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Abstract. Non-interactive zero-knowledge (NIZK) proofs are fundamen-
tal to modern cryptography. Numerous NIZK constructions are known in
both the random oracle and the common reference string (CRS) mod-
els. In the CRS model, there exist constructions from several classes of
cryptographic assumptions such as trapdoor permutations, pairings, and
indistinguishability obfuscation. Notably absent from this list, however,
are constructions from standard lattice assumptions. While there has been
partial progress in realizing NIZKs from lattices for specific languages,
constructing NIZK proofs (and arguments) for all of NP from standard
lattice assumptions remains open.

In this work, we make progress on this problem by giving the first
construction of a multi-theorem NIZK argument for NP from standard
lattice assumptions in the preprocessing model. In the preprocessing
model, a (trusted) setup algorithm generates proving and verification
keys. The proving key is needed to construct proofs and the verification
key is needed to check proofs. In the multi-theorem setting, the proving
and verification keys should be reusable for an unbounded number of
theorems without compromising soundness or zero-knowledge. Existing
constructions of NIZKs in the preprocessing model (or even the designated-
verifier model) that rely on weaker assumptions like one-way functions
or oblivious transfer are only secure in a single-theorem setting. Thus,
constructing multi-theorem NIZKs in the preprocessing model does not
seem to be inherently easier than constructing them in the CRS model.

We begin by constructing a multi-theorem preprocessing NIZK directly
from context-hiding homomorphic signatures. Then, we show how to
efficiently implement the preprocessing step using a new cryptographic
primitive called blind homomorphic signatures. This primitive may be of
independent interest. Finally, we show how to leverage our new lattice-
based preprocessing NIZKs to obtain new malicious-secure MPC protocols
purely from standard lattice assumptions.

1 Introduction

The concept of zero-knowledge is fundamental to theoretical computer science.
Introduced in the seminal work of Goldwasser, Micali, and Rackoff [62], a zero-
knowledge proof system enables a prover to convince a verifier that some statement
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is true without revealing anything more than the truth of the statement. Tradition-
ally, zero-knowledge proof systems for NP are interactive, and in fact, interaction
is essential for realizing zero-knowledge (for NP) in the standard model [61].

Non-interactive zero-knowledge. Nonetheless, Blum, Feldman, and Micali [16]
showed that meaningful notions of zero-knowledge are still realizable in the
non-interactive setting, where the proof consists of just a single message from
the prover to the verifier. In the last three decades, a beautiful line of works
has established the existence of NIZK proof (and argument) systems for all of
NP in the random oracle model [45,81] or the common reference string (CRS)
model [44,40,66,65,86], where the prover and the verifier are assumed to have
access to a common string chosen by a trusted third party. Today, we have NIZK
candidates in the CRS model from several classes of cryptographic assumptions:1

(doubly-enhanced) trapdoor permutations [44,40,65], pairings [66], and indistin-
guishability obfuscation [86]. Notably absent from this list are constructions from
lattice assumptions [6,83]. While some partial progress has been made in the
case of specific languages [79,7], the general case of constructing NIZK proofs
(or even arguments) for all of NP from standard lattice assumptions remains a
longstanding open problem.

NIZKs in a preprocessing model. In this work, we make progress on this
problem by giving the first multi-theorem NIZK argument for NP from standard
lattice assumptions in the preprocessing model. In the NIZK with preprocessing
model [42], there is an initial (trusted) setup phase that generates a proving key
kP and a verification key kV . The proving key is needed to construct proofs while
the verification key is needed to check proofs. In addition, the setup phase is run
before any statements are proven (and thus, must be statement-independent). In
the multi-theorem setting, we require that soundness holds against a prover who
has oracle access to the verifier (but does not see kV ), and that zero-knowledge
holds against a verifier who has oracle access to the prover (but does not see kP ).
The NIZK with preprocessing model generalizes the more traditional settings
under which NIZKs have been studied. For instance, the case where kP is public
(but kV is secret) corresponds to designated-verifier NIZKs [36,39,34], while the
case where both kP and kV are public corresponds to the traditional CRS setting,
where the CRS is taken to be the pair (kP , kV ).

Why study the preprocessing model? While the preprocessing model is
weaker than the more traditional CRS model, constructing multi-theorem NIZK
arguments (and proofs) in this model does not appear to be any easier than
constructing them in the CRS model. Existing constructions of NIZKs in the pre-
processing model from weaker assumptions such as one-way functions [42,75,38,69]
or oblivious transfer [73] are only secure in the single-theorem setting. As we
discuss in greater detail in Remark 4.7, the constructions from [42,75,38] only

1There are also NIZK candidates based on number-theoretic assumptions [16,41,15]
which satisfy weaker properties. We discuss these in greater detail in Section 1.2 and
Remark 4.7.
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provide single-theorem zero-knowledge, while the constructions in [73,69] only pro-
vide single-theorem soundness. Even in the designated-verifier setting [36,39,34]
(where only the holder of a verification key can verify the proofs), the existing
constructions of NIZKs for NP based on linearly-homomorphic encryption suffer
from the so-called “verifier-rejection” problem where soundness holds only against
a logarithmically-bounded number of statements. Thus, the only candidates of
multi-theorem NIZKs where soundness and zero-knowledge hold for an unbounded
number of theorems are the constructions in the CRS model, which all rely on
trapdoor permutations, pairings, or obfuscation. Thus, it remains an interesting
problem to realize multi-theorem NIZKs from lattice assumptions even in the
preprocessing model.

Moreover, as we show in Section 6.1, multi-theorem NIZKs in the preprocess-
ing model suffice to instantiate many of the classic applications of NIZKs for
boosting the security of multiparty computation (MPC) protocols. Thus, our new
constructions of reusable NIZK arguments from standard lattice assumptions
imply new constructions of round-optimal, near-optimal-communication MPC
protocols purely from lattice assumptions. Our work also implies a succinct
version of the classic Goldreich-Micali-Wigderson compiler [59,60] for boosting
semi-honest security to malicious security, again purely from standard lattice
assumptions. Furthermore, studying NIZKs in the preprocessing model may
also serve as a stepping stone towards realizing NIZKs in the CRS model from
standard lattice assumptions. For example, the starting point of the first multi-
theorem NIZK construction by Feige, Lapidot, and Shamir [44] was a NIZK proof
for graph Hamiltonicity in the preprocessing model.

1.1 Multi-Theorem Preprocessing NIZKs from Lattices

The focus of this work is on constructing NIZKs in the preprocessing model
(which we will often refer to as a “preprocessing NIZK”) from standard lattice
assumptions. As we discuss in Section 1.2 and in Remark 4.7, this is the first can-
didate of reusable (i.e., multi-theorem) NIZK arguments from a standard lattice
assumption. Below, we provide a high-level overview of our main construction.

Homomorphic signatures. A homomorphic signature scheme [18,19,63,5] en-
ables computations on signed data. Specifically, a user can sign a message x
using her private signing key to obtain a signature σ. Later on, she can delegate
the pair (x, σ) to an untrusted data processor. The data processor can then
compute an arbitrary function g on the signed data to obtain a value y = g(x)
along with a signature σg,y. The computed signature σg,y should certify that
the value y corresponds to a correct evaluation of the function g on the original
input x. In a context-hiding homomorphic signature scheme [22,18], the computed
signature σg,y also hides the input message x. Namely, the pair (y, σg,y) reveals
no information about x other than what could be inferred from the output
y = g(x). Gorbunov et al. [63] gave the first construction of a context-hiding
homomorphic signature scheme for general Boolean circuits (with bounded depth)
from standard lattice assumptions.
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From homomorphic signatures to zero-knowledge. The notion of context-
hiding in a homomorphic signature scheme already bears a strong resemblance
to zero-knowledge. Namely, a context-hiding homomorphic signature scheme
allows a user (e.g., a prover) to certify the result of a computation (e.g., the
output of an NP relation) without revealing any additional information about the
input (e.g., the NP witness) to the computation. Consider the following scenario.
Suppose the prover has a statement-witness pair (x,w) for some NP relation
R and wants to convince the verifier that R(x,w) = 1 without revealing w.
For sake of argument, suppose the prover has obtained a signature σw on the
witness w (but does not have the signing key for the signature scheme), and
the verifier holds the verification key for the signature scheme. In this case, the
prover can construct a zero-knowledge proof for x by evaluating the relation
Rx(w) := R(x,w) on (w, σw). If R(x,w) = 1, then this yields a new signature
σR,x on the bit 1. The proof for x is just the signature σR,x. Context-hiding
of the homomorphic signature scheme says that the signature σR,x reveals no
information about the input to the computation (the witness w) other than what
is revealed by the output of the computation (namely, that R(x,w) = 1). This is
precisely the zero-knowledge property. Soundness of the proof system follows by
unforgeability of the homomorphic signature scheme (if there is no w such that
Rx(w) = 1, the prover would not be able to produce a signature on the value 1
that verifies according to the function Rx).

While this basic observation suggests a connection between homomorphic
signatures and zero-knowledge, it does not directly give a NIZK argument. A
key problem is that to construct the proof, the prover must already possess a
signature on its witness w. But since the prover does not have the signing key (if
it did, then the proof system is no longer sound), it is unclear how the prover
obtains this signature on w without interacting with the verifier (who could hold
the signing key). This is the case even in the preprocessing model, because we
require that the preprocessing be statement-independent (and in fact, reusable
for arbitrarily many adaptively-chosen statements).

Preprocessing NIZKs from homomorphic signatures. Nonetheless, the
basic observation shows that if we knew ahead of time which witness w the prover
would use to construct its proofs, then the setup algorithm can simply give the
prover a homomorphic signature σw on w. To support this, we add a layer of
indirection. Instead of proving that it knows a witness w where R(x,w) = 1, the
prover instead demonstrates that it has an encryption ctw of w (under some key
sk), and that it knows some secret key sk such that ct decrypts to a valid witness
w where R(x,w) = 1.2 A proof of the statement x then consists of the encrypted
witness ctw and a proof πR,x,ctw that ctw is an encryption of a satisfying witness
(under some key). First, if the encryption scheme is semantically-secure and the
proof is zero-knowledge, then the resulting construction satisfies (computational)
zero-knowledge. Moreover, the witness the prover uses to construct πR,x,ctw is
always the same: the secret key sk. Notably, the witness is statement-independent

2This is a classic technique in the construction of non-interactive proof systems and
has featured in many contexts (e.g., [87,56]).
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and can be reused to prove arbitrarily many statements (provided the encryption
scheme is CPA-secure).

This means we can combine context-hiding homomorphic signatures (for
general circuits) with any CPA-secure symmetric encryption scheme to obtain
NIZKs in the preprocessing model as follows:

– Setup: The setup algorithm generates a secret key sk for the encryption
scheme as well as parameters for a homomorphic signature scheme. Both the
proving and verification keys include the public parameters for the signature
scheme. The proving key kP additionally contains the secret key sk and a
signature σsk on sk.

– Prove: To generate a proof that an NP statement x is true, the prover takes a
witness w where R(x,w) = 1 and encrypts w under sk to obtain a ciphertext
ctw. Next, we define the witness-checking function CheckWitness[R, x, ctw]
(parameterized by R, x, and ctw) that takes as input a secret key sk and
outputs 1 if R(x,Decrypt(sk, ctw)) = 1, and 0 otherwise. The prover homo-
morphically evaluates CheckWitness[R, x, ctw] on (sk, σsk) to obtain a new
signature σ∗ on the value 1. The proof consists of the ciphertext ctw and the
signature σ∗.

– Verify: Given a statement x for an NP relation R and a proof π = (ct, σ∗),
the verifier checks that σ∗ is a valid signature on the bit 1 according to the
function CheckWitness[R, x, ct]. Notice that the description on the function
only depends on the relation R, the statement x, and the ciphertext ct, all
of which are known to the verifier.

Since the homomorphic signature scheme is context-hiding, the signature σ∗ hides
the input to CheckWitness[R, x, ctw], which in this case, is the secret key sk. By
CPA-security of the encryption scheme, the ciphertext hides the witness w, so the
scheme provides zero-knowledge. Soundness again follows from unforgeability of
the signature scheme. Thus, by combining a lattice-based homomorphic signature
scheme for general circuits [63] with any lattice-based CPA-secure symmetric
encryption scheme, we obtain a (multi-theorem) preprocessing NIZK from lattices.
In fact, the verification key in our construction only consists of the public
parameters for the homomorphic signature scheme, and thus, can be made
public. This means that in our construction, only the proving key needs to be
kept secret, so we can equivalently view our construction as a multi-theorem
“designated-prover” NIZK. We discuss this in greater detail in Remark 4.6.

An appealing property of our preprocessing NIZKs is that the proofs are
short: the length of a NIZK argument for an NP relation R is |w| + poly(λ, d)
bits, where |w| is the length of a witness for R and d is the depth of the circuit
computing R. The proof size in NIZK constructions from trapdoor permutations
or pairings [44,40,66,65] typically scale with the size of the circuit computing R
and multiplicatively with the security parameter. Previously, Gentry et al. [56]
gave a generic approach using fully homomorphic encryption (FHE) to reduce
the proof size in any NIZK construction. The advantage of our approach is that
we naturally satisfy this succinctness property, and the entire construction can
be based only on lattice assumptions (without needing to mix assumptions). We
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discuss this in greater detail in the full version of this paper [74]. We also give
the complete description of our preprocessing NIZK and security analysis in
Section 4.

Blind homomorphic signatures for efficient preprocessing. A limitation
of preprocessing NIZKs is we require a trusted setup to generate the proving and
verification keys. One solution is to have the prover and verifier run a (malicious-
secure) two-party computation protocol (e.g., [76]) to generate the proving and
verification keys. However, generic MPC protocols are often costly and require
making non-black-box use of the underlying homomorphic signature scheme.

In this work, we describe a conceptually simpler and more efficient way of
implementing the preprocessing without relying on general MPC. We do so by
introducing a new cryptographic notion called blind homomorphic signatures.
First, we observe that we can view the two-party computation of the setup phase
as essentially implementing a “blind signing” protocol where the verifier holds
the signing key for the homomorphic signature scheme and the prover holds the
secret key sk. At the end of the blind signing protocol, the prover should learn
σsk while the verifier should not learn anything about sk. This is precisely the
properties guaranteed by a blind signature protocol [35,47]. In this work, we
introduce the notion of a blind homomorphic signature scheme which combines
the blind signing protocol of traditional blind signature schemes while retaining
the ability to homomorphically operate on ciphertexts. Since the notion of a blind
homomorphic signatures is inherently a two-party functionality, we formalize it
in the model of universal composability [24]. We provide the formal definition of
the ideal blind homomorphic signature functionality in Section 5.

In Section 5.1, we show how to securely realize our ideal blind homomorphic
signature functionality in the presence of malicious adversaries by combining
homomorphic signatures with any UC-secure oblivious transfer (OT) protocol [27].
Note that security against malicious adversaries is critical for our primary ap-
plication of leveraging blind homomorphic signatures to implement the setup
algorithm of our preprocessing NIZK candidate. At a high-level, we show how
to construct a blind homomorphic signature scheme from any “bitwise” homo-
morphic signature scheme—namely, a homomorphic signature scheme where
the signature on an `-bit message consists of ` signatures, one for each bit of
the message. Moreover, we assume that the signature on each bit position only
depends on the value of that particular bit (and not the value of any of the
other bits of the message); of course, the ` signatures can still be generated
using common or correlated randomness. Given a bitwise homomorphic signature
scheme, we can implement the blind signing protocol (on `-bit messages) using `
independent 1-out-of-2 OTs. Specifically, the signer plays the role of the sender
in the OT protocol and for each index i ∈ [`], the signer signs both the bit 0 as
well as the bit 1. Then, to obtain a signature on an `-bit message, the receiver
requests the signatures corresponding to the bits of its message.

While the high-level schema is simple, there are a few additional details that
we have to handle to achieve robustness against a malicious signer. For instance, a
malicious signer can craft the parameters of the homomorphic signature scheme so
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that when an evaluator computes on a signature, the resulting signatures no longer
provide context-hiding. Alternatively, a malicious signer might mount a “selective-
failure” attack during the blind-signing protocol to learn information about the
receiver’s message. We discuss how to address these problems by giving strong
definitions of malicious context-hiding for homomorphic signatures in Section 3,
and give the full construction of blind homomorphic signatures from oblivious
transfer in Section 5.1. In particular, we show that the Gorbunov et al. [63]
homomorphic signature construction satisfies our stronger security notions, and
so coupled with the UC-secure lattice-based OT protocol of Peikert et al. [80], we
obtain a UC-secure blind homomorphic signature scheme from standard lattice
assumptions. Moreover, the blind signing protocol is a two-round protocol, and
only makes black-box use of the underlying homomorphic signature scheme.

UC-secure preprocessing NIZKs. Finally, we show that using our UC-secure
blind homomorphic signature candidate, we can in fact realize the stronger
notion of UC-secure NIZK arguments in a preprocessing model from standard
lattice assumptions. This means that our NIZKs can be arbitrarily composed
with other cryptographic protocols. Our new candidates are thus suitable to
instantiate many of the classic applications of NIZKs for boosting the security of
general MPC protocols. As we show in Section 6, combining our preprocessing
UC-NIZKs with existing lattice-based semi-malicious MPC protocols such as [78]
yields malicious-secure protocols purely from standard lattice assumptions (in
a reusable preprocessing model). We also show that our constructions imply a
succinct version of the classic GMW [59,60] protocol compiler (where the total
communication overhead of the compiled protocol depends only on the depth,
rather than the size of the computation).

Towards NIZKs in the CRS model. In this paper, we construct the first
multi-theorem preprocessing NIZK arguments from standard lattice assumptions.
However, our techniques do not directly generalize to the CRS setting. While
it is possible to obtain a publicly-verifiable preprocessing NIZK (i.e., make the
verification key kV public), our construction critically relies on the prover state
being hidden. This is because the prover state contains the secret key the prover
uses to encrypt its witness in the proofs, so publishing this compromises zero-
knowledge. Nonetheless, we believe that having a better understanding of NIZKs
in the preprocessing model provides a useful stepping stone towards the goal of
building NIZKs from lattices in the CRS model, and we leave this as an exciting
open problem.

Preprocessing NIZKs from other assumptions? Our work gives the first
construction of a multi-theorem preprocessing NIZK from standard lattice as-
sumptions. It is an interesting challenge to obtain multi-theorem preprocessing
NIZKs from other assumptions that are currently not known to imply NIZKs
in the CRS model. For instance, a natural target would be to construct multi-
theorem NIZKs in the preprocessing model from the decisional Diffie-Hellman
(DDH) assumption.
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1.2 Additional Related Work

In this section, we survey some additional related work on NIZK constructions,
blind signatures, and homomorphic signatures.

Other NIZK proof systems. In the CRS model, there are several NIZK
constructions based on specific number-theoretic assumptions such as quadratic
residuosity [16,41,15]. These candidates are also secure in the bounded-theorem
setting where the CRS can only be used for an a priori bounded number of
proofs. Exceeding this bound compromises soundness or zero-knowledge. In the
preprocessing model, Kalai and Raz [70] gave a single-theorem succinct NIZK
proof system for the class LOGSNP from polylogarithmic private information
retrieval (PIR) and exponentially-hard OT. In this work, we focus on constructing
multi-theorem NIZKs, where an arbitrary number of proofs can be constructed
after an initial setup phase.

NIZKs have also been constructed for specific algebraic languages in both the
publicly-verifiable setting [64,67] as well as the designated-verifier setting [33]. In
the specific case of lattice-based constructions, there are several works on building
hash-proof systems, (also known as smooth projective hash functions [37]) [71,91,14],
which are designated-verifier NIZK proofs for a specific language (typically, this
is the language of ciphertexts associated with a particular message). In the ran-
dom oracle model, there are also constructions of lattice-based NIZK arguments
from Σ-protocols [77,90]. Recently, there has also been work on instantiating
the random oracle in Σ-protocols with lattice-based correlation-intractable hash
functions [26]. However, realizing the necessary correlation-intractable hash func-
tions from lattices requires making the non-standard assumption that Regev’s
encryption scheme [83] is exponentially KDM-secure against all polynomial-time
adversaries. In our work, we focus on NIZK constructions for general NP languages
in the plain model (without random oracles) from the standard LWE assumption
(i.e., polynomial hardness of LWE with a subexponential approximation factor).

Very recently, Rothblum et al. [84] showed that a NIZK proof system for a
decisional variant of the bounded distance decoding (BDD) problem suffices for
building NIZK proof system for NP.

Blind signatures. The notion of blind signatures was first introduced by
Chaum [35]. There are many constructions of blind signatures from a wide
range of assumptions in the random oracle model [88,21,82,1,17,13,85,12], the
CRS model [23,72,47,4,49,2,3,57], as well as the standard model [52,51,50,68].

Homomorphic signatures. There are many constructions of linearly homomor-
phic signatures [8,89,43,9,20,53,18,10,19,31,48,5]. Beyond linear homomorphisms,
a number of works [19,11,32] have constructed homomorphic signatures for
polynomial functions from lattices or multilinear maps. For general circuits,
Gorbunov et al. [63] gave the first homomorphic signature scheme from lattices,
and Fiore et al. [46] gave the first “multi-key” homomorphic signature scheme
from lattices (where homomorphic operations can be performed on signatures
signed under different keys).
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2 Preliminaries

We begin by introducing some basic notation. For an integer n ≥ 1, we write [n]
to denote the set of integers {1, . . . , n}. For a positive integer q > 1, we write
Zq to denote the ring of integers modulo q. For a finite set S, we write x←R S
to denote that x is sampled uniformly at random from S. For a distribution D,
we write x← D to denote that x is sampled from D. Throughout this work, we
use λ to denote a security parameter. We typically use bold uppercase letters
(e.g., A, B) to denote matrices and bold lowercase letters (e.g., u, v) to denote
vectors.

We say that a function f is negligible in λ, denoted negl(λ), if f(λ) = o(1/λc)
for all constants c ∈ N. We say that an event happens with negligible probability
if the probability of the event occurring is bounded by a negligible function, and
we say that an event happens with overwhelming probability if its complement
occurs with negligible probability. We say an algorithm is efficient if it runs in
probabilistic polynomial time in the length of its input. We write poly(λ) to
denote a quantity whose value is upper-bounded by a fixed polynomial in λ.
We say that two families of distributions D1 = {D1,λ}λ∈N and D2 = {D2,λ}λ∈N
are computationally indistinguishable if no efficient algorithm can distinguish
samples from either D1 or D2, except with negligible probability. We denote this

by writing D1
c
≈ D2. We write D1

s
≈ D2 to denote that D1 and D2 are statistically

indistinguishable (i.e., the statistical distance between D1 and D2 is bounded by
a negligible function). In the full version of this paper [74], we provide additional
preliminaries in on CPA-secure encryption as well as lattice-based cryptography.

3 Homomorphic Signatures

A homomorphic signature scheme enables computations on signed data. Given
a function C (modeled as a Boolean circuit) and a signature σx that certifies a
message x, one can homomorphic derive a signature σC(x) that certifies the value
C(x) with respect to the function C. The two main security notions that we are
interested in are unforgeability and context-hiding. We first provide a high-level
description of the properties:

– Unforgeability: We say a signature scheme is unforgeable if an adversary
who has a signature σx on a message x cannot produce a valid signature on
any message y 6= C(x) that verifies with respect to the function C.

– Context-hiding: Context-hiding says that when one evaluates a function
C on a message-signature pair (x, σx), the resulting signature σC(x) on
C(x) should not reveal any information about the original message x other
than the circuit C and the value C(x). In our definition, the homomorphic
signature scheme contains an explicit “hide” function that implements this
transformation.

Syntax and notation. Our construction of blind homomorphic signatures from
standard homomorphic signatures (Section 5.1) will impose some additional
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structural requirements on the underlying scheme. Suppose the message space
for the homomorphic signature scheme consists of `-tuples of elements over a set
X (e.g., the case where X = {0, 1} corresponds to the setting where the message

space consists of `-bit strings). Then, we require that the public parameters
# —

pk

of the scheme can be split into a vector of public keys
# —

pk = (pk1, . . . , pk`). In
addition, a (fresh) signature on a vector x ∈ X ` can also be written as a tuple
of ` signatures σ = (σ1, . . . , σ`) where σi can be verified with respect to the
verification key vk and the ith public key pki for all i ∈ [`]. In our description
below, we often use vector notation to simplify the presentation.

Definition 3.1 (Homomorphic Signatures [19,63]). A homomorphic signa-
ture scheme with message space X , message length ` ∈ N, and function class
C = {Cλ}λ∈N, where each Cλ is a collection of functions from X ` to X , is defined
by a tuple of algorithms ΠHS = (PrmsGen,KeyGen,Sign,PrmsEval,SigEval,Hide,
Verify,VerifyFresh,VerifyHide) with the following properties:

– PrmsGen(1λ, 1`) → # —

pk: On input the security parameter λ and message
length `, the parameter-generation algorithm returns a set of ` public keys
# —

pk = (pk1, . . . , pk`).
– KeyGen(1λ)→ (vk, sk): On input the security parameter λ, the key-generation

algorithm returns a verification key vk, and a signing key sk.
– Sign(pki, sk, xi) → σi: On input a public key pki, a signing key sk, and a

message xi ∈ X , the signing algorithm returns a signature σi.
Vector variant: For

# —

pk = (pk1, . . . , pk`), and x = (x1, . . . , x`) ∈ X `, we write

Sign(
# —

pk, sk,x) to denote component-wise signing of each message. Namely,

Sign(
# —

pk, sk,x) outputs signatures σ = (σ1, . . . , σ`) where σi ← Sign(pki, sk, xi)
for all i ∈ [`].

– PrmsEval(C,
# —

pk′)→ pkC : On input a function C : X ` → X and a collection of

public keys
# —

pk′ = (pk′1, . . . , pk
′
`), the parameter-evaluation algorithm returns

an evaluated public key pkC .

Vector variant: For a circuit C : X ` → X k, we write PrmsEval(C,
# —

pk′) to
denote component-wise parameter evaluation. Namely, let C1, . . . , Ck be func-
tions such that C(x1, . . . , x`) =

(
C1(x1, . . . , x`), . . . , Ck(x1, . . . , x`)

)
. Then,

PrmsEval(C,
# —

pk′) evaluates pkCi
← PrmsEval(Ci,

# —

pk′) for i ∈ [k], and outputs
pkC = (pkC1

, . . . , pkCk
).

– SigEval(C,
# —

pk′,x,σ) → σ: On input a function C : X ` → X , public keys
# —

pk′ = (pk′1, . . . , pk
′
`), messages x ∈ X `, and signatures σ = (σ1, . . . , σ`), the

signature-evaluation algorithm returns an evaluated signature σ.
Vector variant: We can define a vector variant of SigEval analogously to that
of PrmsEval.

– Hide(vk, x, σ)→ σ∗: On input a verification key vk, a message x ∈ X , and a
signature σ, the hide algorithm returns a signature σ∗.
Vector variant: For x = (x1, . . . , xk) and σ = (σ1, . . . , σk), we write Hide(vk,x,σ)
to denote component-wise evaluation of the hide algorithm. Namely, Hide(vk,x,σ)
returns (σ∗1 , . . . , σ

∗
k) where σ∗i ← Hide(vk, xi, σi) for all i ∈ [k].
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– Verify(pk, vk, x, σ)→ {0, 1}: On input a public key pk, a verification key vk,
a message x ∈ X , and a signature σ, the verification algorithm either accepts
(returns 1) or rejects (returns 0).

Vector variant: For a collection of public keys
# —

pk′ = (pk′1, . . . , pk
′
k), messages

x = (x1, . . . , xk), and signatures σ = (σ1, . . . , σk), we write Verify(
# —

pk′, vk,x,σ)
to denote applying the verification algorithm to each signature component-wise.
In other words, Verify(

# —

pk′, vk,x,σ) accepts if and only if Verify(pk′i, vk, xi, σi)
accepts for all i ∈ [k].

– VerifyFresh(pk, vk, x, σ)→ {0, 1}: On input a public key pk, a verification key
vk, a message x ∈ X , and a signature σ, the fresh verification algorithm
either accepts (returns 1) or rejects (returns 0).
Vector variant: We can define a vector variant of VerifyFresh analogously to
that of Verify.

– VerifyHide(pk, vk, x, σ∗)→ {0, 1}: On input a public key pk, a verification key
vk, a message x ∈ X , and a signature σ∗, the hide verification algorithm
either accepts (returns 1) or rejects (returns 0).
Vector variant: We can define a vector variant of VerifyHide analogously to
that of Verify.

Correctness. We now state the correctness requirements for a homomorphic
signature scheme. Our definitions are adapted from the corresponding ones in [63].
Our homomorphic signature syntax has three different verification algorithms.
The standard verification algorithm Verify can be used to verify fresh signatures
(output by Sign) as well as homomorphically-evaluated signatures (output by
SigEval). The hide verification algorithm VerifyHide is used for verifying signatures
output by the context-hiding transformation Hide, which may be structurally
different from the signatures output by Sign or SigEval. Finally, we have a special
verification algorithm VerifyFresh that can be used to verify signatures output by
Sign (before any homomorphic evaluation has taken place). While Verify subsumes
VerifyFresh, having a separate VerifyFresh algorithm is useful for formulating a
strong version of evaluation correctness. Due to space limitations, we defer the
formal correctness definitions to the full version of this paper [74].

Unforgeability. Intuitively, a homomorphic signature scheme is unforgeable
if no efficient adversary who only possesses signatures σ1, . . . , σ` on messages
x1, . . . , x` can produce a signature σy that is valid with respect to a function C
where y 6= C(x1, . . . , x`). We give the formal definition in the full version.

Context-hiding. The second security requirement on a homomorphic signature
scheme is context-hiding, which roughly says that if a user evaluates a function
C on a message-signature pair (x,σ) to obtain a signature σC(x), and then runs
the hide algorithm on σC(x), the resulting signature σ∗C(x) does not contain any

information about x other than what is revealed by C and C(x). We define this
formally in the full version.

Compactness. The final property that we require from a homomorphic sig-
nature scheme is compactness. Roughly speaking, compactness requires that

11



given a message-signature pair (x,σ), the size of the signature obtained from
homomorphically evaluating a function C on σ depends only on the size of the
output message |C(x)| (and the security parameter) and is independent of the
size of the original message |x|.

Structural properties of homomorphic signatures. Definition 3.1 specifies
a bitwise homomorphic signature scheme where the signature on an `-bit message
x = x1 · · ·x` consists of ` separate signatures σ = (σ1, . . . , σ`) with respect to `

public keys
# —

pk = (pk1, . . . , pk`), one for each bit of the message. As discussed in
Section 1.1, this property is essentially to our construction of blind homomorphic
signatures from homomorphic signatures and oblivious transfer. In addition
to a bitwise homomorphic signature scheme, we also require a decomposable
homomorphic signature scheme for our full construction. In a decomposable
homomorphic signature scheme, a signature σ of a message x can be decomposed
into a message-independent σpk that contains no information about x, and a
message-dependent component σm. In the full version of this paper [74], we
use this decomposability property to show that the homomorphic signature
construction of Gorbunov et al. [63] simultaneously satisfies full unforgeability
and context-hiding (against malicious signers).

4 Preprocessing NIZKs from Homomorphic Signatures

In this section, we begin by formally defining the notion of a non-interactive zero-
knowledge argument in the preprocessing model (i.e., “preprocessing NIZKs”).
This notion was first introduced by De Santis et al. [42], who also gave the
first candidate construction of a preprocessing NIZK from one-way functions.
Multiple works have since proposed additional candidates of preprocessing NIZKs
from one-way functions [75,38,69] or oblivious transfer [73]. However, all of
these constructions are single-theorem: the proving or verification key cannot be
reused for multiple theorems without compromising either soundness or zero-
knowledge. We provide a more detailed discussion of existing preprocessing NIZK
constructions in Remark 4.7.

Definition 4.1 (NIZK Arguments in the Preprocessing Model). Let R
be an NP relation, and let L be its corresponding language. A non-interactive
zero-knowledge (NIZK) argument for L in the preprocessing model consists of
a tuple of three algorithms ΠPPNIZK = (Setup,Prove,Verify) with the following
properties:

– Setup(1λ)→ (kP , kV ): On input the security parameter λ, the setup algorithm
(implemented in a “preprocessing” step) outputs a proving key kP and a
verification key kV .

– Prove(kP , x, w) → π: On input the proving key kP , a statement x, and a
witness w, the prover’s algorithm outputs a proof π.

– Verify(kV , x, π) → {0, 1}: On input the verification key kV , a statement x,
and a proof π, the verifier either accepts (with output 1) or rejects (with
output 0).
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Moreover, ΠPPNIZK should satisfy the following properties:

– Completeness: For all x,w where R(x,w) = 1, if we take (kP , kV ) ←
Setup(1λ);

Pr[π ← Prove(kP , x, w) : Verify(kV , x, π) = 1] = 1.

– Soundness: For all efficient adversaries A, if we take (kP , kV )← Setup(1λ),
then

Pr[(x, π)← AVerify(kV ,·,·)(kP ) : x /∈ L ∧ Verify(kV , x, π) = 1] = negl(λ).

– Zero-Knowledge: For all efficient adversaries A, there exists an efficient
simulator S = (S1,S2) such that if we take (kP , kV ) ← Setup(1λ) and
τV ← S1(1λ, kV ), we have that∣∣∣Pr[AO0(kP ,·,·)(kV ) = 1]− Pr[AO1(kV ,τV ,·,·)(kV ) = 1]

∣∣∣ = negl(λ),

where the oracle O0(kP , x, w) outputs Prove(kP , x, w) if R(x,w) = 1 and ⊥
otherwise, and the oracle O1(kV , τV , x, w) outputs S2(kV , τV , x) if R(x,w) =
1 and ⊥ otherwise.

Remark 4.2 (Comparison to NIZKs in the CRS Model). Our zero-knowledge
definition in Definition 4.1 does not allow the simulator to choose the verification
state kV . We can also consider a slightly weaker notion of zero-knowledge where
the simulator also chooses the verification state:

– Zero-Knowledge: For all efficient adversaries A, there exists an efficient
simulator S = (S1,S2) such that if we take (kP , kV ) ← Setup(1λ) and
(k̃V , τ̃V )← S1(1λ), we have that∣∣∣Pr[AProve(kP ,·,·)(kV ) = 1]− Pr[AO(k̃V ,τ̃V ,·,·)(k̃V ) = 1]

∣∣∣ = negl(λ),

where the oracle O(k̃V , τ̃V , x, w) outputs S2(k̃V , τ̃V , x) if R(x,w) = 1 and ⊥
otherwise.

We note that this definition of zero-knowledge captures the standard notion of
NIZK arguments in the common reference string (CRS) model. Specifically, in
the CRS model, the Setup algorithm outputs a single CRS σ. The proving and
verification keys are both defined to be σ.

Preprocessing NIZKs from homomorphic signatures. As described in
Section 1.1, we can combine a homomorphic signature scheme (for general circuits)
with any CPA-secure symmetric encryption scheme to obtain a preprocessing
NIZK for general NP languages. We give our construction and security analysis
below. Combining the lattice-based construction of homomorphic signatures of [63]
with any lattice-based CPA-secure encryption [58,6], we obtain the first multi-
theorem preprocessing NIZK from standard lattice assumptions (Corollary 4.5).
In Remark 4.6, we note that a variant of Construction 4.3 also gives a publicly-
verifiable preprocessing NIZK.
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Construction 4.3 (Preprocessing NIZKs from Homomorphic Signatures).
Fix a security parameter λ, and define the following quantities:

– Let R : {0, 1}n×{0, 1}m → {0, 1} be an NP relation and L be its correspond-
ing language.

– Let ΠSE = (SE.KeyGen,SE.Encrypt,SE.Decrypt) be a symmetric encryption
scheme with message space {0, 1}m and secret-key space {0, 1}ρ.

– For a message x ∈ {0, 1}n and ciphertext ct from the ciphertext space of ΠSE,
define the function fx,ct(kSE) := R(x, SE.Decrypt(kSE, ct)).

– LetΠHS = (PrmsGen,KeyGen,Sign,PrmsEval,SigEval,Hide,Verify,VerifyFresh,
VerifyHide) be a homomorphic signature scheme with message space {0, 1},
message length ρ, and function class C that includes all functions of the form
fx,ct.

3

We construct a preprocessing NIZK argument ΠNIZK = (Setup,Prove,Verify) as
follows:

– Setup(1λ) → (kP , kV ): First, generate a secret key kSE ← SE.KeyGen(1λ).

Next, generate
# —

pkHS ← PrmsGen(1λ, 1ρ) and a signing-verification key-pair

(vkHS, skHS)← KeyGen(1λ). Next, sign the symmetric key σk ← Sign(
# —

pkHS, skHS, kSE)
and output

kP = (kSE,
# —

pkHS, vkHS,σk) and kV = (
# —

pkHS, vkHS, skHS).

– Prove(kP , x, w) → π: If R(x,w) = 0, output ⊥. Otherwise, parse kP =

(kSE,
# —

pkHS, vkHS,σk). Let ct ← SE.Encrypt(kSE, w), and Cx,ct be the circuit
that computes the function fx,ct defined above. Compute the signature

σ′x,ct ← SigEval(Cx,ct,
# —

pkHS, kSE,σk) and then σ∗x,ct ← Hide(vkHS, 1, σ
′
x,ct). It

outputs the proof π = (ct, σ∗x,ct).

– Verify(kV , x, π) → {0, 1}: Parse kV = (
# —

pkHS, vkHS, skHS) and π = (ct, σ∗x,ct).
Let Cx,ct be the circuit that computes fx,ct defined above. Then, compute

pkx,ct ← PrmsEval(Cx,ct,
# —

pkHS), and output VerifyHide(pkx,ct, vkHS, 1, σ
∗
x,ct).

Theorem 4.4 (Preprocessing NIZKs from Homomorphic Signatures).
Let λ be a security parameter and R be an NP relation (and let L be its cor-
responding language). Let ΠNIZK be the NIZK argument in the preprocessing
model from Construction 4.3 (instantiated with a symmetric encryption scheme
ΠSE and a homomorphic signature scheme ΠHS). If ΠSE is CPA-secure and ΠHS

satisfies evaluation correctness, hiding correctness, selective unforgeability, and
context-hiding, then ΠNIZK is a NIZK argument for R in the preprocessing model.

We give the proof of Theorem 4.4 in the full version [74]. Combining Con-
struction 4.3 with a lattice-based homomorphic signature scheme [63] and any
LWE-based CPA-secure encryption scheme [58,6], we have the following corollary.

3Since it is more natural to view x ∈ {0, 1}n as a string rather than a vector, we drop
the vector notation x and simply write x in this section.
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Corollary 4.5 (Preprocessing NIZKs from Lattices). Under the LWE as-
sumption, there exists a multi-theorem preprocessing NIZK for NP.

Remark 4.6 (Publicly-Verifiable Preprocessing NIZK). Observe that the verifi-
cation algorithm in Construction 4.3 does not depend on the signing key skHS
of the signature scheme. Thus, we can consider a variant of Construction 4.3
where the verification key does not contain skHS, and thus, the verification state
can be made public. This does not compromise soundness because the prover’s
state already includes the other components of the verification key. However,
this publicly-verifiable version of the scheme does not satisfy zero-knowledge
according to the strong notion of zero-knowledge in Definition 4.1. This is be-
cause without the signing key, the simulator is no longer able to simulate the
signatures in the simulated proofs. However, if we consider the weaker notion of
zero-knowledge from Remark 4.2 where the simulator chooses the verification key
for the preprocessing NIZK, then the publicly-verifiable version of the scheme is
provably secure. Notably, when the simulator constructs the verification key, it
also chooses (and stores) the signing key for the homomorphic signature scheme.
This enables the simulator to simulate signatures when generating the proofs.
The resulting construction is a publicly-verifiable preprocessing NIZK (i.e., a
“designated-prover” NIZK).

Remark 4.7 (Preprocessing NIZKs from Weaker Assumptions). By definition,
any NIZK argument (or proof) system in the CRS model is also a preprocessing
NIZK (according to the notion of zero-knowledge from Remark 4.2). In the CRS
model (and without random oracles), there are several main families of assump-
tions known to imply NIZKs: number-theoretic conjectures such as quadratic
residuosity [16,41,15],4 trapdoor permutations [44,40,65], pairings [66], or indis-
tinguishability obfuscation [86]. In the designated-verifier setting, constructions
are also known from additively homomorphic encryption [36,39,34]. A number
of works have also studied NIZKs in the preprocessing model, and several con-
structions have been proposed from one-way functions [42,75,38,69] and oblivious
transfer [73]. Since lattice-based assumptions imply one-way functions [6,83],
oblivious transfer [80], and homomorphic encryption [83,55], one might think
that we can already construct NIZKs in the preprocessing model from standard
lattice assumptions. To our knowledge, this is not the case:

– The NIZK constructions of [42,75,38] are single-theorem NIZKs, and in
particular, zero-knowledge does not hold if the prover uses the same proving
key to prove multiple statements. In these constructions, the proving key
contains secret values, and each proof reveals a subset of the prover’s secret
values. As a result, the verifier can combine multiple proofs together to learn
additional information about each statement than it could have learned had it
only seen a single proof. Thus, the constructions in [42,75,38] do not directly
give a multi-theorem NIZK.

4Some of these schemes [16,41] are “bounded” in the sense that the prover can only
prove a small number of theorems whose total size is bounded by the length of the
CRS.
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A natural question to ask is whether we can use the transformation by
Feige et al. [44] who showed how to generically boost a NIZK (in the CRS
model) with single-theorem zero-knowledge to obtain a NIZK with multi-
theorem zero-knowledge. The answer turns out to be negative: the [44]
transformation critically relies on the fact that the prover algorithm is publicly
computable, or equivalently, that the prover algorithm does not depend on
any secrets.5 This is the case in the CRS model, since the prover algorithm
depends only on the CRS, but in the preprocessing model, the prover’s
algorithm can depend on a (secret) proving key kP . In the case of [42,75,38],
the proving key must be kept private for zero-knowledge. Consequently, the
preprocessing NIZKs of [42,75,38] do not give a general multi-theorem NIZK
in the preprocessing model.

– The (preprocessing) NIZK constructions based on oblivious transfer [73],
the “MPC-in-the-head” paradigm [69], and the ones based on homomorphic
encryption [36,39,34] are designated-verifier, and in particular, are vulnerable
to the “verifier rejection” problem. Specifically, soundness is compromised
if the prover can learn the verifier’s response to multiple adaptively-chosen
statements and proofs. For instance, in the case of [73], an oblivious transfer
protocol is used to hide the verifier’s challenge bits; namely, the verifier’s
challenge message is fixed during the preprocessing, which means the verifier
uses the same challenge to verify every proof. A prover that has access to a
proof-verification oracle is able to reconstruct the verifier’s challenge bit-by-
bit and compromise soundness of the resulting NIZK construction. A similar
approach is taken in the preprocessing NIZK construction of [69].

From the above discussion, the only candidates of general multi-theorem NIZKs
in the preprocessing model are the same as those in the CRS model. Thus,
this work provides the first candidate construction of a multi-theorem NIZK in
the preprocessing model from standard lattice assumptions. It remains an open
problem to construct multi-theorem NIZKs from standard lattice assumptions in
the standard CRS model.

In the full version of this paper [74], we highlight several additional prop-
erties of our multi-theorem preprocessing NIZK. We also describe another ap-
proach for instantiating our construction using context-hiding homomorphic
MACs [54,29,30,28]. While existing homomorphic MAC constructions from one-
way functions do not suffice for our constructions (they are not context-hiding),
they do provide another potential avenue towards realizing multi-theorem pre-
processing NIZKs from weaker assumptions.

5At a high-level, the proof in [44] proceeds in two steps: first show that single-theorem
zero knowledge implies single-theorem witness indistinguishability, and then that single-
theorem witness indistinguishability implies multi-theorem witness indistinguishability.
The second step relies on a hybrid argument, which requires that it be possible to
publicly run the prover algorithm. This step does not go through if the prover algorithm
takes in a secret state unknown to the verifier.
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5 Blind Homomorphic Signatures

One limitation of preprocessing NIZKs is that we require a trusted setup to
generate the proving and verification keys. One solution is to have the prover and
the verifier run a (malicious-secure) two-party computation protocol (e.g., [76]) to
generate the proving and verification keys. However, generic MPC protocols are
often costly and require making non-black-box use of the underlying homomorphic
signature scheme. In this section, we describe how this step can be efficiently
implemented using a new primitive called blind homomorphic signatures. We
formalize our notion in the model of universal composability [24]. This has
the additional advantage of allowing us to realize the stronger notion of a
preprocessing universally-composable NIZK (UC-NIZK) from standard lattice
assumptions. We give our UC-NIZK construction and then describe several
applications to boosting the security of MPC in Section 6. We refer to the full
version for a review of the UC model.

We now define the ideal blind homomorphic signature functionality Fbhs. Our
definition builds upon existing definitions of the ideal signature functionality Fsig

by Canetti [25] and the ideal blind signature functionality Fblsig by Fischlin [47].
To simplify the presentation, we define the functionality in the two-party setting,
where there is a special signing party (denoted S) and a single receiver who
obtains the signature (denoted R). While this is a simpler model than the multi-
party setting considered in [25,47], it suffices for the applications we describe in
this work.

Ideal signature functionalities. The Fsig functionality from [25] essentially
provides a “registry service” where a distinguished party (the signer) is able
to register message-signature pairs. Moreover, any party that possesses the
verification key can check whether a particular message-signature pair is registered
(and thus, constitutes a valid signature). The ideal functionality does not impose
any restriction on the structure of the verification key or the legitimate signatures,
and allows the adversary to choose those values. In a blind signature scheme,
the signing process is replaced by an interactive protocol between the signer
and the receiver, and the security requirement is that the signer does not learn
the message being signed. To model this, the Fblsig functionality from [47] asks
the adversary to provide the description of a stateless algorithm IdealSign in
addition to the verification key to the ideal functionality Fblsig. For blind signing
requests involving an honest receiver, the ideal functionality uses IdealSign to
generate the signatures. The message that is signed (i.e., the input to IdealSign)
is not disclosed to either the signer or the adversary. This captures the intuitive
requirement that the signer does not learn the message that is signed in a blind
signature scheme. Conversely, if a corrupt user makes a blind signing request,
then the ideal functionality asks the adversary to supply the signature that could
result from such a request.

Capturing homomorphic operations. In a homomorphic signature scheme, a
user possessing a signature σ on a message x should be able to compute a function
g on σ to obtain a new signature σ∗ on the message g(x). In turn, the verification
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algorithm checks that σ∗ is a valid signature on the value g(x) and importantly,
that it is a valid signature with respect to the function g. Namely, the signature
is bound not only to the computed value g(x) but also to the function g.6 To
extend the ideal signature functionality to support homomorphic operations on
signatures, we begin by modifying the ideal functionality to maintain a mapping
between function-message pairs and signatures (rather than a mapping between
messages and signatures). In this case, a fresh signature σ (say, output by the
blind signing protocol) on a message x would be viewed as a signature on the
function-message pair (fid, x), where fid here denotes the identity function. Then,
if a user subsequently computes a function g on σ, the resulting signature σ∗

should be viewed as a signature on the new pair (g ◦ fid, g(x)) = (g, g(x)). In
other words, in a homomorphic signature scheme, signatures are bound to a
function-message pair, rather than a single message.

Next, we introduce an additional signature-evaluation operation to the ideal
functionality. There are several properties we desire from our ideal functionality:

– The ideal signature functionality allows the adversary to decide the structure
of the signatures, so it is only natural that the adversary also decides the
structure of the signatures output by the signature evaluation procedure.

– Signature evaluation should be compatible with the blind signing process.
Specifically, the receiver should be able to compute on a signature it obtained
from the blind signing functionality, and moreover, the computation (if
requested by an honest receiver) should not reveal to the adversary on which
signature or message the computation was performed.

– The computed signature should also hide the input message. In particular, if
the receiver obtains a blind signature on a message x and later computes a
signature σ∗ on g(x), the signature σ∗ should not reveal the original (blind)
message x.

To satisfy these properties, the ideal functionality asks the adversary to addition-
ally provide the description of a stateless signature evaluation algorithm IdealEval
(in addition to IdealSign). The ideal functionality uses IdealEval to generate the
signatures when responding to evaluation queries. We capture the third property
(that the computed signatures hide the input message to the computation) by
setting the inputs to IdealEval to only include the function g that is computed and
the output value of the computation g(x). The input message x is not provided
to IdealEval.

Under our definition, the signature evaluation functionality takes as input a
function-message pair (fid, x), a signature σ on (fid, x) (under the verification key
vk of the signature scheme), and a description of a function g (to compute on x).
The output is a new signature σ∗ on the pair (g, g(x)). That is, σ∗ is a signature
on the value g(x) with respect to the function g. When the evaluator is honest, the
signature on (g, g(x)) is determined by IdealEval(g, g(x)) (without going through
the adversary). As discussed above, IdealEval only takes as input the function g

6If there is no binding between σ∗ and the function g, then we cannot define a meaningful
notion of unforgeability.
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and the value g(x), and not the input; this means that the computed signature
σ∗ hides all information about x other than what is revealed by g(x). When the
evaluator is corrupt, the adversary chooses the signature on (g, g(x)), subject to
basic consistency requirements.7 Once an evaluated signature is generated, the
functionality registers the new signature σ∗ on the pair (g, g(x)). Our definition
implicitly requires that homomorphic evaluation be non-interactive. Neither the
adversary nor the signer is notified or participates in the protocol.

Preventing selective failures. In our definition, the functionalities IdealSign
and IdealEval must either output ⊥ on all inputs, or output ⊥ on none of the
inputs. This captures the property that a malicious signer cannot mount a
selective failure attack against an honest receiver, where the function of whether
the receiver obtains a signature or not in the blind signing protocol varies
depending on its input message. In the case of the blind signing protocol, we do
allow a malicious signer to cause the protocol to fail, but this failure event must be
independent of the receiver’s message. We capture this in the ideal functionality by
allowing a corrupt signer to dictate whether a blind signing execution completes
successfully or not. However, the corrupt signer must decide whether a given
protocol invocation succeeds or fails independently of the receiver’s message.

Simplifications and generalizations. In defining our ideal blind homomorphic
signature functionality, we impose several restrictions to simplify the description
and analysis. We describe these briefly here, and note how we could extend the
functionality to provide additional generality. Note that all of the applications we
consider (Section 6) only require the basic version of the functionality (Figure 1),
and not its generalized variants.

– One-time signatures. The ideal blind homomorphic signature functionality
supports blind signing of a single message. Namely, the ideal blind signing
functionality only responds to the first signing request from the receiver
and ignores all subsequent requests. Moreover, the ideal functionality only
supports signature evaluation requests after a signature has been successfully
issued by the ideal signing functionality. We capture this via a ready flag that
is only set at the conclusion of a successful signing operation. We can relax
this single-signature restriction, but at the cost of complicating the analysis.

– Single-hop evaluation. Our second restriction on the ideal blind homomor-
phic signature functionality is we only consider “single-hop” homomorphic
operations: that is, we only allow homomorphic operations on fresh signatures.
In the ideal functionality, we capture this by having the signature evaluation
functionality ignore all requests to compute on function-message pairs (f, x)
where f 6= fid is not the identity function. A more general definition would
also consider “multi-hop” evaluation where a party can perform arbitrar-
ily many sequential operations on a signature. The reason we present our
definition in the simpler single-hop setting is because existing constructions
of homomorphic signatures [63] (which we leverage in our construction) do

7The adversary is not allowed to re-register a signature that was previously declared
invalid (according to the verification functionality) as a valid signature.
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not support the multi-hop analog of our definition. This is because under
our definition, the ideal evaluation functionality essentially combines the
homomorphic evaluation with the context-hiding transformation in standard
homomorphic signature schemes. The current homomorphic signature can-
didate [63] does not support homomorphic computation after performing
context-hiding, and so, cannot be used to realize the more general “multi-hop”
version of our functionality. For this reason, we give our definition in the
single-hop setting.

We give the formal specification of the ideal blind homomorphic signature func-
tionality Fbhs in Figure 1.

5.1 Constructing Blind Homomorphic Signatures

In Figure 2, we give the formal description of our blind homomorphic signature
protocol Πbhs in the F`,sot -hybrid model.8 Here, we provide a brief overview
of the construction. As discussed in Section 1.1, our construction combines
homomorphic signatures with any UC-secure oblivious transfer protocol [27].
The key-generation, signature-verification, and signature-evaluation operations
in Πbhs just correspond to running the underlying ΠHS algorithms.

The blind signing protocol is interactive and relies on OT. Since we use a
bitwise homomorphic signature scheme, a signature on an `-bit message consists
of ` signatures, one for each bit of the message. In the first step of the blind
signing protocol, the signer constructs two signatures (one for the bit 0 and one
for the bit 1) for each bit position of the message. The receiver then requests
the signatures corresponding to the bits of its message using the OT protocol.
Intuitively, the OT protocol ensures that the signer does not learn which set of
signatures the receiver requested and the receiver only learns a single signature for
each bit position. However, this basic scheme is vulnerable to a “selective-failure”
attack where the signer strategically generates invalid signatures for certain bit
positions of the message x. As a result, whether the receiver obtains a valid
signature on its entire message becomes correlated with its message itself. To
prevent this selective-failure attack, we use the standard technique of having
the receiver first split its message x into a number of random shares w1, . . . ,wt

where x =
⊕

i∈[t]wi. Instead of asking for a signature on x directly, it instead
asks for a signature on the shares w1, . . . ,wt. Since the signatures on the shares
w1, . . . ,wt are homomorphic, the receiver can still compute a signature on the
original message x and hence, correctness of signing is preserved. Moreover, as
we show in the proof of Theorem 5.1, unless the malicious signer correctly guesses

8For the protocol description and its security proof, we use the vector notation x to
represent the messages (in order to be consistent with the homomorphic signature
notation).
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Functionality Fbhs

The ideal blind homomorphic signature functionality Fbhs runs with a signer S,
a receiver R, and an ideal adversary S. The functionality is parameterized by
a message length ` and a function class H. We write fid to denote the identity
function.

Key Generation: Upon receiving a value (sid, keygen) from the signer S,
send (sid, keygen) to the adversary S. After receiving (sid, vkey, vk) from S, give
(sid, vkey, vk) to S and record vk. Then, initialize an empty list L, and a ready flag
(initially unset).

Signature Generation: If a signature-generation request has already been pro-
cessed, ignore the request. Otherwise, upon receiving a value (sid, sign, vk, x) from
the receiver R (for some message x ∈ {0, 1}`), send (sid, signature) to S, and let
(sid, IdealSign, IdealEval) be the response from S, where IdealSign and IdealEval are
functions that either output ⊥ on all inputs or on no inputs. Record the tuple
(IdealSign, IdealEval). If S is honest, send (sid, signature) to S to notify it that a
signature request has taken place. If S is corrupt, then send (sid, sig-success) to S
and let (sid, b) be the response from S. If b 6= 1, send (sid, signature, (fid, x),⊥) to
R. Otherwise, proceed as follows:

– If R is honest, generate σ ← IdealSign(x), and send (sid, signature, (fid, x), σ) to
R.

– If R is corrupt, send (sid, sign, x) to S to obtain (sid, signature, (fid, x), σ).

If (vk, (fid, x), σ, 0) ∈ L, abort. Otherwise, add (vk, (fid, x), σ, 1) to L, and if σ 6= ⊥,
set the flag ready.

Signature Verification: Upon receiving an input (sid, verify, vk′, (f, x), σ) from
a party P ∈ {S,R}, proceed as follows:

– Correctness: If f /∈ H, then set t = 0. If vk = vk′ and (vk, (f, x), σ, 1) ∈ L, then
set t = 1.

– Unforgeability: Otherwise, if vk = vk′, the signer S has not been corrupted, and
there does not exist (vk, (fid, x

′), σ′, 1) ∈ L for some x′, σ′ where x = f(x′),
then set t = 0, and add (vk, (f, x), σ, 0) to L.

– Consistency: Otherwise, if there is already an entry (vk′, (f, x), σ, t′) ∈ L for
some t′, set t = t′.

– Otherwise, send (sid, verify, vk′, (f, x), σ) to the adversary S. After receiving
(sid, verified, (f, x), σ, τ) from S, set t = τ and add (vk′, (f, x), σ, τ) to L.

Send (sid, verified, (f, x), σ, t) to P. If t = 1, we say the signature successfully
verified.

Fig. 1: The Fbhs functionality. The description continues on the next
page.
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Functionality Fbhs (Continued)

Signature Evaluation: If the ready flag has not been set, then ignore the request.
Otherwise, upon receiving an input (sid, eval, vk, g, (f, x), σ) from a party P ∈
{S,R}, ignore the request if f 6= fid. If f = fid, then apply the signature verification
procedure to (sid, verify, vk, (f, x), σ), but do not forward the output to P. If the
signature does not verify, then ignore the request. Otherwise, proceed as follows:

– If g /∈ H, then set σ∗ = ⊥.
– Otherwise, if P is honest, compute σ∗ ← IdealEval(g, g(x)).
– Otherwise, if P is corrupt, send (sid, eval, g, (f, x), σ) to S to obtain

(sid, signature, (g, g(x)), σ∗).

Finally, send (sid, signature, (g, g(x)), σ∗) to P. If σ∗ 6= ⊥ and (vk, (g, g(x)), σ∗, 0) ∈
L, abort. If σ∗ 6= ⊥ and (vk, (g, g(x)), σ∗, 0) /∈ L, add (vk, (g, g(x)), σ∗, 1) to L.

Fig. 1 (Continued): The Fbhs functionality.

all of the shares of w1, . . . ,wt the receiver chose, the probability that the receiver
aborts (due to receiving an invalid signature) is independent of x no matter
how the malicious signer generates the signatures. We formally summarize the
security properties of Πbhs in the following theorem, but defer its proof to the
full version [74].

Theorem 5.1 (Blind Homomorphic Signatures). Fix a security parameter
λ. Define parameters `, t, and s as in Πbhs (Figure 2) where t = ω(log λ). Let H
be a function class over {0, 1}` and let ΠHS be a homomorphic signature scheme
for the message space {0, 1} and function class H′ such that for any function
f ∈ H, we have f ◦ frecon ∈ H′, where frecon is the share-reconstruction function
from Figure 2. Suppose that ΠHS satisfies correctness, unforgeability, and context-
hiding. Then, the protocol Πbhs (when instantiated with ΠHS) securely realizes
the ideal functionality Fbhs (Figure 1) with respect to function class H in the

presence of (static) malicious adversaries in the F`,sot -hybrid model.

Blind homomorphic signatures from LWE. Combining the fully-secure
homomorphic signature scheme described in the full version [74] (based on [63])
with the lattice-based UC-secure oblivious transfer protocol from [80], we obtain
a blind homomorphic signature scheme from standard lattice assumptions. We
describe our instantiation below.

Fact 5.2 (Oblivious Transfer from LWE [80]). Let λ be a security param-
eter and define parameters `, s = poly(λ). Then, under the LWE assumption,

there exists a protocol Πot that security realizes the ideal OT functionality F`,sot

in the presence of malicious adversaries in the CRS model (and assuming static
corruptions). Moreover, the protocol Πot is round-optimal: it consists of one
message from the receiver to the signer and one from the receiver to the signer.
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Protocol Πbhs in the F`,sot -Hybrid Model

Let λ be a security parameter and H be a class of functions from {0, 1}` to
{0, 1}. For a parameter t ∈ N, we define frecon : {0, 1}t` → {0, 1}` to be a share-
reconstruction function (w1, . . . ,wt) 7→

⊕
i∈[t]wi. Let ΠHS = (PrmsGen,KeyGen,

Sign,PrmsEval,SigEval,Hide,Verify,VerifyFresh,VerifyHide) be a decomposable ho-
momorphic signature scheme with message space {0, 1}, message length `, and
function class H′ where H′ contains all functions of the form f ◦ frecon where f ∈ H.
We assume that the signer S and receiver R has access to the ideal functionality
F`,sot where s is the length of the signatures in ΠHS.

Key Generation: Upon receiving an input (sid, keygen), the signer S computes
a set of public parameters

# —

pk = {pki,j}i∈[t],j∈[`] ← PrmsGen(1λ, 1t`), and a pair

of keys (vk′, sk)← KeyGen(1λ). It stores (sid, sk), sets vk = (
# —

pk, vk′), and outputs
(sid, vkey, vk). Finally, the signer initializes the ready flag (initially unset).

Signature Generation: If the signer or receiver has already processed a signature-
generation request, then they ignore the request. Otherwise, they proceed as follows:

– Receiver: On input (sid, sign, vk,x), where vk = (
# —

pk, vk′) and x ∈ {0, 1}`, the
receiver chooses t shares w1, . . . ,wt ←R {0, 1}` where

⊕
i∈[t]wi = x. Then,

for each i ∈ [t], it sends
(
(sid, i), receiver,wi

)
to F`,sot . It also initializes the

ready flag (initially unset). Note that if vk is not of the form (
# —

pk, vk′) where
pk′ = {pki,j}i∈[t],j∈[`], the receiver outputs (sid, signature, (fid,x),⊥).

– Signer: On input (sid, signature), the signer generates signatures σpk
i,j ←

SignPK(pki,j , sk) and σm
i,j,b ← SignM(pki,j , sk, b, σpk

i,j), and sets σi,j,b =

(σpk
i,j , σ

m
i,j,b) for all i ∈ [t], j ∈ [`] and b ∈ {0, 1}. The signer then sends(

(sid, i), sender, {(σi,j,0, σi,j,1)}j∈[`]
)

to F`,sot . In addition, S sends the message-

independent components {σpk
i,j}i∈[t],j∈[`] to R, and sets the ready flag.

Let {σ̃pk
i,j}i∈[t],j∈[`] be the message-independent signatures that R receives from S,

and {σ̃i,j}i∈[t],j∈[`] be the signatures R receives from the different F`,sot invocations.
For all i ∈ [t] and j ∈ [`], the receiver checks that VerifyFresh(pki,j , vk′, wi,j , σ̃i,j) =

1, and moreover, that the message-independent component of σ̃i,j matches σ̃pk
i,j it

received from the signer. If any check fails, then R outputs (sid, signature, (fid,x),⊥).
Otherwise, it evaluates σ ← SigEval

(
frecon,

# —

pk, (w1, . . . ,wt), (σ1, . . . ,σt)
)
, where

σi = (σ̃i,1, . . . , σ̃i,`) for all i ∈ [t]. The receiver also sets the ready flag and outputs(
sid, signature, (fid,x),σ

)
.

Fig. 2: The Πbhs protocol. The protocol description continues on the
next page.
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Protocol Πbhs in the F`,sot -Hybrid Model (Continued)

Signature Verification: Upon receiving an input (sid, verify, vk, (f,x),σ) where
vk = (

# —

pk, vk′), party P ∈ {S,R} first checks if f /∈ H and sets t = 0 if this is the
case. Otherwise, it computes pkf ← PrmsEval(f ◦ frecon,

# —

pk). If f = fid, then it sets
t ← Verify(pkf , vk′,x,σ), and if f 6= fid, it sets t ← VerifyHide(pkf , vk′,x,σ). It
outputs (sid, verified,x,σ, t).

Signature Evaluation: If the ready flag has not been set, then ignore the request.
Otherwise, upon receiving an input (sid, eval, vk, g, (f,x),σ), party P ∈ {S,R}
ignores the request if f 6= fid. If f = fid, P runs the signature-verification procedure
on input (sid, verify, vk, (f,x),σ) (but does not produce an output). If the signature
does not verify, then ignore the request. Otherwise, it parses vk = (

# —

pk, vk′), computes
pkrecon ← PrmsEval(frecon,

# —

pk) and computes σ′ ← SigEval(g, pkrecon,x,σ), and σ∗ ←
Hide(vk′, g(x), σ′). It outputs (sid, signature, (g, g(x)), σ∗).

Fig. 2 (Continued): The Πbhs protocol.

Corollary 5.3 (Blind Homomorphic Signatures from LWE). Let λ be a
security parameter. Then, under the LWE assumption, for all d = poly(λ), there
exists a protocol Π ′bhs that securely realizes Fbhs for the class of depth-d Boolean
circuits in the presence of malicious adversaries in the CRS model (and assuming
static corruptions). Moreover, the protocol Π ′bhs satisfies the following properties:

– The key-generation, signature-verification, and signature-evaluation protocols
are non-interactive.

– The signature-generation protocol (i.e., blind signing) is a two-round in-
teractive protocol between the signer and the receiver (one message each
way).

– The length of a signature is poly(λ, d).

Proof. Let Πbhs be the protocol from Figure 2 instantiated with a lattice-based
homomorphic signature scheme (see the full version [74]). By Theorem 5.1,

protocol Πbhs securely realizes Fbhs in the F`,sot -hybrid model, for some `, s =
poly(λ). We let Π ′bhs be the protocol obtained by instantiating the functionality

F`,sot in Πbhs with the protocol from Fact 5.2. Security of Π ′bhs then follows
from the universal composition theorem. Key generation, signature verification,
and signature evaluation in Π ′bhs simply corresponds to invoking the associated
functionalities of the underlying homomorphic signature scheme, and thus, are
non-interactive. The signature length is also inherited from ΠHS. The blind
signing protocol reduces to a single invocation of F`,sot , which by Fact 5.2, can be
implemented by just two rounds of interaction.
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Protocol ΠZK in the Fbhs-Hybrid Model

Let λ be a security parameter and ΠSE = (KeyGen,Encrypt,Decrypt) be a CPA-
secure encryption scheme. We assume that the prover P and the verifier V have
access to the ideal functionality Fbhs, where P is the receiver R and V is the signer
S. For any NP relation R, define the Boolean-valued function CheckWitnessR,ct,x,
parameterized by R, a statement x, and a ciphertext ct as follows: on input a secret
key sk, CheckWitnessR,ct,x(sk) outputs 1 if and only if R(x,Decrypt(sk, ct)) = 1,
and 0 otherwise. We implicitly assume that CheckWitnessR,ct,x ∈ H, where H is
the function class associated with Fbhs.

Preprocessing phase: In the preprocessing phase, the prover and verifier do the
following:

1. The verifier sends (sid, keygen) to Fbhs and receives in response a verification
key vk. The verifier sends vk to the prover. Subsequently, when the verifier
receives (sid, signature) from Fbhs, it sets the ready flag.

2. The prover begins by sampling a secret key sk← KeyGen(1λ). Then, it requests
a signature on sk under vk by sending (sid, sign, vk, sk) to Fbhs. The prover
receives a signature σsk from Fbhs. If σsk = ⊥, then the prover aborts.

Prover: On input a tuple (sid, ssid, prove,R, x, w) where R(x,w) = 1, the prover
proceeds as follows:

1. Encrypt the witness w to obtain a ciphertext ct← Encrypt(sk, w).
2. Submit (sid, eval, vk,CheckWitnessR,ct,x, (fid, sk), σsk) to Fbhs to obtain a signa-

ture σ∗.
3. Set π = (ct, σ∗) and send (sid, ssid, proof,R, x, π) to the verifier.

Verifier: When the verifier receives a tuple (sid, ssid, proof,R, x, π), it ignores
the request if the ready flag has not been set. Otherwise, it parses π = (ct, σ),
and ignores the message if π does not have this form. Otherwise, it submits
(sid, verify, vk, (CheckWitnessR,ct,x, 1), σ) to Fbhs. If the signature is valid (i.e., Fbhs

replies with 1), then the verifier accepts and outputs (sid, ssid, proof,R, x). Other-
wise the verifier ignores the message.

Fig. 3: Preprocessing ZK argument in the Fbhs-hybrid model.

6 Universally-Composable Preprocessing NIZKs

In this section, we show how to combine blind homomorphic signatures with
CPA-secure encryption to obtain UC-NIZKs in the preprocessing model from
standard lattice assumptions. We give our protocol ΠZK in the Fbhs-hybrid model
in Figure 3. Next, we state the formal security theorem and describe how to
instantiate it from standard lattice assumptions. We give the proof of Theorem 6.1
in the full version of this paper [74].
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Theorem 6.1 (Preprocessing Zero-Knowledge Arguments). Let ΠSE =
(KeyGen,Encrypt,Decrypt) be a CPA-secure encryption scheme. Then, the protocol
ΠZK in Figure 3 (instantiated with ΠSE) securely realizes FZK in the presence of
(static) malicious adversaries in the Fbhs-hybrid model.

Corollary 6.2 (Preprocessing UC-NIZKs from LWE). Let λ be a security
parameter. Then, under the LWE assumption, for all d = poly(λ), there exists
a protocol Π ′NIZK that securely realizes FZK in the presence of (static) malicious
adversaries in the CRS model for all NP relations R that can be computed by a
circuit of depth at most d. The protocol Π ′NIZK satisfies the following properties:

– The (one-time) preprocessing phase is a two-round protocol between the prover
and the verifier.

– The prover’s and verifier’s algorithms are both non-interactive.
– If R is an NP relation, then the length of a proof of membership for the

language associated with R is m + poly(λ, d), where m is the size of the
witness associated with R.

Proof. Fix a depth bound d = poly(λ). First, we can instantiate the CPA-secure
encryption scheme ΠSE = (KeyGen,Encrypt,Decrypt) in Figure 3 from lattices
using any lattice-based CPA-secure symmetric encryption scheme [58,6]. Let d′ be
a bound on the depth of the circuit that computes the CheckWitnessR,ct,x function
in Figure 3. Note that d′ = poly(λ, d), since the depth of the relation R is bounded
by d and the depth of the Decrypt function is poly(λ). By Corollary 5.3, under
the LWE assumption, there exists a protocol Π ′bhs that securely realizes Fbhs

for the class of all depth-d′ Boolean circuits in the presence of (static) malicious
adversaries. The claim then follows by combining Theorem 6.1 with Corollary 5.3
and the universal composition theorem. We now check the additional properties:

– The preprocessing phase corresponds to the blind signing protocol of Π ′bhs,
which is a two-round protocol between the signer and the verifier.

– The prover’s algorithm corresponds to signature evaluation while the ver-
ifier’s algorithm corresponds to signature verification. Both of these are
non-interactive in Π ′bhs.

– The length of a proof for an NP relation R consists of an encryption of the
witness under ΠSE (of size m+ poly(λ)) and a signature under Π ′bhs (of size
poly(λ, d)). The total size is bounded by m+ poly(λ, d). ut

6.1 Applications to MPC

In the full version of this paper, we describe several applications of our preprocess-
ing UC-NIZKs to boosting the security of MPC protocols. Specifically, we show
that combining our construction with the round-optimal, semi-malicious MPC
protocol of Mukherjee-Wichs [78] yields a round-optimal, malicious-secure MPC
protocol from lattices in a reusable preprocessing model where the communication
complexity only depends on the size of the inputs/outputs. Then, we show how to
obtain a succinct version of the GMW [59,60] compiler from lattice assumptions.
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52. S. Garg, V. Rao, A. Sahai, D. Schröder, and D. Unruh. Round optimal blind
signatures. In CRYPTO, 2011.

53. R. Gennaro, J. Katz, H. Krawczyk, and T. Rabin. Secure network coding over the
integers. In PKC, 2010.

54. R. Gennaro and D. Wichs. Fully homomorphic message authenticators. In ASI-
ACRYPT, 2013.

55. C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, 2009.
56. C. Gentry, J. Groth, Y. Ishai, C. Peikert, A. Sahai, and A. D. Smith. Using fully

homomorphic hybrid encryption to minimize non-interative zero-knowledge proofs.
J. Cryptology, 28(4), 2015.

57. E. Ghadafi and N. P. Smart. Efficient two-move blind signatures in the common
reference string model. In ISC, 2012.

58. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.
In FOCS, 1984.

59. O. Goldreich, S. Micali, and A. Wigderson. How to prove all np-statements in
zero-knowledge, and a methodology of cryptographic protocol design. In CRYPTO,
1986.

60. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In STOC, 1987.

61. O. Goldreich and Y. Oren. Definitions and properties of zero-knowledge proof
systems. J. Cryptology, 7(1), 1994.

62. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof-systems (extended abstract). In STOC, 1985.

63. S. Gorbunov, V. Vaikuntanathan, and D. Wichs. Leveled fully homomorphic
signatures from standard lattices. In STOC, 2015.

64. J. Groth. Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In ASIACRYPT, 2006.

65. J. Groth. Short non-interactive zero-knowledge proofs. In ASIACRYPT, 2010.
66. J. Groth, R. Ostrovsky, and A. Sahai. Perfect non-interactive zero knowledge for

NP. In EUROCRYPT, 2006.
67. J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups.

In EUROCRYPT, 2008.
68. L. Hanzlik and K. Kluczniak. A short paper on blind signatures from knowledge

assumptions. In Financial Cryptography, 2016.
69. Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Zero-knowledge proofs from

secure multiparty computation. SIAM J. Comput., 39(3), 2009.

29



70. Y. T. Kalai and R. Raz. Succinct non-interactive zero-knowledge proofs with
preprocessing for LOGSNP. In FOCS, 2006.

71. J. Katz and V. Vaikuntanathan. Smooth projective hashing and password-based
authenticated key exchange from lattices. In ASIACRYPT, 2009.

72. A. Kiayias and H. Zhou. Concurrent blind signatures without random oracles. In
SCN, 2006.

73. J. Kilian, S. Micali, and R. Ostrovsky. Minimum resource zero-knowledge proofs.
In CRYPTO, 1989.

74. S. Kim and D. J. Wu. Multi-theorem preprocessing NIZKs from lattices. IACR
Cryptology ePrint Archive, 2018:272, 2018.

75. D. Lapidot and A. Shamir. Publicly verifiable non-interactive zero-knowledge proofs.
In CRYPTO, 1990.

76. Y. Lindell and B. Pinkas. An efficient protocol for secure two-party computation in
the presence of malicious adversaries. In EUROCRYPT, 2007.
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