Constrained PRFs for NC! in Traditional Groups

Nuttapong Attrapadung!, Takahiro Matsuda', Ryo Nishimaki?,
Shota Yamada!, and Takashi Yamakawa?

! National Institute of Advanced Industrial Science and Technology (AIST), Tokyo,
Japan
{n.attrapadung,t-matsuda,yamada-shota}@aist.go. jp
2 Secure Platform Laboratories, NTT Corporation, Tokyo, Japan

{nishimaki.ryo,yamakawa.takashi}@lab.ntt.co.jp

Abstract. We propose new constrained pseudorandom functions (CPRFs)
in traditional groups. Traditional groups mean cyclic and multiplicative
groups of prime order that were widely used in the 1980s and 1990s
(sometimes called “pairing free” groups). Our main constructions are as
follows.

— We propose a selectively single-key secure CPRF for circuits with
depth O(logn) (that is, NC" circuits) in traditional groups where n
is the input size. It is secure under the L-decisional Diffie-Hellman in-
version (L-DDHI) assumption in the group of quadratic residues QR,,
and the decisional Diffie-Hellman (DDH) assumption in a traditional
group of order q in the standard model.

— We propose a selectively single-key private bit-fixzing CPRF in tradi-
tional groups. 1t is secure under the DDH assumption in any prime-
order cyclic group in the standard model.

— We propose adaptively single-key secure CPRF for NC' and private
bit-fixing CPRF in the random oracle model.

To achieve the security in the standard model, we develop a new technique
using correlated-input secure hash functions.

1 Introduction

1.1 Background

Pseudorandom functions (PRFs) are one of the most fundamental notions in
cryptography [27]. A PRF is a deterministic function PRF(-,-) : K x D = R
where IC, D, and R are its key space, domain, and range, respectively. Roughly
speaking, we say that PRF is a secure PRF if outputs of PRF(msk, -) look random
for any input z € D and a randomly chosen key msk € . Not only are PRFs
used to construct secure encryption schemes but also they frequently appear in
the constructions of various cryptographic primitives.

2 N. Attrapadung, T. Matsuda, R. Nishimaki, S. Yamada, T. Yamakawa

Constrained PRF. Boneh and Waters introduced the notion of constrained PRFs
(CRPFs) [16] (Kiayias, Papadopoulos, Triandopoulos, and Zacharias [35] and
Boyle, Goldwasser, and Ivan [10] also proposed the same notion in their concurrent
and independent works). CPRFs are an advanced type of PRFs. Specifically,
if we have a master secret key msk of a CPRF PRF, then we can generate a
“constrained” key sk for a function f:D — {0,1}. We can compute the value
PRF(msk,) from sk; and z if f(z) = 0 holds; otherwise cannot. For an input
such that f(x) = 1, the value PRF(msk, z) looks pseudorandom.*

CPRFs with various types of function classes have been considered. Here,
we explain the classes of bit-fixing functions and circuits since we present new
CPRFs for these functions.

Bit-fixing functions: Let {0,1}" be the domain of a CPRF. Each function in
this class is specified by a “constraint vector” ¢ = (c1,...,¢,) € {0,1,*}™,
from which a bit-fizing function f. : {0,1}"™ — {0, 1} is defined as follows. If
¢; = * or x; = ¢; holds for all i € [n], then f.(z) = 0; otherwise f.(z) = 1.

Circuits: This class consists of functions {fc} computable by polynomial-sized
boolean circuits C, defined by fo(+) == C(-). We call a CPRF for this function
class simply a CPRF for circuits. If a CPRF supports functions computable
by polynomial-sized boolean circuits with depth O(logn), where n is the
input-length of the circuits, then we call it a CPRF for NC!.

The number of constrained keys that can be released (to a potentially malicious
party) is one of the important security measures of CPRFs. If a-priori unbounded
polynomially many constrained keys could be released (i.e., the number of queries
is not a-priori bounded), then a CPRF is called collusion-resistant. If only one
constrained key can be released, it is called a single-key secure CPRF. Boneh
and Waters [16] showed that (collusion-resistant) CPRFs have many applications
such as broadcast encryption with optimal ciphertext length. (See their paper
and references therein for more details.)

Private CPRF. Boneh, Lewi, and Wu [13] proposed the notion of privacy for
CPRFs (Kiayias et al. also proposed policy privacy as essentially the same no-
tion [35]). Roughly speaking, private CPRFs do not reveal information about
constraints embedded in constrained keys beyond what is leaked from the evalu-
ation results using the constrained keys.

Known instantiations. The first papers on CPRFs [16,35,10] observed that the
Goldreich-Goldwasser-Micali [27] PRF yields a puncturable PRF? (and a CPRF

! We note that the role of the constraining function f is “reversed” from the definition
by Boneh and Waters [16], in the sense that the evaluation by a constrained key
sky is possible for inputs z with f(xz) =1 in their definition, while it is possible for
inputs x for f(xz) = 0 in our paper. Our treatment is the same as Brakerski and
Vaikuntanathan [15].

2 A constrained key in which a set of points is hard-wired enables us to compute an
output if an input is not in the specified set.

Constrained PRFs for NC! in Traditional Groups 3

for related simple functions). However, it turned out that achieving CPRFs for
other types of function classes is quite challenging. Here, we review some prior
works on CPRFs whose function classes are related to those we focus on in this
study (i.e., bit-fixing functions and NC* circuits).

Boneh and Waters [16] constructed a left-right CPRF? in the random oracle
model (ROM) from bilinear maps, and a collusion-resistant bit-fixing CPRF and
collusion-resistant CPRF for circuits from multilinear maps [25] in the standard
model. After that, Brakerski and Vaikuntanathan [15] constructed a single-key
secure CPRF for circuits from standard lattice-based assumptions, without relying
on multilinear maps.

Boneh et al. [13] constructed a collusion-resistant private CPRF for circuits
from indistinguishability obfuscation (IO) [9,26], and a single-key private bit-
fixing CPRF and puncturable CPRF from multilinear maps [13]. After that, a
single-key private puncturable PRF [12], a single-key private CPRF for NC" [18],
and a single-key private CPRF for circuits [14,37] were constructed from standard
lattice assumptions.

Our motivation. (Private) CPRFs have been attracting growing attention as above
since they are useful tools to construct various cryptographic primitives [16,13].
A number of other types of CPRFs have been constructed [32,33,23,33,32,8,2].
However, all of known sufficiently expressive (private) CPRFs (such as bit-fixing,
circuits) rely on IO, multilinear maps, or lattices, and there is currently no
candidate of secure multilinear maps.

Very recently, Bitansky [11] and Goyal, Hohenberger, Koppula, and Wa-
ters [28] proposed sub-string match* CPRFs in traditional groups to construct
verifiable random functions. In this paper, by traditional groups we mean the
multiplicative groups of prime order® that have been widely used to construct
various cryptographic primitives such as the ElGamal public-key encryption
scheme, around two decades before bilinear maps dominate the area of cryptogra-
phy [7]. (Of course, they are still being used for many cryptographic primitives.)
However, their CPRFs are not expressive enough and do not satisfy the standard
security requirements of CPRFs®. See Tables 1 and 2 for comparisons. There is
no construction of expressive enough (private) CPRF in traditional groups. This
status might be reasonable since lattices and multilinear maps are stronger tools.

Based on the motivation mentioned above, we tackle the following question:

3 There are left and right constrained keys in which v, and v, are hard-wired, respec-
tively. We can compute outputs by using the left (resp. right) constrained key if the
first (resp. last) half of an input is equal to v (resp. vy).

4 This is the negation of bit-fixing functions, that is, f.(x) = 0 if there exists an
index 4 such that z; # ¢; (i-th bit of a constraint) and ¢; # *. It can be seen as a
generalization of punctured predicates.

5 For example, cyclic group H C Zy of a prime order p such that ¢ = 2p + 1 where ¢ is
also a prime.

5 In their sub-string match CPRFs, adversaries are not given access to the evaluation
oracle, which gives outputs of a CPRF for queried inputs. We call such security
no-evaluation security in this paper.

4 N. Attrapadung, T. Matsuda, R. Nishimaki, S. Yamada, T. Yamakawa

Is it possible to construct sufficiently expressive (private) CPRFs in traditional
groups?

In this study, we give affirmative answers to this question and show that
traditional groups are quite powerful tools. From the theoretical point of view, the
more instantiations of cryptographic primitives are available, the more desirable.
One reason is that constructions from different tools can be alternatives when
one tool is broken (like multilinear maps). Another reason is that, generally,
new instantiations shed light on how to construct the studied primitive, and
widen and deepen our insights on it. One remarkable example of this line of
research would be the recent work by Déttling and Garg [22], who constructed
an identity-based encryption (IBE) scheme and a hierarchical IBE scheme in
traditional groups. Another example would be the work by Boyle, Ishai, and
Gilboa [17], who constructed communication-efficient secure two-party protocols
in traditional groups. It is also expected that new instantiations provide us with
insights on how to use the studied primitive in applications (in the real world or
in the construction of another primitive as a building block).

1.2 Owur Contributions

In this paper, we present new constructions of a CPRF and a private CPRF in
traditional groups as main contributions.
The properties of our CPRFs are summarized as follows.

— Our first CPRF is a selectively single-key secure” CPRF for NC" in traditional
groups. It is secure under the L-decisional Diffie-Hellman inversion (L-DDHI)
assumption® in the group of quadratic residues QR, and the decisional Diffie-
Hellman (DDH) assumption? in a traditional group G of order ¢ in the
standard model. Here, QR, denotes the group of quadratic residue modulo
q, where ¢ is a prime such that ¢ = 2p 4+ 1 and p is also a prime. We need
to use this specific type of group for technical reasons. See Section 1.3 and
Section 4 for the details.

— Our second CPRF is a selectively single-key private bit-fizing CPRF in tradi-
tional groups. Specifically, it is secure under the standard DDH assumption
in any prime-order cyclic group in the standard model.

— Our third and fourth CPRFs are an adaptively'® single-key secure CPRF for
NC' circuits and an adaptively single-key private bit-fizing CPRF, both in

" Adversaries commit a function to be embedded in a constrained key at the beginning
of the security experiment and have access to the evaluation oracle, which gives
outputs of CPRFs for queried inputs.

8 The L-DDHI assumption in a group H of order p [4,21] says that it is hard to distin-
guish (g,go‘,gQZ,...,gaL,gl/o‘) from (g,go‘,gQZ,...,go‘L,gz) where ¢ & H, o,z &
Zy. See the full version [3] for the rigorous definition.

9 The DDH assumption in a group G of order ¢ says that it is hard to distinguish
(9,9%,9%,9%Y) from (g,9%,¢Y,9°) where g LGy L& Zyg.

10 Adversaries can decide a function for which it makes the key query at any time.

Constrained PRFs for NC! in Traditional Groups 5

the ROM. Our standard model and ROM constructions of CPRFs for NC!,
share high-level ideas behind the constructions in common, and the same is
true for our bit-fixing CPRFs. These connections are explained in Section 1.3.
Due to the space limit, we omit the constructions in the ROM in this paper.

The main technique that enables us to achieve the above results, is a novel use

of correlated-input secure hash functions. We will explain the technical overview

in Section 1.3.

As an application of our results, we can obtain a single-key secret-key
attributed-based encryption (ABE) scheme with optimal ciphertext overhead in
traditional groups. A (multi-key) public-key ABE scheme with optimal ciphertext
overhead was presented by Zhandry [39], but it is based on multilinear maps. See

the full version [3] for more details.

Table 1. Comparison of CPRFs (we omit constructions based on multilinear maps or 10).
In “Function” column, sub-match is sub-string match. Prefix-fixing means that a constrained
key with prefix p enables us to compute outputs for inputs p||*. “# keys” column means the
number of issuable constrained keys. “Eval.O” column means the evaluation oracle is available
for adversaries or not. “Tool” column means what kinds of cryptographic tools are used. GGM,
pairing, and group mean the PRF by Goldreich, Goldwasser, and Micali [27], bilinear maps,
and traditional groups, respectively. In “Assumptions” column, OWF, BDDH, LWE, and 1D-
SIS mean one-way function, bilinear Diffie-Hellman, learning with errors, and one-dimensional
short integer solution assumptions, respectively. In “Model” column, Std means the standard

model. In “Misc” column, key-hom means key-homomorphic property.

Reference Function # keys Eval.O Tool Assumptions Model Misc
[16] puncture® N/A N/A GGM OWF Std

[16] left /right multi v pairing BDDH ROM

[35] puncture® N/A N/A GGM OWF Std

[10] puncture® N/A N/A GGM OWF Std

[8] prefix-fixing multi v lattice ~LWE Std key-hom
[15] circuit single v lattice =~ LWE, 1D-SIS Std

[11] sub-match single no group DDH Std

[28] sub-match single no group L-power DDH Std

[28] sub-match single no group @-hiding Std

Ours NC! single v group DDH, L-DDHI Std

More precisely, they consider slightly different functions, but we write just “puncture” for
simplicity since their constructions are based on the GGM PRF. See their papers for details.

1.3 Technical Overview

In this section, we provide an overview of our construction ideas. We ignore many

subtle issues in this section and focus on the essential ideas for simplicity.

Basic construction satisfying no-evaluation security. To illustrate our ideas in

a modular manner, we start with a no-evaluation secure CPRF for NC!, that

6 N. Attrapadung, T. Matsuda, R. Nishimaki, S. Yamada, T. Yamakawa

Table 2. Comparison of private CPRFs (we omit constructions based on

multilinear maps and I0). See Table 1 for terms.

Reference Predicate # keys Eval.O Tool Assumptions Model

[35] puncture® N/A N/A GGM OWF Std
[12] puncture N/A N/A lattice LWE, 1D-SIS Std
[18] bit-fixing single v lattice LWE Std
[18] NC! single v lattice LWE Std
[14] circuit single v lattice LWE Std
[37] circuit single v lattice LWE, 1D-SIS Std
Ours bit-fixing single v group DDH Std

Same as in Table 1.

is, adversaries do not have access to the evaluation oracle. We denote the PRF
by PRFne. It turns out that even in this simple setting, it is non-trivial to
construct a CPRF for NC! in traditional groups (or bilinear groups) since known
constructions use some sort of “fully homomorphic” properties of lattices or
multilinear maps, both of which are not available in traditional groups. In the
following, let A be the security parameter.

The first challenge is how to implement an NC! circuit constraint in a key. Our
idea is to encode an NC" circuit f!! into a bit string f = (f1,..., f.) € {0,1}*
and then embed this into a secret key. When evaluating a PRF value on input
x=(x1,...,2,) € {0,1}", we will “homormorphically” evaluate U(-,z) on the
secret key, where U(+, -) is a universal circuit that outputs U(f, z) = f(x) on input
(f,x). To make the representation of the universal circuit U(-,) compatible with
our algebraic setting, we regard U(-,-) as a degree-D polynomial of the variables
{f:} and {z;}, such that D is some fixed polynomial of \.'? Furthermore, we
extend the input space of U(+,-) to be non-binary, where the computation is done
over Z, using the polynomial representation of U(-,-). Specifically, we allow the
input of the form ((b1,...,b.),x) € Z; x {0, 1}".

Now, we give a more detailed description of PRFye. A master secret key
msk of PRFyg is of the form (b1,...,b.,a,g), where b; & Z, for each i € [2]

and a & Zy, and g is a generator of a traditional group H of order p. (We
will turn to the explanation on this group H later in this subsection.) The
evaluation algorithm of PRFyg outputs ¢% /%, where 2/ = U((b1,...,b,),x) € Zy,.
To compute a constrained key sky of an NC! circuit f, we set b = (b; — fi)a™t.
The constrained key is sky = (f, b, ..., b’z,g,go‘,ga2, . ,g“Dfl).

We then look closer at why this construction achieves the constraint defined

by the NC' circuit f. When we compute 2/ := U((by,...,b,),z) by using

11 Here, we identify a circuit that computes a function f with f itself.

12 We can construct a universal circuit U whose depth is only constant times deeper
than that of f by the result of Cook and Hoover [20]. It is well known that an NC*
circuit can be represented by a polynomial with polynomial degree (for example, this
fact is used for functional encryption for NC' [31]).

Constrained PRFs for NC! in Traditional Groups 7

b; = - b, + f;, we can write the computation of U in the following way:
d =U((a-b+ fi,...,a-b+ f.),z) = +Zc] ,

where the coefficients {c;}; are efficiently computable from the descriptions of U
and f, {b/};, and x since the degree D is polynomial in the security parameter.
This can be seen by observing that U((« - 0] + f1,...,a -V, + f.),z) should
be equal to f(z) when o = 0 since we have U((f1,..., f.),z) = f(z) by the
definition of a universal circuit.
D-1 ;
— If f(z) = 0, then we can compute g*/® = gf(w)/aJij:o %% Since the
gf@)/e part disappears and the remaining part is computable from sk ;=
D—1
(f’ ""7 Z7gg 7""ga)andx'D_l)
— If f(x) =1, then g*/® = gf(z)/a+zfzﬂ ¢’ Jooks random since g*/* looks
random even if (g, g%, ... ,go‘Dfl) is given, due to the (D — 1)-DDHI assump-
tion in H.

This is a high-level intuition for why PRFyg for NC! is no-evaluation secure.
This CPRF PRFyg is our base construction, and the idea behind our construction
here is inspired by the affine partitioning function used in the recent construction
of a verifiable random function by Yamada [38].

On the other hand, this construction can be broken by making only one
evaluation query: Suppose that z 7é z satisty f(z) = f(Z) = 1. Then we can

write PRFye(msk,) = g/ 220 %’ and PRFyg(msk, 3) = g/ " 20 9 by
using {c;}; and {¢;}, that are efficiently computable by an adversary. Then we

D—1,~ ;

have PRFyg(msk,) = PRFyg(msk, x) ~g2j=0 (¢5=¢)" Therefore if an adversary
obtains PRFng(msk, z), then it can efficiently compute PRFyg(msk, Z) and break
the security of the PRF.

Single-key secure construction in the ROM. To achieve security against adversaries
making a-priori unbounded polynomially many evaluation queries (i.e., the
number of queries is polynomial, but not fixed in advance), we consider using a
random oracle as an intermediate step. (This construction is denoted by PRF™™.)
PRF™™ is the same as PRFyg except that an output is now computed by H (g% /),
instead of g‘”// ® where H : H — {0, 1}"/ is a cryptographic hash function. In the
ROM where H is modeled as a random oracle, adversaries make hash queries
and obtain outputs of the hash function H. If f(z) = 1, then an adversary
cannot compute g’”,/ @ due to the no-evaluation security, and thus H (gwl/ *) seems
uniformly random from the view of the adversary. Therefore evaluation queries
from an adversary can be answered with uniformly random strings, and the
adversary cannot notice whether this is a correct behavior of the evaluation
oracle as long as it does not find a collision (z1,23) such that gzll/o‘ = gwé/a
where 2, = U((b1,...,b.),x;). Our real construction is slightly modified from the

8 N. Attrapadung, T. Matsuda, R. Nishimaki, S. Yamada, T. Yamakawa

above construction so that such a collision exists only with negligible probability
(see Section 4.1 for the detail).

The second challenge is how to remove the random oracle and achieve security
against a-priori unbounded polynomially evaluation queries in the standard
model.

Replacing a random oracle with a correlated-input secure hash function. We
observe that we do not need the full power of random oracles to prove the
security of CPRFs. Specifically, we can use a correlated-input secure hash function
(CIH) [34,29,5,30]*3, instead of random oracles.

Here, we briefly recall the definition of a CIH whose definition is associated
with a class of functions ¥. At the beginning, the challenger chooses the challenge
bit coin & {0,1}, a function description CIH,'* and a random element r from the
domain of CIH. The adversary is given CIH and access to an oracle that, upon a
query v; € ¥ from the adversary, answers CIH(v;(r)) if coin = 1; otherwise the
oracle answers the query with RF(¢;(r)), where RF is a truly random function. If
it is hard for adversaries to distinguish the case coin = 1 from the case coin = 0,
we say that CIH is correlated-input pseudorandom for ¥ (or simply, a CIH for
u7).15

If there exists a CIH for group-induced functions o : H — H such that
A€ H and ¥a(y) =y - A (denoted by ClHg) where - is the group operation
of H, then CIHo(PRFng(msk, z)) is a secure CPRF. This can be seen as follows:

—1 .
cavd
Cjx

D
For x satisfying f(z) = 1, PRFyg(msk,2) can be written as g'/* - gzj:o
D—1

ol
where ¢!/ is pseudorandom and gzj=0 9 is efficiently computable from the

view of an adversary as discussed above. By applying the security of a CIH by
D—1 ;

setting y == ¢g'/® and A = gZFO Cjaj, we can see that CIHo(PRFyg(msk, x)) is
computationally indistinguishable from RF(PRFyg(msk, z)). This is computation-
ally indistinguishable from a random function as long as PRFyg(msk, z) has no
collision, and the actual construction of PRFyg(msk, z) is made collision-free as
mentioned in the previous paragraph.

However, there is one subtle issue: The only known instantiation of CIH for
group induced functions which satisfies our security requirements is the CIH
based on the DDH assumption by Bellare and Cash [5] (denoted by ClHgc). In
ClHgc, we consider the m-dimensional, component-wise group-induced functions

weinde .— Loz | @ € (Zy)™}, where ¥z = (Zy)™ — (Zy)™ is defined by ¢a(7) = axr’

13 Several works defined similar notions in different names such as related-key security.
We use the name “correlated-input security” since we think it is the most suitable
name for our usage.

' Tn the formal security definition, the function is parameterized by a public parameter
generated by some setup procedure. We ignore the public parameter in the explanation
below for simplicity. See Section 2.2 for the rigorous security definition for CIHs.

15 The definition of CIHs in this paper can be seen as a hybrid of correlated-input
pseudorandom by Goyal. et al. [30] and RKA-PRG by Bellare and Cash [5]. See
Section 2.2 for the formal definition.

Constrained PRFs for NC! in Traditional Groups 9

and x denotes the component-wise group operation on Z;. Here, the domain of
ClHgc is not compatible with the range of PRFyg (the output is g% /% & H). One
might think that m-folded parallel running of PRFne on H := Z works, but this
is not the case. This is because if H := Z7, then the L-DDHI assumption can be
easily broken by computing the Jacobi symbol.

We observe that the attack based on the Jacobi symbol does not work if we
consider the group of quadratic residues modulo ¢, denoted by QR instead of Zj,
and it is reasonable to assume the L-DDHI assumption holds on QR,. However,
if we set H := QR,, then we cannot simply use the security of ClHgc since it
is not obvious if the security of ClHgc still holds when we restrict the domain
of ClHgc to QRZ’. We resolve the issue by proving that the CIH obtained by
restricting the domain of CIHgc to QRy" (denoted by ClHz) is also secure as a
CIH for component-wise group operations on QR;” under the DDH assumption
on a group of an order p = %1 if p is a prime. See Section 3 for more details of
ClHg..

We are now ready to explain our CRPF PRF for NC'. It uses multiple
instances of PRFyg and apply a CIH for m-dimensional component-wise group-
induced functions to the outputs from those instances. That is, we define

PRFnc (msk,) = CIHB~C< PRFye(mski, z), . . ., PRFNg(mskon, @))

Now, we look closer at why correlated-input pseudorandomness helps us
achieve security in the presence of a-priori unbounded polynomially many
evaluation queries. In PRFyg, when the inputs = with f(z) = 1 are used,
we can view its output as consisting of two separate parts. Specifically, we

D-1 i
can write g%/ = gf(GE)/aJrZJ‘:O “% = Aux(msk) - SEval(sky,z) if we define

D-1 P
Aux(msk) = g'/® and SEval(sks,z) = gzi:o “ (where SEval stands for
“semi”-evaluation). The first part is computable only from msk, and the sec-
ond part is computable from sk; and x. Thanks to the (D —1)-DDHI assumption,
it is now easy to see that Aux(msk) is indistinguishable from a random element
even if sky is given. Therefore, it holds that

PRFyc:1 (msk, @) ~e ClHge (71 - SEval(sky1, @), .., 7 - SEVal(sk s @)),

where r; & H for all i € [m] and =2 denotes computational indistinguishability.
Furthermore, sk ; denotes the secret key associated to f generated from msk;.
(Namely, it corresponds to the i-th instance.) Here, ¢; := SEval(sk;;,xz) € H
are adversarially chosen correlated values and fall in the component-wise group-
induced functions ¥& ™ due to (¢1,...,dmn) € H™. Therefore, by applying the
correlated-input pseudorandomness of CIH ~., we obtain

BC’
CIHB’"C(T'l . ¢17 e 7Tm . ¢m) %C RF(Tl . d)l’ - 7Tm . ¢m).
As long as adversaries do not find a collision (z1, 2) such that (SEval(sky 1, 21), ...,
SEval(skfm,21)) = (SEval(sks1,22),...,SEval(sk¢m,x2)), PRFnct(msk,-) is

10 N. Attrapadung, T. Matsuda, R. Nishimaki, S. Yamada, T. Yamakawa

pseudorandom since RF is a truly random function. It is not difficult to see
that a collision is hard to find by the universality of the modified PRFng (see
Lemma 8 for the detail). Therefore, we can prove the pseudorandomness of
PRF against a-priori unbounded polynomially many evaluation queries in the
standard model by using the security of CIH for (m-dimensional, component-wise)
group-induced functions.

How to achieve private constraint. Here, we give a brief explanation on how our
single-key private CPRF for bit-fixing functions is constructed. The basic strategy
is the same as that of our CPRFs for NC!. That is, we firstly construct a private
bit-fixing CPRF in the ROM, and then convert it into a private bit-fixing CPRF
in the standard model via a CIH for an appropriate function class.

Our single-key private bit-fixing CPRF in the ROM is very simple. This
is slightly different from what we present in the full version of this paper [3],
but we stick to the following construction in this section since it is consistent
with the standard model construction in Section 5.1. A master secret key is
msk := {s;5}icin)pefo,1} and a PRF output for input z is H(3! | siq,) where
H is a (standard) hash function. For convenience, we define PRFy¢.ng(msk, z) =
> | Siw,- A constrained key for ¢ € {0,1,*}" is {tip}tiem)pefo,1} Where t;p =
sip if ¢; = * or ¢; = b; otherwise ;4 & Z,. If an input does not match the
constraint ¢, then the sum includes completely unrelated values and we cannot
compute the correct output. Adversaries are given just random values by the
random oracle. Moreover, adversaries cannot distinguish two different constraints
as long as a challenge input does not satisfy the constraints since both s,
and ¢; ; are uniformly random values in Z,. This construction satisfies adaptive
single-key privacy in the random oracle model, without relying on any complexity
assumption.

Now we replace the cryptographic hash function (random oracle) H with
a CIH ClHu¢ for affine functions &% = {¢z.5 7yt — Zy'} where 4 € (Zy)™,
v € Zy', and ¢z 5(¥) =14 © & + U where ® is component-wise multiplication in
Z,,. Our private bit-fixing CPRF is defined by

PRFgr (msk, z) = C|Haff(PRFppne (mski, 2), . . . , PRForng (Mskon,))

A constrained key sk, consists of constrained keys for ¢ with respect to msk;, for
all j € [m]. It is easy to see that the correctness holds. For the security, we set
tibj = Sip; — o for ¢; # * and b = 1 — ¢; where «; & Z,. Then, we can write
Sty Siw; = uaj+uv; for some u € [n] (especially u # 0) where v; = >0 ti g, j
for an evaluation query z from an adversary, since x is not allowed to satisfy
the constraint. For two different constraints, the adversary cannot distinguish
which constraint is used in a constrained key (that is, Sibj R tipj + aj) since
tib,; is uniformly random. Here, o;’s are uniformly random and » and v; are
adversarially chosen values. It is easy to see that this falls into the class of affine
functions. Thus, we can use the security of the CIH CIH,¢ for affine functions,
and obtain

ClHapr(uay + v1, . oy Uy + V) e RF(uay + 01, ... uay, + v).

Constrained PRFs for NC*' in Traditional Groups 11

As long as a collision of (PRFue.ng(msky,-), ..., PRFprne(msk,y,,) is not found,
RF (uay +ov1, . . ., U@y +v,,) is indistinguishable from a random value. Furthermore,
it is not difficult to show that the condition holds by the universality of F;(z) :=
(ucy + v1, ..., Uy, + vy). Therefore, we can prove the security of our private
bit-fixing CPRF. See the full version of this paper [3] for the details.

1.4 Other Related Works

While we focus on (private) CPRFs without IO and multilinear maps, many
expressive (private) CPRFs have been proposed based on IO or multilinear maps:
collusion-resistant CPRFs for circuit based on multilinear maps [16,8], adaptively
secure CPRFs based on 10 [32,33], collusion-resistant CPRFs for Turing machines
based on (differing-input) 10 [23,2], collusion-resistant private CPRFs for circuits
based on 10 [13].

Cohen, Goldwasser, and Vaikuntanathan showed a connection between CPRFs
for some class of functions and computational learning theory [19]. See the papers
and references therein for more details.

Organization. The rest of the paper is organized as follows. After introducing
minimum notations, security definitions, and building blocks in Section 2, we
present our correlated-input secure hash function in Section 3, our CPRFs for
NC! and its security proofs in Section 4, and our private bit-fixing CPRF in
Section 5. Many materials are omitted in this extended abstract due to the space
limit. See the full version for all details [3].

2 Preliminaries

In this section, we review some notations and definitions, tools, and cryptographic
primitives.

Notations. We denote by “poly(-)” an unspecified integer-valued positive polyno-
mial of A and by “negl(\)” an unspecified negligible function of A. For sets D and
R, “Func(D,R)” denotes the set of all functions with domain D and range R.

Group generator. For convenience, we introduce the notion of a “group generator”.
We say that a PPT algorithm GGen is a group generator, if it takes a security
parameter 1* as input and outputs a “group description” G = (G, p) where G
is a group with prime order p = §2(2*), from which one can efficiently sample a
generator uniformly at random.

2.1 Constrained Pseudorandom Function

Here, we give the syntax and security definitions for a constrained pseudorandom
function (CPRF). For clarity, we will define a CPRF as a primitive that has
a public parameter. However, this treatment is compatible with the standard
syntax in which there is no public parameter, because it can always be contained
as part of a master secret key and constrained secret keys.

12 N. Attrapadung, T. Matsuda, R. Nishimaki, S. Yamada, T. Yamakawa

Syntazx. Let F = {Fx k}xrren be a class of functions'® where each Fai is a set
of functions with domain {0, 1}* and range {0, 1}, and the description size (when
represented by a circuit) of every function in F) j is bounded by poly(A, k).

A CPRF for F consists of the five PPT algorithms (Setup, KeyGen, Eval,
Constrain, CEval) where (Setup, KeyGen, Eval) constitutes a PRF (where a key
msk output by KeyGen is called a master secret key), and the last two algorithms
Constrain and CEval have the following interfaces:

Constrain(pp, msk, f) 5 sky: This is the constraining algorithm that takes as
input a public parameter pp, a master secret key msk, and a function f € Fj »,
where n = n(\) = poly(A) is the input-length specified by pp. Then, it outputs
a constrained key sk;.

CEval(pp,sks,z) = y: This is the deterministic constrained evaluation algorithm
that takes a public parameter pp, a constrained key sk;, and an element
x € {0,1}™ as input, and outputs an element y € R.

As in an ordinary PRF, whenever clear from the context, we will drop pp from
the inputs of Eval, Constrain, and CEval, and the executions of them are denoted
as “Eval(msk, z)”, “Constrain(msk, f)”, and “CEval(sky, z)”, respectively.

Correctness. For correctness of a CPRF for a function class F = {Fx i} keN,
we require that for all A € N, pp & Setup(1*) (which specifies the input length
n = n(\) = poly()\)), msk & KeyGen(pp), functions f € Fx ,, and inputs x €
{0, 1}" satisfying f(z) = 0, we have CEval(Constrain(msk, f),z) = Eval(msk, x).

Remark 1. We note that in our definition, the role of the constraining functions
f is “reversed” from that in the original definition [16], in the sense that cor-
rectness (i.e. the equivalence Eval(msk,-) = CEval(sky, -)) is required for inputs
x with f(x) = 0, while it is required for inputs z with f(z) = 1 in the original
definition [16].

Security. Here, we give the security definitions for a CPRF. We only consider
CPRFs that are secure in the presence of a single constrained key, for which
we consider two flavors of security: selective single-key security and adaptive
single-key security. The former notion only captures security against adversaries
A that decide the constraining function f (and the constrained key sky is given
to A) before seeing any evaluation result of the CPRF, while the latter notion
has no such restriction and captures security against adversaries that may decide
the constraining function f at any time. Also, in Section 4, as a security notion
for a CPRF used as a building block, we will use the notion of no-evaluation
security, which captures security against adversaries that have no access to the
evaluation oracle. The definition below reflects these differences.

16 In this paper, a “class of functions” is a set of “sets of functions”. Each Fy 1 in F
considered for a CPRF is a set of functions parameterized by a security parameter A
and an input-length k.

Constrained PRFs for NC*' in Traditional Groups 13

EXPtcch:;F,f,A()‘) :

coin & {0,1}

pp & Setup(1*)

msk & KeyGen(pp)

RF(-) & Func({0,1}",R)

Ochal(+) = {Eval(m5k7) ?f co?n =1
RF() if coin=20

(f,sta) & A Evallmsko) ()

sk; & Constrain(msk, f)

coin & AgChal(')’Eval(mSk»')(skf7StA)

2
Return (coin = coin).

Fig. 1. The experiment for defining single-key security for a CPRF.

Formally, for a CPRF CPRF = (Setup, KeyGen, Eval, Constrain, CEval) (with
input-length n = n(X)) for a function class F = {F x} » ken and an adversary
A = (A1, As), we define the single-key security experiment ExptCCpPr;F’ FalA) as
described in Figure 1 (left).

In the security experiment, the adversary A’s single constraining query is
captured by the function f included in the first-stage algorithm A4;’s output.
Furthermore, A; and Az have access to the challenge oracle Ochai(-) and the
evaluation oracle Eval(msk, -), where the former oracle takes * € {0,1}" as input,
and returns either the actual evaluation result Eval(msk, 2*) or the output RF(z*)

of a random function, depending on the challenge bit coin € {0, 1}.
cprf

We say that an adversary A = (A1, Az) in the security experiment Exptpre 7, 4

is admissible if A1 and A, are PPT and respect the following restrictions:

- f €]:/\,n»

— A; and Aj never make the same query twice.

— All challenge queries 2* made by A; and Aj satisfy f(2*) = 1, and are distinct
from any of the evaluation queries x that they submit to the evaluation oracle
Eval(msk,).

Furthermore, we say that A is selectively admissible if, in addition to the above
restrictions, A; makes no challenge or evaluation queries. Finally, we say that A
is a no-evaluation adversary if A; and A are PPT, and they do not make any
queries, except that Aj is allowed to make only a single challenge query z* such
that f(z*) = 1.

Definition 1 (Security of CPRF). We say that a CPRF CPRF for a function
class F is adaptively single-key secure, if for all admissible adversaries A, the
advantage Adv‘ép;;,:’}.’A(/\) =2 \Pr[Exptcch:;FJ_-)A()\) = 1] — 1/2| is negligible.
We define selective single-key security (resp. no-evaluation security) of CPRF
analogously, by replacing the phrase “all admissible adversaries A” in the above
definition with “all selectively admissible adversaries A” (resp. “all no-evaluation

adversaries A”).

(A)

14 N. Attrapadung, T. Matsuda, R. Nishimaki, S. Yamada, T. Yamakawa

Remark 2. As noted by Boneh and Waters [16], without loss of generality we can
assume that A makes a challenge query only once, because security for a single
challenge query can be shown to imply security for multiple challenge queries
via a standard hybrid argument. Hence, in the rest of the paper we only use the
security experiment with a single challenge query for simplicity.

Remark 8. In some existing works [16,24,23], the term “selective” is used to
mean that A has to make a challenge query at the beginning of the security
experiment. On the other hand, in this paper, “selective” means that A has to
make a constraining query at the beginning of the security experiment, which is
the same definitional approach by Brakerski and Vaikuntanathan [15].

2.2 Correlated-Input Secure Hash Function

Here, we review the definition of a correlated-input secure hash function (CIH)
that was originally introduced in Goyal et al. [30].

Syntactically, a CIH is an efficiently computable deterministic (hash) function
that has a public parameter pp that is generated by using some setup procedure,
and we refer to such a pair of function and setup procedure as a publicly param-
eterized function. In this paper, we will consider a CIH that is associated with
a group generator GGen. Thus, we model its setup algorithm by a “parameter
generation” algorithm PrmGen that takes a group description G generated by
GGen as input, and outputs a public parameter pp.

Formally, a publicly parameterized function CIH with respect to a group
generator GGen, consists of the two PPT algorithms (PrmGen, Eval) with the
following interfaces:

PrmGen(G) 5 pp: This is the parameter generation algorithm that takes as
input a group description G output by GGen(1%). Then, it outputs a public
parameter pp, where we assume that pp contains G and the descriptions of
the domain D and the range R.

Eval(pp,z) =: y: This is the deterministic evaluation algorithm that takes a
public parameter pp and an element x € D as input, and outputs an element
yEeR.

When there is no confusion, we will abuse the notation and denote by “CIH(pp, z)”
to mean the execution of Eval(pp, z). Furthermore, when pp is clear from the
context, we may sometimes drop pp from the input of CIH, and treat as if it is a
single function (e.g. “CIH : D — R”) for more intuitive descriptions.

Security of CIHs. The security definition of a CIH that we use in this paper
is a slightly generalized version of correlated-input pseudorandomness [30] (see
Remark 4 for the differences from related works).

Let GGen be a group generator, and CIH = (PrmGen, Eval) be a publicly
parameterized function with respect to GGen. Let F = {F.}xen ze{0,1}+ be
a class of functions, where each F) . is a set of functions parameterized by

Constrained PRFs for NC*' in Traditional Groups 15

Expt&iiy ceen, 7.4 (A) : O(f € Fapp) :
coin & {0,1} _ [Eval(pp, f(z)) if coin=1
G & GGen(1") ~ \RF(f()) if coin =0
pp & PrmGen(G) Return y.
RF(-) & Func(D,R)
R
<+ D

coin £ A°C)(pp)

Return (coﬁ < coin).

Fig. 2. Left: The security experiment for a CIH. Right: The definition of the oracle
O in the experiment.

A eNand z € {0,1}*,)7 and it is required that for all A € N, if G & GGen(1*)
and pp < PrmGen(G), then the domain and the range of functions in Fpp are
identical to the domain of Eval(pp,).

For the publicly parameterized function CIH, the group generator GGen,
the function class F, and an adversary A, we define the security experiment
Exptngf,A()\) as described in Figure 2.

Note that in the experiment, the oracle O(-) that A has access to, takes
f € Fxpp as input, and returns either the evaluation result CIH(pp, f(z)) or
the output RF(f(x)) of the random function RF, depending on the challenge bit
coin € {0, 1}.

Definition 2 (Security of CIH). Let CIH be a publicly parameterized function
with respect to a group generator GGen, and let F be a function class. We say that
CIH is a CIH for F (or, F-CIH) with respect to GGen, if for all PPT adversaries
A, the advantage AdvEiy geen, 7.4 (N) = 2 - | PrExpt&iy ggenr 4 (M) = 1] = 1/2| is
negligible.

Remark 4 (On the difference between CIHs and related-key secure PRFs (or
PRGSs)). This remark provides additional information for readers who are familiar
with related primitives. We note that Definition 2 is essentially the same as
the definition of a related-key secure pseudorandom generator (RKA-PRG) by
Bellare and Cash [5, Section 6, Equation (27)]. A very minor difference is that
we explicitly consider public parameters in the syntax. An RKA-PRG can be
seen as a generalized version of correlated-input pseudorandomness by Goyal,
O’Neill, and Rao [30, Definition 7]. If A in the security of a CIH must declare
functions that will be queried to the oracle at the beginning of the experiment
(i.e., selective security) and RF(f(z)) is replaced by a uniformly random element
in R, then it is the same as correlated-input pseudorandomness. The reason why
we select the name “CIH” is that it is well-suited for our usage.

17 For a class of functions F considered for CIHs, we allow each member of F to be
parameterized by not only A € N but also z € {0,1}*. The role of z is to associate
the functions with a public parameter pp generated by Setup(l)‘). See the security
experiment in Figure 2.

16 N. Attrapadung, T. Matsuda, R. Nishimaki, S. Yamada, T. Yamakawa

Moreover, an RKA-PRF implies an RKA-PRG!®. Therefore, the RKA-PRF
(or RKA-PRG) by Bellare and Cash [5, Theorem 4.2] and the RKA-PRF by
Abdalla, Benhamouda, Passelégue, and Paterson [1, Theorem 7] are secure CIHs
under our definition. (Of course, supported function classes are the same as
theirs.)

In Sections 3 and 5 , we introduce two concrete function classes for CIHs used
as building blocks in our proposed CPRFs.

3 Building Block: Correlated-input Secure Hash

In this section, we construct a CIH for group-induced functions on QRy, Its
security under the DDH assumption is proven in the full version [3]. The definition
of group-induced functions is given below.

Quadratic Residuosity groups. A safe prime ¢ is a prime such that ¢ = 2p + 1 for
some p which is also a prime. We denote by QR the subgroup of all quadratic
residues in Zj. From an elementary result, we have that QR, is a group of prime
order p. We denote by SPGGen(1*) a group generator that outputs a group
description (G, q) where ¢ is a safe prime and ¢ = £2(2*).

CIH for group-induced functions. The notion of (component-wise) group-induced
functions with respect to a group generator GGen is a function class yeinde —
{Wf:'z"dc})\eN7ze{o71}* satisfying the following property for all (A, z) € N x {0, 1}*:
If 2z can be parsed as a tuple (G, n, 2’) so that G = (G, q) is a group description
output by GGen(1*), n € N, and 2’ € {0,1}*, then we have W& = (¢ :
(Zy)" — (Zy)" | @ € (Z;)"}, where for each @ € (Z;)", ¥a(%) = axi e ks
and x denotes the component-wise multiplication in Z.

Naor-Reingold PRF. We recall the Naor-Reingold PRF [36] denoted by NR. The
setup takes 1* as input and outputs pp = (G, g,n) where G is a group of prime
order ¢ output from GGen(1*). The key msk = {z;}7, is chosen as z; & Zy,
and the evaluation of the function on input (uy,...,u,) € {0,1}" is defined as
NR((zo, - -+ @n), (U1, oy un)) = g™° II.=" Our PRF used in our CIH, denoted
by NR', is a variant of NR. NR’ is defined as NR, except that msk = {z;}7, is
chosen as x; & QR,, instead of x; & Zy. In particular, the function evaluation
of NR" matches NR, but its domain is restricted to QR " x {0, 1}".

CIH Construction. We are now ready to describe our CIH for the (component-
wise) group-induced functions with respect to SPGGen. It can be considered
as a variant of the hash function by Bellare and Cash [5], denoted as ClHgc,
which we recall as follows. The public parameter consists of the description of G,

18 If we fix an input of a PRF and view its key as a seed of a PRG, then the former
can be seen as a latter.

Constrained PRFs for NC*' in Traditional Groups 17

which is a cyclic group of order ¢, output from the group generator GGen(1%), a
generator g of G, and a collision-resistant hash function He, : G" ™ — {0, 1}"2.
The evaluation is defined as follows.

The function is ClHgc : (Z)" "' — G and

ClHgc (7) = NR(a?, 11||Hc,(NR(;E’, €0), .-y NR(Z, en)))

where ey = 0" and e, = 0F~1||1]|0"* for k € [n].

Our variant of CIH is exactly the same as ClHgc but the domain is restricted.
In more detail, our CIH is operated on QRZH — G with exactly the same
evaluation as CIHgc. Note that due to our restriction on the domain, the NR

evaluation inside the function is thus restricted to NR'. We denote this CIH as
ClH..
BC

Theorem 1. If the DDH assumption holds with respect to SPGGen and Hc, is
a CRHF, then CIHévC is a secure CIH for the (component-wise) group-induced
functions with respect to SPGGen.

The proof of Theorem 1 is given in the full version [3].

4 CPRF for NC! Circuits

In this section, we first show a construction of a CPRF for NC! circuits with
no-evaluation security, where an adversary is not allowed to make evaluation
queries (Section 4.1). We then show that by combining the scheme with our CIH
in Section 3, we can upgrade the security to the selective single-key security,
where the adversary is allowed to make evaluation queries unbounded times after
it is given the secret key (Section 4.2). We also show that the adaptive security
can be achieved in the random oracle model in the full version [3].

4.1 Our Basic Constrained PRF

Here, we give a construction of a CPRF for NC' with no-evaluation security.
We then prove that the scheme has additional properties that we call semi-
evaluability and universality. These properties will be used in security proofs of
our selectively/adaptively secure CPRF for NC! in the standard /random-oracle
model.

Notations. In the following, we will sometimes abuse notation and evaluate
a boolean circuit C(-) : {0,1}* — {0,1} on input y € R for some ring R. The
evaluation is done by regarding C(-) as the arithmetic circuit whose AND gates
(y1,y2) — y1 Aya being changed to the multiplication gates (y1,y2) — y1y2, NOT
gates y — —y changed to the gates y — 1 —y, and the OR gates (y1,y2) — y1 Vo
changed to the gates (y1,y2) — y1 + y2 — y192. It is easy to observe that if the
input is confined within {0,1}¢ C R, the evaluation of the arithmetized version

18 N. Attrapadung, T. Matsuda, R. Nishimaki, S. Yamada, T. Yamakawa

of C(-) equals to that of the binary version. (Here, we identify ring elements
0,1 € R with the binary bit.) In that way, we can regard C(-) as an {-variate
polynomial over R. The degree of C(-) is defined as the maximum of the total
degree of all the polynomials that appear during the computation.

Class of Functions. Let n = poly()), z(n) = poly(n), and d(n) = O(logn) be
parameters. The function class that will be dealt with by the scheme is denoted
by FNC' = {f}j&;)},\eN, where f}jr?l consists of (Boolean) circuits f whose
input size is n(\), the description size is z(n), and the depth is d(n). We can set
the parameters arbitrarily large as long as they do not violate the asymptotic
bounds above, and thus the function class corresponds to NC! circuits with
bounded size. The following lemma will be helpful when describing our scheme.

Lemma 1. Let n = poly(X). There exists a family of universal circuit {Up, }nen
of degree D(X) = poly(\) such that U,(f,x) = f(z) for any f € fi\fg(l)\) and
z € {0,1}™.

Proof. Due to the result by Cook and Hoover [20], there exists a universal circuit
U, (+) of depth O(d) = O(logn) and size poly(n, z,d) = poly(A). Furthermore,
the degree of U, (-) is bounded by 2°(?) = poly(n) = poly()\). =

Construction. Let FNC' — {]—'/l\\f,gl }aken be the family of the circuit defined as
above and {U,, },en be the family of the universal circuit defined in Lemma 1. Let
the parameter D(A) be the degree of the universal circuit (chosen as specified in
Lemma 1). Since we will fix n in the construction, we drop the subscripts and just

denote FNC' and U in the following. We also let HGen be any group generator.
The description of our CPRF CPRFyg = (Setup, KeyGen, Eval, Constrain, CEval)
is given below.

Setup(1*): It obtains the group description # = (H, p) by running H < HGen(1%).
It then outputs the public parameter pp := #H."°

KeyGen(pp): It chooses (b1, ...,b.) & 7z, & Zs, and g, hy, ..., hy & H. Then
it outputs msk :== (by,...,b,,, g, h1,. .., hp)-

Eval(msk, z): Given input € {0,1}", it computes and outputs

X = gU((bl7'“7b2)7(ml»“'7mn))/a . H hfl
i1€[n]

Constrain(msk, f): It first parses (b1, ...,b,, @, g, h1,...,hy,) < msk. Then it sets
b, == (b; — fi)a=' modp foric [z]
where f; is the i-th bit of the binary representation of f. It then outputs
D—1
Skf::(fab/la"'7blzvgvgaa~~'aga 7h17'~'7hn)‘
19 Here, we intentionally use the symbol H and HGen instead of G and GGen. Looking

ahead, in Section 4.2, the latter symbols will be used to represent yet another group
of order q and corresponding group generator. There, we should require H to be QR,,.

Constrained PRFs for NC*' in Traditional Groups 19

CEval(sky, x): It parses (f,b},...,0.,9,9%,... ,go‘Dfihl7 ..., hy) < sky. As proved
in Lemma 2 below, it is possible to efficiently compute {c;};c[p; that satisfies

D
U((b1,y...,0.),(21,...,2n)) :f(x)—l—Zciai (1)

iil)ci TT5Z, A5 and

from sky and z. If f(z) =0, it computes X = Hil(ga i1

outputs X. Otherwise it outputs L.

Correctness and semi-evaluability. In order to prove the correctness, it
suffices to show the following lemma.

Lemma 2. Given sky, x, one can efficiently compute {c;}ic[p) satisfying Eq.(1).

Proof. The algorithm evaluates the circuit U(-) on input (0jZ + f1,...,b.Z +
Jz321,. .., 2n) to obtain {¢;}ieqo,1,....p} such that

UBZA+ fr,. . V.24 foymn,..zn) =co+ Y o2 (2)
i€[D]

where Z denotes the indeterminant of the polynomial ring Z,[Z]. Note that the
computation is done over the ring Z,[Z] and can be efficiently performed, since
we have D = poly()). We prove that {c;}ic[p) actually satisfies Equation (1).
To see this, we first observe that by setting Z = 0 in Equation (2), we obtain
co =U(f1,- s fey@1...,2) = f(x). To conclude, we further observe that by
setting Z = v in Equation (2), we recover Equation (1), since we have b; = b;a+ f;
by the definition of b;-. This completes the proof of the lemma. m

The lemma implies an additional property of the CPRF that we call semi-
evaluability, which will be useful in our security proof. We formally state it in
the following lemma:

Lemma 3. There exist deterministic and eﬁ?cz’lent algorithms SEval and Aux
satisfying the following property. For all f € FNC and x such that f(z) = 1 and
for all possible msk < KeyGen(pp), sk ¢ & Constrain(msk, f), we have

SEval(sky, z) - Aux(msk) = Eval(msk, z),

W

where indicates the group operation on H. (We refer to this property of our
CPRF as semi-evaluability.)

Proof. We define SEval and Aux as follows.

SEval(sky, z): It first parses (f,b},...,b.,9,9%, ... g ha, hp) < sky. It
then compute {c;},c[p] that satisfies Equation (1). It finally computes X' :=
Hi’il(ga"’_l)ﬁ e h3? and outputs X'.

Aux(msk): Tt parses (by,...,b.,a, g, hi,..., hy) < msk and outputs g'/«.

The lemma readily follows from Equation (1) and f(z)=1. =

20 N. Attrapadung, T. Matsuda, R. Nishimaki, S. Yamada, T. Yamakawa

Universality. The following lemma indicates that the above scheme can be seen
as a universal hashing. The only reason why we need h1, ..., h, in pp is to ensure
this property. Formally, we have the following lemma. The lemma will be used
later in this section.

Lemma 4. For all z,2" € {0,1}" with x # 2’ and pp output by Setup(1*), we
have

Pr[msk < KeyGen(pp) : Eval(msk,x) = Eval(msk,z’) | = %.

Proof. Since x # a/, there exists an index ¢ such that z; # x}. Let us fix
msk except for h;. Then, we can see that there exists a unique h; such that
Eval(msk, 2) = Eval(msk, 2') holds. Since h; is chosen uniformly at random from
H, the lemma follows. m

No-evaluation security.

Theorem 2. If the (D — 1)-DDHI assumption holds with respect to HGen, then
CPRFNE dleﬁned above satisfies no-evaluation security as a CPRF for the circuit
class FNC .

Proof. Let A = (A1, As) be any no-evaluation adversary that attacks the no-
evaluation security of CPRF. We prove the above theorem by considering the
following sequence of games.

cprf

CPRFyg, FNC! ,A(A)
against the no-evaluation adversary A = (A;,.A2). Namely,

Game 0: This is the real single-key security experiment Expt

coin & {0,1} where the challenge oracle Ocha(+) is
pp & Setup(1*) described below.

R
ms*k ;_ KeyGen(pp) Ochal(z*): Given z* € {0,1}" as in-
X" < HR put, it returns Eval(msk,z*) if
(f, stf) < Ai(pp) coin = 1 and X* if coin = 0.
sk < Constrain(msk, f)
on & Agc"a'(')(skf,stA) We recall that. Ochal(+) is queried at

Z_ 5 most once during the game.

Return (coin = coin)

Game 1: In this game, we change the way sk is sampled. In particular, we change
the way of choosing {b;}c[») and {b};c[.). Namely, given the constraining
query f from Aj, the game picks (bf,...,b.) & Zy, o & Z;, and sets
b; :=bla+ fi mod p for i € [2].

Game 2 In this game, we change the challenge oracle Ocpa(+) as follows:
Ochal(z*): Given z* € {0,1}" as input, it returns SEval(sk, 2*) - Aux(msk)

if coin =1 and X* if coin = 0.

Game 3: In this game, we further change the challenge oracle as follows:

Ochai(2z*): Given z* € {0,1}™ as input, it first picks ¢ & H and returns
SEval(sky, z) - ¢ if coin = 1 and X* if coin = 0.
Game 4 In this game, the oracle is changed as follows.

Constrained PRFs for NC*' in Traditional Groups 21

Ocha(2*): Given z* € {0,1}™ as input, it returns X* regardless of the value
of coin.

Let T; be the event that Game ¢ returns 1.

Lemma 5. It holds that Pr[T1] = Pr[To], Pr[T2] = Pr[T4], Pr[Ts] = Pr[T4], and
|Pr[T4] —1/2| =0.

Lemma 6. If the (D — 1)-DDHI assumption holds, then |Pr[Ts] — Pr[T2]| =
negl(\).
Therefore, the advantage of A is Adv?;;FNE,]—'Ncl,A(A) =2-|Pr[To] —1/2| =

negl(A). See the full version for proofs of these lemmas. m

4.2 Selectively-secure CPRF in the Standard Model

Here, we give our CPRF for NC! with selectively single-key security in the
standard model. The scheme is obtained by combining our CPRF CPRFyg =
(Setupyg, KeyGenyg, Evalng, Constrainyg, CEvalyg) for the function class FNC' iy
Section 4.1 with our CIH CIHg. = (PrmGen, Evalz.) constructed in Section 3.
For the simplicity of the notation, we will denote Eval s (ppci -) by CIHg(+) when
PPciy is clear. Let SPGGen denote the group generator defined in Section 3. The
construction of our scheme CPRFyc1.s = (Setup, KeyGen, Eval, Constrain, CEval)
is as follows:

Setup(1*): Tt first runs Gy & SPGGen(1*) to obtain the group description Gy :=
(G, q). Recall that Gy also defines the description of the group QR, C Z;
of prime order p = (¢ — 1)/2. We denote the description of the group by
G1 := (QR,, p). It then samples ppcy & PrmGeng.(Go). Let ppye = G1. It
outputs pp = (PPcin; PPNE)-

KeyGen(pp): It first parses (ppciy, PPNe) < pp and runs msk; < KeyGenyg(ppye)
for ¢ € [m]. It then outputs msk := (mskq, ..., msk,,).

Eval(msk,z): It first parses (msky, ..., msk,,) < msk and outputs

Y = CIHB~C<EvaINE(msk1, x), ... EvaINE(mskm,m)).

where we recall that we have CIlHg : (QR,)™ — G and Evalng(msk;,-) :
{0,1}" — QR for i € [m] (for simplicity, we omit writing ppcy and ppyg
here).
Constrair>1(msk,f): It first parses (mskj,...,msk,,) < msk. It then computes
sk ; < Constrainyg(msk;, f) for i € [m] and outputs sk == (sky.1, ..., SKf.m)-
CEval(sky, x): It first parses (skyfi,...,5kfm) < sky. It then computes X; =
Evalng(sky,i,) for i € [m] and outputs CIHg (X1, ..., Xin).

Remark 5. In the above, we need m instances of CPRFyg, which may seem
redundant. This is necessary because the domain of the CIH constructed in
Section 3 is QR™ for m = poly(\), and thus input of the CIH must be an
m-~dimensional vector. If we had a CIH for group-induced function on QR, then
the m times blowup could be avoided.

22 N. Attrapadung, T. Matsuda, R. Nishimaki, S. Yamada, T. Yamakawa

Remark 6. The algorithm Setup implicitly uses the group generator SPGGen’ that
first runs SPGGen to obtain G = (G, ¢) and then outputs the group description
(QR,, p). Here, from the technical reason, we assume that the description of QR,
implicitly contains that of G as well. While our construction in Section 4.1 can
be instantiated with any prime-order group generator HGen, our scheme above
requires to instantiate the scheme with the specific group generator SPGGen’.

It is easy to observe that the correctness of the above scheme follows from
that of the underlying schemes. The following theorem addresses the security of
the scheme.

Theorem 3. The above construction CPRFnc1.sq 5 a selective single-key secure
CPRF for the function class FNC' if the (D — 1)-DDHI assumption holds with
respect to SPGGen’ (see Remark 6) and the DDH assumption holds with respect
to SPGGen.

Proof. The security of the scheme will be proven by the no-evaluation security,
semi-evaluability, and universality of CPRFyg as well as correlated-input security
of ClHg for (component-wise) group-induced functions. Let A = (A1, A2) be
any selectively admissible adversary that attacks the selective single-key security
of CPRF. For simplicity, we assume that Ay never makes the same query twice,
makes a challenge query only once (see Remark 2), and all evaluation queries x
made by Ay satisfy f(z) = 1. In the following, @ denotes the upper bound on
the number of the access to the evaluation oracle Eval(msk, -) made by A;. We
prove the theorem by considering the following sequence of games.

cprf

CPRF NGl .sa
against the selective adversary A = (A, As) where the coin of the game is
fixed to coin = 1. Namely,

Game 0: This is the actual single-key security experiment Expt et A(/\)

where we describe Eval(msk,-) and

pp < Setup(1?*) Ochal(-) below.
R
msk KReyGen(pp) Eval(msk, -): Given z € {0,1}" as in-
(f; Stf) < Ai(pp) put, it returns Eval(msk, z).
sky < Constrain(msk, f) Ochal(+): Given z* € {0,1}" as input,
coin & A?C“a'(')’Eval(mSk")(skf,stA) it returns y* = Eval(msk, 2*). (Re-
Return coin call that we set coin = 1 in this
game.)

Game 1: In this game, we do not differentiate the challenge oracle Ocpa(-) from
Eval(msk, -) and identify them. Namely, A5 is equipped with the following
oracle Omerge(+) defined below, instead of Ocpal(-) and Eval(msk, -):
OMerge(+): Given the j-th query z() € {0,1}" from A, the oracle first

computes XZ-(J) := Evalyg(msk;, 20)) for i € [m], and then returns y) :=
CHg (X, ..., x).
(We note that Omerge(+) simply returns Eval(msk, z) given x.) Since we do
not differentiate the challenge query z* from the evaluation queries in this
game, we have 2* = zU) for some j € [Q + 1].

Constrained PRFs for NC*' in Traditional Groups 23

Game 2: Let Col be the event that there exist j; # ja € [@ + 1] such that
(Xl(jl)7 .. ,X,(,{I)) = (Xl(jZ)7 .. ,X,S{”). If Col occurs, the game immediately
aborts and outputs a uniformly random bit. The rest is the same as the
previous game.

Game 3 In this game, we change the way {Xi(J)}ie[m],jE[Q+1] is created. In par-
ticular, Omerge(-) works as follows:

OMerge(+): Given the j-th query 2(9) € {0,1}" from Ay, it proceeds as follows.
There are two cases to consider:
1. For the first query (1, it first computes

Xl.(l) = Evalye(mskg, zV) for i € [m].

Then, it computes and returns y(*) == CIHévC(Xfl)7 ... ,XT(,})).
2. To answer queries 1) with j > 1, it first computes
Xi(j) = Xi(l) - SEvalg(sks.i, ™M)~ - SEvalng(sky s, 29)) (3)
for i € [m]. Then it computes and returns /) = CIHévC(ij)7 e ,XT(,{')).
Note that during the above phase, as soon as the game finds j1 # jo €
[@Q + 1] such that (ijl), . 7Xﬁ,{l)) = (Xl(jz),...,XT(,{z)), the game aborts
and outputs a random bit (as specified in Game 2).
Game 4 We define Col’ as the event that there exist j; # jo € [Q + 1] such that

SEVE]h\]E(Skf’i7 J,‘(jl)) = SEVE]|NE(S|(]071'7 x(h)) Vi € [m]

In this game, the game aborts when Col occurs instead of Col.
Game 5: In this game, we change the way XZ-(l) is chosen. In particular, the first
item of the description of the oracle Omerge(-) in Game 3 is changed as follows:
1. For the first query (1), the oracle sets
x & QR, fori e [m).
Then, it computes and returns y1) := CIHévC(Xfl), . ,X,(,})).

Game 6 In this game, we further change the oracle Omerge(+) as follows:
OMerge(): Given the j-th query z() € {0,1}" from Ay, it picks y) & G

and returns it.

Game 7 This is the real game with the coin being fixed to coin = 0. Namely, A
is equipped with the oracles Ocpal(-) and Eval(msk, -) that work as follows.
(We do not consider Omerge(-) any more.)

Eval(msk,) : Given x € {0,1}™ as input, it returns Eval(msk, z).
Ochal(): Given z* € {0,1}" as input, it picks y* <& G and returns it. (Recall
that we set coin = 0 in this game.)

Let T; be the event that Game ¢ returns 1.

Lemma 7. Pr[T;] = Pr[Ty].

24 N. Attrapadung, T. Matsuda, R. Nishimaki, S. Yamada, T. Yamakawa

Proof. Since coin = 1 in Game 0, we have Ocpa(-) = Eval(msk, -). Therefore, this
is only the conceptual change. m

Lemma 8. If m > n, |Pr[To] — Pr[T1]| = negl(A).

See the full version [3] for the proof of this lemma. This is proved by the
union bound and the universality of CPRFyg (Lemma 4).

Lemma 9. Pr[T3] = Pr[To].

Proof. We prove that the change is only conceptual. The difference between the

games is that Xi(j) is computed as EvaINE(mski,x(j)) in Game 2, whereas it is
computed as the right-hand side of Equation (3) in Game 3. We show here that
they are actually equivalent. The right-hand side of Equation (3) equals to

Xi(l) . SEvaINE(skf,i,:1:(1))*1 - SEvalng(sky 4, x(j))
= Auxng(msk;) - SEvaINE(skf,i,x(l)) . SEvaI,\,E(skf’i,ac(l))_1 . SEvalNE(skf,i,x(j))
= Auxng(msk;) - SEvalne(sky ;, x(j))
= EvaINE(mski,x(j))

where we used our simplification assumption that f(z() = f(z()) = 1 and
semi-evaluability (Lemma 3) in the first and the last equations above. m

Lemma 10. Pr[T4] = Pr[T3].

Proof. Tt suffices to show that the abort conditions Col and Col” are equivalent.
We have
SEvaINE(skfyi,x(jl)) = SEvaINE(skf7i,x(j2)) Vi € [m)]
< Auxne(msk;) - SEvalne(sky,i, x(jl))
= Auxng(msk;) - SEvaINE(skm,x(”)) Vi € [m)]
& XU = xU) viem).

Hence, the change is only conceptual. The lemma readily follows. m

Lemma 11. If CPRFng satisfies no-evaluation security when instantiated by the
group generator HGen := SPGGen’, we have | Pr[Ts] — Pr[T4]| = negl()).

Proof. For the sake of the contradiction, let us assume | Pr[T5] — Pr[T4]| is non-
negligible for the adversary A = (A;,.A2). We consider the following hybrid
games for k € {0,1,...,m}:

Game 4.k: This is the same as Game 4 with the following difference. In this game,
Xi(l) is set as Xi(l) = Evalyg(msk;, (V) when i > k and X, & QR, when
i < k.

Constrained PRFs for NC*' in Traditional Groups 25

By the definition, we have Game 4.0 (resp. Game 4.m) is equivalent to Game 4
(resp. Game 5). Therefore, we have

| Pr[Ts] — Pr[T4]| = Pr[Tam] — Pr[Tao]| > Z | Pr[Tax] — Pr[Tar—1]|
ke[m]

where Pr[T;] denotes the probability that Game 4.k outputs 1. By the above
inequality, we have that there exists an index k* such that | Pr[T4 g«] —Pr[T4 5= —1]]|
is non-negligible. We then construct an adversary B = (B1, By) that breaks the
no-evaluation security of the underlying scheme CPRFyg. The description of B is
as follows.

Bi(ppyg): Given the group description ppye = (QR,, p), By first recovers the
group description Gy = (G, ¢) from (QR,, p) (See remark Remark 6). B; then

samples ppciy & PrmGenévC(go) and sets pp := (ppciu, PPne)- It then runs

(f,sta) & Ai(pp) and outputs (f,sts == st).

B;D Cha'(')(sk 7,stg): Here, we denote the master secret key of the no-evaluation
security game (played for B) by msk’. The task of By is to distinguish
whether Ocpa(-) corresponds to Evalyg(msk’,-) or RF(-). First, By picks
msk; < KeyGenye(ppye) for i € {k* +1,...,m}. By then runs As(sks,st)
and simulates Omerge () for Ay as follows:

— To answer the first query @D from As, By submits the same M to
its challenge oracle Ocpal(+). Then, Bs is given R. Then, Bs sets Xi(l) =
SEvalng(mskg, (M) for i > k* + 1, X,g) = R, and samples Xi(l) £ QR,
for i < k* — 1. Finally, By returns y!) = CIHévC(Xfl), . ,X,(,})) to As.

— To answer the query zU) with j > 1 from Ay, By first parses sky —
(skf1,...,skpm) and computes x99 = XZ.(l) - SEvalyg(sky i, 2M)~1

SEvalne(skf i, 29)) for i € [m]. It then returns y/) = CIHévC(Xy), ce 7(,{))
to ./42.
Note that during the above phase, as soon as Bs finds j1 # j2 € [@] such
that (X{jl), .. ,X,(,{I)) = (Xl(jZ), .. ,X},{z)), B> aborts and outputs a random
bit. When A5 terminates with output c/om, By outputs coin as its guess and
terminates.

The above completes the description of B. It is straightforward to see that
B makes only single challenge query. It is also easy to see that B simulates
Game 4.(k* — 1) for A when B’s challenge oracle is Evalyg(msk’, -) and Game 4.k*
when B’s challenge oracle is RF(-). Note that in the former case, B implicitly sets
msky- = msk’. Since B outputs 1 if and only if A outputs 1, we have that B’s
advantage is | Pr[T4 g+«—1] — Pr[T4.x+]|, which is non-negligible. This completes
the proof of the lemma. =

Lemma 12. If CIHB~C is a WM CTH with respect to SPGGen, then we have
| Pr[Tg] — Pr[T5]| = negl(\).

26 N. Attrapadung, T. Matsuda, R. Nishimaki, S. Yamada, T. Yamakawa

Proof. For the sake of the contradiction, let us assume that | Pr[Tg] — Pr[Ts]]| is
non-negligible for the adversary A = (A;,.A2). We then construct an adversary
B that breaks the security of CIHéE as follows.

BO(‘)(ppOH): At the beginning of the game, B is given the public parameter
ppciy of the CIH. Then it parses the group description (G, q) from pp¢y
and obtains the description of another group ppye = (QR,,p). It then
sets pp = (ppcyy, PPye) and runs (f,st4) < A;(pp). It further samples
msk; < KeyGenye(ppye) and sky; < Constrainyg(msk;, f) for i € [m]. Tt
then gives the input sky := (skyf1,...,skf) and sty to Ay and simulates
OMerge () for Ay as follows:

— To answer the first query (1) from Ay, B queries its oracle on input
¢V =(1,...,1) ¢ QR]" to obtain y™). It then passes y(!) to As.

— To answer the query) with j > 1 from A, B first parses sky —
(skf1,...,skf) and computes (j)l(.]) = SEvalng(sk ., #™1) 1. SEvalye(sk 4,
2@) for i € [m]. B then sets ¢U) = (¢§j), . .,¢£,j;)) and queries ¢() to
its oracle. Given the response y) from the oracle, By relays the same
value to As.

Note that during the above phase, as soon as B finds j; # j2 € [@] such
that SEValNE(Skf,i,Z'(jl)) = SEvaINE(skﬁi,x(ﬁ)) for all ¢ € [m], it aborts and
outputs a random bit. When A terminates with output &%, B outputs the
same coin and terminates.

The above completes the description of B. Here, we prove that 3 simulates Game 5
when B’s challenge coin coin’ is 1 and Game 6 when coin’ = 0.

We start by proving the former statement. When coin’ = 1, the CIH security
experiment chooses randomness R = (R1,...,Rm) & QR;" during the game
and the oracle O(+) returns CIH‘;C(E* 5) on input B’s query ¢ = (P1,---,dm) €
QR7". The view of Ay corresponds to Game 5, with Xi(l) being implicitly set as
XM =R, for i € [m].

We next show the latter statement. When coin’ = 0, the CIH security experi-
ment chooses randomness R = (Ry,..., R, & QR" during the game and the
oracle O(-) returns RF(R x ¢) on input B’s query ¢ = (¢1,. .., ¢m) where RF()
is a random function. In order to prove that B simulates Game 6, it suffices to
show that all the queries made by B are distinct. We have

¢§j1) = ¢§j2) = SEvalng(sky,, #U1)) = SEvalyg(sky;, 2192))

by the definition. Since B aborts whenever Col’ occurs, this implies that B does
not make the same oracle query twice. ®

Lemma 13. We have | Pr[T7] — Pr[Tg]| = negl(\).

Proof. This can be proven by applying the same game changes as that from
Game 0 to Game 6 in a reverse order, with the only difference that the challenge
query z* is always returned by a uniformly random group element y* EG m

Constrained PRFs for NC*' in Traditional Groups 27

‘We have
7
rf
AV e, o o et 4 (M) = [Pr(Tr] = Pr[To]| < ; [Pr[T;] — Pr[Ti_1]| = negl(A).

This completes the proof of the theorem. m

5 Private Constrained PRF for Bit-fixing

In this section, we construct a single-key private CPRF for bit-fixing. Our scheme
is selectively secure under the DDH assumption. We also construct an adaptively
secure single-key private CPRF for bit-fixing in the ROM in the full version [3].

Bit-fixing functions. First, we define a function class of bit-fixing functions
formally. The class BF = {BF,, }nen of bit-fixing functions is defined as follows?".
BF, is defined to be the set {BF }.cfo,1,+}» Where

0 ifforalli, ¢ =xorxz; =c

BF.(z) == o v v
1 otherwise

By an abuse of notation, we often write ¢ to mean BF. when the latter is given

as an input to an algorithm.

CIH for affine functions. We introduce the notion of affine functions for CTH
since it is used in our private CPRF for bit-fixing. The class of affine functions
with respect to a group generator GGen, denoted by ¢ = {@iifz}/\eN,zE{O,l}*, is
a function class satisfying the following property for every (A, z) € N x {0, 1}*: If
z can be parsed as a tuple (G, m, z’) so that G = (G, p) is a group description
output by GGen(1%), m € N, and 2’ € {0,1}*, then we have @ﬁffz ={ba5: 2Ly —
Zyt | i € (Zy)™, v € Zy'}, where for each 4, ¥, ¢g3(7) =u© 7+ 7€ Z" and ©
denotes the component-wise multiplication in Z,.

We will use the following theorem that is implicitly proven by Abdalla et al. [1]
(see also Remark 4).

Theorem 4. (implicit in [1, Theorem 7]) Let GGen be a group generator. If
the DDH assumption holds with respect to GGen, then for any polynomial m =
m(\) € 2(N), there exists a $*-CIH CIH,¢ = (PrmGen,g, Eval,g) with respect to
GGen, with the following property: For all X € N, if G = (G,p) < GGen(1*) and
pp & PrmGen,g(G), then pp can be parsed as (G, m,z'") for some 2’ € {0,1}*,
and furthermore Evaly(pp, -) is a function with domain Zy' and range G.

20" According to the definition given in [3], we should give BFy ,, for all A € Nand n € N.
However, since BF,,, is the same for all A if n is fixed in the case of the bit-fixing,
we use this simpler notation.

28 N. Attrapadung, T. Matsuda, R. Nishimaki, S. Yamada, T. Yamakawa

This theorem is derived from the following facts. (1) Abdalla et al. [1] con-
structed RKA-PRF for affine functions based on the DDH assumption. (2) Bellare
and Cash [6] showed that RKA-PRF for a function class implies RKA-PRG
for the same function class. (3) Our definition of CIH is the same as that of
RKA-PRG (See Remark 4).

5.1 Construction in the Standard Model

Construction. Here, we give a construction of a selectively secure private CPRF
for bit-fixing. Our CPRF is built on a $*f-CIH, which is known to exist under
the DDH assumption [1]. Let GGen be a group generator that given 1%, generates
a description of group of an ¢,-bit prime order, and ClH,¢ = (PrmGen.¢, Eval,g)
be a ¢*f-CIH. For simplicity, we denote Evalcin(ppci, -) by ClHae(+) when ppey
is clear. Our scheme CPRF, sta = (Setup, KeyGen, Eval, Constrain, CEval) is de-
scribed as follows. Let n()\) (often denoted as n for short) be an integer, which is
used as the input length of CPRFyiy std-

Setup(1*) : It generates G & GGen(1*) to obtain the group description G :=
(G, p), and runs ppcy < PrmGen,¢(G) to obtain ppey == (G,m, 2'). Recall
that ppcy specifies the domain Z;" and the range R of ClHq. It outputs
PP = (PPcin, 1")-

KeyGen(pp) : It chooses ;4 ; & Z, for i € [n], b € {0,1} and j € [m], and
outputs msk = {Si,b,j}ie[n],be{otl},je[m]-

Eval(msk,) : It parses {sip;}ic[n],be{0,1},je[m] < msk. It computes X; =
> | Sizs; for j € [m]. Then it computes y = ClH¢(X1,..., X,,) and
outputs it.

Constrain(msk, ¢ € {0,1,}"): It parses {s;}icin,be{0,1} < Msk, picks o & Zy
for j € [m]. Then it defines {t; s ; }icin)be{0,1},je[m] as follows. For all i € [n],
be {0,1} and j € [m], it sets

; Sib,j Ife;=*orb=g¢
ibyg =
J Sibj — Oy Ifc; A#xandb=1-—¢

Then it outputs sk. := {ti . j }icn],pef0,1},5€[m]- .
CEval(ske, z): It parses {t;p,; }ic[n],be{0,1},j€[m] < SKe, computes X := > 1" | t; 4,
for j € [m] and y := ClH.¢ (X1, ..., X;n), and outputs y.

Theorem 5. If CIH is a ®*T-CIH and 22"~ is negligible, then the above
scheme is a selectively single-key secure CPRF for BF with selective single-key
privacy.

We prove the correctness and Theorem 5 in the full version [3].

Acknowledgement. We thank Keita Xagawa for letting us know the relation
between CIH and RKA-PRG. The first, second, and fourth authors were supported
by JST CREST Grant No. JPMJCR1688. The fourth author was supported by
JSPS KAKENHI Grant Number 16K16068.

Constrained PRFs for NC*' in Traditional Groups 29

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

M. Abdalla, F. Benhamouda, A. Passeléegue, and K.G. Paterson. Related-key
security for pseudorandom functions beyond the linear barrier. CRYPTO 2014,
Part I, pp. 77-94, 2014.

H. Abusalah, G. Fuchsbauer, and K. Pietrzak. Constrained PRFs for unbounded
inputs. CT-RSA 2016, pp. 413-428, 2016.

N. Attrapadung, T. Matsuda, R. Nishimaki, S. Yamada, and T. Yamakawa. Con-
strained PRFs for NC! in Traditional Groups. JACR Cryptology ePrint Archive,
2018:154, 2018.

D. Boneh and X. Boyen. Short signatures without random oracles. EURO-
CRYPT 2004, pp. 56-73, 2004.

M. Bellare and D. Cash. Pseudorandom functions and permutations provably
secure against related-key attacks. JACR Cryptology ePrint Archive, 2010:397, 2010.
Version 20150729:233210. Preliminary version appeared in CRYPTO 2010.

M. Bellare and D. Cash. Pseudorandom functions and permutations provably secure
against related-key attacks. CRYPTO 2010, pp. 666—684. 2010.

D. Boneh and M.K. Franklin. Identity-based encryption from the weil pairing.
SIAM J. Comput., 32(3):586-615, 2003.

A. Banerjee, G. Fuchsbauer, C. Peikert, K. Pietrzak, and S. Stevens. Key-
homomorphic constrained pseudorandom functions. TCC 2015, Part 11, pp. 31-60,
2015.

B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S.P. Vadhan, and
K. Yang. On the (im)possibility of obfuscating programs. J. ACM, 59(2):6:1-6:48,
2012.

E. Boyle, S. Goldwasser, and I. Ivan. Functional signatures and pseudorandom
functions. PKC 2014, pp. 501-519, 2014.

N. Bitansky. Verifiable random functions from non-interactive witness-
indistinguishable proofs. TCC 2017 (to appear), 2017.

D. Boneh, S. Kim, and H-W. Montgomery. Private puncturable PRFs from standard
lattice assumptions. EUROCRYPT 2017, Part I, pp. 415-445, 2017.

D. Boneh, K. Lewi, and D.J. Wu. Constraining pseudorandom functions privately.
PKC 2017, Part 11, pp. 494-524, 2017.

Z. Brakerski, R. Tsabary, V. Vaikuntanathan, and H. Wee. Private constrained
PRFs (and mode) from LWE. TCC 2017 (to appear), 2017.

Z. Brakerski and V. Vaikuntanathan. Constrained key-homomorphic PRFs from
standard lattice assumptions - or: How to secretly embed a circuit in your PRF.
TCC 2015, Part 11, pp. 1-30, 2015.

D. Boneh and B. Waters. Constrained pseudorandom functions and their applica-
tions. ASTACRYPT 2013, Part II, pp. 280-300, 2013.

E. Boyle, N. Gilboa, and Y. Ishai. Breaking the circuit size barrier for secure
computation under DDH. CRYPTO 2016, Part I, pp. 509-539. 2016.

R. Canetti and Y. Chen. Constraint-hiding constrained PRFs for NC! from LWE.
EUROCRYPT 2017, Part I, pp. 446-476, 2017.

A. Cohen, S. Goldwasser, and V. Vaikuntanathan. Aggregate pseudorandom
functions and connections to learning. TCC 2015, Part II, pp. 61-89, 2015.

S.A. Cook and H.J. Hoover. A depth-universal circuit. STAM J. Comput., 14(4):833—
839, 1985.

J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Compact e-cash. FURO-
CRYPT 2005, pp. 302-321, 2005.

30

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

N. Attrapadung, T. Matsuda, R. Nishimaki, S. Yamada, T. Yamakawa

N. Déttling and S. Garg. Identity-based encryption from the diffie-hellman assump-
tion. CRYPTO 2017, Part I, pp. 537-569, 2017.

A. Deshpande, V. Koppula, and B. Waters. Constrained pseudorandom functions
for unconstrained inputs. EUROCRYPT 2016, Part I, pp. 124-153, 2016.

G. Fuchsbauer, M. Konstantinov, K. Pietrzak, and V. Rao. Adaptive security of
constrained PRFs. ASTACRYPT 2014, Part II, pp. 82-101, 2014.

S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lattices.
EUROCRYPT 2013, pp. 1-17, 2013.

S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. SIAM J.
Comput., 45(3):882-929, 2016.

O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.
Journal of the ACM, 33(4):792-807, October 1986.

R. Goyal, S. Hohenberger, V. Koppula, and B. Waters. A generic approach to
constructing and proving verifiable random functions. TCC 2017 (to appear), 2017.

D. Goldenberg and M. Liskov. On related-secret pseudorandomness. TCC 2010,
pp- 2565-272, 2010.

V. Goyal, A. O’Neill, and V. Rao. Correlated-input secure hash functions. TACR
Cryptology ePrint Archive, 2011:233, 2011. Version 20110517:062434. Preliminary
version appeared in TCC 2011.

S. Gorbunov, V. Vaikuntanathan, and H. Wee. Functional encryption with bounded
collusions via multi-party computation. CRYPTO 2012, pp. 162-179, 2012.

D. Hofheinz, A. Kamath, V. Koppula, and B. Waters. Adaptively secure constrained
pseudorandom functions. TACR Cryptology ePrint Archive, 2014:720, 2014.

S. Hohenberger, V. Koppula, and B. Waters. Adaptively secure puncturable
pseudorandom functions in the standard model. ASTACRYPT 2015, Part I, pp.
79-102, 2015.

Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers
efficiently. ICRYPTO 2003, pp. 145-161, 2003.

A. Kiayias, S. Papadopoulos, N. Triandopoulos, and T. Zacharias. Delegatable
pseudorandom functions and applications. ACMCCS 2013, pp. 669-684, 2013.

M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-
random functions. Journal of the ACM, 51(2):231-262, 2004.

C. Peikert and S. Shiehian. Privately constraining and programming PRFs, the
LWE way. PKC 2018 (to appear), 2018.

S. Yamada. Asymptotically compact adaptively secure lattice ibes and verifiable
random functions via generalized partitioning techniques. CRYPTO 2017, Part III,
pp- 161-193, 2017.

M. Zhandry. How to avoid obfuscation using witness PRFs. TCC 2016-A, Part 11,
pp- 421-448. 2016.

	Constrained PRFs for NC1 in Traditional Groups

