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Abstract. In this paper, we propose a key-recovery attack on Trivium
reduced to 855 rounds. As the output is a complex Boolean polynomial
over secret key and IV bits and it is hard to find the solution of the
secret keys, we propose a novel nullification technique of the Boolean
polynomial to reduce the output Boolean polynomial of 855-round
Trivium. Then we determine the degree upper bound of the reduced
nonlinear boolean polynomial and detect the right keys. These
techniques can be applicable to most stream ciphers based on nonlinear
feedback shift registers (NFSR). Our attack on 855-round Trivium
costs time complexity 277. As far as we know, this is the best
key-recovery attack on round-reduced Trivium. To verify our attack, we
also give some experimental data on 721-round reduced Trivium.

Keywords: Trivium, Nullification Technique, Polynomial Reduction, IV
Representation, Key-recovery Attack

1 Introduction

Most symmetric cryptographic primitives can be described by boolean functions
over secret variables and public variables. The secret variables are often key
bits, the public variables are often plaintext bits for block ciphers and IV bits for
stream ciphers. The ANF (algebraic normal form) representation of the output is
usually very complex by repeatedly executing a simple iterative function, where
the iterative function is a round function for block ciphers or a feedback function
for stream ciphers based on nonlinear feedback shift registers. For stream ciphers,
obtaining the exact output boolean functions is usually impossible. But if its
degree is low, the cipher can not resist on many known attacks, such as higher
order differential attacks [I5JI3], cube attacks [II4], and integral attacks [14].
Hence, it is important to reduce the degree of polynomials for cryptanalysis of
stream ciphers.
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Trivium, based on a nonlinear feedback shift register (NFSR), is one of the
finalists by eSTREAM project and has been accepted as ISO standard [2I10].
Trivium has a simple structure, with only bit operations, so that it can be
applicable to source restricted applications such as RFID. By iteratively using
NFSR, the degree increases rapidly and the output is a complex boolean function
over key and IV bits.

There have been lots of cryptanalysis of Trivium since its submission. The
early results include the chosen IV statistical attack [6l7], which was applied to
key-recovery attack on Trivium reduced to 672 rounds. Inspired by the message
modification technique [21J20], Knellwolf et al. invented the conditional
differential tool [11], which was applicable to distinguishing stream ciphers
based on NFSR. In [12], Knellwolf et al. proposed a distinguishing attack on
961-round Trivium with practical complexity for weak keys.

Cube attacks are the major methods for recent cryptanalysis results of
reduced round Trivium. In [4], Dinur and Shamir proposed a practical full key
recovery on Trivium reduced to 767 rounds, using cube attacks. Afterwards,
Aumasson et al. [I] provided the distinguishers of 790-round Trivium with
complexity 23°. Then Fouque and Vannet [8] provided a practical full key
recovery for 784/799 rounds Trivium. Todo et al. [T9] proposed a key-recovery
attack on 832-round Trivium, where one equivalent bit can be recovered with
complexity of around 277, combined with division property [18]. All of these
attacks exploited low degree properties of the ANF of the output bit over IV
bits. As though the degree is not low, i.e., the degree is equal to the number of
variables, there is a possibility to construct distinguishers if there are missing
(IV) terms. In [B3], Dinur and Shamir exploited the density of IV terms,
combined with nullification technique, and broke the full-round Grainl28.
Based on nullification technique [5I3], degree evaluation and IV representation
techniques were proposed and the missing IV terms can be obtained with
probability 1 [9]. The degree upper bounds of Trivium-like ciphers were
obtained [I6] using the degree evaluation techniques. Then a key-recovery
attack on 835-round Trivium was proposed in [I7] using correlation cube
attack with a complexity of 27°. Though the cube attack and cube tester tools
can be applied to obtain the low-degree information, it is restricted by the
computing ability. It is hard to execute cube tester programs of dimension
more than 50 on a small cluster of cores.

In this paper, we focus on the cryptanalysis on round-reduced Trivium.
We first propose a novel observation of the Boolean polynomial and invent a
new nullification technique for reducing the output Boolean polynomial. After
nullification, we determine the degree upper bound of the reduced polynomial,
which can serve as the distinguishers. In this process, large quantities of state
terms arise to be processed. We present a series of techniques to help discard
monomials, including degree evaluation and degree reduction techniques. Based
on these reduction techniques for boolean polynomials, we propose the first key-
recovery attack on 855-round Trivium with time complexity 277. We summarize
the related results in Table [IL



Table 1. Some related key-recovery results for reduced round Trivium.

Rounds|Complexity| Ref.
736 230 [
767 236 2]
799 | Practical | [§]
832 277 19
835 27 ivd]
855 2" [Sect.

The rest of the paper is organised as follows. In Section some basic
related preliminaries will be shown. The basic techniques used in this paper
and the attack framework will be introduced in Section Based on the
Boolean polynomial reduction techniques and IV representation, a key recovery
attack on 855-round Trivium is proposed in Section d] combined with a new
nullification technique. Finally, Section [5| summarizes the paper.

2 Preliminaries

In this section, some basic notations used in this paper are introduced in the
following subsections.

2.1 Notations

ANF the Algebraic Normal Form

1V bit public variables of Trivium

IV term product of certain IV bits

state bit internal state bit in the initialization of Trivium stream cipher

state term product of certain state bits, IV bits or key bits

2.2 Brief Description of Trivium

Trivium can be described by a 288-bit nonlinear feedback shift register s; (1 <
i < 288). During the initialization stage, s1 to sgo are set to 80 key bits, sg4 to
s173 are set with 80 IV bits, sogg, S287, Sogs are set to 1s and the other state bits
are set to zeros, i.e.,
(81,82,...7893) — (Ko,...,K79,0,...,0)
(594,595, .. .78177) — (IVO,. .. ,IV79,O, - ,O)
(8178, 81795 -+« 5288) — (O, 50,11 1).
Then the NFSR is updated for 1152 rounds with the following updating
function, i.e.,
for i< 1:4-288 do
t1 < Se6 + So1 - S92 + S93 + S171
to < S162 + S175 - S176 T S177 + S264
t3 < S243 + S286 - S287 + S288 + S69



(81,52,...,893) — (tg,sl,...,SQQ)

(594,895, - - -, 8177) < (t1,504, ..., 5176)
(517855179, - - -, S288) < (t2, 5178, - - . , S287)
end for

After the initialization, the output bits o; can be generated by the following
functions.
for i< 1: N do
t1 < Se6 + So1 * S92 + S93 + S171
ta < S162 + S175 - S176 + S177 1 S264
t3 < So43 + Sog6 * S287 + S288 + Se9
0; < Sp6 + S93 + S162 + S177 + S243 + Sass

(81,52, e 7893) < (tg,sl, . ,892)

(594,895, - - -, 8177) < (t1,504, ..., 5176)

(517855179, - - -, S288) < (t2, 5178, - - - , S287)
end for

Then the message can be encrypted by exclusive-or with o;. To outline our
technique more conveniently, we describe Trivium using the following iterative
expression. We use s, (0 < w < 2) shown in Equ. to illustrate r-round (1 < r <
1152) s1, sg4 and sy7g separately. Let z, denote the output bit after » rounds of
initialization. Then the initialization process can be illustrated by the following
formula

sh=s r66+sg 109r 110+sr 111+Sr 69,
r _ r—66 r—91 r 92 r— 93 r— 78
51 = 5o + 8 + 8 +s (1)

852 P 69+871‘ 82 r 83+571" 84+8g 87
The s?, (0 < w < 2) is denoted as internal state bit in this paper. The

multiplication of state bits H s) is denoted as a state term. The output

%

iel,jeJ
can be described using the state terms as z, = s + 5592 4 57768 4 7783 4
r 65 r—110
+ 85 .
2.3 Representation of Boolean Functions for Stream Ciphers
Supposing that there are m IV bits, i.e., vg,v1,...,v,—1 and n key bits, i.e.,

ko, k1,...,kn_1, the Algebraic Normal Form (ANF) of the internal state bit or
output bit s could be written as the following style:

s=>_TTvi 1% (2)

I,J i€l jeJ

where the sum operation is over field Fa. The J],o;vi ] jeg kj is also denoted
as a state term of s and [];.; v; is denoted as its corresponding IV term. Let
IV term t; = [[;c; vi be the multiplication of v; whose indices are within I, the
ANF of s can be rewritten as

s = Ztlgl(k)a (3)
I



where gr(k) is the sum of the corresponding coefficient function of terms whose
corresponding IV term is ¢;. The |I] is denoted as the degree of IV term ¢y,
deg(ts). The degree of s is deg(s) = max;{deg (¢7)}.

2.4 Cube Attack and Cube Tester

Cube attack [4] is introduced by Dinur and Shamir at EUROCRYPT 2009.
This method is also known as high-order differential attack introduced by Lai
[15] in 1994. Tt assumes the output bit of a cipher is a d-degree polynomial
f(ko.ooykpn_1,v0...,0m—1) over GF(2). The polynomial can be written as a sum
of two polynomials:

f(k‘o...7 k/’nfl,vo...,’()mfl) =t;- P+ Qtz (k’o..., kn_1, Uo...,Umfl)

tr is called maxterm and is a product of certain public variables, for example
(v, ..., Us—1),1 < s < m, which is called a cube Cy,; P is called superpoly;
Q+; (ko-.., kn—1,00..; Vm—1) is the remainder polynomial and none of its terms is
divisible by t;. The major idea of the cube attack is that the sum of f over all
values of the cube C¢, (cube sum) is:

Z f(k’o,...7kn_1,.’L‘l,...Um_1) =P

' =(vo,...,vs—1)EC;

whose degree is at most d-s, where the cube C}, contains all binary vectors of
length s and the other public variables are fixed to constants. In cube attack, P
is a linear function over key bits. The key is recovered by solving a system of
linear equations derived by different cubes Cy,.

Dynamic cube attack [5] is also introduced by Dinur and Shamir in FSE
2011. The basic idea is to find dynamic variables, which depend on some of the
public cube variables and some private variables (the key bits), to nullify the
complex function P = P; - P, + P3, where the degree of Pj is relatively lower
than the degree of P and P; - P, is a complex function. Then guess the involved
key bits and compute the dynamic cube variables to make P; to be zero and the
function is simplified greatly. The right guess of key bits will lead the cube sum
to be zero otherwise the cube sums will be random generally.

Cube testers [I] are used to detect non-random properties. Suppose in
Equ.[3} an IV term ¢; does not exist in the ANF of s, e.g. the coefficient g7 (k) = 0.
Hence, the cube sum over cube C}, is definitely zero for different key guessing.
However, if the IV term ¢; exists, the value of cube sum g;(k) is dependent on
the key guessing. This property was applied to break full-round Grain128 [5[9].

3 Basic Ideas

3.1 New Observation of Boolean Polynomial Reduction

In this paper, we propose a new nullification technique based on a lemma as
follows.



Lemma 1. Suppose z is the output polynomial of a cipher, and
Z:P1P2—|—P3. (4)

Then the polynomial can be reduced to a simpler one (1+ Py)z = (1+ P1)Ps by
multiplying 1 + Py in both sides of Equ. if deg(P1Py) > deg((1+ P1)Ps).

Lemma [l| can be verified by (P + 1)z = (P1 + )PPy + (P + 1)P3 =
(P141)Ps. In our cryptanalysis of Trivium, P; is a simple polynomial over several
IV bits and key bits, while P, is much more complex than P5. In our nullification
technique, we multiply P;+1 in both sides of Equ. to nullify the most complex
polynomial P, without changing Ps. The result (1+ P;)z = (1+ P1)P3 could be
analyzed by considering P3 and 1 + P; independently, and then multiply them
together to get (1+ Py)z.

3.2 Outline of Our Attack

Based on the novel observation in Section [3.1}, our attack includes two phases,
which are the preprocessing phase and on-line attack phase.
In the preprocessing phase,

1. We apply the new nullification technique by determining P;, then multiply
1+ P, in both sides of Equ. 4| and obtain the reduced polynomial (1+ P;)Ps.
2. We study the polynomial (1 4+ P;)P5; and prove its upper bound degree to
be d mathematically, then cubes of dimension d + 1 lead to distinguishers.

In the on-line phase, we guess the partial key bits in P;, and compute the
cube sums of (P; + 1)z over (d + 1)-degree IV terms:

i For the right key guessing, (P; +1)z = (P; + 1) P3. Thus the cube sums must
be zero.

ii For the wrong key guessing, the equation becomes (Pj+1)z = (P{+1)P1 Pa+
(P +1)Ps5, which is more complex and dominated by Ps, thus the cube sums
are not always zero.

We focus on constructing the distinguishers in the preprocessing phase and
it costs most computing sources.

3.3 Constructing Distinguishers

After obtaining the reduced polynomial (1 + P;)Ps, our major work is to study
this polynomial and derive distinguishers. In our analysis, we demonstrate that
the degree of the reduced polynomial is strictly lower than 70. As the degree is
so high, such a result was hard to achieve in previous works. So we introduce
various details of reducing polynomials in an iterative process.

We introduce several techniques to discard monomials in advance during the
iterative computation of the ANF representation of the output bit (1 4+ P;)Ps.
Suppose we are proving the upper bound degree of (1 + P;)P3’s ANF to be



d, then the following techniques are used to reduce the Boolean polynomial of
(1 + P;)Ps by discarding monomials in advance. The whole process could be
divided into the following three steps shown in Figure

— Step 1. We compute forward to express the ANF of some internal state bits
over IV bits and key bits. In Trivium, the internal state bits sf 0<i<2,
0 < j < 340) are computed in a PC.

— Step 2. During the iterative computation of the ANF representation of
(1 4+ P)Ps in the backward direction (decryption), we introduce the fast
discarding monomial technique in Section [3.4] which includes the
following two algorithms:

e First, we propose the degree evaluation algorithm to obtain the degree
bounds of internal state bits. As the monomials of (1+ P;)P3’s ANF is a
product of these internal state bits, the degree of a monomial is bounded
by the sum of the degrees of the multiplied internal state bits, which is
regarded as the degree estimation of the monomial. If the estimated
degrees of monomials are lower than d, they are discarded directly.

e Second, we exploit the iterative structure of Trivium, and find that the
(1+ Pp)Ps’s ANF contains many products of consecutive internal state
bits. Thus, we pre-compute the degree reductions of those products,
which is d; = °, deg(x;) — deg([], #;), where z; is an internal state
bit. Thus, the degree of a monomial is upper bounded by the difference
value between the sum of the multiplied internal state bits and the
corresponding degree reduction d;. If it is smaller than d, the monomial
is discarded.

— Step 3. For the left monomials of (1 + P;)Ps’s ANF, we introduce IV
representation technique in Section to determine the upper bound
degree of (1 + P;)Ps or find the d-degree missing product of certain IV bits
(missing IV term). In IV representation technique, the symbolic key bits
in the internal state bits are removed and only IV bits are left. Combining
with repeated IV term removing algorithm, we can simplify monomials of
(14 P1)Ps’s ANF without losing the missing IV term information. If we find
an IV term is not in the IV representation of (1 + P;)Ps, we can conclude
that it is also not in (1 + P;)Ps.

Internal Internal
State bits State bits
Forward j i discarding
) ] j iscarding
(Kysves Kggs Vy5eees Vigg ) S; —— S ot — (14 PP,
IV Representation
} Step 1 { } Step 3 { } Step 2 {

Fig. 1. Framework of Constructing Distinguishers



3.4 Fast Discarding Monomial Techniques

In Step 2 of Figure[T] during the iterative computation of the ANF representation
of (1 4+ P;)P; in the backward direction (decryption), there arise more and
more state terms. We will give several techniques to simplify the polynomial
by discarding monomials in advance. In this Step, repeated state terms arise
according to the Trivium encryption scheme. The repeated state terms are
removed using Algorithm [I} The complexity of Algorithm [1]is O(n), supposing
there are n state terms.

Algorithm 1 Repeated-(state)term Removing Algorithm

Input: The vector T' with n terms, i.e., T1, Ts, ..., Ty.
Output: Updated T' with m terms, where m < n.
1: Initialize an empty Hash Set H.
2: for i+ 1:n do
3:  Compute the Hash value of T, i.e., H(T})
if H.contains(T;) is true then
H.delete(T5)
else
H.insert(T;)
end if
end for

Degree evaluation technique As we are proving the degree of the Boolean
polynomial (14 P;)Ps to be d, thus many monomials with lower degree produced
during the iterative computation backward (decryption) in Step 3 are deleted
without consideration (we do not need to continue the iterative computation over
those monomials). We estimate those monomials using degree information of
the internal state bits in lower rounds. This section presents a degree evaluation
algorithm for the internal state bits. For example, we are going to estimate the
degree of b; = b;_3 + b;—_1b;_o.

deg(b;) = deg(b;—3 + bi—1b;_2)
= max{deg(b;_3),deg(b;_1b;—2)} (5)
< max{deg(b;—3),deg(b;—1) + deg(b;—2)}

If we continue to decompose b;, we find

bi—1bi—o = (bj—a + bi—2bi—3)(bi—s + bi—3bi_4)

=bj_abi—5 +bi_3bj_4 +b;_2bj_3bi_5 + b;_2b;_3b;_4, (6)

If deg(b;—1) = deg(bj—2b;—3) and deg(b;—2) = deg(b;—3b;—4), then in Equ.,
deg(b;—1) + deg(b;—2) may add deg(b;—3) twice. So in order to obtain a more
accurate degree estimation, we are willing to decompose b; for several rounds
backwards.



For Trivium, the ANFs of sZ (0 <i<2,0<j<340) are exactly obtained in
a PC and their exact degrees can be obtained. For example, in the cryptanalysis
of 855-round Trivium, we compute ANF of s (0 < < 2,0 < j < 340) over 75
free IV Variableﬁﬂ the degrees are shown in Table |2} To estimate the degree of
s} for r > 340, we decompose s] until the state terms are the product of internal
state bits sf for j < end = | 35| x 32 — 128 considering the efficiency tradeoff of
the computation.

Table 2. Degree deg(sg) of sz for0<i<2 0<7<340
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For example, we estimate the degree upper bound of si*', where end =

|45 % 32 — 128 = 192. We first express s3*! using state bits in less rounds, and

discard the state terms of degree lower than d.

341
1

— Step 1. First, we express sl = 5372 4 52595258 4 5257 4 5254 jccording to

Equ. .
— Step 2. According to Table highlighted in  red, let
d = max{deg(s{"?),deg(s?”) + deg(s{*®),deg(s1""),deg(s3>}

max{5,5+5,5,5} = 10.

5 The other 5 IV bits are fixed as zero and their positions are given in Section



— Step 3. Discarding the state terms of degree lower than 10, we get

s34l = 52594258 Tteratively compute s3*'* and discard state terms with
degree lower than 10, there is no state term surviving. We reset d = d — 1
and repeat the above decomposition and discarding process. We can get
the result s3I = 10651675193 | gl671680192 4 (1664167168 |
536551675168 | G167 ;168 180 4 51664167 ;181

— Step 4. Note that there is still a state bit s1%3 in s331** that is bigger than
end=192. So we continue to iteratively compute and discard state terms

with degree lower than 9, and we get:

341*** _ 56 57 83 84 101 +857 58 83 84 100+856 57 58 83884+

887852)7838583884 + 898856837583884 + 51245568878101 + 812483752881004—
5(1)24836837858 + 8124555837 58 + 855837838833534 + 897 624 37 38

_|_398 124 56 57 + 5575588825838102 + 8588595828835101 + S57858339582383_|_
836538539832883 + 898838839882583 + 899537838532 gd + 51238575388102+

(1)238588598101 +8123857838 59+8123856858859 +898 (1)23 58 59

+899 123 57 58 + 8568578388598101 + 898856827858859 + 8558‘2568378‘2588102—‘,-

5358368385398101 + 855536837838839 + 8988358368‘;8859 + 8998358365‘;78584-

5(1)14 578588102 + 81148588598101 + 8114857838 59 + 8114856388 59 + 38958083783855004_

985 (1)14 38 %9 JrS99 114537 58+S1155365375%01 + 53155575585 %00+5(1)15536537538+
(1)10805857508 +597 11553758 | 98115356537 4 o890 456 G587 o101 4
539590530557 538 + 589880535327838 + 339880587537838 + 539590598536,557 .
(7)

— Step 5. Here, there is no state bit in rounds more than end = 192, the
expression ends and there are still state terms that survive. Then the current
degree d = 9 is the estimated degree of s3!.

— Step 6. Note that, if there is no state item in s3***** surviving, which means
the degree added twice or more shown in Equ. @ happens to the iterative
computation of s3*!. So the degree must be less than 9. We reset d = 8 and

continue the above steps 3-5 to get a more accurate degree bound.

We summarise the above 6 steps as Algorithm [2] We only estimate degree of
sy for r < 665 and list the results in Table

Degree reduction technique In this part, we formally consider the property
in Equ.@, that deg(b;—3) is added twice. We call it degree reduction. Define the
degree reduction d; as

dy = deg(z;) — deg(] [ =), ®)

iel i€l

where x; is a state bit.

We pay attention to the degree reduction of the state term ]_[lH ! ] for a
specific ¢ € [0,2]. This state term results from the iteration Structure of Tr1v1um
scheme, whose high degree state terms come from the multiplication of sJ ] 1
shown in Equ.. After several rounds of iteration, the high degree state terms

10



Algorithm 2 Degree Evaluation Algorithm (DEG) of State Bit

Input: The value ¢ and r which indicates the state bit s} .

Output: DEG(s;)=d.
1: Initialize the degree bound d similar to the above Step 2., the end point end.
2: len <+ 0
3: while len =0 do
4:

Tteratively express s} using state bits s,

where 0 < 7 < 2and 0 < 5 < end.

During each expression, discard the state terms of degree lower than d. Let len

be the number of remaining state terms.

if len = 0 then
d+d—1

end

if

end while
Return d

Table 3. The estimated upper bound degree DEQ(S?) of s; for
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are in the form Hé—:z_l SZ Define the degree reduction d; = EH_t ! deg(s )

deg(IT/Z " ).

The degree reduction can help discard state terms of lower degree
dramatically, as it can help predict the change of degree before expression
operatior[] We take the state term s3*0s34! as an example to illustrate the
process to compute the degree reduction d;. Algorithm [2|is first used to obtain
the degree of state bits as shown in Table [2] and

Let end be |35 x 32 — 128 = 192, too. The degree bound d is initialized as
d = DEG(s340) + DEG(s341) and d; = 0. Express the 53405341 by one iteration
using Equ.. Discard the state terms of degree lower than d — d; = d, there is
no state term surviving. Increase the d; by 1, such that d; = 1. Express s340s341
again and discard the state terms of degree lower than d — d; = d — 1, the result
is 24952505262 4 24842495263 Continue to compute iteratively, the remaining
state terms are sh70s471 51805140 5141 4 G170 GLTLGI81 G130 G140 | gL T1 G172 (179 139 140 |
55T 5375805438 5139. There is no state bits s/ with j bigger than end = 192 in all
the state terms, hence the expression ends. Degree reduction d; = 1 is returned.
Thus the deg(s310s341) < DEG(s340) + DEG(s3) —dy = 7+ 7 —1 = 13. The
degree reduction algorithm is shown in Algorithm

Algorithm 3 Degree Reduction Algorithm of State Term

Input: The value i, r, t which indicates the state term degree reduction.
Output: The degree reduction di = ZZ'H ! deg(s ) deg(HH't tsh).

1: Initialize the degree bound d = ZZH "DEG(s?) , degree reduction dy = 0, end
point end and number of survived state terms len

2: while len = 0 do

3:  Express the state term HZH ! 7 using state bits sz, where 0 < ¢ < 2 and
0 < j < end, discard the state terms of degree lower than d — d;. Let len be the
number of remaining state terms.

4: if len =0 then

5: dt < dt +1

6 end if

7: end while

8: Return d;

3.5 IV Representation Techniques

In the cryptanalysis of stream ciphers, the output is a boolean function over
key and IV bits. But obtaining the exact expression is hard, thus we propose
1V representation technique to reduce the computation complexity for obtaining

the degree information.
Definition 1. (IV representation) Given a state bit s = ) ; ;[[;c; vi HjeJ k;,
the IV representation of s is spv = Y [[;c; vi

" The details are given in section
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For example, if a boolean polynomial is s = voky + vokoks + v1k1ke + vov1 ko,
then its corresponding IV representation is s;jy = vy + vg + v1 + vov1.

IV representation with repeated IV terms Removing Algorithm. Due
to neglection of key bits, there are lots of repeated IV terms. Here we give an
algorithm to remove the repeated IV terms of sy . The details of the algorithm
are shown in Algorithm [4] This algorithm is based on a Hash function. First,
an empty hash set is initialized. For each IV term T;, compute the hash value
as H(T;) (Line 3), then determine if T; is already in H. If not, then insert T;
into H (Lines 4-5). Applying Algorithm [4| to the above example, the result is
vg + v1 + vouy. Note that this algorithm is slightly different from Algorithm
If we apply Algorithm [1] to syy, the result is vy + vvy.

In the iterative computation process of the output bit of Trivium, it should
be noted that if an IV term exists in s, it must also exist in sy, but not the
opposite. For example, x1 = vg(k1ke + koka) + v1 +vov1 ke, o = vakoks + vivaky
and s = z1xo. We use the IV representations of x; and zo to approximate the
IV representation of s. Thus, x1;v = vg + v1 + Vo1, Tory = Vo + vV1V9, and
SIv = T1rvTary = VoUg + v1vV2 + vov1ve. However, s = x129 = viva(koki + k1).
So if we find an IV term is not in s;y, we can conclude that it is not
in s either. We use this to determine the degree upper bound of the output
ANF of Trivium.

Algorithm 4 Repeated-IV term Removing Algorithm
Input: The vector T' with n IV terms, i.e., T1, T», ..., Tp.
Output: Updated T with m IV terms, where m < n.

1: Initialize an empty Hash set H.

2: for i< 1:n do

3: Compute the Hash value of T;, i.e., H(T;).

4:  if H.contains(T;) is false then
5: H.insert(T;).

6: endif

7: end for

After using IV representation combined with Algorithm[4] all the existent IV
terms are left by ignoring their repetition. With collision-resistent hash function
H, the time complexity of Algorithm 4| is O(n) for processing n IV terms. It
needs several minutes to apply Algorithm 4] on 1 billion IV terms on a single
core.

4 Key Recovery Attack on 855-round Trivium

In the attack on 855-round Trivium, all the 80-bit IV are initiated with free
variables: IV, = v;, i € [0, 79].
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The output of 855-round Trivium can be described using the internal state
bits:
2855 = 5070 + 5003 + 8787 4 ST72 4 5790 4 5745, 9)

As a first step of the attack on 855-round Trivium, we need to determine P;.

4.1 Determining the Nullification Scheme for the Output
Polynomial of 855-round Trivium

For 855-round Trivium, the degree of output bit z is very high, as shown in [19].
So it is not easy to find the missing IV terms in the complex z = PP, + Ps.
However, based on the new observation of Boolean polynomial introduced in
Section we can choose P; to reduce the Boolean polynomial (1 + P)z =
(1+ Py)P; such that the degree of (14 P;)Ps is lower. The lower, the better. In
fact, the lower the degree of a state term, the less high degree IV terms it can
deduce.

Degrees of state bits are obtained first in order to determine the high degree
state terms. The exact Boolean polynomial of s! for i € [0,2] and j € [0, 340]
can be obtained. The other degree upper bounds can be obtained by executing
Algorithm

For a search of P, we use the decomposition of Trivium and preserve the
high degree state terms (bigger than a given bound dependent on our computing
ability in a PC), where the degree of state terms means the sum of degrees of
each state bit in the earlier rounds involved. We decompose until all the state
bits are within the range of [0,276]. The key points to determine P; come from
3 criteria: (1) the frequency of P; is high; (2) the degree of P; is low; (3) the
equivalent key guesses in P are minimized. We calculate the frequency of state
bits and find that s3'° occurs in about 2 of all the preserved high state terms.
The degree of 5210 is 5 and can be reduced to 2 after nullifying the 5 IV bits,
and there are only 3 equivalent key bits to be guessed. So we choose P; = 5210,

The output polynomial can be rewritten as

z = S?lOPQ + Pg, (10)

where P, and P3; do not contain s%lo. Polynomial P, is so complex that it is
hard to compute its degree and density information while P3 is relatively
simple. Here
Py = sP19 = wsgugovs1 + Us9Us0U76 + V17Us9V60 + U30U310U59V60 + U32Us9V60 +
V59V60V62 T+ Us9U0U77 + Us9Us0ok20 + V59V61V73V74 + Us9U73VU74V76 + V17VU59VU73VT4 +
V30U31V59U73V74 + U32VU50U73U74 + Us9Ue2VU73U74 + UsgU73U74U77 + UsgU73U74ko0 +
V59V60V74V75 +U59U60V75V76 T U59V73VU74V75 +U59U73V74U75 V76 +V59U61 V75 +U59 V74 V75
+ v17Us9V75 + V30V31VU59V75 + VU32Us9U75 + UsgUs2U75 + UsoUrsUrr + UsgUrskag +
V60V61V72073 + V60VU72V73V76 + V17V60VU72V73 + U30V31V60V72V73 + VU32V60V72V73 +
V60V62VT2V73 T V60VT2U73V77 TV60VT2U73 K20 +V61V72V73V74 +UT2U73V74V76 +U1TUT2UT3
V74 +U30V31V72V73V74 +V32U72U73VU74 +V62U72V73VU74 +VU72U73VU74V77 +UT2U73VU74 K20 +
VeoVU72V73V74V75 +  UeoUr2U73V75V76 1+  Ur2U73U74U75V76 1+  Ue1VU72U73V75 +
V17V72V73V75 + U30V31V72073V75 + VU32U72073V75 + V62U72V73V75 + V72U73V75V77 +
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V72073U75 k20 + V60V61UTA + Vs0U74V76 + V17UV + V30V31V60UT4 + U32Ve0UT4 +
V60U62UT + Ve0U74VTT + VeoUrak20 + V17U73V74 + U30U31V73V74 + U32U73V74 +
V620U73V74 + V73V74077 + U73U74k20 + VieVeoVs1 + V1eVeoU74Vr5 + VieUeoUr6 +
V16V61V73V74 + V16V73V74V75 + V16VU73V74V76 + V16V61V75 + V16V74V75 + V16V17 +
V16V30V31 + V16V32 + V16V62 + V16V77 + V16k20 + V20U30V60V61 + V20U30V60V74VTS +
V2gU30Vs0V76 + V29U30V61U73V74 + V29V30VU73VU74VU75 -+  V29V30VU73VU74VU76 +
V29U30V61 V75 + V29V30V74V75 + V17V29V30 + V29U30U31 + V20U30V32 + U29V30V62 +
V293077 + V29vU30k20 + VU31Ve0V61 + V31Ve0V74VT5 + U31V60VT6 T+ U31V61U73

V74 +V31V73V74V75 +U31U73V74V76 +V31V61 V75 +U31V74V75 +V17V31 +V30V31 +V31V62+
v31V77 +U31 K20 +Ve0V61 + V61075 + V61 V740V75 +V17U61 +U30V31 V61 +U32V61 + V61 k20 +
V60UT4VTEUT6 +V60U76 +U73U74V75V76 +U17U76 T U30U31 V76 +V32V76 + V76 V77 +U76 K20+
V6061 K19 +60V74U75 k19 +V60V76 K19 +V61V73V74 k19 +V73V74V75 k19 +V73V74V76 K19+
v61V75k19 + V74075k19 + V17k19 + v30U31 K19 + V32k19 + ve2k19 + vrrk1g + k19koo +
V34V35 + U34V48V49 + V34U50 + V35V47V48 1 Va7V48V49 + Va7V48U50 + U35V49 + VagV4g +
k57 +v69 + 45 + Vg +v36 + Us1 + Voo + V73V74 + V75 + K63 + Ve2U74V75 + V7475077 +
V75V76 + V18 + V33 + V63 + Urg + ka1 + kagkag + k3 + k3o + k12 + k3rkas + k3o + vaa.

IV Nullification The degree of s319 is 5 and the IV bits involved in s?!0 are
shown in Table [

Table 4. Count of IV bits in s2!° before IV nullification.

IV |vs vs w6 V16 V17 Vis V24 V29 V30 V31 V32 V33 V34 U35 U36 V47 V4g
Count| 1 1 1 14 14 1 1 14 27 26 13 1 3 3 1 3 5

IV |v49 w50 V51 Us9 V6o V61 Ve2 V63 V69 VT2 V73 V74 V75 U76 U77 UT8
Count| 4 2 1 28 44 26 13 1 1 26 56 62 46 26 14 1

In order to simplify s319 so that it is easier to obtain the degree bound of

(1 + S%lO)Pg, we nullify V74, V60, V75, U30 and V48-
After nullifying the 5 IV bits, we obtain the simplified boolean function:

210 _
ST = v16V17 + V1632 + V16Vs2 + V16V77 + Vickao + V17V31 + U31V62+

V31077 + V31k20 + V17V61 4 V32061 + V6120 + V17V76 + V32076 + V76U77+

v7ekao + vi7k19 + v32k19 + Ve2k19 + vrrkig + K19k2o + 3435 + v3avs0+  (11)

U35V49 + K57 + V69 + v4U5 + V6 + v36 + Us1 + ks + V1s + U3 + Vest

v7s + ko1 + kagkag + k3 + k3o + k12 + karkss + k3o + v24.
Here, the degree of 5219 is 2 and key information equivalent to 3 bits in s3!° are
klg, kQO and k57 + k63 + k21 + kggkzg + kg + k30 + k'12 + k37k38 + kgg. The IV bits
involved in s2'° are shown in Table

After determining P; = !0, we multiply 1 + s7!° in both sides of Equ.,

then (1+5%10)z = (14 s219) P3. Finding the non-randomness in (1 + s319) P3 will
help us to construct the cube tester of 855-round Trivium. More specifically, we
will determine the nonexistent IV terms of degree 70 in (1+s%10) P3. First, we will
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Table 5. Frequency of IV bits in s?1° after IV nullification.

IV |v4 vs w6 V16 V17 Vig V24 V31 V32 U33 V34 U3s
Count|1 1 1 5 5 1 1 4 4 1 2 2

IV |vse va9 V50 Us1 V61 Ve2 V63 Vso Ure V77 VT
Count|1 1 1 1 3 3 1 1 4 4 1

reduce the polynomial, then IV presentation technique is applied to determine
the nonexistent IV terms. The framework is presented in Figure |2] and details
are shown in the following Section |4.2

e -

e Repeated Term Removing
Discarding Monomials e Degree Evaluation
e Degree Reduction

XD DI X

IV Representation e Repeat (Algorithm 4)

|
1
|
70-degree IV terms :
|
|
|

Fig. 2. Framework of determining the missing IV terms

4.2 Determining the Degree Bound of Reduced Polynomial

We are going to iteratively compute (1 + s219)P3. In each iteration, many state

terms of (1 + s319)P3 are produced. Based on our computing ability, we can
compute the IV terms of degree around 70. In computing the 70-degree IV terms,
we use a cluster of 600-2400 cores. Since we are finding the 70-degree missing IV
terms, state terms with degree less than 70 are removed without consideration,
because they do not contain those 70-degree IV terms certainly. The removing
process could be divided into 2 steps:

1. Deleting state terms according to degree evaluation;
2. Deleting state terms according to degree reduction.

Degree evaluation phase After nullifying the 5 IV bits in Section the
exact boolean functions and degrees of state bits s/ for 0 < i < 2and 0 < j < 340
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can be updated. Then we execute Algorithm [2]to obtain the degrees of the other
state bits, partially in Table 2] and [3] For example, given a state term byby, we
first find DEG(b1) and DEG(b2) in Table [2f and |3} if DEG(b1) + DEG(b2) < 70,
then deg(b1b2) < DEG(b1) + DEG(b2) < 70, delete bybs.

Degree reduction phase In the structure of stream ciphers based on NFSR,
degree reduction arises often due to the iterative structure. We use Algorithm [3]
to obtain the degree reduction, which is shown in Table [6] Table [7] and Table
for products of 2 consecutive state bits s sf“ (t = 2), 3 consecutive state
bits szszﬂszw (t = 3) and 4 consecutive state bits sgsg+lsg+2sg+3 (t = 4),
respectively. Note that we only list the degree reduction when j > 340. The
degree reduction for j < 340 is much easier to obtain in a PC.

Table 6. Degree reductions dy(s!s/*") of s7s7T" with t = 2

i+ ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
j=2340,:=0({0 0 0 0 0O O O O O OO OOOOOT O OTUOUOOOOTO OO OO OO OOOOO0OTO0OO
j=340,4=11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 2 2 2 2 2 2 2 2 1 1 1 1 1 1
j=2340,+ =21 3 3 3 3 3 3 2 4 4 4 4 4 4 4 4 4 4 4 3 2 2 2 1 3 3 3 3 3 3 3 3 2 2
j=374,i=0{0 0 0 0 0 0O OO 2 2 2 2 2 2 2 2 2 2 1 2 3 4 6 6 6 6 6 6 6 6 6 6 5 5
j=374,¢=11 1 1 1 1 11 1 1 1 111111111111 11101 1 1 1 1 1 1 1
j=2374,i=2|4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
j=408,:=0(5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 2 1 1 1
j=408,¢=11 1 1 1 1 1 1 1 1 0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3
j=408,i =2[{4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2
j=442,¢=0(1 1 1 1 1 1 1 0 O 1 1 1 1 1 0 O O O O O 2 1 1 2 2 2 1 3 3 3 3 3 3 3
j=442,i =14 4 7 8 8 7 7 7 T 7T 7T 7T 7 7 7 7 6 5 4 3 3 3 3 3 3 3 3 3 2 3 4 4 4 4
j=442,¢ =23 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
j=476,:=0(3 3 1 1 1 0 0 3 3 3 3 3 3 3 3 3 3 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
j=476,i =14 4 4 4 4 4 4 3 4 5 6 8 8 8 8 8 8 8 8 8 8 7T 9 9 9 9 9 9 8 10 10 10 10 10
j=476,i=2{1 1 1 1 1 0 1 3 3 3 3 3 83 3 3 3 3 3 3 3 3 3 3 2 2 5 7 7 7 7 7 7 77
j=2510,+=0({3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 3 3 3 3 2 1 1
j=2510,¢=1|1010101010 9 8 8 8 8 7 9 8 8 8 8 8 8 8 7 8 101010 9 9 9 9 9 9 9 10 11 11
j=2510,i=2|{7 6 4 3 3 3 3 3 3 3 3 3 2 3 4 4 7 8 10 9 11 11 11 11 11 11 11 111110 9 9 9 9
j=2544,:=0(3 3 3 3 3 3 2 1 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 4 6 6 6 6 6 6 6 6
j = 544,¢ = 1|11 11 11 10 10 10 10 10 10 10 9 9 12 12 12 11 10 10 10 9 10 12 12 12 12 12 12 12 11 10 12 13 13 13
j =544,¢ =211 11 11 11 11 11111110 9 8 8 101010 8 8 8 8 8 8 7 7 6 6 7 7 7 7 6 6 6 16 16
j=2578,1=0(6 6 6 6 6 6 6 6 6 6 6 5 4 3 2 0 0 0O 0O O O O O O O O O O O O O O O O
j =1578,¢=1|13 13 13 13 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 11 11 11 11 11 11 11 11 11 10 12
Jj =578,i =216 15 15 15 15 15 15 15 15 15151515 9 9 9 9 9 9 9 10 12 12 12 12 13 12 14 14 14 18 18 17 16
j=612,:=0({0 0 0 0 0 O O O OO 3 5 5 6 6 6 6 6 6 5 4 5 5 7 1112111010 5 5 5 5 5
j=612,¢ =1|12 12 12 12 12 12 12 11 10 10 10 9 11 12 12 12 111313131210 9 9 9 8 7 7 7 6 5 10 12 12
j =612,¢ =216 13 12 12 11 13 13 13 13 13 13 12 13 15 15 15 14 13 12 16 16 16 16 16 15 15 18 20 19 18 17 16 16 15
j=646,i =05 5 5 6 6 4 2 2 4 4 4 4 4 4 4 3 3 7 8 1212121111 101010 8 7 7 9 13 16 18
j=646,i =112 12121211 9 9 9 9 9 9 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
j = 646,17 = 2|16 18 18 18 18 18 18 18 17 15 17 19 21 21 21 21 21 21 20 22 21 20 20 20 20 20 20 19 18 18 18 18 18 18

In the cryptanalysis of Trivium, the degree reduction may be more
complicated. Further degree reduction for ¢ > 4 is hard to be obtained using
PC for loop executing Algorithm [3] Some man-made work should be involved
to obtain further degree reduction. The degree reduction can help discard state
terms of lower degree dramatically. For example, if the state term biby goes
through degree evaluation phase, that means DEG(by) + DEG(by) > 70, then
we check if DEG(b1) + DEG(ba) — di(bibe) < 70. If yes, deg(bibe) < 70 and
delete it.

For example, the Equ. (@ can be expressed furthermore using state bits:
Zg55 = S§24 + 58805681 | 679 £ gT21 4 (607 | (653654 4 (652 4 o694 4 o721 | 4095 ;696
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5894 4 §T09 4 STO6 4 680681 | (679 | 604 | (T21 4 (TOTGT08 | o706 4 o703 4 o676 1
58625663 1 5061 4 5858 Then 5572, 5876, 5961 can be discarded because their degree
are lower than 68, shown in Table [3| highlighted in red, and the total degree of
the multiplication of each one with (1 + s219) is lower than 70. In addition, the
state terms highlighted in blue can be discarded by removing the repeated state
terms. Furthermore, the output can be expressed using state bits in lower rounds
and more state terms can be discarded.

After the above 2 steps to reduce (1 + s31°) P, the degrees of the left state
terms are possibly higher or equal to 70. As the dimension is high, a cube tester
over such a big dimension is far beyond our computing ability. For the left
state terms, we use IV representation for each left state terms and remove the
repeated IV terms using Algorithm[4]in order to determine the missing 70-degree
IV terms. After the above steps, there is no 70-degree IV term in (1 + s319)P;.
So the degree of (1 + s319)P; is strictly lower than 70, which is summarized as
the following Lemma

Lemma 2. Set the v74, vgg, V75, V39 and vs4g to zeros, then the degree of
(1 + 5%10)2855 18 bounded by 70, where zgss is the output after 855-round
initializations.

According to Lemma [2| we strictly prove that the degree of the reduced
polynomial is lower than 70, so the sum over any selected cube of dimension 70
is zero, such that the distinguishers can be constructed.

4.3 Online Phase and Complexity Analysis

We first guess the 3 key bits in 5%107 i.e. k19, koo and k57 +kgz + ko1 +kogkog+ ks +
k3o + k12 + k3vkss + k3g as shown in Equ. , for the right guess the result is 0
while for wrong guesses, the result is 1 with probability % If the sum over cubes
of dimension 70 is 1, then the key guess is wrong and dropped (Line 7). After
the first cube sum, about half key bits remain, and sum over another cube again.
The remaining guess is the key. The on-line phase is shown in Algorithm

Algorithm 5 On-line Attack

1: Initialize the possible key space KEY with size of 23.

2: for i+ 1:3 do

3 for Each possible key in KEY do

4 Compute the value s3'°, so that obtain the value of (1 + s3'%)z,
5 Compute cube sums zsum of (1 + s3'°)z,

6: if zsum = 1 then

7 Delete key from KEY .

8 end if

9 end for

0

10: end for
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For each guess, we need to sum over a cube of dimension 70, so that the
complexity is 23 - 270 4-22. 270 4 21. 270 & 974

After the above process, the bits k19, kog and ks7 + kg3 + ka1 + kagkoog + k3 +
k3o + k12 +ksrkss +ksg can be determined. k19 and ko are single master key bits.
Let ¢ = ksy + kg3 + ko1 + kagkag + k3 + k3o + k12 + k3rkss + k3o (¢ is 0 or 1), then
it can be rewritten as k’57 = k63 + kgl + kggkgg + kg + ]{130 + k’lg + k37k38 + kgg +c.
We guess the other 77 key bits excluding k19, k29 and ks7, the value k57 can
be obtained directly. So the other 77 key bits excluding k19, koo and k57 can be
recovered by brute force. Thus the complexity to recover all the key bits is 277.

4.4 Experimental Verification

We apply a powerful nullification technique to reduce the output polynomial,
and prove the degree bound of the reduced polynomial theoretically and recover
key bits. To make the attack more clear, we give an attack instance. We give
two attacks on 721-round Trivium: a distinguishing attack and a key-recovery
attack.

Obtain the Degree Upper Bound of Output of 721-round Trivium
Initial IV; = v; with ¢ € [0,79]. In the example attack on 721-round Trivium, we
only use 40 freedom variables, i.e. set vs.;41 = 0 for j € [0,39] and the other 40
IV bits are freedom variables. _

The exact boolean functions of the first 340 state bits s! for ¢ € [0,2] and
Jj € [0,340] can be obtained directly on PC. Hence, the degrees of them can
be obtained directly. Degrees upper bounds of other state bits can be evaluated
using Algorithm [2]and are shown in Table [0} Note that in Table[d] the estimated
degrees of some state bits are larger than 40, e.g. DEG(s5%%) = 41, which is
because the accuracy of Algorithm [2] decreases for state bits with large rounds.
Thus we only apply this algorithm to s} for j < 665.

The output of 721-round Trivium is 2721 = s5°¢ 4 529 4 5§53 4 5§38 4 5556
s§1. According to Table [9] the 6 state terms (bits) highlighted in red are of
degree lower than 40, so the degree of z79; is lower than 40, which can serve as
distinguishers. This result can be obtained easily by rough computing.

Next, we give a more accurate bound of z79;. In the following, we will
determine whether z791’s degree is bigger than 37. The 6 state bits are expressed
using state bits in lower rounds again and substituted into z791, which is called
the substitution or expression process in [9]. Then z7o; = s57° + 3465347 +
5395 4 $387 4 5363 4 53195520 | o518 4 GB6O | (BT | (B61B62 | o560 4 oBT5 | (572
s346, 5547 | gBA5 | G560 4 BBT | (BT3ETA 4 (BT2 4 569 | o542 | (BB B20 4 52T o524
According to degree upper bounds Table [9] deg(s3?°) = 27 < 37 highlighted
in blue, so 5% is removed. Then deg(s5*s5*") < DEG(s5%6) + DEG(s547) =
20 + 21 = 41 and 41 > 37, so the degree of 5305347 is possibly bigger than 36
and left. After discarding all the state terms whose degrees are lower than 36,
Z721|deg>36 = 83463847 + 5?733?74. Continue substitution and expression process
for z791|deg>36 and finally, there remain no state terms with degree bigger than
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< 665

) of the state bits s/ for j

J
7

Table 9. Degree upper bounds DEG(s?

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35]

8

7
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36, so that the degree bound of z79; is 36. The details of the above step are
shown in Appendix [A]

A Key-recovery Attack on 721-round Trivium Similar to the IV setting
above for distinguishing 721-round Trivium, we set ve.;41 = 0 for j € [0,39] and
the other 40 IV bits are freedom variables.

According to our attack outline introduced in Section we need to
determine the nullification scheme first. We express the output of 721-round
Trivium iteratively and calculate the frequency of state bits in the polynomial.
Then we choose 52°° as Py, the output can be rewritten as 2701 = s3°°Py + Ps.
Multiply 1+ s3°° with 2791 such that the result is (1 + s3°°)z791 = (1 + s3°0) Ps.
We study the reduced polynomial (1 + s2%°)P;. In order to decrease the
number of key bits in 8%90, we choose to nullify vsg, vgs and v79, so that there
are 37 freedom variables. Set the degree bound to 32, we express (1 + s7%0)P3
using internal state bits furthermore and discard state terms whose degree are
lower than 32 + d;, where d; is the corresponding degree reduction. We use IV
presentation, combined with Algorithm [4] in order to obtain the IV terms of
degree higher than 32. Finally, there is no IV term. Hence, we prove that the
degree of (1 + 5799)279; is lower than 32. Then the sum of (1 + s3%°)279; over
any selected cube of dimension 32 is zero. This process can be executed in an
hour in a PC.

Guess the key bit involved in s2°°. For right guess, sum over a cube of
dimension 32 is zero while for wrong guesses, the result is 1 with probability
%. The key bits involved in s3° are shown in Table After 19 summations
over cubes of dimension 32, the 19 key bits can be recovered. The complexity is
about 2 x 219 x 232 = 252, The other key bits can be recovered using brute force
with a complexity of 261, Hence, the total complexity of recovering all key bits
of 721-round Trivium is 21.

Table 10. The key bits involved in s3°°.

Equivalent key bits

kis, k17, kes, ke1, ks9, keo + ki6k17, kas + keoke1 + ke2, k33 + ksskso + k6o, k15 + kaoka1 + ka2,
kaskas + kaa, kas + k7skza + k75 + ke1kez, ka7 + kr2krs + k7a + keoke1 + k62, kae + kr1k7a+

k73 + ksokeo, kas + krok71 + k72 + ksskso + keo, ksakss + ksaksoke1 + ksakea + kasksokeo-+
ksokeoke1 + ksokeokez + kaske1 + keoke1 + k21+ kaskar + kas + k3o, kazksa + kazksokeo+

k3ske1 + ksaksskso + kssksokeo + kssksoke1 + ksakeo + ksokeo + k2o + kaskas + ka7 + k35 + ke2,
kieki7 + kiekazkas + ki6kaa + kirkarkaz + ka1kaokas + ka1 kazkas + ki7kas + kaockas + ks +
kogkag + k3o + kas + kas + krskza + k75 + ke1ke2 + ko, kiskie + kiskaikao + kiskas + kickaokar +
kaokarkaz + kaokarkas + k16kaz + ka1kaz + ko + kovkas + k2o + Kaa + ka7 + krokzs + kra+

keoke1 + ko2, k™ (A complex expression of key bits).

5 Conclusions

In this paper, we propose the Boolean polynomial reduction techniques and
IV representation, which can be applicable to cryptanalysis of stream ciphers
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based on NFSRs. These techniques can help obtain more accurate degree bounds.
We apply these techniques to the cryptanalysis of reduced round Trivium. For
recovering the key bits of Trivium, we propose a new nullification technique.
Combined with the distinguishers, we propose a key-recovery attack on 855 round
Trivium, where 3 equivalent key bits can be recovered with complexity of 274.
The other key bits can be recovered by brute force with a complexity of 277.

Furthermore, our flexible methods can be applied to attack more round of
Trivium by adjustment of P;, which is our future work. In addition, the degree
evaluation and degree reduction techniques can be applicable to other encryption
primitives such as Grain family.
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A The Details of Determining the Degree Upper Bound
of Output for 721-round Trivium

For 2721 |deg>36 = 5529537 + 57735974, the 4 state bits s30, s317, s773, s74 can
be expressed using state bits furthermore. Substitute the 4 state bits using the
expression and discard the state terms whose degree is lower than 37, then the
resulted 27 |aeg>ss =  si03s54046478 | 044650477 | 481 ds2 508
5a8254835007 + 538254835195 4 18151825296 Then the state bits involved in the
polynomial can be expressed using state bits, so that we can obtain
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_ 412 _372 373 .398 _399 413 371 372 398 399
2721 |deg>36 = Sp 785 785 "SS5 T 80 U8y T8y 8570 sy +

sA13 63733744397 (308 | o414 (372 (373 (357
s398 4 gA035043T2GITI T | T 403 (404 3T3 3TA 16y 5403404 372373 3T4 g
51035404 6371
3735374 4 sl035404 5413 373374 | (403 504 G414 (372 373 4 404 (05 371 372 416
sl04g1053T2 373 415 1 1045405 371 372373 | 404405 3T0 372375
504,305 412 372
5373 4 5015405 5413 4371 (372
Repeat the process above and we can obtain

2721 |deg>36 = 579052915305 3293 5204

295 303 5304 + 529132924304 4293 ;204 1205 3303 ;304 +

290 4201 4202 (293 (294 ;205 (303 304 + 5289 291 3292 (293 (294 ;295 ;303 ;304 +

s
52904291 ¢
52914292 (286 208 204,205 (303 304 |_ (290 (201 287 r
52985291,4205 303 304 (200 201 (305 202 ;04 205 303 (304 | (201,202 301 202 204 205
303_304 ; 290 _201_292 292 .294 .295 .303 .304 | .289 291 202 202 .204 295 303 .304

8y U85 " 87 U881 8577857785785 "8y 4 8187 8T 85 83 83778y "85 +
5291292 (286 200 204,205 (303 304 | (200 (391 (287 202 204 205 303 304 | (289 (200 304
529852944295 304 305 | (290 (201 303 203 204 395 304 305 | (269 (290 1201 (293 (204 205
53043305 J (288,200,201 208 294 1205 304 ;305 (200,201 (385 203 ;204 295 304 (805 |
52894290 (286 208 204,205 (304 805 | (289 1260 (304,202 (204 205 304 305 | (200,201 303
292 294 295 304 _305 | 289 .290 291 292 294 _295 _304 _305 ; 288 .290 291 292 294 295
S§O4S§0582 82290 2291 ;;358 12928 129:19 12959 23of 23058 2 8389 590 —‘58861 29821 29€11 29852 308212 30852
85 78570 + 878185 8577857785785 "85 4 81 V8T 85 U85 83 85778y 8570 +
52895290 4304 204 295 206 (302 (303 | (300 201 ;303 204 ;295 296,302 303 | 26 (290 (201
s34 95 303 + 8%905%91838553943%95§%96
53024303 | (289 (200 286 204 205 206 302 (303 (289 (200 301,203 (205 296,302 (303 |
52904201 (803 208 295 206 (302 803 | (289 (260 (291 203 (205 296 ;302 303 | (288 (200 201
293 _295 296 _302 303 | 290 291 .285 293 295 296 _302 _303 ; .289 290 286 _293 295 296
85 0857085085 785 0 87 U885 8577857785785 "8y 81" 817 85 °85°°85 85
5302308 | (288 (280 303 204 205 296 303 (304 | (289 200,302 204 (295 (296 303 304 |
5288 289 1200 204 (205 206 (303 (304 | (387 (280 (290 ;204 295 ;296 (303 (304 | (289 260 284
52945295 296 303 304 | (288 269 285 204,205 296 303 304 | (288 (289 303 203 (205 206
5308301 | (289 1200 302 203 (205 296 303 (304 | (288 (280,200,203 (205 296 303 304 |
§287 280 200 1203 295 206 (303 804 | (389 (260 284,203 (205 296 308 304 | (288 (280 285
52985295 4206 303 304,

s
s
s
s
S
s
s
s
s
2944295 4296 ;302 303 | (288 290 3291 ;204 4295 1206 302 ¢
S
s
s
s
s
S
S
s

Substitute once again and there remains no state term, so that the degree
of z791 is lower than 37, which can be derived as distinguishers with lower
complexity.
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