Definition 5.2 (Compactness). We say that a ThFHE scheme is compact if
there exists polynomials poly1(·) and poly2(·) such that for all λ, depth bound d,
circuit C : {0, 1}k → {0, 1} of depth at most d, and µ ∈ {0, 1}, the following holds.
For (pk, sk1, . . . , skN) ← ThFHE.Setup(1λ, 1d,A), cti ← ThFHE.Encrypt(pk, µi)
for i ∈ [k], ĉt← ThFHE.Eval(pk, C, ct1, . . . , ctk), pj ← ThFHE.PartDec(pk, ct, skj)
for any j ∈ [N], |ĉt| ≤ poly(λ, d) and |pj | ≤ poly(λ, d,N).

Definition 5.3 (Evaluation Correctness). We say that a ThFHE scheme
satisfies evaluation correctness if for all λ, depth bound d, access structure A,
circuit C : {0, 1}k → {0, 1} of depth at most d, S ∈ A, and µi ∈ {0, 1} for i ∈ [k],
the following condition holds. For (pk, sk1, . . . , skN) ← ThFHE.Setup(1λ, 1d,A),
cti ← ThFHE.Encrypt(pk, µi) for i ∈ [k], ĉt← ThFHE.Eval(pk, C, ct1, . . . , ctk),

Pr[ThFHE.FinDec(pk, {ThFHE.PartDec(pk, ct, ski)}i∈S) = C(µ1, . . . , µk)] = 1−negl(λ).

13

Definition 5.4 (Semantic Security). We say that a ThFHE scheme satisfies
semantic security if for all λ, and depth bound d, the following holds. For any
PPT adversary A, the following experiment ExptA,ThFHE,sem(1λ, 1d) outputs 1 with
negligible probability:

ExptA,ThFHE,sem(1λ, 1d):

1. On input the security parameter 1λ and a circuit depth 1d, the adversary
A outputs A ∈ S.

2. The challenger runs (pk, sk1, . . . , skN) ← ThFHE.Setup(1λ, 1d,A) and
provides pk to A.

3. A outputs a set S ⊆ {P1, . . . , PN} such that S /∈ A.
4. The challenger provides {ski}i∈S along with ThFHE.Encrypt(pk, b) for

b
r← {0, 1} to A.

5. A outputs a guess b′. The experiment outputs 1 if b = b′.

In addition to the standard semantic security notion for ThFHE, we require
a ThFHE scheme to satisfy simulation security. Semantic security guarantees
that the ciphertexts of a ThFHE scheme does not reveal any information to an
adversary with an unqualified set of partial decryption keys. For most use cases
for ThFHE, the adversary additionally gets access to valid partial decryptions of
ciphertexts. Simulation security guarantees that the partial decryptions also do
not leak information to the adversary.

Definition 5.5 (Simulation Security). We say that a ThFHE scheme satisfies
simulation security if for all λ, depth bound d, and access structure A, the following
holds. There exists a stateful PPT algorithm S = (S1,S2) such that for any PPT
adversary A, the following experiments ExptA,Real(1

λ, 1d) and ExptA,Ideal(1
λ, 1d)

are indistinguishable:

ExptA,Real(1
λ, 1d):

1. On input the security parameter 1λ and a circuit depth 1d, the adversary
A outputs A ∈ S.

2. The challenger runs (pk, sk1, . . . , skN) ← ThFHE.Setup(1λ, 1d,A) and
provides pk to A.

3. A outputs a maximal invalid party set S∗ ⊆ {P1, . . . , PN} and messages
µ1, . . . , µk ∈ {0, 1}.

4. The challenger provides the keys {ski}i∈S∗ and {ThFHE.Encrypt(pk, µi)}i∈[k]
to A.

5. A issues a polynomial number of adaptive queries of the form (S ⊆ {P1,
. . . , PN}, C) for circuits C : {0, 1}k → {0, 1} of depth at most d. For
each query, the challenger computes ĉt← ThFHE.Eval(pk, C, ct1, . . . , ctk)
and provides {ThFHE.PartDec(pk, ĉt, ski)}i∈S to A.

6. At the end of the experiment, A outputs a distinguishing bit b.

ExptA,Ideal(1
λ, 1d):

1. On input the security parameter 1λ and a circuit depth 1d, the adversary
A outputs A ∈ S.

14

2. The challenger runs (pk, sk1, . . . skN , st)← S1(1λ, 1d,A) and provides pk
to A.

3. A outputs a maximal invalid party set S∗ ⊆ {P1, . . . , PN} and messages
µ1, . . . , µk ∈ {0, 1}.

4. The challenger provides the keys {ski}i∈S∗ and {ThFHE.Encrypt(pk, µi)}i∈[k]
to A.

5. A issues a polynomial number of adaptive queries of the form (S ⊆ {P1,
. . . , PN}, C) for circuits C : {0, 1}k → {0, 1} of depth at most d. For each
query, the challenger runs the simulator {pi}i∈S ← S2(C, {ct1, . . . , ctk},
C(µ1, . . . , µk), S, st) and sends {pi}i∈S to A.

6. At the end of the experiment, A outputs a distinguishing bit b.

We note that it is possible to unify the two security definitions, and we do so for
our definition of universal thresholdizers (Section 7). However, for ThFHE, we
present the two definitions separately for more intuition and modularity in the
security proof.

5.2 ThFHE using {0, 1}-LSSS

In this section, we present our construction of ThFHE for the class of access
structures {0, 1}-LSSS. We note that by Theorem 4.6, this gives a ThFHE scheme
for the class of threshold access structures TAS.

Construction 5.6 Let P = {P1, . . . , PN} be a set of parties. Our ThFHE con-
struction relies on the following primitives:

– Let FHE = (FHE.Setup,FHE.Encrypt,FHE.Eval,FHE.Decrypt) be a special
fully homomorphic encryption scheme with noise bound B = B(λ, d, q) and
multiplicative constant 1 [12, Def. 3.9].

– Let SS = (SS.Share,SS.Combine) be a special linear secret sharing scheme
(Definition 4.4). We use Ti to denote a partition of the share matrix and use
{sj}j∈Ti to denote a share associated with Pi consisting of elements in Zq.
We also use ` = `(λ,N) to denote a fixed polynomial bound on the size of the
share: |Ti| ≤ ` for all i ∈ [N].

We also fix a parameter Bsm that specifies the bound on the smudging noise (see
Section 5.2.1). We construct ThFHE = (ThFHE.Setup,ThFHE.Encrypt,ThFHE.Eval,
ThFHE.PartDec,ThFHE.FinDec) as follows:

– ThFHE.Setup(1λ, 1d,A): On input the security parameter λ, depth bound
d, and an access structure A, the setup algorithm generates the FHE keys
(fhepk, fhesk)← FHE.Setup(1λ, 1d). Then, it divides the key fhesk into shares
(fhesk1, . . . , fheskN)← SS.Share(fhesk,A). It sets pk = fhepk and ski = fheski
for i = 1, . . . , N .

– ThFHE.Encrypt(pk, µ): On input the public key pk, and a message µ ∈ {0, 1},
the encryption algorithm computes ct← FHE.Encrypt(pk, µ) and outputs ct.

15

– ThFHE.Eval(pk, C, ct1, . . . , ctk): On input a public key pk, a circuit C, and
a set of ciphertexts ct1, . . . , ctk the evaluation algorithm computes ĉt ←
FHE.Eval(C, ct1, . . . , ctk) and outputs ĉt.

– ThFHE.PartDec(pk, ct, ski): On input a public key pk, a ciphertext ct, and a
decryption key share ski = {sj}j∈Ti

for each sj ∈ Znq , the partial decryption

algorithm samples a smudging error ej
r← [−Bsm, Bsm] and computes p̃j =

FHE.Decode0(sj , ct) + ej ∈ Zq for j ∈ Ti. It outputs the set pi = {p̃j}j∈Ti
as

its partial decryption.
– ThFHE.FinDec(pk, B): On input a public key pk and a set of partial decryption

shares {pi}i∈S, it first checks if S ∈ A. If this is not the case, then it outputs
⊥. Otherwise, it computes a minimal valid share set T ⊆

⋃
i∈S Ti and

computes µ← FHE.Decode1
(∑

j∈T p̃j
)
. It outputs µ.

We now state the compactness, correctness, and security theorems for Construc-
tion 5.6.

Theorem 5.7. Suppose FHE is a compact fully homomorphic encryption scheme
[12, Def. 3.6]. Then, the ThFHE scheme from Construction 5.6 satisfies compact-
ness (Definition 5.2).

Theorem 5.8. Suppose FHE is a special fully homomorphic encryption scheme
that satisfies correctness [12, Def. 3.7] with noise bound B and SS is a secret
sharing scheme that satisfies correctness [12, Def. 4.5]. Then, the ThFHE scheme
from Construction 5.6 with parameter Bsm such that B + ` ·Bsm ≤

⌊
q
4

⌉
satisfies

evaluation correctness (Definition 5.3).

Theorem 5.9. Suppose FHE is a fully homomorphic encryption scheme that
satisfies security [12, Def. 3.8]. Then, the ThFHE scheme from Construction 5.6
satisfies semantic security (Definition 5.4).

Theorem 5.10. Suppose FHE is a fully homomorphic encryption scheme that
satisfies security [12, Def 3.8] and SS is a secret sharing scheme that satisfies secu-
rity [12, Def 4.6]. Then, the ThFHE scheme from Construction 5.6 with parameter
Bsm such that B/Bsm = negl(λ) satisfies simulation security (Definition 5.5).

The compactness and semantic security of Construction 5.6 (Theorems 5.7 and 5.9)
follow from the compactness and security of the underlying FHE and SS schemes
in a straightforward way. We provide the formal proofs of evaluation correctness
and simulation security (Theorems 5.8 and 5.10) in the full version [12].

5.2.1 Parameter Instantiation

For correctness and security, we require the parameters to satisfy:

– B + ` ·Bsm ≤ q
4 (Theorem 5.8).

– B/Bsm = negl(λ) (Theorem 5.10).

16

For a depth bound d, there exists a special FHE scheme with an associated noise

bound B = 2Õ(d) assuming the hardness of LWE(n,m, q, χ) for B = poly(λ) and

q = 2Õ(d)+ω(logn). Then, if we set Bsm = 2Õ(d)+ω(logn), the two conditions above
are satisfied. In particular, this translates to approximating worst-case lattice
problems with sub-exponential approximation factors.

5.3 ThFHE from Shamir secret sharing

In this section, we present our construction of ThFHE using a standard Shamir
secret sharing scheme. This construction does not satisfy our notion of com-
pactness 5.2. However, in the full version [12], we show how to transform a
non-compact ThFHE scheme to a compact one generically using UT.

Construction 5.11 Let P = {P1, . . . , PN} be a set of parties. Our ThFHE
construction relies on the following primitives:

– Let FHE = (FHE.Setup,FHE.Encrypt,FHE.Eval,FHE.Decrypt) be a special
fully homomorphic encryption scheme with noise bound B = B(λ, d, q) and
multiplicative constant (N !)2 ([12, Def. 3.9]).

– Let SS = (SS.Share,SS.Combine) be a Shamir secret sharing scheme (Theo-
rem 4.2).

We also fix a parameter Bsm that specifies the bound on the smudging noise (see
Section 5.3.1). We construct ThFHE = (ThFHE.Setup,ThFHE.Encrypt,ThFHE.Eval,
ThFHE.PartDec,ThFHE.FinDec) as follows:

– ThFHE.Setup(1λ, 1d,At): On input the security parameter λ, depth bound d,
and an access structure At ∈ TAS, the setup algorithm generates the FHE keys
(fhepk, fhesk)← FHE.Setup(1λ, 1d). Then, it divides the key fhesk into shares
using Shamir secret sharing (fhesk1, . . . , fheskN) ← SS.Share(fhesk,At). It
sets pk = fhepk and ski = fheski ∈ Znq for i = 1, . . . , N .

– ThFHE.Encrypt(pk, µ): On input the public key pk, and a message µ ∈ {0, 1},
the encryption algorithm computes ct← FHE.Encrypt(pk, µ) and outputs ct.

– ThFHE.Eval(pk, C, ct1, . . . , ctk): On input a public key pk, a circuit C, and
a set of ciphertexts ct1, . . . , ctk the evaluation algorithm computes ĉt ←
FHE.Eval(C, ct1, . . . , ctk) and outputs ĉt.

– ThFHE.PartDec(pk, ct, ski): On input a public key pk, a ciphertext ct, and a
decryption key share ski ∈ Znq , the partial decryption algorithm samples a

smudging error e
r← [−Bsm, Bsm] and computes pi = FHE.Decode0(ski, ct) +

(N !)2 · e ∈ Zq. It outputs pi.
– ThFHE.FinDec(pk, B): On input a public key pk and a set of partial decryption

shares {pi}i∈S, it first checks if S ∈ A. If this is not the case, then it output
⊥. Otherwise, it arbitrary chooses a satisfying set S′ ⊆ S of size t and
computes the Lagrange coefficients λS

′

i,0 for all i ∈ S′. Then, it computes

µ← FHE.Decode1
(∑

i∈S′ λ
S′

i,0 · pi
)
, and outputs µ.

We now state the correctness and security theorems for Construction 5.11.

17

Theorem 5.12. Suppose FHE is a compact fully homomorphic encryption scheme
([12, Def. 3.7]) with noise bound B and SS is a Shamir secret sharing scheme that
satisfies correctness (Theorem 4.2). Then, the ThFHE scheme from Construc-
tion 5.11 with parameter B + (N !)3 ·N ·Bsm ≤ q

4 satisfies evaluation correctness
(Definition 5.3).

Theorem 5.13. Suppose FHE is a fully homomorphic encryption scheme that
satisfies security ([12, Def. 3.8]). Then, the ThFHE scheme from Construction 5.6
satisfies semantic security (Definition 5.4).

Theorem 5.14. Suppose FHE is a fully homomorphic encryption scheme that
satisfies security ([12, Def. 3.8]) and SS is a secret sharing scheme that satis-
fies security ([12, Def. 4.6]). Then, the ThFHE scheme from Construction 5.11
with parameter Bsm such that B/Bsm = negl(λ) satisfies simulation security
(Definition 5.5).

The semantic security of Construction 5.11 (Theorem 5.13) follows from the
semantic security of the underlying FHE in a straightforward way. We provide
the formal proofs of evaluation correctness and simulation security (Theorems 5.8
and 5.10) in the full version [12].

5.3.1 Parameter Instantiation

For correctness and security, we require the parameters to satisfy:

– B + (N !)3 ·N ·Bsm ≤ q
4 (Theorem 5.12).

– B/Bsm = negl(λ) (Theorem 5.14).

For a depth bound d, there exists a special FHE scheme with an associated noise

bound B = 2Õ(d) assuming the hardness of LWE(n,m, q, χ) for B = poly(λ) and

q = 2Õ(d)+ω(logn). Then, if we set Bsm = 2Õ(d)+ω(logn)/(N !)3, the two conditions
above are satisfied. In particular, this translates to approximating worst-case
lattice problems with sub-exponential approximation factors.

6 Decentralized ThFHE

In Section 5, we defined the notion of a threshold fully homomorphic encryption
scheme to have a central setup. Namely, the setup algorithm takes in an access
structure A for a fixed set of parties as input and produces a set of decryption key
shares sk1, . . . , skN for the servers. In practice, the set of parties that participate
in the decryption protocol can always change and the access structure updated.
When using a standard ThFHE scheme in this dynamic setting, a trusted setup
algorithm must be run each time a new decryption server enters or leaves a
protocol.

In this section, we define and construct an extension to the notion of ThFHE
that we name decentralized threshold fully homomorphic encryption (dThFHE). In
a dThFHE scheme, there is no setup algorithm. Rather, each party can generate

18

its own (pki, ski) key pair from a public key encryption scheme of its choice. The
encryption algorithm then takes in a set of public keys {pki}i∈[N] and an access
structure A to encrypt to a message x. A ciphertext that is generated in this way
can only be decrypted with a set of keys {ski}i∈S for a satisfying set S ∈ A. Due
to space limitations, we provide the formal definition of dThFHE in Section 6.1
and provide the construction in the full version [12].

6.1 Definition

In this subsection, we define our notion of decentralized fully homomorphic
encryption. To capture the fact that a party can use any general public key
encryption scheme, we allow the dThFHE encryption algorithm to take in the
actual PKE encryption algorithms of party Pi denoted Enci. We assume that
Enci consists of the description of the PKE encryption algorithm as well as a
hardcoded public key pki. We denote a decryption algorithm by Deci similarly.

Definition 6.1. A decentralized threshold fully homomorphic encryption scheme
for a class of access structures S is a tuple of PPT algorithms dThFHE =
(dThFHE.Encrypt, dThFHE.Eval, dThFHE.PartDec, dThFHE.FinDec) with the fol-
lowing properties:

– dThFHE.Encrypt(1λ, 1d,Enc1, . . . ,EncN ,A, x) → ct: On input the security
parameter λ, a depth bound d, a set of encryption algorithms Enc1, . . . ,EncN ,
an access structure A on {P1, . . . , PN}, and a message x ∈ {0, 1}k, the
encryption algorithm outputs a ciphertext ct.

– dThFHE.Eval(C, ct) → ĉt: On input a circuit C : {0, 1}k → {0, 1}, and a
ciphertext ct, the evaluation algorithm outputs an evaluated ciphertext ĉt.

– dThFHE.PartDec(ĉt,Deci): On input a ciphertext ĉt, and a secret key ski, the
partial decryption algorithm outputs a partial decryption pi associated with
party Pi.

– dThFHE.FinDec(B): On input a set of partial decryptions {pi}i∈S, the final
decryption algorithm outputs a message x′.

We require a dThFHE scheme to satisfy the following compactness, correctness,
and security properties. We note that our compactness notion for dThFHE is
weaker than Definition 5.2 as we allow the size of an evaluated ciphertext to
depend on N .

Definition 6.2 (Weak Compactness). We say that a dThFHE scheme for S
is compact if there exists a polynomial poly(·) such that for all λ, depth bound
d, circuit C : {0, 1}k → {0, 1} of depth at most d, encryption algorithms Enci
for i ∈ [N], access structure A ∈ S, and x ∈ {0, 1}k, the following holds. For
ct ← dThFHE.Encrypt(1λ, 1d,Enc1, . . . ,EncN ,A, x), ĉt ← dThFHE.Eval(C, ct),
and pi ← dThFHE.PartDec(ĉt,Deci) for i ∈ [N], we have |ĉt|, |pi| ≤ poly(λ, d,N).

Definition 6.3 (Evaluation Correctness). We say that a dThFHE scheme for
S satisfies evaluation correctness if for all λ, depth bound d, circuit C : {0, 1}k →

19

{0, 1} of depth at most d, correct encryption and decryption algorithms (Enci,Deci)
for i ∈ [N], access structure A ∈ S, and x ∈ {0, 1}k, the following holds. For ct←
dThFHE.Encrypt(1λ, 1d,Enc1, . . . ,EncN ,A, x), and ĉt,← dThFHE.Eval(C, ct), we
have

Pr[dThFHE.FinDec({dThFHE.PartDec(ĉt,Deci)}i∈S) = C(x)] = 1− negl(λ).

Definition 6.4 (Semantic Security). We say that a dThFHE scheme for S
satisfies semantic security if for all λ, depth bound d, and secure encryption
algorithms Enci for i ∈ [N], the following holds. For any PPT adversary A, the
following experiment ExptA,dThFHE,sem(1λ, 1d, {Enci}i∈[N]) outputs 1 with negligi-
ble probability:

ExptA,dThFHE,sem(1λ, 1d, {Enci}i∈[N]):

1. On input the security parameter 1λ, depth bound 1d, and encryption
algorithms {Enci}i∈[N], the challenger provides Enc1, . . . ,EncN to A.

2. A outputs an access structure A ∈ S, a pair of messages x0, x1 ∈ {0, 1}k,
and an unsatisfying set S ⊆ {P1, . . . , PN}.

3. The challenger encrypts ctb ← dThFHE.Encrypt(1λ, 1d,Enc1, . . . ,EncN ,A, xb)
for b

r← {0, 1} and sends it to A along with {Deci}i∈S.
4. A outputs its guess b′. The experiment outputs 1 if b′ = b.

Definition 6.5 (Simulation Security). We say that a dThFHE scheme for S
satisfies simulation security if for all λ, depth bound d, and secure encryption
and decryption algorithms (Enci,Deci) for i ∈ [N], the following holds. There
exists a stateful simulator S = (S1,S2) such that for any PPT adversary A,
the following two experiments ExptA,dThFHE,Real(1

λ, 1d, {(Enci,Deci)}i∈[N]) and

ExptA,dThFHE,Ideal(1
λ, 1d, {(Enci,Deci)}i∈[N]) are computationally indistinguish-

able:

ExptA,dThFHE,Real(1
λ, 1d, {(Enci,Deci)}i∈[N]):

1. On input the security parameter 1λ, depth bound 1d, and a set of al-
gorithms {(Enci,Deci)}i∈[N], the challenger provides Enc1, . . . ,EncN to
A.

2. A outputs an access structure A, a message x ∈ {0, 1}k, and a maximal
invalid party set S∗ ⊆ {P1, . . . , PN}.

3. The challenger encrypts ct← dThFHE.Encrypt(1λ, 1d,Enc1, . . . ,EncN ,A, x)
and provides (ct, {Deci}i∈S∗) to A.

4. A issues a polynomial number of adaptive queries of the form (S ⊆ {P1,
. . . , PN}, C) for circuits C : {0, 1}k → {0, 1} of depth at most d. For each
query, the challenger computes ĉt ← dThFHE.Eval(C, ct) and provides
{dThFHE.PartDec(ĉt,Deci)}i∈S to A.

5. At the end of the experiment, A outputs a distinguishing bit b.
ExptA,dThFHE,Ideal(1

λ, 1d, {(Enci,Deci)}i∈[N]):

1. On input the security parameter 1λ, depth bound 1d, and a set of al-
gorithms {(Enci,Deci)}i∈[N], the challenger provides Enc1, . . . ,EncN to
A.

20

2. A outputs an access structure A, a message X ∈ {0, 1}k, and a maximal
invalid party set S∗ ⊆ {P1, . . . , PN}.

3. The challenger computes (ct, st)← S1(1λ, 1d, {Enci}i∈[N], {Deci}i∈S∗ ,A)
and provides (ct, {Deci}i∈S∗) to A.

4. A issues a polynomial number of adaptive queries of the form (S ⊆ {P1,
. . . , PN}, C) for circuits C : {0, 1}k → {0, 1} of depth at most d. For
each query, the challenger runs the simulator {pi}i∈S ← S2(C,C(x), st)
and sends {pi}i∈S to A.

5. At the end of the experiment, A outputs a distinguishing bit b.

7 Universal Thresholdizer

The notion of ThFHE is a natural generalization of a standard fully homomorphic
encryption scheme that has numerous applications in threshold cryptography.
Specifically, it can be used to generically construct a thresholdized variant of
any basic cryptographic function. For these type of applications, it is natural to
view the notion of ThFHE as a thresholdizer mechanism. In these settings, we do
not require the full generality of the ThFHE syntax. Furthermore, for ThFHE to
be useful as a thresholdizer tool, we require it to be robust, meaning that there
exists an efficient public mechanism to verify whether a partial decryption was
done correctly. Therefore, we define a natural notion of universal thresholdizer
(UT) that captures these properties. We use universal thresholdizers for our
applications in Section 8.

7.1 Definition

Informally, the setup and the encryption algorithms for ThFHE are merged into a
single UT setup algorithm, and the evaluation and partial decryption algorithms
for ThFHE is merged into a single UT evaluation algorithm. Furthermore, semantic
security (Definition 5.4) and simulation security (Definition 5.5) is merged into a
single definition for simplicity. Finally, there is an additional verification algorithm
that checks whether an evaluation was done correctly.

Definition 7.1 (Universal Thresholdizer). Let P = {P1, . . . , PN} be a set
of parties and let S be a class of efficient access structures on P . A univer-
sal thresholdizer scheme for S and M is a tuple of PPT algorithms UT =
(UT.Setup,UT.Eval,UT.Verify,UT.Combine) with the following properties:

– UT.Setup(1λ, 1d,A, x)→ (pp, s1, . . . , sN): On input the security parameter λ,
a depth bound d, an access structure A, and a message x ∈ {0, 1}k, the setup
algorithm outputs the public parameters pp, and a set of shares s1, . . . , sN .

– UT.Eval(pp, si, C)→ yi: On input the public parameters pp, a share si, and
a circuit C : {0, 1}k → {0, 1} of depth at most d, the evaluation algorithm
outputs a partial evaluation yi.

– UT.Verify(pp, yi, C) → {0, 1}: On input the public parameters pp, a partial
evaluation yi, and a circuit C : {0, 1}k → {0, 1}, the verification algorithm
accepts or rejects.

21

– UT.Combine(pp, B)→ y: On input the public parameters pp, a set of partial
evaluations B = {yi}i∈S, the combining algorithm outputs the final evalua-
tion y.

We require a UT scheme satisfy the following compactness, correctness, and
security properties. The compactness and evaluation correctness definitions are
natural analogues of the ThFHE definitions. The security requirement of a ThFHE
scheme combines the semantic and simulation security definitions of ThFHE.
Verification correctness and robustness are additions to the definition to capture
verifiable evaluation.

Definition 7.2 (Compactness). We say that a UT scheme is compact if
there exists a polynomial poly(·) such that for all λ, depth bound d, circuit
C : {0, 1}k → {0, 1} of depth at most d, and µ ∈ {0, 1}, the following holds.
For (pk, sk1, . . . , skN) ← UT.Setup(1λ, 1d,A, x), yi ← UT.Eval(pp, si, C) for any
i ∈ [N], we have |yi| ≤ poly(λ, d,N).

Definition 7.3 (Evaluation Correctness). We say that a UT scheme satisfies
evaluation correctness if for all λ, depth bound d, access structure A, message
x ∈ {0, 1}k, circuit C : {0, 1}k → {0, 1} of depth at most d, and S ∈ A, the
following condition holds. For (pp, s1, . . . , sN)← UT.Setup(1λ, 1d,A, x),

Pr[UT.Combine(pp, {UT.Eval(pp, si, C)}i∈S) = C(x)] = 1− negl(λ).

Definition 7.4 (Verification Correctness). We say that a UT scheme satis-
fies verification correctness if for all λ, depth bound d, access structure A, message
x ∈ {0, 1}k, and circuit C : {0, 1}k → {0, 1} of depth at most d, the following
holds. For (pp, s1, . . . , sN)← UT.Setup(1λ, 1d,A, x), yi ← UT.Eval(pp, si, C) for
any i ∈ [N], we have that

Pr[UT.Verify(pp, yi, C) = 1] = 1.

Definition 7.5 (Security). We say that a UT scheme satisfies security if for all
λ, and depth bound d, the following holds. There exists a stateful PPT algorithm
S = (S1,S2) such that for any PPT adversary A, we have that the following
experiments ExptA,UT,Real(1

λ, 1d) and ExptA,UT,Ideal(1
λ, 1d) are computationally

indistinguishable:

ExptA,UT,Real(1
λ, 1d):

1. On input the security parameter 1λ, and circuit depth 1d, the adversary
A outputs an access structure A ∈ S, and a message x ∈ {0, 1}k.

2. The challenger runs (pp, s1, . . . , sN) ← UT.Setup(1λ, 1d,A, x) and pro-
vides pp to A.

3. A outputs a maximal invalid party set S∗ ⊆ {P1, . . . , PN} for A.
4. The challenger provides the shares {si}i∈S∗ to A.
5. A issues a polynomial number of adaptive queries of the form (S ⊆ {P1,

. . . , PN}, C) for circuits C : {0, 1}k → {0, 1} of depth at most d. For
each query, the challenger provides {yi ← UT.Eval(pp, si, C)}i∈S to A.

22

6. At the end of the experiment, A outputs a distinguishing bit b.
ExptA,UT,Ideal(1

λ, 1d):

1. On input the security parameter 1λ and a circuit depth 1d, the adversary
A outputs an access structure A ∈ S, and a message x ∈ {0, 1}k.

2. The challenger runs (pp, s1, . . . , sN , st)← S1(1λ, 1d,A) and provides pp
to A.

3. A outputs a maximal invalid party set S∗ ⊆ {P1, . . . , PN} for A.
4. The challenger provides the shares {si}i∈S∗ to A.
5. A issues a polynomial number of adaptive queries of the form (S ⊆ {P1,

. . . , PN}, C) for circuits C : {0, 1}k → {0, 1} of depth at most d. For each
query, the challenger runs the simulator {yi}i∈S ← S2(pp, C, C(x), S, st)
and sends {yi}i∈S to A.

6. At the end of the experiment, A outputs a distinguishing bit b.

Definition 7.6 (Robustness). We say that a UT scheme satisfies robustness
if for all λ, and depth bound d, the following holds. For any PPT adversary A,
the following experiment ExptA,Robust(1

λ, 1d) outputs 1 with negligible probability:

ExptA,UT,rb(1
λ, 1d):

1. On input the security parameter 1λ and circuit depth 1d, the adversary
A outputs a message x ∈ {0, 1}k and A ∈ S.

2. The challenger runs (pp, s1, . . . , sN) ← UT.Setup(1λ, 1d,A, x) and pro-
vides (pp, s1, . . . , sN) to A.

3. A outputs a fake partial evaluation y∗i .
4. The challenger returns 1 if y∗i 6= UT.Eval(pp, si, C) and UT.Verify(pp, y∗i ,

C) = 1.

7.2 Universal Thresholdizer from ThFHE and PZK

In this section, we construct a universal thresholdizer generically from thresh-
old fully homomorphic encryption (Section 5) and NIZK with pre-processing
(see [12]).

Construction 7.7 Our universal thresholdizer construction relies on the follow-
ing primitives:

– Let ThFHE = (ThFHE.Setup,ThFHE.Encrypt,ThFHE.Eval,ThFHE.PartDec,
ThFHE.FinDec) be a threshold fully homomorphic encryption scheme.

– Let PZK = (PZK.Pre,PZK.Prove,PZK.Verify) be a NIZK with pre-processing
scheme.

– Let C = (C.Com) be a non-interactive commitment scheme.

We construct a universal thresholdizer scheme UT = (UT.Setup,UT.Eval,UT.Verify,
UT.Combine) as follows:

– UT.Setup(1λ, 1d,A, x): On input the security parameter λ, depth bound d, ac-
cess structure A, and message x ∈ {0, 1}k, the setup algorithm first generates

23

the ThFHE keys (tfhepk, tfhesk1, . . . , tfheskN)← ThFHE.Setup(1λ, 1d,A) and
ciphertexts cti ← ThFHE.Encrypt(tfhepk, xi) for i = 1, . . . k. Then, it gener-
ates reference strings (σV,i, σP,i)← PZK.Pre(1λ), commitment randomness

ri
r← {0, 1}λ, and commitments comi ← C.Com(tfheski; ri) for i = 1, . . . N .

It sets

pp =
(
tfhepk, {cti}i∈[k], {σV,i}i∈[N], {comi}i∈[N]

)
si =

(
tfheski, σP,i, ri

)
.

– UT.Eval(pp, si, C): On input the public parameters pp, a share si, and a
circuit C, the evaluation algorithm first computes the evaluated cipher-
text ĉt ← ThFHE.Eval(tfhepk, C, ct1, . . . , ctk) and partial decryption pi ←
ThFHE.PartDec(tfhepk, ĉt, tfheski). Then, it constructs the statement Ψi =
Ψi(comi, ĉt, pi) asserting that the value pi is consistent with the committed
secret key tfheski:

∃ (tfheski, ri) : comi = C.Com(tfheski; ri)∧pi = ThFHE.PartDec(pp, ĉt, tfheski).

It generates a NIZK proof πi ← PZK.Prove(σP,i, Ψi, (tfheski, ri)) and returns
yi = (pi, πi).

– UT.Verify(pp, yi, C): On input the public parameters pp, a partial evaluation
yi, and a circuit C, the verification algorithm first computes the evaluated
ciphertext ĉt← ThFHE.Eval(pp, C, ct1, . . . , ctk) and constructs the statement
Ψi = Ψi(comi, ĉt, pi). It then parses yi = (pi, πi) and returns the result of
PZK.Verify(σV,i, Ψi, πi).

– UT.Combine(pp, B): On input the public parameters pp, and a set of partial
evaluations B = {yi}i∈S for some S ⊆ {P1, . . . , PN}, the combining algorithm
first parses yi = (pi, πi) for i ∈ S and outputs ThFHE.FinDec(tfhepk, {pi}i∈S).

We now state the compactness, correctness, and security theorems for Construc-
tion 7.7.

Theorem 7.8. Suppose ThFHE is a compact threshold fully homomorphic en-
cryption scheme (Definition 5.2). Then, the universal thresholdizer scheme from
Construction 7.7 satisfies compactness (Definition 7.2).

Theorem 7.9. Suppose ThFHE is a threshold fully homomorphic encryption
scheme that satisfies evaluation correctness (Definition 5.3). Then, the univer-
sal thresholdizer scheme from Construction 7.7 satisfies evaluation correctness
(Definition 5.3).

Theorem 7.10. Suppose PZK is a complete zero knowledge proof system with
pre-processing ([12, Def. 3.4]). Then, the universal thresholdizer scheme from
Construction 7.7 satisfies verification correctness (Definition 7.4).

Theorem 7.11. Suppose ThFHE satisfies semantic security (Definition 5.4) and
simulation security (Definition 5.5), PZK is a zero knowledge proof system with
pre-processing that satisfies zero-knowledge ([12, Def. 3.4]), and C is a non-
interactive commitment scheme that satisfies computational hiding ([12, Def.
A.1]). Then, the universal thresholdizer scheme from Construction 7.7 satisfies
security (Definition 7.5).

24

Theorem 7.12. Suppose PZK is a zero knowledge proof system with pre-processing
that satisfies soundness ([12, Def. 3.4]) and C is a non-interactive commitment
scheme that satisfies perfect binding ([12, Def. A.1]). Then, the universal thresh-
oldizer scheme from Construction 7.7 satisfies robustness 7.6.

We provide the formal proofs of the theorems above in the full version [12].

7.3 Robustness from Homomorphic Signatures

In Section 7.2, we used NIZK with pre-processing to enforce robustness. Another
way to enforce robustness is to use homomorphic signatures [11, 35]. A homo-
morphic signature scheme is like a regular signature scheme, but it additionally
allows a signature σx of a message x to be homomorphically evaluated with a
circuit C. The resulting signature σC(x) is compact in that its size depends only
on the depth of C and |C(x)|; and it certifies that a value y = C(x) is indeed
the output of C evaluated on the original message x. Furthermore, the signature
σC(x) itself does not leak any information about the original message x other
than what can be inferred from C and C(x).

To enforce robustness for the construction in Section 7.2, the setup algorithm
can simply use a homomorphic signature to sign each decryption key share of a
ThFHE scheme and include it as part of each party’s share. Then, to evaluate on
the shares, each user can homomorphically compute on the ThFHE ciphertexts and
compute the partial decryption as before, but at the same time homomorphically
evaluate on the signatures to derive a new signature that certifies correct partial
decryption. The unforgeability property of the homomorphic signature scheme
guarantees that no cheating adversary can generate a falsen signature on a value
y 6= C(x).

The benefit of using a homomorphic signature is that the proof size depends
only on the depth of the circuit C to be computed and the evaluation share y.
Using NIZK’s, on the other hand, the proof size grows in the secret size |x| and
size of the circuit |C|. For applications that require long secret x, homomorphic
signatures can give significant savings in the size of the evaluation shares. Since
homomorphic signatures for circuits can be constructed from LWE [35], its use
does not introduce any new assumption to our construction. We provide the
formal construction from homomorphic signatures in the full version [12].

8 Applications

In this section, we describe our applications of a universal thresholdizer scheme.
Due to space constraints, we defer some of our applications in the full version [12].
In [12], we show that a universal thresholdizer scheme for a class of access
structures immediately give rise to a function secret sharing scheme for the
same class of access structures. We also show that a universal thresholdizer
scheme for the class of threshold access structures can be combined with existing
cryptographic primitives to produce their thresholdized variants. As discussed in

25

Section 1.1, these give rise to threshold signatures, CCA threshold PKE, distributed
PRFs, and even functional encryption with thresholdized key generation. In this
work, we provide just two of these applications: threshold signatures (Section 8.1)
and CCA threshold PKE ([12]). These two notions demonstrate how to use a
universal thresholdizer as a general tool. The methods that we develop in this
section can be applied to a wide range of other applications in a straightforward
way. In [12], we also show that a non-compact universal threholsidzer scheme
can be used to thresholdize a compact fully homomorphic encryption scheme to
construct a compact ThFHE scheme to a compact one.

For full generality, we define the notions of functional secret sharing, threshold
signatures, and CCA threshold PKE with respect to general access structures.
By Theorem 4.6, all applications in this section can be instantiated for the class
of threshold access structure TAS (Definition 4.1).

8.1 Threshold Signatures

In this section, we construct a threshold signatures scheme from universal thresh-
oldizers. In a threshold signature scheme, the signing key of a signer is divided
into a number of key shares and are distributed to multiple signers. When sigining
a message, each of the signers creates a partial signature with its own share of the
signing key. Then, a combining algorithm combines the partial signatures into a
full signature. For generality, we present the definition of threshold signatures
with respect to a general class of access structures.

We provide the full definition of threshold signatures in the full version [12].

8.1.1 Construction

We construct threshold signature scheme from a universal thresholdizer (Section 7)
and a signature scheme.

Construction 8.1 Our threshold signature construction relies on the following
primitives:

– Let UT = (UT.Setup,UT.Eval,UT.Verify,UT.Combine) be a universal thresh-
oldizer scheme for the class of access structures S.

– Let S = (S.KeyGen,S.Sign,S.Verify) be a signature scheme. For our construc-
tion, we assume that the signing algorithm S.Sign is a deterministic algorithm.
This is without loss of generality since any randomized signature scheme can
be derandomized (i.e. using PRFs).

Now, we construct a threshold signature scheme TS = (TS.Setup,TS.PartSign,
TS.PartSignVerify,TS.Combine,TS.Verify) for S as follows:

– TS.Setup(1λ,A): On input the security parameter λ, and an access structure
A, the setup algorithm first generates the keys for the signature scheme
(ssk, svk) ← S.KeyGen(1λ). Then it instantiates the universal thresholdizer

26

scheme (utpp, uts1, . . . , utsN)← UT.Setup(1λ, 1d,A, ssk) where d is the depth
of the signing algorithm S.Sign. Then, it sets

pp = utpp, vk = svk, ski = utsi ∀i ∈ [N].

– TS.PartSign(pp, ski,m): On input the public parameters pp = utpp, a partial
signing key ski = utsi, and a message m ∈ {0, 1}∗, the partial signing algo-
rithm outputs σi ← UT.Eval(utpp, utsi, Cm) where the circuit Cm is defined
as

Cm(ssk) = S.Sign(ssk,m).

– TS.PartSignVerify(pp,m, σi): On input the public parameters pp, message
m ∈ {0, 1}∗, and a partial signature σi, the partial signature verification
algorithm outputs UT.Verify(utpp, σi, Cm).

– TS.Combine(pp, B): On input the public parameters pp, and a set of par-
tial signatures B = {σi}i∈S, the signature combining algorithm outputs
UT.Combine(utpp, B).

– TS.Verify(vk,m, σ): On input the signature verification key vk = svk, a mes-
sage m ∈ {0, 1}∗, and a signature σ, the verification algorithm outputs
S.Verify(vk,m, σ).

We now state the compactness, correctness, and security theorems for Construc-
tion 8.1.

Theorem 8.2. Suppose UT is a universal thresholdizer scheme that satisfies
evaluation correctness (Definition 7.3). Then, the threshold signature scheme
from Construction 8.1 satisfies compactness ([12, Def. 8.10]).

Theorem 8.3. Suppose UT is a universal thresholdizer scheme that satisfies
evaluation correctness (Definition 7.3) and S is a signature scheme that sat-
isfies correctness ([12, Def. A.4]). Then, the threshold signature scheme from
Construction 8.1 satisfies evaluation correctness ([12, Def. 8.11]).

Theorem 8.4. Suppose UT is a universal thresholdizer scheme that satisfies
evaluation verification correctness (Definition 7.4). Then, the threshold signature
scheme from Construction 8.1 satisfies partial verification correctness ([12, Def.
8.12]).

Theorem 8.5. Suppose UT is a universal thresholdizer scheme that satisfies
security (Definition 7.5) and S is a signature scheme that satisfies unforgeability
([12, Def. A.5]). Then, the threshold signature scheme from Construction 8.1
satisfies unforgeability ([12, Def. 8.13]).

Theorem 8.6. Suppose UT is a universal thresholdizer scheme that satisfiesd
robustness (Definition 7.6). Then, the threshold signature scheme from Construc-
tion 8.1 satisfies robustness ([12, Def. 8.14]).

Theorem 8.7. Suppose UT is a universal thresholdizer scheme that satisfies
evaluation correctness (Definition 7.3). Then, the threshold signature scheme
from Construction 8.1 satisfies anonymity ([12, Def. 8.15]).

We provide formal proofs of the theorems above in the full version [12].

27

9 Conclusion and Open Problems

In this work, we proposed a general framework for constructing various threshold
cryptosystems from standard lattice assumptions. We first defined the notion of
threshold fully homomorphic encryption (ThFHE) and constructed it from LWE.
Then, we showed that ThFHE can be used to instantiate a new abstraction called
universal thresholdizers, which can be combined with existing cryptographic
primitives like digital signatures and CCA-secure PKEs to form new threshold
signatures and CCA-secure threshold PKEs from LWE.

Our work gives rise to many new open problems in threshold cryptography.
A universal thresholdizer can be used as a tool to construct a variety of different
primitives in threshold cryptography. Can universal thresholdizers be realized
from other standard assumptions such as DDH or assumptions on bilinear maps?
Are there more efficient constructions of universal thresholdizers from LWE?

On the theoretical side, we show how to construct threshold signatures or
threshold PKEs via a generic, but primitive dependent transformation using
universal thresholdizers. Is it possible to formalize what it means to thresholdize
any cryptographic function?

Acknowledgements

We thank the anonymous Crypto reviewers for their helpful comments. D. Boneh
and S. Kim are supported by NSF, DARPA, the Simons foundation, and a grant
from ONR. R. Gennaro is supported by NSF grant 1545759. S. Goldfeder is
supported by NSF Graduate Research Fellowship under grant number DGE
1148900. A. Jain, P. Rasmussen, and A. Sahai are supported by a DARPA/ARL
SAFEWARE award, NSF Frontier Award 1413955, NSF grants 1619348, 1228984,
1136174, and 1065276, a Xerox Faculty Research Award, a Google Faculty Re-
search Award, an equipment grant from Intel, and an Okawa Foundation Research
Grant. This material is based upon work supported by the Defense Advanced
Research Projects Agency through the ARL under Contract W911NF-15-C-0205.
The views expressed are those of the author and do not reflect the official policy
or position of the Department of Defense, the National Science Foundation, or
the U.S. Government.

References

1. S. Agrawal, D. Boneh, and X. Boyen. Efficient lattice (H)IBE in the standard
model. In EUROCRYPT, 2010.

2. S. Agrawal, X. Boyen, V. Vaikuntanathan, P. Voulgaris, and H. Wee. Functional
encryption for threshold functions (or fuzzy ibe) from lattices. In PKC, 2012.

3. G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan, and D. Wichs.
Multiparty computation with low communication, computation and interaction via
threshold fhe. In EUROCRYPT, 2012.

4. A. Banerjee and C. Peikert. New and improved key-homomorphic pseudorandom
functions. In CRYPTO, 2014.

28

5. C. Baum, I. Damg̊ard, S. Oechsner, and C. Peikert. Efficient commitments and
zero-knowledge protocols from ring-sis with applications to lattice-based threshold
cryptosystems. IACR Cryptology ePrint Archive, 2016:997, 2016.

6. A. Beimel. Phd thesis. Israel Institute of Technology, Technion, Haifa, Israel,,
1996.

7. R. Bendlin and I. Damg̊ard. Threshold decryption and zero-knowledge proofs for
lattice-based cryptosystems. In TCC, 2010.

8. R. Bendlin, S. Krehbiel, and C. Peikert. How to share a lattice trapdoor: threshold
protocols for signatures and (h) ibe. In ACNS, 2013.

9. A. Boldyreva. Threshold signatures, multisignatures and blind signatures based on
the gap-diffie-hellman-group signature scheme. In PKC, 2003.

10. D. Boneh, X. Boyen, and S. Halevi. Chosen ciphertext secure public key threshold
encryption without random oracles. In CT-RSA, 2006.

11. D. Boneh and D. M. Freeman. Homomorphic signatures for polynomial functions.
In EUROCRYPT, 2011.

12. D. Boneh, R. Gennaro, S. Goldfeder, A. Jane, S. Kim, P. M. R. Rasmussen, and
A. Sahai. Threshold cryptosystems from threshold fully homomorphic encryption.
Cryptology ePrint Archive, Report 2017/956, 2017. https://eprint.iacr.org/

2017/956.
13. D. Boneh, K. Lewi, H. Montgomery, and A. Raghunathan. Key homomorphic prfs

and their applications. In CRYPTO. 2013.
14. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. J.

Cryptology, 17(4):297–319, Sept. 2004.
15. X. Boyen. Lattice mixing and vanishing trapdoors: A framework for fully secure

short signatures and more. In PKC, 2010.
16. E. Boyle, N. Gilboa, and Y. Ishai. Function secret sharing. In EUROCRYPT, 2015.
17. E. Boyle, N. Gilboa, and Y. Ishai. Breaking the circuit size barrier for secure

computation under ddh. In CRYPTO, 2016.
18. Z. Brakerski, N. Chandran, V. Goyal, A. Jain, A. Sahai, and G. Segev. Hierarchical

functional encryption. In ITCS, 2016.
19. Z. Brakerski and R. Perlman. Lattice-based fully dynamic multi-key fhe with short

ciphertexts. CRYPTO, 2016.
20. Z. Brakerski and V. Vaikuntanathan. Constrained key-homomorphic prfs from

standard lattice assumptions - or: How to secretly embed a circuit in your PRF. In
TCC, 2015.

21. R. Canetti and S. Goldwasser. An efficient Threshold public key cryptosystem
secure against adaptive chosen ciphertext attack. In EUROCRYPT, 1999.

22. P.-L. Cayrel, R. Lindner, M. Rückert, and R. Silva. A lattice-based threshold ring
signature scheme. In LATINCRYPT, 2010.

23. A. Choudhury, J. Loftus, E. Orsini, A. Patra, and N. P. Smart. Between a rock
and a hard place: Interpolating between mpc and fhe. In ASIACRYPT, 2013.

24. A. De-Santis, S. Micali, and G. Persiano. Non-interactive zero-knowledge with
preprocessing. In CRYPTO, 1988.

25. A. DeSantis, Y. Desmedt, Y. Frankel, and M. Yung. How to share a function
securely. In STOC, 1994.

26. Y. Desmedt and Y. Frankel. Threshold cryptosystems. In CRYPTO, 1989.
27. Y. Dodis and J. Katz. Chosen-ciphertext security of multiple encryption. In TCC,

2005.
28. Y. Frankel. A practical protocol for large group oriented networks. In EUROCRYPT,

1989.

29

29. R. Gennaro, S. Goldfeder, and A. Narayanan. Threshold-optimal DSA/ECDSA
signatures and an application to bitcoin wallet security. In ACNS, 2016.

30. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust threshold DSS
signatures. Inf. Comput., 164(1):54–84, 2001.

31. R. Gennaro, T. Rabin, S. Jarecki, and H. Krawczyk. Robust and efficient sharing
of RSA functions. J. Cryptology, 20(3):393, 2007.

32. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and
new cryptographic constructions. In STOC, 2008.

33. C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In CRYPTO.
2013.

34. O. Goldreich. Valiant’s polynomial-size monotone formula for majority. 2014.
35. S. Gorbunov, V. Vaikuntanathan, and D. Wichs. Leveled fully homomorphic

signatures from standard lattices. In STOC, 2015.
36. S. D. Gordon, F. Liu, and E. Shi. Constant-round MPC with fairness and guarantee

of output delivery. In CRYPTO, pages 63–82, 2015.
37. V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for

fine-grained access control of encrypted data. In Proceedings of the 13th ACM
conference on Computer and communications security, 2006.

38. S. Kim and D. J. Wu. Multi-theorem preprocessing nizk from lwe. In CRYPTO.
2018.

39. D. Lapidot and A. Shamir. Publicly verifiable non-interactive zero-knowledge proofs.
In CRYPTO, 1990.

40. A. B. Lewko and B. Waters. Decentralizing attribute-based encryption. In EURO-
CRYPT, 2011.

41. V. Lyubashevsky. Lattice signatures without trapdoors. In EUROCRYPT, 2012.
42. D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller.

In EUROCRYPT. 2012.
43. P. Mukherjee and D. Wichs. Two round multiparty computation via multi-key fhe.

In EUROCRYPT, 2016.
44. S. Myers, M. Sergi, and A. Shelat. Threshold fully homomorphic encryption and

secure computation. IACR Cryptology ePrint Archive, 2011:454, 2011.
45. C. Peikert. Public-key cryptosystems from the worst-case shortest vector problem.

In STOC, 2009.
46. C. Peikert and S. Shiehian. Multi-key fhe from lwe, revisited. In TCC, 2016.
47. C. Peikert and B. Waters. Lossy trapdoor functions and their applications. SIAM

Journal on Computing, 40(6):1803–1844, 2011.
48. O. Regev. On lattices, learning with errors, random linear codes, and cryptography.

Journal of the ACM (JACM), 56(6):34, 2009.
49. A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,

1979.
50. V. Shoup. Practical threshold signatures. In EUROCRYPT, 2000.
51. V. Shoup and R. Gennaro. Securing threshold cryptosystems against chosen

ciphertext attack. J. Cryptology, 15(2):75–96, 2002.
52. D. R. Stinson and R. Strobl. Provably secure distributed schnorr signatures and a

(t, n) threshold scheme for implicit certificates. In ACISP, 2001.
53. L. G. Valiant. Short monotone formulae for the majority function. J. Algorithms,

1984.
54. X. Xie, R. Xue, and R. Zhang. Efficient threshold encryption from lossy trapdoor

functions. In PQCrypto, 2011.

30

