
Faster Homomorphic Linear Transformations in
HElib?

Shai Halevi1 and Victor Shoup1,2

1 IBM Research
2 New York University

Abstract. HElib is a software library that implements homomorphic
encryption (HE), with a focus on effective use of “packed” ciphertexts.
An important operation is applying a known linear map to a vector of
encrypted data. In this paper, we describe several algorithmic improve-
ments that significantly speed up this operation: in our experiments, our
new algorithms are 30–75 times faster than those previously implemented
in HElib for typical parameters.
One application than can benefit from faster linear transformations is
bootstrapping (in particular, “thin bootstrapping” as described in [Chen
and Han, Eurocrypt 2018]). In some settings, our new algorithms for
linear transformations result in a 6× speedup for the entire thin boot-
strapping operation.
Our techniques also reduce the size of the large public evaluation key,
often using 33%-50% less space than the previous HElib implementation.
We also implemented a new tradeoff that enables a drastic reduction in
size, resulting in a 25× factor or more for some parameters, paying only
a penalty of a 2-4× times slowdown in running time (and giving up some
parallelization opportunities).

Keywords. Homomorphic encryption, Implementation, Linear transformations

1 Introduction

Homomorphic encryption (HE) [13, 5] enables performing arithmetic operations
on encrypted data even without knowing the secret key. All contemporary HE
schemes roughly follow the outline of Gentry’s first candidate, where fresh ci-
phertexts are “noisy” to ensure security. This noise grows with every operation,
until it becomes so large so as to cause decryption errors. This results in a
“somewhat homomorphic” encryption scheme (SWHE) that can only evaluate
low-depth circuits, such a scheme can be converted to a “fully homomorphic” en-
cryption scheme (FHE) using bootstrapping. The most asymptotically efficient
SWHE schemes are based on the hardness of ring-LWE. Most of these scheme

? Supported by the Defense Advanced Research Projects Agency (DARPA) and Army
Research Office(ARO) under Contract No. W911NF-15-C-0236.

use Rp = Z[X]/(F (X), p) as their native plaintext space, with F a cyclotomic
polynomial and p an integer (usually a prime or prime power).

Smart and Vercauteren observed [15] that (for a prime p) an element in this
native plaintext space can be used to encode (via Chinese Remaindering) a vector
of values from a finite field Fpd , for some integer d that depends on F and p, and
that operations on elements in Rp induce the corresponding entry-wise opera-
tion on the encoded vectors. This technique of encoding many plaintext elements
from Fpd in a single Rp element, which is then encrypted and manipulated ho-
momorphically, is called “ciphertext packing”, and the entries in the vector are
called “plaintext slots.” Gentry, Halevi, and Smart showed in [6] how to use
special automorphisms on Rp (which were used for different purposes in [10] and
[2]) to enable data movement between the slots.

HElib [9, 7, 8] is an open-source C++ library that implements the ring variant of
the scheme due to Brakerski-Gentry-Vaikuntanathan [2], focusing on effective use
of ciphertext packing. It includes an implementation of the BGV scheme itself
with all its basic homomorphic operations, as well as higher-level procedures
for data-movement, simple linear algebra, bootstrapping, etc. One can think of
the lower levels of HElib as providing a “hardware platform”, defining a set of
operations that can be applied homomorphically. These operations include entry-
wise addition and multiplication operations on the vector of plaintext values, as
well as data movement, making this “platform” a SIMD environment.

Our Results. In this work, we improve performance of core linear algebra algo-
rithms in HElib that apply publicly known linear transformations to encrypted
vectors. These improvements are now integrated into HElib. For typical, realistic
parameter settings, our new algorithms can run 30-75 times faster than those in
the previous implementation of HElib, where the exact speedup depends on myr-
iad details.3 Our implementation also exploits multiple cores, when available, to
get even further speedups.

Our techniques also reduce the size of the large public evaluation key. In
the old HElib implementation, the evaluation key typically consists of a large
number of large “key switching matrices”: Each of these “matrices” can take
1-4MB of space, and the implementation uses close to a hundred of them. Our
new implementation reduces the number of key-switching matrices by 33–50%
in some parameter settings (that arise fairly often in practice), while at the same
time improves the running time. Moreover, a new tradeoff that we implemented
enables a drastic reduction in the number of matrices (sometimes as few as four
or six matrices overall), for a small price of only 2-4× in performance. This
space efficient variation, however, is inherently sequential, as opposed to our
other procedure than can be easily parallelized.

Applications. Linear transformations of encrypted vectors is a manifestly funda-
mental operation with many applications. For one example, HElib itself makes

3 One could also consider algorithms that apply encrypted linear transformations to
encrypted vectors; some of our new algorithmic techniques may apply to that prob-
lem as well; however, we have not yet implemented this in HElib.

critical use of such transformations in its bootstrapping logic. As reported in [8],
the bootstrapping routine can typically spend 25–40% of its time performing
such transformations. In addition, a new “thin bootstrapping” technique, due to
Chen and Han [4], is useful to bootstrap encrypted vectors whose entries are in
the base field, rather than an extension field. In practice, this is an important
special case of bootstrapping, and our faster algorithms for linear transforma-
tions play an even more significant role here. Our timing results in Section 9
show that for large vectors, these faster algorithms are essential to make “thin
bootstrapping” practical.

As another example, consider a private information retrieval protocol in
which a client selects one value from a database of values held by a server,
while hiding from the server which value was accessed. Using HE, one way to
do this is for the server to encode each value as a column vector. The collection
of all such values held by the server is thus encoded as a matrix M , where each
column in M corresponds to one value. To access the ith value, the client can
send to the server an encrypted unit vector v with 1 in the ith entry (or some
other encrypted information from which the server can homomorphically com-
pute such an encrypted unit vector). The server then homomorphically computes
M × v, which is an encryption of the selected column of M . The server sends
the result to the client, who can decrypt it and recover the selected value.

Techniques. In the linear transformation algorithms previously implemented in
HElib, the bulk of the time is spent moving data among the slots in the en-
crypted vector. As mentioned above, this is accomplished by using special au-
tomorphisms. The main cost of applying such an automorphism to a ciphertext
is actually that of “key switching”: after applying the automorphism to each
ring element in the ciphertext (which is actually a very cheap operation), we
end up with an encryption relative to the “wrong” secret key; we can recover
a ciphertext relative to the “right” secret key by using data in the public key
specific to this particular automorphism — a so-called “key switching matrix.”

The main goals in improving performance are therefore to reduce the number
of automorphisms, and to reduce the cost of each automorphism.

– To reduce the number of automorphisms, we introduce a “baby-step/giant-
step” strategy for computing all of the required automorphisms. This strat-
egy generalizes a similar idea that was used in [8] in the context of boot-
strapping. This strategy by itself speeds up the computation by a factor of
15–20 in typical settings. See Section 4.1.

– We further reduce the number of automorphisms by refactoring a number
of computations, more aggressively exploiting the algebraic properties of the
automorphisms that we use. See Section 4.4.

– To reduce the cost of each automorphism, we introduce a new technique for
“hoisting” the expensive parts of these operations out of the main loop.4

4 “Hoisting” is a term used in compiler optimization to describe the action of “hoist-
ing” a computation out of a loop, so that it is only performed once, instead of in
every loop iteration.

Our main observation is that applying many automorphisms to the same
ciphertext v can be done faster than applying each one separately. Instead
we can perform an expensive pre-computation that depends only on v (but
not the automorphisms themselves), and this pre-computation makes each
automorphism much cheaper (typically, 6–8 times faster). See sections 4.2
and 5.

– Recall that key switching matrices are a part of the public key, we note that
they consume quite a lot of space (typically several megabytes per matrix), so
keeping their numbers down is desirable. In the previous implementation of
HElib, there can easily be several hundred such matrices in the public key. We
introduce a new technique that reduces the number of key-switching matrices
by 33–50% in some parameter settings (that arise fairly often in practice),
while at the same time improves the running time of our algorithms. See
Section 4.3.

– We introduce yet another technique that drastically reduces the number of
key-switching matrices to a very small number (less than 10), but comes
at a cost in running time (typically 2–4 times more slowly as our fastest
algorithms), and cannot be parallelized.5 Achieving this reduction in key-
switching storage without too much degradation in running time requires
some new algorithmic ideas. See Section 4.5.

Outline. The rest of the paper is organized as follows.

– In Section 2, we introduce notation and terminology, and review the basics
of the BGV cryptosystem, including ciphertext packing and automorphisms.

– In Section 3, we review the basic ideas underlying the previous algorithms in
HElib for applying linear transformations homomorphically. We focus on re-
stricted linear transformations, the “one-dimensional” transformations Mat-
Mul1D and BlockMatMul1D. It turns out that considering these restricted
transformations is sufficient: they can be used directly in applications such
as bootstrapping, and can be easily be used to implement more general linear
transformations.

– In Section 4, we give a more detailed overview of our new techniques.
– In Section 5, we give more of the details of our new hoisting technique.
– In Section 6, we present all of our new algorithms for MatMul1D and Block-

MatMul1D in detail.
– In Section 7, we describe how to use algorithms for MatMul1D and Block-

MatMul1D for more general linear transformations.
– In Section 8, we review the bootstrapping procedure from [8], and discuss

how those techniques can be adpated to the “thin bootstrapping” technique
of Chen and Han [4].

– In Section 9, we report on the performance of the implementation of our new
algorithms (and their application to bootstrapping).

5 While the “top level” operations in our linear transformations are inherently sequen-
tial when using this technique, lower-level routines in HElib will still exploit multiple
cores, if available. Such low-level parallelism are usually less effective, however.

2 Notations and Background

For a positive modulus q ∈ Z>0, we identify the ring Zq with its representation
as integers in [−q/2, q/2) (except for q = 2 where we use {0, 1}). For integer z,
we denote by [z]q the reduction of z modulo q into the same interval. This nota-
tion extends to vectors and matrices coordinate-wise, and to elements of other
algebraic groups/rings/fields by considering their coefficients in some convenient
basis (e.g., the coefficient of polynomials in the power basis when talking about
Z[X]). The norm of a ring element ‖a‖ is defined as the norm of its coefficient
vector in that basis.6

2.1 The BGV Cryptosystem

The BGV ring-LWE-based scheme [3] is defined over a ring R
def
= Z[X]/(Φm(X)),

where Φm(X) is the mth cyclotomic polynomial. For an arbitrary integer mod-

ulus N (not necessarily prime) we denote the ring RN
def
= R/NR.

As implemented in HElib, the native plaintext space of the BGV cryptosys-
tem is Rpr for a prime power pr. The scheme is parametrized by a sequence of
decreasing moduli qL � qL−1 � · · · � q0, and an “ith level ciphertext” in the
scheme is a vector v ∈ R2

qi . Secret keys are elements s ∈ R with “small” coeffi-
cients (chosen in {0,±1} in HElib), and we view s as the second element of the
2-vector sk = (1, s) ∈ R2. A level-i ciphertext v = (p0, p1) encrypts a plaintext
element α ∈ Rpr with respect to sk = (1, s) if [〈sk, v〉]qi = [p0+s ·p1]qi = α+pr ·ε
(in R) for some “small” error term, ‖ε‖ � qi/p

r.
The error term grows with homomorphic operations of the cryptosystem,

and switching from qi+1 to qi is used to decrease the error term roughly by the
ratio qi+1/qi. Once we have a level-0 ciphertext v, we can no longer use that
technique to reduce the noise. To enable further computation, we need to use
Gentry’s bootstrapping technique [5]. In HElib, each qi is a product of small
(machine-word sized) primes.

2.2 Encoding Vectors in Plaintext Slots

As observed by Smart and Vercauteren [15], an element of the native plaintext
space α ∈ Rpr can be viewed as encoding a vector of “plaintext slots” containing
elements from some smaller ring extension of Zpr via Chinese remaindering. In
this way, a single arithmetic operation on α corresponds to the same operation
applied component-wise to all the slots.

Specifically, suppose the factorization of Φm(X) modulo pr is Φm(X) ≡
F1(X) · · ·F`(X) (mod pr), where each Fi has the same degree d, which is equal
to the order of p modulo m, so that ` = φ(m)/d. (This factorization can be
obtained by factoring Φm(X) modulo p, followed by Hensel lifting.) Then we

have the isomorphism Rpr ∼=
⊕`

i=1(Z[X]/(pr, Fi(X)).

6 The difference between the norm in the different bases is not very important for the
current work.

Let us now denote E
def
= Z[X]/(pr, F1(X)), and let ζ be the residue class

of X in E, which is a principal mth root of unity, so that E = Z/(pr)[ζ]. The
rings Z[X]/(pr, Fi(X)) for i = 1, . . . , ` are all isomorphic to E, and their direct
product is isomorphic to Rpr , so we get an isomorphism between Rpr and E`.
HElib makes extensive use of this isomorphism, using it to encode an `-vector
of elements in E as an element of the native plaintext space Rpr . Addition and
multiplication of ciphertexts act on all ` slots of the corresponding plaintext in
parallel.

2.3 Hypercube structure and one-dimensional rotations

Beyond addition and multiplications, we can also manipulate elements in Rpr

using a set of automorphisms on Rpr of the form

θt : Rpr −→ Rpr , a(X) 7−→ a(Xt) (mod (pr, Φm(X))).

for t ∈ Z∗m. Since each θt is an automorphism, it distributes over addition and
multiplication, i.e., θt(α+β) = θt(α)+θt(β) and θt(αβ) = θt(α)θt(β). Also, these
automorphisms commute with one another, i.e., θtθt′ = θtt′ = θt′θt. Moreover,
for any integer i, we have θit = θti .

We can homomorphically apply such an automorphism by applying it to the
individual ciphertext components and then performing “key switching” (see [3,
6]). In somewhat more detail, a ciphertext in HElib consists of two “parts,” each
an element of Rq for some q. Applying the same automorphism (defined in Rq)
to the two parts, we get a ciphertext with respect to a different secret key. In
order to do anything more with this ciphertext, we usually have to convert it
back to a ciphertext with respect to the original secret key. In order to do this,
the public-key must contain data specific to the automorphism θt, called a “key
switching matrix”.7 We will discuss this key-switching operation in more detail
below in Section 5.

As discussed in [6], these automorphisms induce a hypercube structure on the
plaintext slots, that depends on the structure of the group Z∗m/〈p〉. Specifically,
HElib keeps a hypercube basis g1, . . . , gn ∈ Z∗m with orders D1, . . . , Dn ∈ Z>0,
and then defines the set of representatives for Z∗m/〈p〉 as

{ge11 · · · genn : 0 ≤ es < Ds, s = 1, . . . , n}.

More precisely, Ds is the order of gs in Z∗m/〈p, g1, . . . , gs−1〉. Thus, the slots are
in one-to-one correspondence with tuples (e1, . . . , en) with 0 ≤ es < Ds. This
induces an n-dimensional hypercube structure on the plaintext space. If we fix
e1, . . . , es−1, es+1, . . . , en, and let es range over 0, . . . , Ds − 1, we get a set of Ds

slots, which we refer to as a hypercolumn in dimension s (and there are `/Ds

such hypercolumns).

7 Note that this “key switching” technique is a generalization of that used to allow
multiplication of ciphertexts.

Using automorphisms, we can efficiently perform rotations in any dimension;
a rotation by i in dimension s maps a slot corresponding to (e1, . . . , es, . . . , en)
to the slot corresponding to (e1, . . . , es + i mod Ds, . . . , en). In other words, it
rotates each hypercolumn in dimension s by i. We denote by ρs the rotation-
by-1 operation in dimension s. Observe that ρis is the rotation-by-i operation in
dimension s.

We can implement ρis by applying either one or two of the automorphisms
{θt}t∈Z∗m defined above. If the order of gs in Z∗m is Ds, then we get by with just
a single automorphism, since

ρis(α) = θgi
s
(α). (1)

In this case, we call s a “good dimension”.
If the order of gs in Z∗m is different from Ds, then we call s a “bad dimension”,

and we need to implement this rotation using two automorphisms. Specifically,
we use a constant “0-1 mask value” µ that selects some slots and zeros-out the

others, and use the two automorphisms ψ
def
= θgi

s
and ψ∗

def
= θgi−D

s
. Then we have

ρis(α) = ψ(µ · α) + ψ∗((1− µ) · α). (2)

The idea is roughly as follows. Even though ψ does not act as a rotation by i in
dimension s, it does act as the desired rotation if we restrict it to inputs with
zeros in each slot whose coordinate in dimension s is at least D − i. Similarly,
ψ∗ acts as the desired rotation if we restrict it to inputs with zeros in each slot
whose coordinate in dimension s is less than D − i. This tells us that µ should
have a 1 in all slots whose coordinate in dimension s is less than D − i, and a 0
in all other slots. Note also that

ρis(α) = µ′ · ψ(α) + (1− µ′) · ψ∗(α), (3)

where µ′ = ψ(µ) is a mask with a 1 is all slots whose coordinate in dimension
s is at least i, and a 0 in all other slots. This formulation will be convenient in
some of the algorithms we present.

2.4 Frobenius and linearized polynomials

We define the automorphism σ
def
= θp, which is the Frobenius map on Rpr (where

θp is one of the automorphisms defined in Section 2.3). It acts on each slot in-
dependently as the Frobenius map σE on E, which sends ζ to ζp and leaves
elements of Zpr fixed. (When r = 1, σ is the same as the pth power map on E.)
For any Zpr -linear transformation on E, denoted M , there exist unique con-

stants λ0, . . . , λd−1 ∈ E such that M(η) =
∑d−1

j=0 λjσ
j
E(η) for all η ∈ E. When

r = 1, this follows from the general theory of linearized polynomials (see, e.g.,
Theorem 10.4.4 on p. 237 of [14]), but the same results are easily seen to hold
for r > 1 as well. These constants are readily computable by solving a system of
equations mod pr.

Using linearized polynomials, we may effectively apply a fixed linear map to
each slot of a plaintext element α ∈ Rpr (either the same or different maps in each

slot) by computing
∑d−1

j=0 κjσ
j(α), where the κj ’s are Rpr -constants obtained by

embedding appropriate E-constants in the slots.

2.5 Key switching strategies

The total number of automorphisms is φ(m), which is typically many thousands,
so it is not very practical to store all possible key switching matrices in the public
key: each such matrix typically occupies a few megabytes of storage, and storing
all of them will consume hundreds of gigabytes. Therefore, we consider strategies
that trade off space for time with respect to key switching matrices.

For almost all applications, we only need the key switching matrices for one-
dimensional rotations in each dimension, as well as for the Frobenius map (and its

powers). For a fixed dimension s = 1, . . . , n of size D
def
= Ds with generator g

def
=

gs, consider the automorphism θ
def
= θgs . In the original implementation of HElib,

one of two key switching strategies for dimension s are used.

Full: We store key switching matrices for θi for i = 0, . . . , D − 1. If s is a
“bad dimension”, we additionally store key switching matrices for θ−i for
i = 1, . . . , D − 1.

Baby-step/giant-step: We store key switching matrices for θj with j =

1, . . . , g − 1, where g
def
= d
√
De (the “baby steps”), as well as for θgk with

k = 1, . . . , h−1, where h
def
= dD/ge (the “giant steps”). If s is a “bad dimen-

sion”, we additionally store key switching matrices for θ−gk with k = 1, . . . , h
(negative “giant steps”).

Using the full strategy, any rotation in dimension s can be implemented using
a single automorphism and key switching if s is a good dimension, and using
two automorphisms and key switchings if s is a bad dimension.

Using the baby-step/giant-step strategy, any rotation in dimension s can be
implemented using at most two automorphisms and key switchings if s is a good
dimension, and using at most four automorphisms and key switchings if s is a
bad dimension. The idea is that to compute θi(v), for a given i = 0, . . . , D − 1,
we can write i = j + gk, so that to compute θi(v), we first compute w = θgk(v),
which takes one automorphism and a key switching, and then compute θj(w),
which takes another automorphism and key switching.

These two strategies give us a time/space trade-off: although it slows down
the computation time by a factor of two, the baby-step/giant-step strategy re-
quires space for just O(

√
D) key switching matrices, rather than the O(D) key

switching matrices required by the full strategy.
The same two strategies can be used to store key switching matrices for

powers of the Frobenius map, so that any power of the Frobenius map can be
computed using either one or two automorphisms. Indeed, it is convenient to
think of the powers of the Frobenius map as defining an additional (effectively
“good”) dimension.

The default behavior of HElib is to use the full key-switching strategy for
“small” dimensions (of size at most 50), and the baby-step/giant-step strategy
for larger dimensions.

3 Matrix multiplication — basic ideas

In [7], it is observed that we can multiply a matrix M ∈ E`×` by a column vector
v ∈ E`×1 by computing

Mv = M0v0 + · · ·+M`−1v`−1, (4)

where each vi is the vector obtained by rotating the entries of v by i positions,
and each Mi is a diagonal matrix containing one diagonal of M .

3.1 MatMul1D: one-dimensional E-linear transformations

In many applications, such as the recryption procedure in [8], instead of a general
E-linear transformation on Rpr , we only need to work with a one-dimensional
E-linear transformation that acts independently on the individual hypercolumns
of a single dimension s = 1, . . . , n. We can adapt the diagonal decomposition of
Eqn. (4) to this setting using appropriate rotation maps on the slots of Rpr . Let

ρ
def
= ρs be the rotation-by-1 map in dimension s, and let D

def
= Ds be the size of

dimension s. If T is a one-dimensional E-linear transformation on Rpr , then for
every v ∈ Rpr , we have

T (v) =

D−1∑
i=0

κi · ρi(v), (5)

where the κi’s are constants in Rpr determined by T , obtained by embedding
appropriate constants in E in each slot. Eqn. (5) translates directly into a simple
homomorphic evaluation algorithm, just by applying the same operations to a ci-
phertext encrypting v. In a straightforward implementation, in a good dimension,
the computational cost is about D automorphisms and D constant-ciphertext
multiplications, and the noise cost is a single constant-ciphertext multiplication.
In bad dimensions, all of these costs would essentially double. In practice, if
the constants have been pre-computed, the computation cost of the constant-
ciphertext multiplications is negligible compared to that of the automorphisms.

One of our main goals in this paper is to dramatically improve upon the
computational cost for performing such a MatMul1D operation.

3.2 BlockMatMul1D: one-dimensional Zpr -linear transformations

In some applications (again, including the recryption procedure in [8]), instead
of applying an E-linear transformation, we need to apply a Zpr -linear map.
Again, we focus on one-dimensional Zpr -linear maps that act independently on
the hypercolumns of a single dimension.

We can still use the same diagonal decomposition as in Eqn. (4), except that
the entries in the diagonal matrices are no longer elements of E, but rather, Zpr -
linear maps on E. These maps may be encoded using linearized polynomials, as
in Section 2.4. Therefore, if T is a one-dimensional Zpr -linear transformation on
Rpr , then for every v ∈ Rpr , we have

T (v) =

D−1∑
i=0

d−1∑
j=0

κi,j · σj
(
ρi(v)

)
, (6)

where the κi,j ’s are constants in Rpr determined by T .

A naive homomorphic implementation of the formula from Eqn. (6) takes
O(dD) automorphisms, but as shown in [8], this can be reduced to O(d + D)
automorphisms. In this paper, we will also present significant improvements to
the BlockMatMul1D algorithm in [8], although they are not as dramatic as our
improvements to the MatMul1D algorithm.

4 Overview of algorithmic improvements

4.1 Baby-step/giant-step multiplication

As already mentioned, [8] introduces a technique that reduces the number of au-
tomorphisms needed to implement BlockMatMul1D in dimension s from O(dD)

to O(d+D), where D
def
= Ds is the size of the dimension, and d is the order of p

mod m. A very similar idea, essentially a baby-step/giant-step technique, can be
used to reduce the number of automorphisms needed to implement MatMul1D
in dimension s from O(D) to O(

√
D). See Section 6 for details.

This technique is distinct from the baby-step/giant-step key switching strat-
egy discussed above in Section 2.5. However, for best results, the two techniques
should be combined in a way that harmonizes the baby-step/giant-step thresh-
olds.

4.2 Hoisting

As we have seen, in many situations, we want to compute ψ(v) for a fixed cipher-
text v and many automorphisms ψ. Assuming we have key switching matrices for
each automorphism ψ, the dominant cost of computing all of these values is that
of performing one key-switching operation for each ψ. Our “hoisting” technique
is a method that refactors the computation, performing a pre-computation that
only depends on v, and whose computational cost is roughly equivalent to a sin-
gle key-switching operation. After performing this pre-computation, computing
ψ(v) for any individual ψ is much faster than a single key-switching operation
(typically, around 6–8 times faster). We describe this idea in more detail below
in Section 5.

4.3 Better key switching strategies in bad dimensions

Recall from Section 2.5 that with the “full” key-switching strategy, in a bad
dimension, we stored key-switching matrices for the automorphisms θi, with
i = −(D − 1), . . . ,−1, 1, . . . , D − 1. To perform a rotation by i on v in the
given dimension, we need to compute θi(v) and θi−D(v), and so with these
key-switching matrices available, we need to perform two automorphisms and
key switchings. However, we do not really need all of these negative-power key
switching matrices. In fact, we can get by with key-switching matrices just for θi,
with i = 1, . . . , D− 1, and for θ−D. To perform a rotation by i on v in the given
dimension, we can compute w = θi(v) and θ−D(w) = θi−D(v). So again, we
need to perform two automorphisms and key switchings. This cuts the number
of key-switching matrices in half without a significant increase in running time.
Moreover, this key-switching strategy aligns well with the strategy discussed
below for decoupling rotations and automorphisms in bad dimensions.

Similarly, for the baby-step/giant-step key-switching strategy in a bad di-
mension, we just store a key-switching matrix for θ−D, rather than for all the
negative “giant steps”. This cuts down the number of key-switching matrices by
a third. Moreover, the number of key switchings we need to perform per rotation
is only 3 (instead of 4).

4.4 Decoupling rotations and automorphisms in bad dimensions

Recall that by Eqn. (3), a rotation by i on a ciphertext v in a given bad dimen-
sion can be implemented as µθi(v) + (1 − µ)θi−D(v), where µ is a “mask” (a
constant with a 0 or 1 encoded in each slot). It turns out that in our matrix-
vector computations, it is best to work directly with this implementation, and
algebraically refactor the computation to improve both running time and noise.
This refactoring exploits the fact that θ is an automorphism. See Section 6 for
details.

4.5 A Horner-like rule with application to a minimal key-switching
strategy

We introduce a new key-switching strategy that reduces the storage requirements
even further, to just 1, 2, or 3 key-switching matrices per dimension. This, com-
bined with a simple algorithmic idea, allow us to implement a variant of the
baby-step/giant-step multiplication strategy that does not run too much more
slowly than when using the full or baby-step/giant-step key-switching strategy.

To do this, we observe that if we need to compute
∑h−1

i=0 ψ
i(vi), where ψ is some

automorphism and the vi’s are ciphertexts, we can do this using Horner’s rule,
provided we have a key-switching matrix just for ψ. Specifically, we can compute

h−1∑
i=0

ψi(vi) = ψ
(
· · ·ψ

(
ψ(vh−1) + vh−2

)
+ · · ·

)
+ v0.

That is, we set wh−1 ← vh−1, then wi−1 ← ψ(wi) + vh−1 for i = h − 1, . . . , 1,
and finally we output w0.

4.6 Exploiting multi-core platforms

With the exception of the minimal key-switching strategy discussed above, all
our other algorithms are very amenable to parallelization. We thus implemented
them so as to exploit multiple cores, when available.

5 Hoisting

A ciphertext in HElib is a vector v = (p0, p1) ∈ R2
q , with each “part” p0, p1

represented in a DoubleCRT format (i.e., both integer and polynomial CRT) [9].
We recall the steps in the computation of each ψ(v), as implemented in HElib.

1. Automorphism: We first apply the automorphism to each part of v, com-
puting p′j ← ψ(pj) for j = 0, 1.

Applying an automorphism to a DoubleCRT object is a fast, linear time
operation, so this step is cheap. If v = (p0, p1) decrypts to α under the secret
key sk = (1, s), then v′ = (p′0, p

′
1) decrypts to ψ(α) under the secret key sk′ =

(1, ψ(s)). We next have to perform a “relinearization” operation which converts
v′ back to a ciphertext that decrypts to ψ(α) under the original secret key sk.
This operation can itself be broken down into two steps:

2. Break into digits: decompose p′1 into “small” pieces: p′1 =
∑

k q
′
k∆k.

Here, the ∆k’s are integer constants, and the pieces q′k are elements of R
of small norm. This operation is rather expensive, as it requires conversions
between DoubleCRT and coefficient representations of elements in Rq.

3. Key switching: compute the ciphertext (p′0 + p′′0 , p
′′
1), where

p′′j =
∑
k

q′kAjk, (j = 0, 1).

Here, the Ajk’s are the “key switching matrices”, namely, pre-computed
elements in RQ (for some larger Q) which are stored in the public key. The
Ajk’s are stored in DoubleCRT format, so if we have the q′k in the same
DoubleCRT format then this operation is also a fast, linear time operation.

The key observation to our new technique is that we can reverse the order
of the first two steps above, without affecting the correctness of the procedure.
Namely our new procedure is as follows:

1. Break into digits: decompose the original p1 before applying the automor-
phism into “small” pieces: p1 =

∑
k qk∆k.

2. Automorphism: compute p′0 ← ψ(p0), and q′k ← ψ(qk) for each qk. Namely,
p′0 is computed just as before, but we apply the automorphism to the pieces
qk from above rather than to p1 itself.

3. Key switching: compute the ciphertext (p′0 + p′′0 , p
′′
1), where

p′′j =
∑
k

q′kAjk, (j = 0, 1).

This is exactly the same computation as before.

The reasons that this works, is that (i) ψ is an automorphism (so it distributes
over addition and multiplication), and (ii) applying ψ does not significantly
change the norm of an element (cf. [10]). In a little more detail, correctness of
the key-switching step depends only on the following two conditions on the q′k’s:

(a)
∑

k q
′
q∆k = ψ(p1), and

(b) the q′k’s have low norm.

Condition (a) is satisfied in our new procedure since ψ is an automorphism
(which acts as the identity on integers), and so

ψ(p1) = ψ
(∑

k

qk∆k

)
=
∑
k

ψ(qk)∆k =
∑
k

q′k∆k.

Condition (b) is satisfied since the pieces qk have small norm, and applying ψ
to a ring element does not increase its norm significantly.

The new procedure is therefore just as effective as the old one, but now the ex-
pensive break-into-digits step can be preformed only once, as a pre-computation
that depends only on v, rather than having to perform it for every automorphism
ψ. The flip side is that we need to apply ψ to each one of the parts qk instead
of only once to p1. But as we mentioned, this is a cheap operation.

5.1 Interaction with key-switching strategy

If we want to compute ψ(v) for various automorphisms ψ, and we have key-
switching matrices for all of the ψ’s. then we can apply the above hoisting
strategy directly. In some situations, what we want to do is compute θi(v) for
i = 0, . . . , D − 1, where θ = θgs for some dimension s with generator gs ∈ Z∗m,
and where D = Ds is the size of the dimension. If we are employing the baby-
step/giant-step strategy for storing key-switching matrices, then we do not have
all of the requisite key-switching matrices, so we cannot use the hoisting strategy
directly. Instead, what we can do is the following. Since we have key-switching
matrices for all of the giant steps θgj , for j = 1, . . . , h − 1, we can use hoisting
to compute θgj(v) for all of the giant steps, and for each of these values, we
perform the pre-computation (i.e., the break-into-digits step). Then, since we
have key-switching matrices for all of the baby steps θk, for k = 1, . . . , g− 1, we
can compute any value θgj+k(v) as θk(θgj(v)), using the precomputed data for
θgj(v) and the key-switching matrix for θk.

6 Algorithms for one-dimensional linear transformations

In this section, we describe in detail our algorithms for applying one-dimensional
linear transformations to a ciphertext v. We fix a dimension s = 1, . . . , n. Recall

from Section 2.3 that ρ
def
= ρs is the rotation-by-1 map in dimension s, and that

D
def
= Ds is the size of dimension s.

6.1 Logic for basic MatMul1D

Recall from Section 3.1 that for that MatMul1D calculation, we need to compute

w =
∑
i∈[D]

κ(i)ρi(v),

where the κ(i)’s are constants in Rpr that depend on the matrix.
If s is a good dimension, then ρ is realized with a single automorphism, ρ =

θ
def
= θgs where gs ∈ Z∗m is the generator for dimension s. We can easily implement

this in a number of ways. For example, we can use the hoisting technique from
Section 5 to compute all of the values θi(v) for i ∈ [D]. Alternatively, if we are
using a minimal key-switching strategy (see Section 4.5), then with just a key-
switching matrix for θ, we can compute the values θi(v) iteratively, computing
θi+1(v) from θi(v) as θ(θi(v)).

6.2 Revised logic for bad dimensions

From Eqn. (3), if s is a bad dimension, then we have

ρi(v) = µ(i)θi(v) + µ′(i)θi−D(v), (7)

where µ(i) is a “0-1 mask” and µ′(i) = 1 − µ(i). As discussed in Section 4.4,
it is useful to algebraically decouple the rotations and automorphisms in a bad
dimension, which we can do as follows:

w =
∑
i∈[D]

κ(i)ρi(v)

=
∑
i∈[D]

κ(i)
{
µ(i)θi(v) + µ′(i)θi−D(v)

}
=
∑
i∈[D]

κ′(i)θi(v) + θ−D
[∑
i∈[D]

κ′′(i)θi(v)

]
,

where

κ′(i) = µ(i)κ(i) and

κ′′(i) = θD
{
µ′(i)κ(i)}.

To implement this, we have to compute θi(v) for all i ∈ [D]. This can be done
using the same strategies as were discussed above in a good dimension, using
either hoisting or iteration. The only other automorphism we need to compute
is one evaluation of θ−D. Note that with our new key-switching strategy (see
Section 4.3), we always have available a key-switching matrix for θ−D.

If we ignore the cost of pre-computing all the constants in DoubleCRT for-
mat, we see that the computational cost is roughly the same in both good and
bad dimensions. This is because the time needed to perform all the constant-
ciphertext multiplications is very small in comparison to the time needed to
perform all the automorphisms. The cost in noise is also about the same, essen-
tially, one constant-ciphertext multiplication.

6.3 Baby-step/giant-step logic

We now present the logic for a new baby-step/giant-step multiplication algo-
rithm. As discussed above in Section 4.1, this idea is very similar to the Block-
MatMul1D implementation described in [8]. Set g = d

√
De and h = dD/ge. We

have:

w =
∑
i∈[D]

κ(i)ρi(v)

=
∑
j∈[g]

∑
k∈[h]

κ(j + gk)ρj+gk(v)

=
∑
k∈[h]

ρgk
[∑
j∈[g]

κ′(j + gk)ρj(v)

]
,

where κ′(j + gk) = ρ−gk(κ(j + gk)).

Algorithm 1. In a good dimension, where ρ = θ, we can implement the above
logic using the following algorithm.

1. For each j ∈ [g], compute vj = θj(v).
2. For each k ∈ [h], compute

wk =
∑
j∈[g]

κ′(j + gk)vj .

3. Compute

w =
∑
k∈[h]

θgk(wk).

Step 1 of the algorithm can be implemented by hoisting, or if we are using
a minimal key-switching strategy, by iteration. Also, if we employ the minimal
key-switching strategy, then Step 3 can be implemented using the Horner-rule
idea discussed in Section 4.5 — for this, we just need a key-switching matrix
for θg. Otherwise, if we have key switching matrices for all of the ρgk’s, it is
somewhat faster to apply all of these automorphisms independently, which is
also amenable to parallelization.

6.4 Revised baby-step/giant-step logic for bad dimensions

Set g = d
√
De and h = dD/ge. Again, using Eqn. (7), and the idea of alge-

braically decoupling the rotations and automorphisms in a bad dimension, we
have:

w =
∑
i∈[D]

κ(i)ρi(v)

=
∑
i∈[D]

κ(i)
{
µ(i)θi(v) + µ′(i)θi−D(v)

}
=
∑
j∈[g]

∑
k∈[h]

κ(j + gk)
{
µ(j + gk)θj+gk(v) + µ′(j + gk)θj+gk−D(v)

}
=
∑
k∈[h]

θgk
[∑
j∈[g]

{
κ′(j + gk)θj(v) + κ′′(j + gk)θj−D(v)

}]
,

where

κ′(j + gk) = θ−gk
{
µ(j + gk)κ(j + gk)

}
and

κ′′(j + gk) = θ−gk
{
µ′(j + gk)κ(j + gk)

}
.

Based on this, we derive the following:

Algorithm 2.

1. Compute v′ = θ−D(v).
2. For each j ∈ [g], compute vj = θj(v) and v′j = θj(v′)
3. For each k ∈ [h], compute

wk =
∑
j∈[g]

{
κ′(j + gk)vj + κ′′(j + gk)v′j

}
.

4. Compute

w =
∑
k∈[h]

θgk(wk).

Step 2 of the algorithm can be implemented by hoisting, or if we are using
a minimal key-switching strategy, by iteration. Also, if we employ the minimal
key-switching strategy, then Step 4 can be implemented using Horner’s rule. As
before, if we have key switching matrices for all of the ρgk’s, it is somewhat faster
to apply all of these automorphisms independently, which is also amenable to
parallelization.

Based on experimental data, we find that using the baby-step/giant-step
multiplication algorithms are faster in dimensions for which we are using a baby-
step/giant-step key-switching strategy. Moreover, even if we are using the full
key-switching strategy, and we have all key-switching matrices for that dimen-
sions available, the baby-step/giant-step multiplication algorithms are still faster
in very large dimensions (say, on the order of several hundred).

6.5 Alternative revised baby-step/giant-step logic for bad
dimensions

We considered, implemented, and tested an alternative algorithm, which was
found to be slightly slower and was hence disabled. It proceeds as follows: Set
g = d

√
De and h = dD/ge.

w =
∑
i∈[D]

κ(i)ρi(v)

=
∑
i∈[D]

κ(i)
{
µ(i)θi(v) + µ′(i)θi−D(v)

}
=
∑
j∈[g]

∑
k∈[h]

κ(i)
{
µ(j + gk)θj+gk(v) + µ′(j + gk)θj+gk−D(v)

}

=
∑
k∈[h]

θgk
[∑
j∈[g]

κ′(j + gk)θj(v)

]
+ θ−D

∑
k∈[h]

θgk
[
κ′′(j + gk)θj(v)

}] ,

where

κ′(j + gk) = θ−gk {µ(j + gk)κ(j + gk)} and

κ′′(j + gk) = θD−gk {µ′(j + gk)κ(j + gk)} .

Based on this, we derive the following:

Algorithm 3.

1. For each j ∈ [g], compute vj = θj(v)
2. For each k ∈ [h], compute

uk =
∑
j∈[g]

κ′(j + gk)vj and u′k =
∑
j∈[g]

κ′′(j + gk)v′j .

3. Compute

u =
∑
k∈[h]

θgk(uk) and u′ =
∑
k∈[h]

θgk(u′k).

4. Compute
w = u+ θ−D(u′).

6.6 BlockMatMul1D logic

Recall from Section 3.2 that for the BlockMatMul1D calculation, we need to
compute

w =
∑
j∈[d]

∑
i∈[D]

κ(i, j)σj(ρi(v))

=
∑
j∈[d]

σj

[∑
i∈[D]

κ′(i, j)ρi(v)

]
,

where κ′(i, j) = σ−j(κ(i, j)). Here, σ is the Frobenius automorphism. This strat-
egy is very similar to the baby-step/giant-step strategy used for the MatMul1D
computation.

Algorithm 4. In a good dimension, where ρ = θ, we can implement the above
logic using the following algorithm.

1. Initialize an accumulator wj = 0 for each j ∈ [d].
2. For each i ∈ [D]:

(a) compute vi = θi(v);
(b) for each j ∈ [d], add κ′(i, j)vi to wj .

3. Compute

w =
∑
j∈[d]

σj(wj).

Step 2(a) of the algorithm can be implemented by hoisting, or if we are
using a minimal key-switching strategy, by iteration. Also, if we employ the
minimal key-switching strategy, then Step 3 can be implemented using Horner’s
rule, using just a key-switching matrix for σ. If we have key switching matrices
for all of the σj ’s, it is somewhat faster to apply all of these automorphisms
independently, which is also amenable to parallelization.

Often, D is much larger than d. Assuming we are using the hoisting technique
in Step 2(a), it is much faster to perform Step 2(a) on the dimension of larger
size D, and to perform Step 3 on the dimension of smaller size d. Indeed, the
amortized cost of computing each of the d automorphisms in Step 3 is much
greater than the amortized cost of computing each of the D automorphisms (via
hoisting) in Step 2(a). Note that in our actual implementation, if it turns out
that D is in fact smaller than d, then we switch the roles of θ and σ.

Observe that we store d accumulators w0, . . . , wd−1, rather than store the
intermediate values v0, . . . , vD−1. Either strategy would work, but assuming D
is much larger than d, we save space with this strategy (even though it is slightly
more challenging to parallelize).

6.7 Revised BlockMatMul1D logic for bad dimensions

Again, using Eqn. (7) and the idea of algebraically decoupling rotations and
automorphism, we have:

w =
∑
j∈[d]

∑
i∈[D]

κ(i, j)σj(ρi(v))

w =
∑
j∈[d]

∑
i∈[D]

κ(i, j)σj
{
µ(i)θi(v) + µ′(i)θi−D(v)

}

=
∑
j∈[d]

σj

[∑
i∈[D]

κ′(i, j)θi(v)

]
+ θ−D

∑
j∈[d]

σj

[∑
i∈[D]

κ′′(i, j)θi(v)

] ,

where

κ′(i, j) = σ−j(κ(i, j))µ(i) and

κ′′(i, j) = θD
{
σ−j(κ(i, j))µ′(i)

}
.

Based on this, we derive the following:

Algorithm 5.

1. Initialize accumulators uj = 0 and u′j = 0 for each j ∈ [d].
2. For each i ∈ [D]:

(a) compute vi = ρi(v);
(b) for each j ∈ [d], add κ′(i, j)vi to uj and add κ′′(i, j)vi to u′j

3. Compute

u =
∑
j∈[d]

σj(uj) and u′ =
∑
j∈[d]

σj(u′j).

4. Compute
w = u+ θ−D(u′).

As above, Step 2(a) of the algorithm can be implemented by hoisting, or if we
are using a minimal key-switching strategy, by iteration. Also, if we employ the
minimal key-switching strategy, then Step 3 can be implemented using Horner’s
rule, using just a key-switching matrix for σ. Again, if it turns out that D is in
fact smaller than d, then we switch the roles of θ and σ.

7 Algorithms for arbitrary linear transformations

So far, we have described algorithms for applying one-dimensional linear trans-
formations to an encrypted vector, that is, E- or Zpr -linear transformations that
act independently on the hypercolumns in a single dimension (i.e, the MatMul1D
and BlockMatMul1D operations introduced in Section 3). Many of the techniques
we have introduced can be adapted to arbitrary linear transformations. However,
from a software design point of view, we adopted a strategy of designing a simple
reduction from the general case to the one-dimensional case. For some parameter
settings, this approach may not be optimal, but it is almost always much faster
than the previous implementations of these operations in HElib.

We first consider the MatMulFull operation, which applies a general E-linear
transformation to an encrypted vector. Here, an encrypted vector is a ciphertext
whose corresponding plaintext is a vector with ` = φ(m)/d slots. One can easily
extend the MatMulFull operation to E-linear transformations on larger encrypted
vectors that comprise several ciphertexts, although we have not yet implemented
such an extension.

Recall from Section 2.3 that ` = D1 · · ·Dn, where for s = 1, . . . , n, the size
of dimension s is Ds, and ρs is the rotation-by-1 map on dimension s. In [7],
it was observed that we can apply the MatMulFull operation to a ciphertext v
by using a generalization of the simple rotation strategy we presented above in

Eqn. (4). More specifically, if T is an E-linear transformation on Rpr , then for
every v ∈ Rpr , we have

T (v) =
∑

i1∈[D1]

· · ·
∑

in∈[Dn]

κi1,...,in · (ρinn · · · ρ
i1
1)(v), (8)

where the κi1,...,in ’s are constants in Rpr determined by the linear transforma-
tion. For each (i1, . . . , in−1), there is a one-dimensional E-linear transformation
T ′i1,...,in−1

that acts on dimension n, such that for every w ∈ Rpr , we have

T ′i1,...,in−1
(w) =

∑
in∈[Dn]

κi1,...,in · (ρinn · · · ρ
i1
1)(w).

Therefore, we can refactor Eqn. (8) as follows:

T (v) =
∑

i1∈[Dn]

· · ·
∑

in−1∈[Dn−1]

T ′i1,...,in−1

{
(ρ

in−1

n−1 · · · ρ
i1
1)(v)

}
. (9)

To implement Eqn. (9), we compute all of the rotations (ρin−1 · · · ρi1)(v)
using a simple recursive algorithm. The main type of operation performed here
is to compute all of the rotations ρiss (w) for a given w, a given dimension, and
for all is ∈ [Ds]. In a good dimension, where ρs = θgs , we can use hoisting (see
Section 5) to speed things up, provided the required key-switching matrices are
available, or sequentially if not. For bad dimensions, we can use the decoupling

idea discussed in Section 4.4. Specifically, using Eqn. (7), if θ
def
= θgs , then

ρiss (w) = µisθ
is(w) + (1− µis)θis−Ds

for an appropriate mask µis . Then we can compute w′ = θ−Ds , which requires
a single key-switching using our new key-switching strategy (see Section 4.3).
After this, we need to compute θis(w) and θis(w′) for all is ∈ [Ds], which again,
can be done by hoisting or iteration, as appropriate.

The other main type of operation needed to implement Eqn. (9) is the appli-
cation of all of the one-dimensional transformations T ′i1,...,in−1

in dimension n,
for which we can use our improved implementation of MatMul1D.

The speedup over the previous implementation in HElib will be roughly equal
to the speedup of our new implementation of MatMul1D in dimension n. So to
get the best performance, our implementation orders the dimensions so that
Dn is the largest dimension size. If dimension n is a bad dimension, we also
save on noise as well (we save noise equal to that of one constant-ciphertext
multiplication). In many applications, it is desirable to choose parameters so that
there is one very large dimension, and zero, one, or two very small dimensions
— indeed, by default, HElib will choose parameters in this way. In this typical
setting, the speedup for MatMulFull will be very significant.

Finally, we mention that the above techniques carry over in an obvious way
to general Zpr -linear transformations on Rpr . As above, there is a simple reduc-
tion from the general BlockMatMulFull operation to the one-dimensional Block-
MatMul1D operation. The previous implementation of BlockMatMulFull was not

particularly well optimized, and because of this, the speedup we get is roughly
equal to n times the speedup of our implementation of BlockMatMul1D, where,
again, n is the number of dimensions in the underlying hypercube.

8 Application to “thin” bootstrapping

HElib implements a general bootstrapping algorithm, which will convert an ar-
bitrary noisy ciphertext into an equivalent ciphertext with less noise. However,
in some applications, ciphertexts are not completely arbitrary. Recall that plain-
texts can be viewed as vectors of slots, where each slot contains an element of
E = Zpr [ζ], where ζ is a root of a polynomial over Zpr of degree d. In some ap-
plications, one sometimes works with “thin” plaintexts, where the slots contain
“constants”, i.e., elements of the subring Zpr of E.

One could of course apply the HElib bootstrapping algorithm directly to
such “thin” ciphertexts, but that would be quite wasteful. We can get more
efficient implementation (in an amortized sense) by bootstrapping “batches” of
d ciphertexts at a time: We can take d thin ciphertexts, pack them together
to form a single ciphertext where each slot is fully packed, bootstrap this fully
packed ciphertext, and then unpack it back to d thin ciphertexts. This approach,
however, is only applicable when we have many ciphertexts to bootstrap, and it
is not very convenient from a software engineering perspective. Moreover it also
introduces some additional noise in the packing/unpacking steps.

Recently, Chen and Han devised an approach for more efficient and direct
bootstrapping of thin ciphertexts [4], and we adapted their approach to HElib.
We combined Chen and Han’s ideas with numerous optimizations for the linear
algebra part of the bootstrapping from [8], reducing the bulk computation to
a sequence of MatMul1D operations, where our improved algorithms for these
operations yield great performance dividends. We implemented this new thin
bootstrapping, and report on its performance below in Section 9.

Let us review the bootstrapping procedure of [8], which has been imple-
mented in HElib, and then outline how to adapt it to incorporate Chen and
Han’s technique.

A plaintext element α ∈ Rpr can be viewed in a couple of different ways. It
can be viewed as a vector of plaintext slots:

α =
(∑

j

a1jζ
j , . . . ,

∑
j

a`jζ
j
)
,

where the aij ’s are scalars in Zpr . Here,
∑

j aijζ
j ∈ E is the content of the ith

slot of α. For a thin plaintext, only the ai0’s are non-zero elements in E.
The above representation corresponds to some Zpr -basis of Rpr , namely α =∑

ij aijλij (with λij ∈ Rpr being the element with ζj in the ith slot and zero
elsewhere). But we can express the same α on an arbitrary Zpr -basis {βij} of
Rpr ,

α =
∑
ij

bijβij (where bij ∈ Zpr).

For example, for the power basis, the βij ’s are powers of X modulo (pr, φm(X)).
As it turns out, for bootstrapping it is more convenient to use the powerful basis,
introduced by Lyubashevsky et al. [12, 11] and developed further by Alperin-
Sheriff and Peikert [1]. The bootstrapping algorithms in HElib make use of the
powerful basis, as it allows us to decompose the required linear transformations
into a sequence of one-dimensional linear transformations.

Here is a rough outline of HElib’s bootstrapping procedure for fully packed
ciphertexts. We start out with a ciphertext encrypting a plaintext β =

∑
ij bijβij .

1. Perform a modulus switching and homomorphic inner product, obtaining a
ciphertext with very little noise that encrypts some β∗ =

∑
ij b
∗
ijβij . The b∗ij

coefficients are actually in Zps for some s > r, and have the property that
there is a (non-linear) “digit extraction” procedure that computes bij from
b∗ij . (In more detail, it computes bij = bb∗ij/ps−rc.)

2. Perform a linear “coefficient to slot” operation that transforms the ciphertext
encrypting β∗ to one encrypting α∗ =

(∑
j b
∗
1jζ

j , . . . ,
∑

j b
∗
`jζ

j
)
.

3. Unpack the ciphertext encrypting α∗ into d thin ciphertexts, where for j =
0, . . . , d− 1, the jth unpacked ciphertext encrypts (b∗1j , . . . , b

∗
`j).

4. Apply the above-mentioned “digit extraction” procedure to each unpacked
thin ciphertext, obtaining d thin ciphertexts, where the jth ciphertext is an
encryption of (b1j , . . . , b`j).

5. Repack the thin ciphertexts from the previous step, obtaining an encryption
of α =

(∑
j b1jζ

j , . . . ,
∑

j b`jζj
)
.

6. Perform a linear “slot to coefficient” operation, which is the inverse of the
“coefficient to slot” operation in Step 2, to transform the encryption of α in
the previous step to an encryption of β =

∑
ij bijβij .

By careful usage of the powerful basis for {βij}ij , each of the linear opera-
tions, “coefficient to slot” and “slot to coefficient”, can be implemented using one
BlockMatMul1D operation and a small number (typically one or two) MatMul1D
operations. More specifically, the “slot to coefficient” transformation L can be de-
composed as L = Lt · · ·L2L1, where L1 is a one-dimensional Zpr -linear transfor-
mation (i.e., a BlockMatMul1D operation), and L2, . . . , Ln are one-dimensional
E-linear transformations (i.e., MatMul1D operations). The inverse “coefficient to
slot” transformation can therefore also be decomposed as L−1 = L−11 L−12 · · ·L−1n .
See [8] for details of the definitions of the maps L1, . . . , Ln.

We now review Chen and Han’s technique from [4], adapted to HElib’s strat-
egy to dealing with linear transformations. We start with a ciphertext encrypting
a thin plaintext α = (a10, . . . , a`0).

1. First apply the “slot to coefficient” transformation, obtaining an encryption
of β =

∑
i ai0βi0.

2. Perform the modulus switching and homomorphic inner product, obtaining
a ciphertext with less noise that encrypts β∗ =

∑
ij a
∗
ijβij .

3. Apply the “coefficient to slot” transformation, which places
∑

ij a
∗
ijζ

j in
the ith slot, followed by a slot-wise projection function π that maps each∑

ij a
∗
ijζ

j to a∗i0, obtaining a ciphertext that encrypts α∗ = (a∗10, . . . , a
∗
`0).

4. Apply the “digit extraction” procedure, obtaining a ciphertext encrypting
α = (a10, . . . , a`0).

Clearly, this procedure only performs a single digit extraction operation,
versus the d digit extraction operations that are required for fully packed boot-
strapping.

As another benefit, observe that in Step 1 we are applying the linear trans-
formation L = Lt · · ·L2L1 to a thin plaintext. It turns out, that the restriction
of L1 to the subspace of thin plaintexts is in fact an E-linear transformation
(this is easily seen from the definition of L1 in [8]). Therefore, we can implement
L1 as a MatMul1D operation, rather than as a more expensive BlockMatMul1D
operation. (The other transformations L2, . . . , Ln are already implemented as
MatMul1D operations.)

Moreover, in Step 3, we are computing

πL−1 = (πL−11)L−12 · · ·L−1n .

We can rewrite πL−11 as τK, where τ is the slot-wise trace map and K is a certain
E-linear transformation derived from L−11 . The trace map τE on E sends η ∈ E
to
∑d−1

j=0 σ
j
E(η), where σE is the Frobenius map on E. The decomposition of

πL−11 as τK follows from the general fact that for every Zpr -linear map M from
E to Zpr , there exists λM ∈ E such that M(η) = τE(λMη) for all η ∈ E.
Indeed, L−11 can be represented by a matrix whose entries are themselves Zpr -
linear maps on E, and so πL−11 can be represented by a matrix whose entries
are Zpr -linear maps from E to Zpr . If we replace each such map M with the
multiplication-by-λM map, we obtain the matrix for the E-linear map K, and
we have πL−11 = τK.

Thus, we can implement πL−11 using one MatMul1D operation and one appli-
cation of the slot-wise trace map τ . We can quickly compute the slot-wise trace
using one of several strategies. If we have key switching matrices for σj , for all

j = 1, . . . , d− 1, where σ
def
= θp, we can compute the trace of a ciphertext v via

hosting by first computing σj(v) for j = 0, . . . , d− 1, and then adding these up.

Alternatively, if v(s)
def
=
∑s−1

j=0 σ
j(v), we can the relation v(s+t) = σt(v(s)) + v(t).

If we are using the baby-step/giant-step key switching strategy, then we can
compute the trace of v using O(log d) key-switching operations via a “repeated
doubling” computation strategy. If we are using the minimal key-switching strat-
egy, we can use this same relation to compute the trace of v using O(

√
d) key-

switching operations via a baby-step/giant-step computation strategy; for this
to work, we just need key-switching matrices for σ and σg, where g ≈

√
d.

9 Timings

We now present some timing data that demonstrates the effectiveness of our
new techniques. All of our testing was done on a machine with an Intel Xeon
CPU, E5-2698 v3 @2.30GHz (which is a Haswell processor), featuring 32 cores

and 250GB of main memory. The compiler was GCC version 4.8.5, and we used
NTL version 10.5.0 and GMP version 6.0.

Table 1 shows the running time (in seconds) for the old default behavior (“old
def”) and the new default behavior (“new def”) for MatMul1D computations (see
Section 3.1). We do this for various values of m defining a cyclotomic polynomial
of degree φ(m). The quantity d is the order of p mod m (which represents the
“size” of each slot), while the quantity D is the size of the dimension. We worked
with plaintext spaces modulo pr = 2 in all of these examples. A value of D
marked with “?” denotes a “bad” dimension. Table 1 does not show the time
taken to build the constants associated with a matrix or to convert them to
DoubleCRT representation. One sees that for the large dimension of size 682
(which is a typical size for many applications), we get a speedup of 30 if it is a
good dimension, and a speedup of 75 if it is bad. Speedups for smaller dimensions
are less dramatic, but still quite significant.

Table 2 shows more detailed information on various implementation strate-
gies, as well as the cost of precomputing matrix constants. The “build” column
shows the time to build the constants associated with the matrix in a poly-
nomial representation. The “conv” column shows that time required to con-
vert these constants to DoubleCRT representation. The following columns show
that time required to perform the matrix-vector multiplication, based on a va-
riety of key switching and algorithmic strategies. The columns are labeled as
“[MBF]/[BF][HN]”, where

MBF: M is for Min KS strategy, B is for Baby-step/giant-step key-switching
strategy, F is for Full key-switching strategy,

BF: B is for Baby-step/giant-step multiplication strategy, F is for Full multi-
plication strategy,

HN: H is for Hoisting, N is for No hoisting.

As one can see from the data, the cost of converting constant to DoubleCRT
representation can easily exceed the cost of the remaining operations, so it is
essential that these conversions are done as precomputations, if at all possible.

Consider the first line in Table 2. Column B/BH represents the default be-
havior: baby-step/giant-step key switching (since it is a large dimension of size
682), baby-step/step-step multiplication, and hoisting (only the baby steps are
subject to hoisting). The next column (B/BN) is the same, except the baby
steps are not hoisted, which is why it is slower. Column B/FH shows what hap-
pens if we do not use baby-step/giant-step multiplication, and rely exclusively
on hoisting (as in Section 5.1). One can see that for such a large dimension, this
is not an optimal strategy. Column M/B shows what happens when we use the
minimal key switching strategy (with baby-step/step-step multiplication). Even
though it needs only two key switching matrices (rather than about 50), it is
less that twice as slow as the best strategy (although it does not parallelize very
well). The algorithm represented by column B/FN corresponds directly to the
algorithm originally implemented in HElib. The next line in the table represents
a bad dimension. We note that for bad dimensions, the algorithm originally im-
plemented in HElib is about twice as slow as the one represented by column

B/FN (this is why the timing data in Table 1 for bad dimensions is not equal to
the numbers in column B/FN of Table 2).

Table 3 shows corresponding timing data for BlockMatMul1D computations
(see Section 3.2). For good dimensions, the previous implementation in HElib
roughly corresponds to the non-hoisting strategy in our new implementation.
So one can see that with hoisting we get a speedup of up to 4 times over the
previous implementation for large dimensions (but only about 1.5 for small di-
mensions). For large, bad dimensions, in the previous implementation in HElib,
the running time will be close to twice that of the non-hoisting strategy in our
new implementation; therefore, the speedup in such dimensions is close to a
factor 8.

Table 4 shows the effectiveness of parallelization using multiple cores. We
show times for both MatMul1D and BlockMatMul1D, using 1, 4, and 16 threads.
These times are for the default strategies, and do not show the time required
to build the matrix constants or convert them to DoubleCRT representation.
While the speedups do not quite scale linearly with the number of cores, they
are clearly significant, with 16 cores yielding roughly an 8× speedup in large
dimensions and 4× speedup in small ones.

We do not present detailed results for the running times of our new imple-
mentation of MatMulFull and BlockMatMulFull, discussed in Section 7. However,
our experiments indicate that the speedups predicted in Section 7 closely align
with practice: the speedup for MatMulFull is about the same as our speedup for
MatMul1D in the largest dimension; the speedup for BlockMatMulFull is roughly
our speedup for BlockMatMul1D in the largest dimension, times the number of
dimensions in the hypercube.

Finally, we present some timing results to demonstrate the efficacy of our
new algorithms in the context of bootstrapping, as discussed in Section 8. We
chose large parameters that demonstrate well the potential saving with our new
implementation. Specifically, we used m = 49981 and pr = 2, for which we
have φ(m) = 49500 and d = 30. The hypercube structure for Z∗m/(pr) has two
dimensions, one of size 150 and one of size 11, for a total of 1650 slots. We
note that most parameter choices in [8] attempted to balance the size of the
different dimensions, specifically because the linear transformations would take
too long otherwise. One of the benefits of our faster algorithms is thus to free
us from having to consider that aspect; indeed, our timing shows that the linear
transformations are now quite fast even for this “unbalanced” setting.

We ran our tests with ciphertexts with 55 “levels” (for an estimated secu-
rity parameter of about 80). For these parameters, the bootstrapping procedure
consumes about 10 levels, leaving about 45 levels for other computations. Ta-
ble 5 shows the running time (in seconds) for both the thin bootstrapping and
packed bootstrapping routines with both the old and new matrix multiplica-
tion algorithms. These results make it clear that for such large hypercubes, thin
bootstrapping must be done using our new, faster matrix multiplication to be
truly practical.

m φ(m) d D old def new def speedup

15709 15004 22 682 69.28 2.22 31.20
15709 15004 22 682? 138.20 3.14 75.86
18631 18000 25 120 20.27 1.38 14.69
18631 18000 25 120? 39.97 1.69 23.65
24295 18816 28 42 3.18 0.51 6.24
24295 18816 28 42? 6.20 0.55 11.27

Table 1. MatMul1D: summary of old vs new, time in seconds

m φ(m) d D build conv M/B M/F B/BH B/BN B/FH B/FN F/FH F/FN

15709 15004 22 682 0.47 5.54 3.80 44.81 2.22 3.19 6.46 69.28 5.30 28.30
15709 15004 22 682? 0.56 11.07 5.93 44.86 3.14 5.03 7.33 69.70 5.94 29.16
18631 18000 25 120 0.08 1.96 2.43 13.81 1.38 2.04 2.36 20.27 1.29 8.70
18631 18000 25 120? 0.10 3.91 3.68 13.95 1.69 2.89 2.45 20.27 1.29 8.78
24295 18816 28 42 0.03 0.70 1.39 5.09 0.82 1.17 1.11 6.87 0.51 3.18
24295 18816 28 42? 0.04 1.39 2.17 5.09 0.95 1.64 1.20 6.94 0.55 3.20

Table 2. Different strategies for MatMul1D, time in seconds

m φ(m) d D build conv M/ B/H B/N F/H F/N

15709 15004 22 682 15.47 122.62 54.73 21.03 84.42 18.15 42.67
15709 15004 22 682? 17.31 246.89 64.98 36.81 99.84 32.41 57.07
18631 18000 25 120 2.44 49.59 18.83 9.84 27.90 6.88 14.66
18631 18000 25 120? 2.96 98.79 23.83 17.62 35.80 12.73 20.58
24295 18816 28 42 0.95 19.73 9.25 7.84 13.64 5.01 7.70
24295 18816 28 42? 1.15 39.72 13.49 14.73 20.45 9.65 12.47

Table 3. Different strategies for BlockMatMul1D, time in seconds

MatMul1D BlockMatMul1D
m φ(m) d D nt = 1 nt = 4 nt = 16 nt = 1 nt = 4 nt = 16

15709 15004 22 682 2.18 0.67 0.29 20.21 7.60 2.47
15709 15004 22 682? 3.14 0.97 0.42 35.50 12.17 4.70
18631 18000 25 120 1.35 0.49 0.20 7.97 2.49 1.03
18631 18000 25 120? 1.65 0.58 0.29 13.89 4.30 1.67
24295 18816 28 42 0.47 0.23 0.15 4.98 1.37 0.61
24295 18816 28 42? 0.51 0.22 0.14 9.51 2.67 1.08

Table 4. Multithreading for MatMul1DBlockMatMul1D, time in seconds

old new
total linear total linear

thin bootstrap 474.18 428.76 80.31 36.17
packed bootstrap 2120.05 804.30 1413.02 102.65

Table 5. Bootstrapping, time in seconds

References

1. J. Alperin-Sheriff and C. Peikert. Practical bootstrapping in quasilinear time. In
R. Canetti and J. A. Garay, editors, Advances in Cryptology - CRYPTO’13, volume
8042 of Lecture Notes in Computer Science, pages 1–20. Springer, 2013.

2. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. Fully homomorphic encryp-
tion without bootstrapping. In Innovations in Theoretical Computer Science
(ITCS’12), 2012. Available at http://eprint.iacr.org/2011/277.

3. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homomorphic
encryption without bootstrapping. ACM Transactions on Computation Theory,
6(3):13, 2014.

4. H. Chen and K. Han. Homomorphic lower digits removal and improved FHE
bootstrapping. In ”Advances in Cryptology - EUROCRYPT 2018”, Lecture Notes
in Computer Science, pages 315–337. Springer, 2018.

5. C. Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of
the 41st ACM Symposium on Theory of Computing – STOC 2009, pages 169–178.
ACM, 2009.

6. C. Gentry, S. Halevi, and N. Smart. Fully homomorphic encryption with polylog
overhead. In ”Advances in Cryptology - EUROCRYPT 2012”, volume 7237 of
Lecture Notes in Computer Science, pages 465–482. Springer, 2012. Full version at
http://eprint.iacr.org/2011/566.

7. S. Halevi and V. Shoup. Algorithms in HElib. In J. A. Garay and R. Gennaro,
editors, Advances in Cryptology - CRYPTO 2014, Part I, pages 554–571. Springer,
2014. Long version at http://eprint.iacr.org/2014/106.

8. S. Halevi and V. Shoup. Bootstrapping for HElib. In EUROCRYPT (1), volume
9056 of Lecture Notes in Computer Science, pages 641–670. Springer, 2015.

9. S. Halevi and V. Shoup. HElib - An Implementation of homomorphic encryption.
https://github.com/shaih/HElib/, September 2014.

10. V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with
errors over rings. In H. Gilbert, editor, Advances in Cryptology - EUROCRYPT’10,
volume 6110 of Lecture Notes in Computer Science, pages 1–23. Springer, 2010.

11. V. Lyubashevsky, C. Peikert, and O. Regev. ”a toolkit for ring-LWE cryptog-
raphy”. In T. Johansson and P. Q. Nguyen, editors, Advances in Cryptology -
EUROCRYPT 2013, pages 35–54. Springer, 2013.

12. V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with
errors over rings. J. ACM, 60(6):43, 2013. Early version in EUROCRYPT 2010.

13. R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy homomor-
phisms. In Foundations of Secure Computation, pages 169–177. Academic Press,
1978.

14. S. Roman. Field Theory. Springer, 2nd edition, 2005.
15. N. P. Smart and F. Vercauteren. Fully homomorphic SIMD operations. Des. Codes

Cryptography, 71(1):57–81, 2014. Early verion at http://eprint.iacr.org/2011/
133.

