
TinyKeys: A New Approach to Efficient
Multi-Party Computation

Carmit Hazay1?, Emmanuela Orsini2??, Peter Scholl3? ? ?, and Eduardo
Soria-Vazquez4†

1 Bar-Ilan University, Israel
carmit.hazay@biu.ac.il

2 KU Leuven ESAT/COSIC, Belgium
emmanuela.orsini@kuleuven.be
3 Aarhus University, Denmark

peter.scholl@cs.au.dk
4 University of Bristol, UK

eduardo.soria-vazquez@bristol.ac.uk

Abstract. We present a new approach to designing concretely efficient
MPC protocols with semi-honest security in the dishonest majority set-
ting. Motivated by the fact that within the dishonest majority setting
the efficiency of most practical protocols does not depend on the num-
ber of honest parties, we investigate how to construct protocols which
improve in efficiency as the number of honest parties increases. Our cen-
tral idea is to take a protocol which is secure for n − 1 corruptions and
modify it to use short symmetric keys, with the aim of basing security
on the concatenation of all honest parties’ keys. This results in a more
efficient protocol tolerating fewer corruptions, whilst also introducing an
LPN-style syndrome decoding assumption.

We first apply this technique to a modified version of the semi-honest
GMW protocol, using OT extension with short keys, to improve the
efficiency of standard GMW with fewer corruptions. We also obtain more
efficient constant-round MPC, using BMR-style garbled circuits with
short keys, and present an implementation of the online phase of this
protocol. Our techniques start to improve upon existing protocols when
there are around n = 20 parties with h = 6 honest parties, and as these
increase we obtain up to a 13 times reduction (for n = 400, h = 120)

? Supported by the European Research Council under the ERC consolidators grant
agreement n. 615172 (HIPS), and by the BIU Center for Research in Applied Cryp-
tography and Cyber Security in conjunction with the Israel National Cyber Bureau
in the Prime Minister’s Office.

?? Supported in part by ERC Advanced Grant ERC-2015-AdG-IMPaCT.
? ? ? Supported by the European Union’s Horizon 2020 research and innovation pro-

gramme under grant agreement No 731583 (SODA), and the Danish Independent
Research Council under Grant-ID DFF-6108-00169 (FoCC).
† Supported by the European Union’s Horizon 2020 research and innovation pro-

gramme under the Marie Sk lodowska-Curie grant agreement No. 643161, and by
ERC Advanced Grant ERC-2015-AdG-IMPaCT.

in communication complexity for our GMW variant, compared with the
best-known GMW-based protocol modified to use the same threshold.

1 Introduction

Secure multi-party computation (MPC) protocols allow a group of n parties
to compute some function f on the parties’ private inputs, while preserving
a number of security properties such as privacy and correctness. The former
property implies data confidentiality, namely, nothing leaks from the protocol
execution but the computed output. The latter requirement implies that the
protocol enforces the integrity of the computations made by the parties, namely,
honest parties are not lead to accept a wrong output. Security is proven either
in the presence of an honest-but-curious adversary that follows the protocol
specification but tries to learn more than allowed from its view of the protocol, or
a malicious adversary that can arbitrarily deviate from the protocol specification
in order to compromise the security of the other parties in the protocol.

The efficiency of a protocol typically also depends on how many corrupted
parties can be tolerated before security breaks down, a quantity known as the
threshold, t. With semi-honest security, most protocols either require t < n/2
(where n is the number of parties), in which case unconditionally secure proto-
cols [BOGW88, CCD88] based on Shamir secret-sharing can be used, or support
any choice of t up to n − 1, as in computationally secure protocols based on
oblivious transfer [GMW87, Gol04]. Interestingly, within these two ranges, the
efficiency of most practical semi-honest protocols does not depend on t. For in-
stance, the GMW [GMW87] protocol (and its many variants) is full-threshold,
so supports any t < n corruptions. However, we do not know of any practical
protocols with threshold, say, t = 2

3n, or even t = n/2 + 1, that are more ef-
ficient than full-threshold GMW-style protocols. One exception to this is when
the number of parties becomes very large, in which case protocols based on com-
mittees can be used. In this approach, due to an idea of Bracha [Bra85], first a
random committee of size n′ � n is chosen. Then every party secret-shares its
input to the parties in the committee, who runs a secure computation protocol
for t < n′ to obtain the result. The committee size n′ must be chosen to ensure
(with high probability) that not the whole committee is corrupted, so clearly
a lower threshold t allows for smaller committees, giving significant efficiency
savings. However, this technique is only really useful when n is very large, at
least in the hundreds or thousands.

In this paper we investigate designing MPC protocols where an arbitrary
threshold for the number of corrupted parties can be chosen, which are practical
both when n is very large, and also for small to medium sizes of n. Specifically,
we ask the question:

Can we design concretely efficient MPC protocols where the performance
improves gracefully as the number of honest parties increases?

2

Note that the performance of an MPC protocol can be measured both in
terms of communication overhead and computational overhead. Using fully ho-
momorphic encryption [Gen09], it is possible to achieve very low communication
overhead that is independent of the circuit size [AJL+12] even in the malicious
setting, but for reasonably complex functions FHE is impractical due to very
high computational costs. On the other hand, practical MPC protocols typi-
cally communicate for every AND gate in the circuit, and use oblivious transfer
(OT) to carry out the computation. Fast OT extension techniques allow a large
number of secret-shared bit multiplications5 to be performed using only sym-
metric primitives and an amortized communication complexity of O(κ) [IKNP03]
or O(κ/ log κ) [KK13, DKS+17] bits, where κ is a computational security pa-
rameter. This leads to an overall communication complexity which grows with
O(n2κ/ log κ) bits per AND gate in protocols based on secret-sharing following
the [GMW87] style, and O(n2κ) in those based on garbled circuits in the style
of [Yao86, BMR90, BLO16].

Short keys for secure computation. Our main idea towards achieving the
above goal is to build a secure multi-party protocol with h honest parties, by
distributing secret key material so that each party only holds a small part of the
key. Instead of basing security on secret keys held by each party individually, we
then base security on the concatenation of all honest parties’ keys.

As a toy example, consider the following simple distributed encryption of a
message m under n keys:

Ek(m) =

n⊕
i=1

H(i, ki)⊕m

where H is a suitable hash function and each key ki ∈ {0, 1}` belongs to party
Pi. In the full-threshold setting with up to n−1 corruptions, to hide the message
we need each party’s key to be of length ` = 128 to achieve 128-bit computa-
tional security. However, if only t < n − 1 parties are corrupted, it seems that,
intuitively, an adversary needs to guess all h := n − t honest parties’ keys to
recover the message, and potentially each key ki can be much less than 128 bits
long when h is large enough. This is because the “obvious” way to try to guess
m would be to brute force all h keys until decrypting “successfully”.

In fact, recovering m when there are h unknown keys corresponds to solving
an instance of the regular syndrome decoding problem [AFS03], which is related
to the well-known learning parity with noise (LPN) problem, and believed to be
hard for suitable choices of parameters.

1.1 Our Contribution

In this work we use the above idea of short secret keys to design new MPC
protocols in both the constant round and non-constant round settings, which

5 Note that OT is equivalent to secret-shared bit multiplication, and when constructing
MPC it is more convenient to use the latter definition.

3

improve in efficiency as the number of honest parties increases. We consider
security against a static, honest-but-curious adversary, and leave it for future
work to extend our techniques to the malicious case based on, e.g. message
authentication codes. Our contribution is captured by the following:

GMW-style MPC with short keys (Section 3). We present a GMW-style
MPC protocol for binary circuits, where multiplications are done with OT ex-
tension using short symmetric keys. This reduces the communication complexity
of OT extension-based GMW from O(n2κ/ log κ) [KK13] to O(nt`), where the
key length ` decreases as the number of honest parties, h = n − t, increases.
When h is large enough, we can even have ` as small as 1.
To construct this protocol, we first analyse the security of the IKNP OT ex-
tension protocol [IKNP03] when using short keys, and formalise the leakage
obtained by a corrupt receiver in this case. We then show how to use this ver-
sion of “leaky OT” to generate multiplication triples using a modified version
of the GMW method, where pairs of parties use OT to multiply their shares of
random values. We also optimize our protocol by reducing the number of com-
munication channels using two different-sized committees, improving upon the
standard approach of choosing one committee to do all the work.

Multi-party garbled circuits with short keys (Section 4). Our second
contribution is the design of a constant round, BMR-style [BMR90] protocol
based on garbled circuits with short keys. Our offline phase uses the multiplica-
tion protocol from the previous result in order to generate the garbled circuit,
using secret-shared bit and bit/string multiplications as done in previous works
[BLO16, HSS17], with the exception that the keys are shorter. In the online
phase, we then use the LPN-style assumption to show that the combination of
all honest parties’ `-bit keys suffices to obtain a secure garbling protocol. This
allows us to save on the key length as a function of the number of honest parties.
As well as reducing communication with a smaller garbled circuit, we also reduce
computation when evaluating the circuit, since each garbled gate can be evalu-
ated with only O(n2`/κ) block cipher calls (assuming the ideal cipher model),
instead of O(n2) when using κ-bit keys. For this protocol, ` can be as small as
8, giving a significant saving over 128-bit keys used previously.

Concrete Efficiency Improvements. The efficiency of our protocols depends
on the total number of parties, n, and the number of honest parties, h, so there
is a large range of parameters to explore when comparing with other works. We
discuss this in more detail in Section 5. Our protocols seem most significant
in the dishonest majority setting, since when there is an honest majority there
are unconditionally secure protocols with O(n log n) communication overhead
and reasonable computational complexity e.g. [DN07], whilst our protocols have
Ω(nt) communication overhead.

Our GMW-style protocol starts to improve upon previous protocols when we
reach n = 20 parties and t = 14 corruptions: here, our triple generation method
requires less than half the communication cost of the fastest GMW-style protocol

4

based on OT extension [DKS+17] tolerating up to n− 1 corruptions. When the
number of honest parties is large enough, we can use 1-bit keys, giving a 25-fold
reduction in communication over previous protocols when n = 400 and t = 280.
In addition, we describe a simple threshold-t variant of GMW-style protocols,
which our protocol still outperforms by 1.1x and 13x, respectively, in these two
scenarios.

For our constant round protocol, with n = 20, t = 10 we can use 32-bit keys,
so the size of each garbled AND gate is 1/4 the size of [BLO16]. As n increases
the improvements become greater, with a 16-fold reduction in garbled AND gate
size for n = 400, t = 280. We also reduce the communication cost of creating the
garbled circuit. Here, the improvement starts at around 50 parties, and goes
up to a 7 times reduction in communication when n = 400, t = 280. Note that
our protocol does incur a slight additional overhead, since we need to use extra
“splitter gates”, but this cost is relatively small.

To demonstrate the practicality of our approach, we also present an imple-
mentation of the online evaluation phase of our constant-round protocol for key
lengths ranging between 1 − 4 bytes, and with an overall number of parties
ranging from 15− 1000; more details can be found in Section 5.

Applications. Our techniques seem most useful for large-scale MPC with
around 70% corruptions, where we obtain the greatest concrete efficiency im-
provements. An important motivation for this setting is privacy-preserving sta-
tistical analysis of data collected from a large network with potentially thousands
of nodes. In scenarios where the nodes are not always online and connected, our
protocols can also be used with the “random committee” approach discussed
earlier, so only a small subset of, say, a hundred nodes need to be online and
interacting during the protocol.

An interesting example is safely measuring the Tor network [DMS04] which
is among the most popular tools for digital privacy, consisting of more than
6000 relays that can opt-in for providing statistics about the use of the network.
Nowadays and due to privacy risks, the statistics collected over Tor are generally
poor: There is a reduced list of computed functions and only a minority of the
relays provide data, which has to be obfuscated before publishing [DMS04].
Hence, the statistics provide an incomplete picture which is affected by a noise
that scales with the number of relays. Running MPC in this setting would enable
for more complex, accurate and private data processing, for example through
anomaly detection and more sophisticated censorship detection. Moreover, our
protocols are particularly well-suited to this setting since all relays in the network
must be connected to one another already, by design.

Another possible application is for securely computing the interdomain rout-
ing within the Border Gateway Protocol (BGP), which is performed at a large
scale of thousands of nodes. A recent solution in the dishonest majority set-
ting [ADS+17] centralizes BGP so that two parties run this computation for all
Autonomous Systems. Our techniques allow scaling to a large number of sys-

5

tems computing the interdomain routing themselves using MPC, hence further
reducing the trust requirements.

Decisional Regular Syndrome Decoding problem. The security of our
protocols relies on the Decisional Regular Syndrome Decoding (DRSD) problem,
which, given a random binary matrix H, is to distinguish between the syndrome
obtained by multiplying H with an error vector e = (e1‖ · · · ‖eh) where each

ei ∈ {0, 1}2
`

has Hamming weight one, and the uniform distribution. This can

equivalently be described as distinguishing
⊕h

i=1 H(i, ki) from the uniform dis-
tribution, where H is a random function and each ki is a random `-bit key (as
in the toy example described earlier).

We remark that when h is large enough, the problem is unconditionally hard
even for ` = 1, which means for certain parameter choices in our GMW-based
protocol we can use 1-bit keys without introducing any additional assumptions.
This introduces a significant saving in our triple generation protocol.

Additional related work. Another work which applies a similar assumption
to secure computation is that of Applebaum [App16], who built garbled circuits
with the free-XOR technique in the standard model under the LPN assump-
tion. Conceptually, our work differs from Applebaum’s since our focus is to
improve the efficiency of multi-party protocols with fewer corruptions, whereas
in [App16], LPN is used in a more modular way in order to achieve encryption
with stronger properties and under a more standard assumption.

In a recent work [NR17], Nielsen and Ranellucci designed a protocol in the
dishonest majority setting with malicious, adaptive security in the presence of
t < cn corruption for t ∈ [0, 1). Their protocol is aimed to work with a large num-
ber of parties and uses committees to obtain a protocol with poly-logarithmic
overhead. This protocol introduces high constants and is not useful for practical
applications.

Finally, in a concurrent work [BO17], Ben-Efraim and Omri also explore how
to optimize garbled circuits in the presence of non-full-threshold adversaries. By
using deterministic committees they achieve AND gates of size 4(t+1)κ, where κ
is the computational security parameter. By using the same technique we achieve
a size of 4(t + h)`, where ` � κ depends on h, a parameter for the minimum
number of honest parties in the committee. The rest of their results apply only
to the honest majority setting.

1.2 Technical Overview

In what follows we explain the technical side of our results in more detail.

Leaky oblivious transfer (OT). We first present a two-party secret-shared
bit multiplication protocol, based on a variant of the IKNP OT extension proto-
col [IKNP03] with short keys. Our protocol performs a batch of r multiplications
at once. Namely, the parties create r correlated OTs on `-bit strings using the
OT extension technique of [IKNP03], by transposing a matrix of ` OTs on r-bit
strings and swapping the roles of sender and receiver. In contrast to the IKNP

6

OT extension and followups, that use κ ‘base’ OTs for computational security
parameter κ, we use ` = O(log κ) base OTs.

This protocol leaks some information on the global secret ∆← {0, 1}` picked
by the receiver, as well as the inputs of the receiver. Roughly speaking, the
leakage is of the form H(i,∆) + xi, where xi ∈ {0, 1} is an input of the receiver
and H is a hash function with 1-bit output. Clearly, when ` is short this is not
secure to use on its own, since all of the receiver’s inputs only have ` bits of
min-entropy (based on the choice of ∆).

MPC from leaky OT. We then show how to apply this leaky two-party pro-
tocol to the multi-party setting, whilst preventing any leakage on the parties
shares. The main observation is that, when using additive secret-sharing, we
only need to ensure that the sum of all honest parties’ shares is unpredictable;
if the adversary learns just a few shares, they can easily be rerandomized by
adding pseudorandom shares of zero, which can be done non-interactively using
a PRF. However, we still have a problem, which is that in the standard GMW
approach, each party Pi uses OT to multiply their share xi with every other
party Pj ’s share yj . Now, there is leakage on the same share xi from each of
the OT instances between all other parties, which seems much harder to prevent
than leakage from just a single OT instance.

To work around this problem, we have the parties add shares of zero to their
xi inputs before multiplying them. So, every pair (Pi, Pj) will use leaky OT
to multiply xi ⊕ si,j with yj , where si,j is a random share of zero satisfying⊕n

i=1 s
i,j = 0. This preserves correctness of the protocol, because the parties

end up computing an additive sharing of:

n⊕
i=1

n⊕
j=1

(xi ⊕ si,j)yj =

n⊕
j=1

yj
n⊕
i=1

(xi ⊕ si,j) = xy.

This also effectively removes leakage on the individual shares, so we only need
to be concerned with the sum of the leakage on all honest parties’ shares, and
this turns out to be of the form:

⊕n
i=1(H(i,∆i) + xi) which is pseudorandom

under the decisional regular syndrome decoding assumption.
We realize our protocol using a hash function with a polynomial-sized do-

main, so that is can be implemented using a CRS which simply outputs a random
lookup-table. This means that, unlike when using the IKNP protocol, we do not
need to rely on a random oracle or a correlation robustness assumption.

When the number of parties is large enough, we can improve our triple gen-
eration protocol using random committees. In this case the amortized commu-
nication cost is ≤ nhn1(` + `κ/r + 1) bits per multiplication where we need to
choose two committees of sizes nh and n1 which have at least h and 1 honest
parties, respectively.

Garbled circuits with short keys. We next revisit the multi-party garbled
circuits technique by Beaver, Micali and Rogaway, known as BMR, that extends
the classic Yao garbling [Yao86] to an arbitrary number of parties, where es-
sentially all the parties jointly garble using one set of keys each. This method

7

was recently improved in a sequence of works [LPSY15, LSS16, BLO16, HSS17],
where the two latter works further support the Free-XOR property.

Our garbling method uses an expansion function H : [n]× {0, 1} × {0, 1}` →
{0, 1}n`+1, where ` is the length of each parties’ keys used as wire labels in the
garbled circuit. To garble a gate, the hash values of the input wire keys kiu,b and

kiv,b are XORed over i and used to mask the output wire keys.
Specifically, for an AND gate g with input wires u, v and output wire w, the

4 garbled rows g̃a,b, for each (a, b) ∈ {0, 1}2, are computed as:

g̃a,b =

(
n⊕
i=1

H(i, b, kiu,a)⊕ H(i, a, kiv,b)

)
⊕ (c, k1

w,c, . . . , k
n
w,c).

Security then relies on the DRSD assumption, which implies that the sum of h
hash values on short keys is pseudorandom, which suffices to construct a secure
garbling method with h honest parties.

Using this assumption instead of a PRF (as in recent works) comes with
difficulties, as we can no longer garble gates with arbitrary fan-out, or use the
free-XOR technique, without degrading the DRSD parameters. To allow for arbi-
trary fan-out circuits with our protocol we use splitter gates, which take as input
one wire w and provide two outputs wires u, v, representing the same wire value.
Splitter gates were previously introduced as a fix for an error in the original
BMR paper in [TX03]. We stress that transforming a general circuit description
into a circuit with only fan-out-1 gates requires adding at most a single splitter
gate per AND or XOR gate.

The restriction to fan-out-1 gates and the use of splitter gates additionally
allows us to garble XOR gates for free in BMR without relying on circular
security assumptions or correlation-robust hash functions, based on the FlexOR
technique [KMR14] where each XOR gate uses a unique offset. Furthermore, the
overhead of splitter gates is very low, since garbling a splitter gate does not use
the underlying MPC protocol: shares of the garbled gate can be generated non-
interactively. We note that this observation also applies to Yao’s garbled circuits,
but the overhead of adding splitter gates there is more significant; this is because
in most 2-party protocols, the size of the garbled circuit is the dominant cost
factor, whereas in multi-party protocols the main cost is creating the garbled
circuit in a distributed manner.

2 Preliminaries

We denote the security parameter by κ. We say that a function µ : N → N
is negligible if for every positive polynomial p(·) and all sufficiently large κ it
holds that µ(κ) < 1

p(κ) . The function µ is noticeable (or non-negligible) if there

exists a positive polynomial p(·) such that for all sufficiently large κ it holds that
µ(κ) ≥ 1

p(κ) . We use the abbreviation PPT to denote probabilistic polynomial-

time. We further denote by a ← A the uniform sampling of a from a set A,
and by [d] the set of elements {1, . . . , d}. We often view bit-strings in {0, 1}k

8

as vectors in Fk2 , depending on the context, and denote exclusive-or by “⊕” or
“+”. If a, b ∈ F2 then a · b denotes multiplication (or AND), and if c ∈ Fκ2 then
a · c ∈ Fκ2 denotes the product of a with every component of c.

Security and Communication Models. We prove security of our protocols in
the universal composability (UC) framework [Can01]. See We assume all parties
are connected via secure, authenticated point-to-point channels, which is the
default method of communication in our protocols. The adversary model we
consider is a static, honest-but-curious adversary who corrupts a subset A ⊂ [n]
of parties at the beginning of the protocol. We denote by Ā the subset of honest
parties, and define h = |Ā| = n− t.

Functionality Fr
Zero(P)

On receiving (zero) from all parties in P = {P1, . . . , Pn}:

1. Sample random shares s2, . . . , sn ← {0, 1}r and let s1 = s2 ⊕ · · · ⊕ sn

2. Send si to party Pi

Fig. 1. Random zero sharing functionality.

Random Zero-Sharing. Our protocols require the parties to generate random
additive sharings of zero, as in the FZero functionality in Figure 1. This can be
done efficiently using a PRF F , with interaction only during a setup phase, as
in [AFL+16].

2.1 Regular Syndrome Decoding Problem

We now describe the Regular Syndrome Decoding (RSD) problem and some of
its properties.

Definition 2.1 A vector e ∈ Fm2 is (m,h)-regular if e = (e1‖ · · · ‖eh) where
each ei ∈ {0, 1}m/h has Hamming weight one. We denote by Rm,h the set of all
the (m,h)-regular vectors in Fm2 .

Definition 2.2 (Regular Syndrome Decoding (RSD)) Let r, h, ` ∈ N with
m = h · 2`, H ← Fr×m2 and e ← Rm,h. Given (H,He), the RSDr,h,` problem is
to recover e with noticeable probability.

The decisional version of the problem, given below, is to distinguish the
syndrome He from uniform.

Definition 2.3 (Decisional Regular Syndrome Decoding (DRSD)) Let H
← Fr×m2 and e ← Rm,h, and let Ur be the uniform distribution on r bits. The
DRSDr,h,` problem is to distinguish between (H,He) and (H, Ur) with noticeable
advantage.

9

Hash function formulation. The DRSD problem can be equivalently described
as distinguishing from uniform

⊕h
i=1 H(i, ki) where H : [h] × {0, 1}` → {0, 1}r

is a random hash function, and each ki ← {0, 1}`. With this formulation, it is
easier to see how the DRSD problem arises when using our protocols with short
keys, since this appears when summing up a hash function applied to h honest
parties’ secret keys.

To see the equivalence, we can define a matrix H ∈ Fr×h·2
`

2 , where for each
i ∈ {0, . . . , h − 1} and k ∈ [2`], column i · 2` + k of H contains H(i, k). Then,
multiplying H with a random (m,h)-regular vector e is equivalent to taking the
sum of H over h random inputs, as above.

Statistical hardness of DRSD. We next observe that for certain parameters
where the output size of H is sufficiently smaller than the min-entropy of the
error vector e, the distribution in the decisional problem is statistically close to
uniform. Proofs and the general case of `-bit keys are given in [HOSS18].

Lemma 2.1 If ` = 1 and h ≥ r + s then DRSDr,h,` is statistically hard, with
distinguishing probability 2−s.

Search-to-decision reduction. For all parameter choices of DRSD, there is a
simple reduction to the search version of the regular syndrome decoding problem
with the same parameters.

Lemma 2.2 Any efficient distinguisher for the DRSDr,h,` problem can be used
to efficiently solve RSDr,h,`.

3 GMW-Style MPC with Short Keys

In this section we design a protocol for generating multiplication triples over F2

using short secret keys, with reduced communication complexity as the num-
ber of honest parties increases. More concretely, we first design a leaky protocol
for secret-shared two-party bit multiplication, based on correlated OT and OT
extension techniques with short keys. This protocol is not fully secure and we
precisely define the leakage obtained by the receiver. We next show how to use
the leaky protocol to produce multiplication triples, removing the leakage by
rerandomizing the parties’ shares with shares of zero, and using the DRSD as-
sumption. Finally, this protocol can be used with Beaver’s multiplication triple
technique [Bea92] to obtain MPC for binary circuits with an amortized commu-
nication complexity of O(nt`) bits per triple, where t is the threshold and ` is
the secret key length. When the number of honest parties is large enough we can
even use ` = 1 and avoid relying on DRSD.

3.1 Leaky Two-Party Secret-Shared Multiplication

We first present our protocol for two-party secret-shared bit multiplication, based
on a variant of the [IKNP03] OT extension protocol, modified to use short keys.

10

Functionality Fr,`
∆-ROT

After receiving ∆ ∈ {0, 1}` from PS and (x1, . . . , xr) ∈ {0, 1}r from PR, do the
following:

1. Sample qi ← {0, 1}`, for i ∈ [r], and let ti = qi ⊕ xi ·∆.
2. Output qi to PS and ti to PR, for i ∈ [r].

Fig. 2. Functionality for oblivious transfer on random, correlated strings.

With short keys we cannot hope for computational security based on standard
symmetric primitives, because an adversary can search every possible key in
polynomial time. Our goal, therefore, is to define the precise leakage that occurs
when using short keys, in order to remove this leakage at a later stage.

OT extension and correlated OT. Recall that the main observation of the
IKNP protocol for extending oblivious transfer [IKNP03] is that correlated OT
is symmetric, so that κ correlated OTs on r-bit strings can be locally converted
into r correlated OTs on κ-bit strings. Secondly, a κ-bit correlated OT can be
used to obtain an OT on chosen strings with computational security. The first
stage of this process is abstracted away by the functionality F∆-ROT in Figure 2.

Using IKNP to multiply an input bit xk from the sender, PA, with an input
bit yk from PB , the receiver, PB sends yk as its choice bit to F∆-ROT and learns
tk = qk ⊕ yk ·∆. The sender PA obtains qk, and then sends

dk = H(qk)⊕ H(qk ⊕∆)⊕ xk,
where H is a 1-bit output hash function. This allows the parties to compute
an additive sharing of xk · yk as follows: PA defines the share H(qk), and PB
computes H(tk) ⊕ yk · dk. This can be repeated many times with the same ∆
to perform a large batch of poly(κ) secret-shared multiplications, because the
randomness in ∆ serves to computationally mask each x with the hash values
(under a suitable correlation robustness assumption for H). The downside of this
is that for ∆ ∈ {0, 1}κ, the communication cost is O(κ) bits per two-party bit
multiplication, to perform the correlated OTs.

Variant with short keys. We adapt this protocol to use short keys by per-
forming the correlated OTs on `-bit strings, instead of κ-bit, for some small key
length ` = O(log κ) (we could have ` as small as 1). This allows F∆-ROT to be
implemented with only O(`) bits of communication per OT instead of O(κ).

Our protocol, shown in Figure 4, performs a batch of r multiplications at
once. First the parties create r correlated OTs on `-bit strings using F∆-ROT.
Next, the parties hash the output strings of the correlated OTs, and PA sends
over the correction values dk, which are used by PB to convert the random OTs
into a secret-shared bit multiplication. Finally, we require the parties to add a
random value (from FZero, shown in Figure 1) to their outputs, which ensures
that they have a uniform distribution.

Note that if ` ∈ O(log κ) then the hash function HAB has a polynomial-sized
domain, so can be described as a lookup table provided as a common input to

11

the protocol by both parties. At this stage we do not make any assumptions
about HAB ; this means that the leakage in the protocol will depend on the
hash function, so its description is also passed to the functionality FLeaky-2-Mult

(Figure 3). We require HAB to take as additional input an index k ∈ [r] and a bit
in {0, 1}, to provide independence between different uses, and our later protocols
require the function to be different in protocol instances between different pairs
of parties (we use the notation HAB to emphasize this).

Functionality Fr,`
Leaky-2-Mult

Input: (x1, . . . , xr) ∈ Fr
2 from PA and (y1, . . . , yr) ∈ Fr

2 from PB .
Common input: A hash function HAB : [r]× {0, 1} × {0, 1}` → {0, 1}.

1. Sample zA,zB ← Fr
2 such that zA + zB = x ∗ y (where ∗ denotes component-

wise product).
2. Output zA to PA and zB to PB .

Leakage: If PB is corrupt:

1. Let H ∈ Fr×2`

2 be defined so that entry (k, k′) of H is HAB(k, 1⊕ yk, tk ⊕ k′),
where tk ← {0, 1}`.

2. Sample a random unit vector e ∈ F2`

2 and send (H,u = He + x) to A.

Fig. 3. Ideal functionality for leaky secret-shared two-party bit multiplication

Leakage. We now analyse the exact security of the protocol in Figure 4 when us-
ing short keys, and explain how this is specified in the functionality FLeaky-2-Mult

(Figure 3). Since a random share of zero is added to the outputs, note that the
output distribution is uniformly random. Also, like IKNP, the protocol is per-
fectly secure against a corrupt PA (or sender), so we only need to be concerned
with leakage to a corrupt PB who also sees the intermediate values of the pro-
tocol.

The leakage is different for each k, depending on whether yk = 0 or yk = 1, so
we consider the two cases separately. Within each case, there are two potential
sources of leakage: firstly, the corrupt PB ’s knowledge of tk and ρk may cause
leakage (where ρk is a random share of zero), since these values are used to define
PA’s output. Secondly, the dk values seen by PB , which equal

dk = HAB(k, yk, tk)⊕ HAB(k, 1⊕ yk, tk ⊕∆)⊕ xk, (1)

may leak information on PA’s inputs xk.

Case 1 (yk = 1). In this case there is only leakage from the values tk and ρk,
which are used to define PA’s output. Since zAk = HAB(k, 0, tk ⊕∆)⊕ ρk, all of
PA’s outputs (and hence, also inputs) where yk = 1 effectively have only ` bits
of min-entropy in the view of PB , corresponding to the random choice of ∆. In
this case PB ’s output is zBk = zAk ⊕ xk = HAB(k, 0, tk ⊕∆)⊕ ρk ⊕ xk. To ensure

12

that PB ’s view is simulable the functionality needs to sample a random string
∆← {0, 1}` and leak HAB(k, 0, tk ⊕∆)⊕ xk to a corrupt PB .

Concerning the dk values, notice that when yk = 1 PB can compute HAB(k, 1, tk)
and use (1) to recover HAB(k, 0, qk) + xk, which equals zAk + ρk + xk. However,
this is not a problem, because in this case we have zBk = zAk + xk, so dk can be
simulated given PB ’s output.

Case 2 (yk = 0). Here the dk values seen by PB causes leakage on PA’s inputs,
because ∆ is short. Looking at (1), dk leaks information on xk because ∆ ←
{0, 1}` is the only unknown in the equation, and is fixed for every k. Similarly
to the previous case, this means that all of PA’s inputs where yk = 0 have only `
bits of min-entropy in the view of an adversary who corrupts PB . We can again
handle this leakage, by defining FLeaky-2-Mult to leak HAB(k, 1, tk ⊕∆) + xk to
a corrupt PB .

Note that there is no leakage from the tk values when yk = 0, because then
tk = qk, so these messages are independent of ∆ and the inputs of PA.

In the functionality FLeaky-2-Mult, we actually modify the above slightly so
that the leakage is defined in terms of linear algebra, instead of the hash func-
tion HAB , to simplify the translation to the DRSD problem later on. There-

fore, FLeaky-2-Mult defines a matrix H ∈ Fr×2`

2 , which contains the 2` values
{HAB(k, 1 ⊕ yk, tk ⊕∆)}∆∈{0,1}` in row k, where each tk is uniformly random.
Given H, the leakage from the protocol can then be described by sampling a

random unit vector e ∈ F2`

2 (which corresponds to ∆ ∈ {0, 1}` in the protocol)
and leaking u = He + x to a corrupt PB .

Communication complexity. The cost of computing r secret-shared products
is that of ` random, correlated OTs on r-bit strings, and a further r bits of com-
munication. Using OT extension [IKNP03, ALSZ13] to implement the correlated
OTs the amortized cost is `(r+κ) bits, for computational security κ. This gives
a total cost of `(r + κ) + r bits.

In [HOSS18] we prove the following.

Theorem 3.1 Protocol Πr,`
Leaky-2-Mult securely implements the functionality

Fr,`Leaky-2-Mult with perfect security in the (F∆-ROT,FZero)-hybrid model in the
presence of static honest-but-curious adversaries.

3.2 MPC for Binary Circuits From Leaky OT

We now show how to use the leaky OT protocol to compute multiplication triples
over F2, using a GMW-style protocol [GMW87, Gol04] optimized for the case
of at least h honest parties. This can then be used to obtain a general MPC
protocol for binary circuits using Beaver’s method [Bea92].

Triple generation. We implement the triple generation functionality over F2,
shown in Figure 5. Recall that to create a triple using the GMW method, first

13

Protocol Πr,`
Leaky-2-Mult

Parameters: r, number of multiplications; `, key length.
Input: x = (x1, . . . , xr) ∈ Fr

2 from PA and y = (y1, . . . , yr) ∈ Fr
2 from PB .

Common input: A hash function HAB : [r]× {0, 1} × {0, 1}` → {0, 1}.

1. PA and PB invoke Fr,`
∆-ROT where PA is sender with a random input ∆ ←

{0, 1}`, and PB is receiver with inputs (y1, . . . , yr). PA receives random strings
qk ∈ {0, 1}` and PB receives tk = qk ⊕ yk ·∆, for k ∈ [r].

2. Call Fr
Zero so that PA and PB obtain the same random ρk ∈ {0, 1} for every

k ∈ [r].
3. For each k ∈ [r], PA privately sends to PB :

dk = HAB(k, 0, qk) + HAB(k, 1, qk +∆) + xk.

4. PB outputs

zBk = HAB(k, yk, tk) + yk · dk + ρk, for k ∈ [r].

5. PA outputs
zAk = HAB(k, 0, qk) + ρk, for k ∈ [r].

Fig. 4. Leaky secret-shared two-party bit multiplication protocol

each party locally samples shares xi, yi ← F2. Next, the parties compute shares
of the product based on the fact that:

(

n∑
i=1

xi) · (
n∑
i=1

yi) =

n∑
i=1

xiyi +

n∑
i=1

∑
j 6=i

xiyj .

where xi denotes Pi’s share of x =
∑
i x

i.
Since each party can compute xiyi on its own, in order to obtain additive

shares of z = xy it suffices for the parties to obtain additive shares of xiyj for
every pair i 6= j. This is done using oblivious transfer between Pi and Pj , since
a 1-out-of-2 OT implies two-party secret-shared bit multiplication.

Functionality Fr
Triple

1. Sample (xij , y
i
j , z

i
j)← F3

2, for i ∈ [n] and j ∈ [r], subject to the constraint that∑
i

zij =
(∑

i

xij
)
·
(∑

i

yij
)

2. Output (xij , y
i
j , z

i
j) to party Pi, for j ∈ [r].

Fig. 5. Multiplication triple generation functionality.

If we use the leaky two-party batch multiplication protocol from the previous
section, this approach fails to give a secure protocol because the leakage in
FLeaky-2-Mult allows a corrupt PB to guess PA’s inputs with probability 2−`.

14

When using this naively, PA carries out a secret-shared multiplication using
the same input shares with every other party, which allows every corrupt party
to attempt to guess PA’s shares, increasing the success probability further. If
the number of corrupted parties is not too small then this gives the adversary
a significant chance of successfully guessing the shares of every honest party,
completely breaking security.

To avoid this issue, we require PA to randomize the shares used as input to
FLeaky-2-Mult, in such a way that we still preserve correctness of the protocol. To
do this, the parties will use FZero to generate random zero shares si,j ∈ F2 (held
by Pi), satisfying

∑
i s
i,j = 0 for all j ∈ [n], and then Pi and Pj will multiply

xi + si,j and yj . This means that all parties end up computing shares of:

n∑
i=1

n∑
j=1

(xi + si,j)yj =

n∑
j=1

yj
n∑
i=1

(xi + si,j) = xy,

so still obtain a correct triple.
Finally, to ensure that the output shares are uniformly random, fresh shares

of zero will be added to each party’s share of xy. Note that masking each xi

input to FLeaky-2-Mult means that it doesn’t matter if the individual shares are
leaked to the adversary, as long as it is still hard to guess the sum of all shares.
This means that we only need to be concerned with the sum of the leakage from
FLeaky-2-Mult. Recall that each individual instance leaks the input of an honest

party Pi masked by Hiei, where Hi is a random matrix and ei ∈ F2`

2 is a random
unit vector. Summing up all the leakage from h honest parties, we get

h∑
i=1

Hiei = (H1‖ · · · ‖Hh)

e1

...
eh


This is exactly an instance of the DRSDr,h,` problem, so is pseudorandom for an
appropriate choice of parameters.

We remark that the number of triples generated, r, affects the hardness of
DRSD. However, we can create an arbitrary number of triples without changing
the assumption by repeating the protocol for a fixed r.

Reducing the number of OT channels. The above approach reduces com-
munication of GMW by a factor κ/`, for `-bit keys, but still requires a complete
network of n(n − 1) OT and communication channels between the parties. We
can reduce this further by again taking advantage of the fact that there are at
least h honest parties. We observe that when using our two-party secret-shared
multiplication protocol to generate triples, information is only leaked on the xi

shares, and not the yi shares of each triple. This means that h − 1 parties can
choose their shares of y to be zero, and y will still be uniformly random to an
adversary who corrupts up to t = n−h parties. This reduces the number of OT
channels needed from n(n− 1) to (t+ 1)(n− 1).

When the number of parties is large enough, we can do even better using
random committees. We randomly choose two committees, P(h) and P(1), such

15

that except with negligible probability, P(h) has at least h honest parties and P(1)

has at least one honest party. Only the parties in P(h) choose non-zero shares of x,
and parties in P(1) choose non-zero shares of y; all other parties do not take part
in any OT instances, and just output random sharings of zero. We remark that it
can be useful to choose the parameter h lower than the actual number of honest
parties, to enable a smaller committee size (at the cost of potentially larger keys).
When the total number of parties, n, is large enough, this means the number of
interacting parties can be independent of n. The complete protocol, described
for two fixed committees satisfying our requirements, is shown in Figure 6.

Protocol Πr
Triple

CRS: Random hash functions Hi : [r]× {0, 1} × {0, 1}` → {0, 1}, for i ∈ [n].

The protocol runs between a set of parties P = {P1, . . . , Pn}, containing two (pos-
sibly overlapping) subsets P(h),P(1), such that P(h) has at least h honest parties
and P(1) has at least one honest party.

1. Each party Pi ∈ P(h) samples xik ← F2, and each Pj ∈ P(1) samples yjk ← F2,
for k ∈ [r].

2. Call F (n+1)r
Zero so that each Pi ∈ P obtains shares (ρi1, . . . , ρ

i
r), (si,j1 , . . . , si,jr)j∈[n],

such that
⊕

i ρ
i
k = 0 and

⊕
i s

i,j
k = 0.

3. Every pair (Pi, Pj) ∈ P(h)×P(1) runs Fr,`
Leaky-2-Mult(Hi) on input {xik +si,jk }k∈[r]

from Pi and {yjk}k∈[r] from Pj . For k ∈ [r], Pi receives ai,jk and Pj receives bj,ik

such that ai,jk + bj,ik = (xik + si,jk) · yjk.
4. Each Pi ∈ P computes, for k ∈ [r]:

zik = (xik + si,ik) · yik +
∑
j 6=i

(ai,jk + bi,jk) + ρik

where if any value xik, y
i
k, a

i,j
k , bi,jk has not been defined by Pi, it is set to zero.

5. Pi outputs the shares (xik, y
i
k, z

i
k)k∈[r].

Fig. 6. Secret-shared triple generation using leaky two-party multiplication.

Communication complexity. Recall from the analysis in Section 3.1 that
when using protocol ΠLeaky-2-Mult with ΠTriple, the cost of computing r secret-
shared triples is that of ` random, correlated OTs on r-bit strings, and a further
r bits of communication between every pair of parties. This gives a total cost of
`(r+ κ) + r bits between every pair of parties who has an OT channel (ignoring
FZero and the seed OTs for OT extension, since their communication cost is
independent of the number of triples). If the two committees P(h),P(1) have
sizes nh ≤ n and n1 ≤ t + 1 then we have the following theorem (proven in
[HOSS18]).

16

Theorem 3.2 Protocol ΠTriple securely realizes FrTriple in the (Fr,`Leaky-2-Mult,F
(n+1)r
Zero)-

hybrid model, based on the DRSDr,h,` assumption, where h is the number of hon-
est parties in P(h). The amortized communication cost is ≤ nhn1(`+ `κ/r + 1)
bits per triple.

Parameters for unconditional security. Recall from Lemma 2.1 that if ` = 1
and h ≥ r + s for any `, then DRSDr,h,` is statistically hard, with statistical
security 2−s. This means when h is large enough we can use 1-bit keys, and
every pair of parties who communicates only needs to send 2 +κ/r bits over the
network.6

MPC using multiplication triples. Our protocol for multiplication triples
can be used to construct a semi-honest MPC protocol for binary circuits using
Beaver’s approach [Bea92]. The parties first secret-share their inputs between all
other parties. Then, XOR gates can be evaluated locally on the shares, whilst
an AND gate requires consuming a multiplication triple, and two openings with
Beaver’s method. Each opening can be done with 2(n−1) bits of communication
as follows: all parties send their shares to P1, who sums the shares together and
sends the result back to every other party.

In the 1-bit key case mentioned above, using two (deterministic) committees
of sizes n and t+1 and setting, for instance, r = κ implies the following corollary.
Note that the number of communication channels is (t+1)(n−1) and not (t+1)n,
because in the deterministic case P(1) is contained in P(h), so t + 1 sets of the
shared cross-products can be computed locally.

Corollary 3.3 Assuming OT and OWF, there is a semi-honest MPC protocol
for binary circuits with an amortized communication complexity of no more than
3(t + 1)(n − 1) + 4(n − 1) bits per AND gate, if there are at least κ + s honest
parties.

4 Multi-Party Garbled Circuits with Short Keys

In this section we present our second contribution: a constant-round MPC pro-
tocol based on garbled circuits with short keys. The protocol has two phases,
a preprocessing phase independent of the parties’ actual inputs where the gar-
bled circuit is mutually generated by all parties, and an online phase where the
computation is performed. We first abstractly discuss the details of our garbling
method, and then turn to the two protocols for generating and evaluating the
garbled circuit.

4.1 The Multi-Party Garbling Scheme

Our garbling method is defined by the functionality F`BMR

Preprocessing (Figure 7),
which creates a garbled circuit that is given to all the parties. It can be seen

6 Note that we still need computational assumptions for OT and zero sharing in order
to implement FLeaky-2-Mult and FZero.

17

Functionality F`BMR
Preprocessing

Common input: A function H : [n]× {0, 1} × {0, 1}`BMR → {0, 1}n`BMR+1. Let H′

denote the same function excluding the least significant bit of the output.

Let Cf be a boolean circuit with fan-out-one gates. Denote by AND,XOR and SPLIT
its sets of AND, XOR and Splitter gates, respectively. Given a gate, let I and O be
the set of its input and output wires, respectively. If g ∈ SPLIT, then I = {w} and
O = {u, v}, otherwise O = {w}.
The functionality proceeds as follows ∀i ∈ [n]:

1. ∀g ∈ XOR, sample ∆i
g ← {0, 1}`BMR .

2. For each circuit-input wire u, sample λu ← {0, 1} and kiu,0 ← {0, 1}`BMR . If u
is input to a XOR gate g, set kiu,1 = kiu,0 ⊕∆i

g, otherwise kiu,1 ← {0, 1}`BMR .
3. Passing topologically through all the gates g ∈ {AND ∪ XOR ∪ SPLIT} of the

circuit:
– If g ∈ XOR:
• Set λw =

⊕
x∈I λx

• Set kiw,0 =
⊕

x∈I k
i
x,0 and kiw,1 = kiw,0 ⊕∆i

g

– If g ∈ AND:
• Sample λw ← {0, 1}.
• kiw,0 ← {0, 1}`BMR . If w is input to a XOR gate g′ set kiw,1 = kiw,0⊕∆i

g′ ,

else kiw,1 ← {0, 1}`BMR .
• For a, b ∈ {0, 1}, representing the public values of wires u and v, let
c = (a⊕λu) ·(b⊕λv)⊕λw. Store the four entries of the garbled version
of g as:

g̃a,b =

(
n⊕

i=1

H(i, b, kiu,a)⊕ H(i, a, kiv,b)

)
⊕ (c, k1

w,c, . . . , k
n
w,c), (a, b) ∈ {0, 1}2.

– If g ∈ SPLIT:
• Set λx = λw for every x ∈ O.
• ∀x ∈ O, sample kix,0 ← {0, 1}`BMR . If x ∈ O is input to a XOR gate
g′, set kix,1 = kix,0 ⊕∆i

g′ , otherwise kix,1 ← {0, 1}`BMR .
• For c ∈ {0, 1}, the public value on w, store the two entries of the

garbled version of g as:

g̃c =

(
n⊕

i=1

H′(i, 0, kiw,c),

n⊕
i=1

H′(i, 1, kiw,c)

)
⊕ (k1

u,c, . . . , k
n
u,c, k

1
v,c, . . . , k

n
v,c), c ∈ {0, 1}

4. Output: For each circuit-input wire u, send λu to the party providing inputs
to Cf on u. For every circuit wire v and i ∈ [n], send kiv,0, k

i
v,1 to Pi. Finally,

send to all parties g̃ for each g ∈ AND ∪ SPLIT and λw for each circuit-output
wire w.

Fig. 7. Multi-party garbling functionality

18

as a variant of the multi-party garbling technique by Beaver, Micali and Rog-
away [BMR90], known as BMR, which has been used and improved in a recent
sequence of works [LPSY15, LSS16, BLO16, HSS17].

The main idea behind BMR is that every party Pi contributes a pair of keys
kiw,0, k

i
w,1 ∈ {0, 1}κ and a share of a wire mask λiw ∈ {0, 1} for each wire w

in the circuit. To garble a gate, the corresponding output wire key from every
party is encrypted under the combination of all parties’ input wire keys, using a
PRF or PRG, so that no single party knows all the keys for a gate. In addition,
the free-XOR property can be supported by having each party choose their keys
such that kiw,0 ⊕ kiw,1 = ∆i, where ∆i is a global fixed random string known to
Pi.

The main difference between our work and recent related protocols is that we
use short keys of length `BMR instead of κ, and then garble gates using a random,
expanding function H : [n] × {0, 1} × {0, 1}`BMR → {0, 1}n`BMR+1. Instead of
basing security on a PRF or PRG, we then reduce the security of the protocol
to the pseudorandomness of the sum of H when applied to each of the honest
parties’ keys, which is implied by the DRSD problem from Section 2.1. We also
use H′ to denote H with the least significant output bit dropped, which we use
for garbling splitter gates.

To garble an AND gate g with input wires u, v and output wire w, each of
the 4 garbled rows g̃a,b, for (a, b) ∈ {0, 1}2, is computed as:

g̃a,b =

(
n⊕
i=1

H(i, b, kiu,a)⊕ H(i, a, kiv,b)

)
⊕ (c, k1

w,c, . . . , k
n
w,c), (2)

where c = (a ⊕ λu) · (b ⊕ λv) ⊕ λw and λu, λv, λw are the secret-shared wire
masks. Each row can be seen as an encryption of the correct n output wire keys
under the corresponding input wire keys of all parties. Note that, for each wire,
Pi holds the keys kiu,0, k

i
u,1 and an additive share λiu of the wire mask. The extra

bit value that H takes as input is added to securely increase the stretch of H
when using the same input key twice, preventing a ‘mix-and-match’ attack on
the rows of a garbled gate. The output of H is also extended by an extra bit, to
allow encryption of the output wire mask c.7

Splitter gates. When relying on the DRSD problem, the reuse of a key in mul-
tiple gates degrades parameters and makes the problem easier (as the parameter
r grows, the key length must be increased), so we cannot handle circuits with
arbitrary fan-out. For this reason, we restrict our exposition of the garbling to
fan-out-one circuits with so-called splitter gates. This type of gate takes as input
a single wire w and provides two output wires u, v, each of them with fresh, inde-
pendent keys representing the same value carried by the input wire. Converting
an arbitrary circuit to use splitter gates incurs a cost of roughly a factor of two
in the circuit size (see [HOSS18]).

7 This only becomes necessary when using short keys — in BMR with full-length keys
the parties can recover the wire mask by comparing the output with their own two
keys, but this does not work if collisions are possible.

19

Splitter gates were previously introduced in [TX03] as a fix for a similar issue
in the original BMR paper [BMR90], where the wire “keys” were used as seeds
for a PRG in order to garble the gates, so that when a wire was used as input
to multiple gates, their garbled versions did not use independent pseudorandom
masks. Other recent BMR-style papers avoid this issue by applying the PRF over
the gate identifier as well, which produces distinct, independent PRF evaluations
for each gate.

Free-XOR. The Free-XOR [KS08] optimization results in an improvement in
both computation and communication for XOR gates where a global fixed ran-
dom ∆i is chosen by each party Pi and the input keys are locally XORed,
yielding the output key of this gate. We cannot use the standard free-XOR tech-
nique [KS08, BLO16] for the same reason discussed above: reusing a single offset
across multiple gates would make the DRSD problem easier and not be secure.
We therefore introduce a new free-XOR technique (inspired by FleXOR [KMR14])
which, combined with our use of splitter gates, allows garbling XOR gates for
free without additional assumptions. For each arbitrary fan-in XOR gate g, each
party chooses a different offset ∆i

g, allowing for a free-XOR computation for
wires using keys with that offset. For general circuits, this would normally intro-
duce the problem that the input wires may not have the correct offset, requiring
some ‘translation’ to ∆g. However, because we restrict to gates with fan-out-one
and splitter gates, we know that each input wire to g is not an input wire to any
other gate, so we can always ensure the keys use the correct offset without any
further changes.

Compiling to fan-out-one circuits with splitter gates. Let Cf be an arbi-
trary fan-out circuit, with A AND gates and X XOR gates, both with fan-in-two.
Let ICf

and OCf
be the number of circuit-input and circuit-output wires, respec-

tively. We will now compute the number S of splitter gates that the compiled
circuit needs. First, note that each time a wire w is used as input to another gate
or as a circuit-output wire, w’s fan-out is increased by one. Each of the AND,
XOR gates in the pre-compiled circuit provides a fresh output wire to be used in
Cf , while using for its inputs two pre-existing wires in the circuit. Output wires
also use one pre-existing wire each, while input wires use no pre-existing wires.
This means that, to compile Cf to be a fan-out-one circuit, we need to add up
to (2 · X + 2 · A + OCf

) − (A + X + ICf
) wires. Each of these missing wires,

however, can be created by using a splitter gate in the compiled circuit, since
each of these gates uses one wire to generate two fresh new wires. So, putting all
the pieces together, the compiled circuit requires S ≤ X+A+OCf

−ICf
splitter

gates. This gives a close upper bound, as if w is a circuit output wire and an
input wire of another gate then it is being counted twice rather than once in the
formula.

20

Functionality FBit×Bit

After receiving (xi, yi) ∈ F2
2 from each party Pi, sample zi ← F2 such that

∑
i z

i =
(
∑

i x
i) · (

∑
i y

i), and send zi to party Pi.

Fig. 8. Secret-shared bit multiplication functionality

Functionality F`BMR
BitString(Pj)

After receiving (xi, yi) ∈ F2
2 from each party Pi, as well as ∆ ∈ F`BMR

2 from Pj ,
sample Zi ← F2 such that

∑
i Z

i = (
∑

i x
i) ·∆, and send Zi to party Pi.

Fig. 9. Secret-shared bit/string multiplication functionality

4.2 Protocol and Functionalities for Bit and Bit/String
Multiplication

Even though we could implement both FBit×Bit and F`BMR

BitString(Pj) using FTriple,
there are more efficient ways to implement the latter: One by building directly
from FLeaky-2-Mult, and another using [ALSZ13].

– FLeaky-2-Mult-hybrid implementation (Figure 11): As the length-`BMR string
Rjg is not secret-shared and just known to one party, we only need to perform
n−1 invocations of FLeaky-2-Mult in order to multiply it with a secret-shared
bit x = x1 + · · ·+ xn. The protocol uses random shares of zero to mask the
inputs and outputs of FLeaky-2-Mult, similarly to the ΠTriple protocol.
Note that this does not directly implement the functionality shown in Fig-
ure 9, because Πr,`BMR

Bit×String performs a batch of r independent multiplica-

tions in parallel. However, in the protocol Π`BMR

Preprocessing all the gates can be
garbled in parallel, so a batch version of the functionality (as described in
Figure 10) suffices. The amortized communication complexity obtained is
`BMR(1 + `OT + `OTκ/r) bits.

– [ALSZ13] implementation: The amortized communication complexity is κ+
`BMR bits.

Functionality Fr,`BMR
BitString

After receiving input (Pj , x
i
1, . . . , x

i
m) from every party Pi, and additional inputs

∆1, . . . ,∆r from Pj , where each xik ∈ {0, 1} and ∆k ∈ {0, 1}`BMR :

1. Sample Zi
k ← {0, 1}`BMR , for i ∈ [n] and k ∈ [r], subject to the constraint that⊕

i

Zi
k = ∆k ·

⊕
i

xik, for k ∈ [r]

2. Output Zi
1, . . . , Z

i
r to party Pi

Fig. 10. Batch secret-shared bit/string multiplication between Pj and all parties

21

Protocol Πr,`BMR
Bit×String, n-party Bit/String-Mult

To multiply the strings ∆1, . . . ,∆r ∈ {0, 1}`BMR held by Pj with secret-shared bits
(xi1, . . . , x

i
r)i∈[n]:

1. Denote the v-th bit of ∆k by ∆k,v. For v ∈ [`BMR]:
(a) Call F2r

Zero so that each Pi obtains fresh shares
(ρi1,v, . . . , ρ

i
m,v, σ

i
1,v, . . . , σ

i
m,v), such that

⊕
i ρ

i
k,v = 0 and

⊕
i σ

i
k,v = 0

(b) For each i 6= j, Pi and Pj run Fr,`OT
Leaky-2-Mult on input (xik ⊕ σi

k,v)k∈[r] from

Pi and (∆k[v])k∈[r] from Pj . Pi receives aik,v and Pj receives bik,v such that
aik,v ⊕ bik,v = ∆k[v] · (xik ⊕ σi

k).
2. Each Pi, for i 6= j, outputs the `BMR-bit strings Zi

k := (aik,1⊕ρik,1, . . . , aik,`BMR
⊕

ρik,`BMR
), for k ∈ [r].

3. Pj outputs the `BMR-bit strings Zj
k :=

⊕
i 6=j(b

i
k,1, . . . , b

i
k,`BMR

) ⊕
(ρjk,1, . . . , ρ

j
k,`BMR

), for k ∈ [r].

Fig. 11. n-party secret-shared bit/string multiplication using leaky 2-party multipli-
cation

Communication complexity. The communication complexity of Πr,`BMR

Bit×String

is exactly that of (n− 1)`BMR instances of Fr,`OT

Leaky-2-Mult, where `OT is the leakage

parameter used in the protocol Πr,`OT

Leaky-2-Mult. Note that `OT is independent of
`BMR used in the bit/string protocol, but affects the security and cost of realising
FLeaky-2-Mult. The total complexity is then (n − 1)`BMR(`OT(r + κ) + r) bits, or
an amortized cost of (n− 1)`BMR(`OT + `OTκ/r + 1) bits per multiplication.

Theorem 4.1 Protocol Πr,`BMR

Bit×String UC-securely realizes Fr,`BMR

BitString in the F2r
Zero-

hybrid in the presence of static honest-but-curious adversaries, under the DRSDr,h,`OT

assumption.

The proof is a direct extension of the proof of Theorem 3.2.

4.3 The Preprocessing Protocol

Our protocol for generating the garbled circuit is shown in Figure 12. We use
two functionalities FBit×Bit (Figure 8) and FBitString(Pj) (Figure 9) for multi-
plying two additively shared bits, and multiplying an additively shared bit with
a string held by Pj , respectively. FBit×Bit can be easily implemented using a
multiplication triple from FTriple in the previous section, whilst FBitString uses a
variant of the ΠTriple protocol optimized for this task.

Most of the preprocessing protocol is similar to previous works [BLO16,
HSS17], where first each party samples their sets of wire keys and shares of
wire masks, and then the parties interact to obtain shares of the garbled gates.
It is the second stage where our protocol differs, so we focus here on the details
of the gate garbling procedures.

22

The Preprocessing Protocol Π`BMR
Preprocessing

Common Input: H : [n]×{0, 1}×{0, 1}`BMR → {0, 1}n`BMR+1, a uniformly random
sampled function and H′ defined from H excluding the least significant bit of the
output. A boolean circuit Cf with fan-out 1. Let AND,XOR and SPLIT be the sets
of AND, XOR and splitter gates, respectively. Given a gate, let I and O be the
set of its input and output wires, respectively. If g ∈ SPLIT, then I = {w} and
O = {u, v}, otherwise O = {w}.
For each i ∈ [n], the protocol proceeds as follows:

1. Free-XOR offsets: For every g ∈ XOR, Pi samples a random value ∆i
g ←

{0, 1}`BMR

2. Circuit-input wires’ masks and keys: If w is a circuit-input wire:
(a) Pi samples a key kiw,0 ← {0, 1}`BMR and a wire mask share λi

w ← {0, 1}.
(b) If w is input to a XOR gate g′, Pi sets kiw,1 = kiw,0 ⊕ ∆i

g′ , otherwise

kiw,1 ← {0, 1}`BMR .
3. Intermediate wires’ masks and keys: Passing topologically through all the

gates g ∈ G = {AND ∪ XOR ∪ SPLIT} of the circuit:
(a) If g ∈ XOR, Pi computes:

– λi
w =

⊕
x∈I λ

i
x.

– kiw,0 =
⊕

x∈I k
i
x,0 and kiw,1 = kiw,0 ⊕∆i

g.
(b) If g /∈ XOR, Pi does as follows:

– If g ∈ AND, λi
w ← {0, 1}. Else if g ∈ SPLIT, sets λi

x = λi
w for every

x ∈ O.
– For every x ∈ O, kix,0 ← {0, 1}`BMR . If x ∈ O is input to a XOR gate
g′, set kix,1 = kix,0 ⊕∆i

g′ , otherwise sample kix,1 ← {0, 1}`BMR .
4. Garble gates: For each gate g ∈ {AND∪ SPLIT}, the parties run the subpro-

tocol Π`BMR
GateGarbling, obtaining back shares g̃i of each garbled gate.

5. Reveal input/output wires’ masks: For every circuit-output wire w, Pi

broadcasts λi
w. For every circuit-input wire w, Pi sends λi

w to the party Pj who
provides input on it. Each party reconstructs the wire masks from her received
values as λw =

⊕n
i=1 λ

i
w.

6. Open Garbling For each g ∈ {AND ∪ SPLIT}, Pi sends g̃i to P1. P1 recon-
structs every garbled gate, g̃ =

⊕n
i=1 g̃

i, and broadcasts it.

Fig. 12. The preprocessing protocol that realizes F`BMR
Preprocessing

The Gate Garbling Protocol We describe the details of the sub-protocol
Π`BMR

GateGarbling (Figure 13), implementing the gate garbling phase of F`BMR

Preprocessing.
Creating garbled AND gates is done similarly to the OT-based protocol [BLO16],
with the exception that we use short wire keys of length `BMR instead of κ. We
also show how to create sharings of garbled splitter gates without any interaction,
so these are much cheaper than AND gates.

Suppose that for an AND gate g, each Pi holds the wire mask share λiv and
keys kiv,0, k

i
v,1 ← {0, 1}`BMR . Pi defines Rig = kiw,0 ⊕ kiw,1. After that all parties

call FBit×Bit once to compute additive shares of λuv = λu · λv ∈ {0, 1}, which
are then used to locally compute shares of χg,a,b = (a⊕ λu) · (b⊕ λv)⊕ λw, for
each (a, b) ∈ {0, 1}2. Each Pi obtains χig,a,b such that χg,a,b = ⊕i∈[n]χ

i
g,a,b. To

compute shares of the products χg,a,b · Rig, the parties call F`BMR

BitString(Pi) three

23

The Gate Garbling Sub-protocol Π`BMR
GateGarbling

Common Input: a function H : [n]×{0, 1}×{0, 1}`BMR → {0, 1}n`BMR+1; H′ defined
as H excluding the least significant output bit; the gate g to be garbled.
Private Input: Each Pi, i ∈ [n], holds λi

v and kiv,0, k
i
v,1, for each wire v.

1. If g ∈ AND with input wires {u, v} and output wire w:
(a) Each party Pi defines Ri

g = kiw,0 ⊕ kiw,1, for each i ∈ [n]
(b) Call FBit×Bit to compute shares of λu · λv, and use these to locally obtain

shares of

χg,a,b = (a⊕ λu) · (b⊕ λv)⊕ λw, for (a, b) ∈ {0, 1}2

(c) Call F`BMR
BitString(Pi) to get shares of χg,a,b · Ri

g, for each i ∈ [n] and (a, b) ∈
{0, 1}2. Pi then sets ρii,a,b = kiw,0 ⊕ (χg,a,b · Ri

g)i, and ∀j 6= i, Pj sets

ρji,a,b = (χg,a,b ·Ri
g)j .

(d) Each Pi sets g̃ia,b = H(i, b, kiu,a) ⊕ H(i, a, kiv,b) ⊕ (χi
g,a,b, ρ

i
1,a,b, . . . , ρ

i
n,a,b),

for a, b ∈ {0, 1}.
2. If g ∈ SPLIT with input wire w and output wires {u, v}:

(a) Call F2n`BMR
Zero twice, so that each Pi receives shares si0, s

i
1 ∈ {0, 1}2n`BMR .

(b) Pi sets ρic = sic ⊕ (0, . . . , kiu,c, 0, . . . , k
i
v,c, . . . , 0) for c ∈ {0, 1}.

(c) Set g̃ic =
(
H′(i, 0, kiw,c),H

′(i, 1, kiw,c)
)
⊕ ρic, for c ∈ {0, 1}.

Fig. 13. The gate garbling sub-protocol

times, for each i ∈ [n], to multiply Rig with each of the bits λu, λv, (λuv ⊕ λw).

These can then be used for each Pj to locally obtain the shares (χg,a,b ·Rig)j , for
all (a, b) ∈ {0, 1}2 (just as in [BLO16]).

After computing the bit/string products, Pj then computes for each (a, b) ∈
{0, 1}2:

ρji,a,b =

{
(χg,a,b ·Rig)j j 6= i

kiw,0 ⊕ (χg,a,b ·Rig)i j = i.

These values define shares of χg,a,b ·Rig ⊕ kiw,0. Finally, each party’s share of the
garbled AND gate is obtained as:

g̃ia,b = H(i, b, kiu,a)⊕ H(i, a, kiv,b)⊕ (χig,a,b, ρ
i
1,a,b, . . . , ρ

i
n,a,b), a, b ∈ {0, 1}

Summing up these values we obtain:

⊕
i

g̃ia,b =
⊕
i

H(i, b, kiu,a)⊕ H(i, a, kiv,b)⊕ (χig,a,b, ρ
i
1,a,b, . . . , ρ

i
n,a,b)

=

n⊕
i=1

(H(i, b, kiu,a)⊕ H(i, a, kiv,b))⊕ (c, k1
w,c, . . . , k

n
w,c),

where c = χg,a,b, as required.
To garble a splitter gate, we observe that here there is no need for any secure

multiplications within MPC, and the parties can produce shares of the garbled

24

gate without any interaction. This is because the two output wire values are the
same as the input wire value, so to obtain a share of the encryption of the two
output keys on wires u, v with input wire w, party Pi just computes:

(H′(i, 0, kiw,c),H
′(i, 1, kiw,c))⊕ (0, . . . , kiu,c, 0, . . . , k

i
v,c, 0, . . . , 0)

for c ∈ {0, 1}, where the right-hand vector contains Pi’s keys in positions i and
n+i. The parties then re-randomize this sharing with a share of zero from FZero,
so that opening the shares does not leak information on the individual keys.8

4.4 Security and Complexity

The above approach reduces size of the garbled circuit by a factor κ/`BMR, for
`BMR-bit keys, but still requires n keys for every row in the garbled gates. Sim-
ilarly to Section 3, when n is large we can reduce this by using a (random)
committee P(h) of size nh that has at least h honest parties. Π`BMR

Preprocessing and

Π`BMR

BMR are then run as if called only by the parties in P(h). For circuit-input
wires w where parties in P \ P(h) provide input, they are sent the masks λw in

Π`BMR

Preprocessing, so in the online phase they can then broadcast Λw = ρiw ⊕ λw in
the same way as parties in P(h).

This reduces the size of the garbled circuit by an additional factor of n/nh.
Finally, the same committee P(h) can be combined with a (random) committee
P(1) with a single honest party in order to optimize the bit multiplications needed
to compute the χg,a,b values, as was described in Section 3.

In Section 5, we give some examples of committee sizes and key lengths
that ensure security, and compare this with the naive approach of running the
preprocessing phase of BMR in P(1) only. The following theorem is proved in
[HOSS18].

Theorem 4.2 Protocol Π`BMR

Preprocessing UC-securely realizes the functionality

F`BMR

Preprocessing with perfect security in the (FBit×Bit,F`BMR

BitString,F
2n`BMR

Zero)-hybrid
model in the presence of static honest-but-curious adversaries.

4.5 The Online Phase

Given the previous description of the garbling phase, the online phase is quite
straightforward, where upon reconstructing the garbled circuit and obtaining
all input keys, the evaluation process is similar to [BMR90]. As in that work,
all parties run the evaluation algorithm, which in our case involves each party
computing just 2n hash evaluations per gate. During evaluation, the parties only
see the randomly masked wire values, which we call “public values”, and cannot
determine the actual values being computed. Upon completion, the parties ob-
tain the actual output using the output wire masks revealed from F`BMR

Preprocessing.

8 For AND gates, the shares output by F`BMR
BitString are uniformly random, so do not

need re-randomizing with sharings of zero.

25

parties n (honest) 20 (6) 50 (15) 60 (20) 80 (30) 150 (40) 200 (50) 400 (120)
(`OT, r) (31, 300) (14, 300) (11, 300) (8, 300) (7, 400) (6, 450) (1, 80)

GMW (t = n− 1) 25.46 164.15 237.18 423.44 1497.5 2666.6 10693.2
GMW (t = n− h) 14.07 84.42 109.88 170.85 818.07 1517.55 5271.56

Ours 12.89 37 40.38 50.01 169.36 261.6 403.63

Table 1. Amortized communication cost (in kbit) of producing a single triple in GMW.
We consider [DKS+17] for 1-out-of-4 OT extension in the GMW protocols, and the
protocol from Section 3 in our work.

The security of the protocol reduces to the DRSDr,h,`BMR
problem, where `BMR

is the key length, h is the number of honest parties, and r is twice the output
length of the function H (sampled by the CRS).

We remark that in practice, we may want to implement the random function
H in the CRS using fixed-key AES in the ideal cipher model, as is common for
garbling schemes based on free-XOR. In [HOSS18], we show that this reduces
the number of AES calls from O(n2) in previous BMR protocols to O(n2`BMR/κ).
The protocol and the complete proof can be found in [HOSS18].

5 Complexity Analysis and Implementation Results

We now compare the complexity of the most relevant aspects of our approach to
the state-of-the-art prior results in semi-honest MPC protocols with dishonest
majority. To demonstrate the practicality of our approach, we also present im-
plementation results for the online evaluation phase of our BMR-based protocol.
Further details can be found on [HOSS18].

5.1 Threshold Variants of Full-Threshold Protocols

Since the standard GMW and BMR-based protocols allow for up to n−1 corrup-
tions, we also show how to modify previous protocols to support some threshold
t, and compare our protocols with these variants. The method is very simple
(and similar to the use of committees in our protocols), but does not seem to
have been explicitly mentioned in previous literature. To evaluate a circuit C,
all parties first secret-share their inputs to an arbitrarily chosen committee P ′,
of size t+1. Committee P ′ runs the full-threshold protocol for a modified circuit
C ′, which takes all the shares as input, and first XORs them together so that
it computes the same function as C. The committee P ′ then sends the output
to all parties in P. The complexity of the threshold-t variant of a full-threshold
protocol, Π, is then essentially the same as running Π between t + 1 parties
instead of n.

5.2 GMW-Style Protocol

26

10 20 30 40 50 60 70 80

0

200

400

600

Number of honest parties

n = 100

GMW, t = n− h
Ours

Fig. 14. Amortized communication cost (in
kbit) for producing triples in GMW for n =
100 parties

We now compare the communication
cost of our triple generation protocol
with the best-known instantiation of
GMW, namely a variant based on 1-
out-of-4 OT to generate triples, re-
cently optimized by [DKS+17] in the
2-party setting. This easily extends to
the multi-party case with communica-
tion complexity O(n2κ/ log κ) bits per
AND gate, so we consider both full-
threshold and threshold-t (§5.1) vari-
ants. Note that our protocol from Sec-
tion 3 has complexity O(nt`) when us-
ing deterministic committees.

As can be seen in Table 1 and Fig-
ure 14, for a fixed number of hon-
est parties h, the improvement of our
protocol over GMW (threshold t) be-
comes greater as the total number of parties increases. Our protocol starts to
beat the best-known GMW protocol for producing multiplication triples when
there are just 6 honest parties. For example, with 20 parties and 14 corruptions,
the communication cost of our protocol is roughly 10% lower than threshold-14
GMW, and only 2 times lower than the cost of standard, full threshold GMW.
As the number of parties (and honest parties) grows, our improvements become
even greater, and when the number of honest parties is more than 80, we can
use 1-bit keys and improve upon the threshold variant of GMW by more than
13 times.

In [HOSS18], we also analyse the complexity of our protocol when using
random committees, and compare this with the standard approach of running
full-threshold GMW in a single random committee.

5.3 BMR-Style Protocol

Communication Complexity. To show the efficiency of our constant-round
garbling protocol from Section 4.5, we provide Table 2, which has two parts.
First, it compares the amortized communication complexity incurred for garbling
an AND gate with [BLO16]. We recall that this is the dominating cost for BMR-
style protocols using Free-XOR, and that we incur no communication for creating
shares of garbled splitter gates. Note that in the first setting of n = 20, t = 10,
although our communication costs are around 3 times lower than [BLO16], we
do not improve upon the threshold-t variant of that protocol, described earlier.
Once we get to 50 parties, though, we start to improve upon [BLO16], with a
reduction in communication going up to 7x for 400 parties and 10x for 1000
parties.

The second half of the table shows the size of the garbled circuit in terms
of the total number of AND, XOR and splitter gates. Garbled circuit size only

27

parties (honest) 20 (10) 50 (20) 80 (32) 100 (40) 200 (60) 400 (120) 1000 (160)

(`BMR, `OT, r) (32, 23, 530) (27, 13, 450) (17, 8, 380) (15, 7, 400) (8, 5, 370) (8, 1, 80) (8, 1, 120)

[BLO16] (Gb P) 341.24 2200.1 5675.36 8890 35740 143320.8 897102

[BLO16] (Gb P(1)) 98.78 835.14 2112.1 3286.7 17726.45 70654.7 634383.12

Ours (Garbling) 111.7 747.63 1750.48 2678.74 5448.36 10114.99 64474.1

[BLO16] (|GC| P) 10.24A 25.6A 40.96A 51.2A 102.4A 204.8A 512A

[BLO16] (|GC| P(1)) 5.632A 15.88A 25.1A 31.23A 72.19A 143.9A 430.6A

[BLO17] (|GC|) 12.29(A+X) 12.29(A+X) 12.29(A+X) 12.29(A+X) 12.29(A+X) 12.29(A+X) 12.29(A+X)

Ours (|GC|) 2.56(A+ S) 5.4(A+ S) 5.45(A+ S) 6(A+ S) 6.4(A+ S) 12.8(A+S) 32(A+S)

Table 2. Communication complexity for garbling, and size of garbled gates, in BMR-
style protocols in kbit. A = #AND gates, S = #Splitter gates, X = #XOR gates.

20 40 60 80

0

2,000

4,000

6,000

Number of honest parties

C
o
m

m
u
n
ic

a
ti

o
n

co
m

p
le

x
it

y
(k

b
it

)

n = 100

BLO16

Ours

50 100 150 200 250 300

0

0.5

1

1.5

2

·105

Number of honest parties

n = 500

BLO16

Ours

Fig. 15. Communication complexity cost (in kbit) for garbling when n = 100 and
n = 500

has a slight impact on communication complexity, when opening the garbled
circuit, which is much lower than the communication in the rest of the garbling
phase. However, if an implementation needs to store the entire garbled circuit in
memory (either for evaluation, or storage for later use) then it is also important to
optimize its size. Here we also compare with [BLO17], which recently showed how
to construct a compact multi-party garbled circuit based on key-homomorphic
PRFs. The size of their garbled circuit is constant and grows with O(κ) per
gate, with security proven in the presence of n − 1 corrupted parties. On the
other hand, their construction has much larger key sizes, does not support free-
XOR, and has a more expensive preprocessing phase needing O(n) secret-shared
finite field multiplications per gate. In Figure 15 we show the communication
complexity of garbling when n = 100, 500 and for different number of honest
parties.

References

ADS+17. Gilad Asharov, Daniel Demmler, Michael Schapira, Thomas Schneider, Gil
Segev, Scott Shenker, and Michael Zohner. Privacy-preserving interdomain
routing at internet scale. PoPETs, 2017(3):147, 2017.

AFL+16. Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma
Ohara. High-throughput semi-honest secure three-party computation with

28

an honest majority. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher
Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 16, pages
805–817. ACM Press, October 2016.

AFS03. Daniel Augot, Matthieu Finiasz, and Nicolas Sendrier. A fast provably
secure cryptographic hash function. IACR Cryptology ePrint Archive,
2003:230, 2003.

AJL+12. Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod
Vaikuntanathan, and Daniel Wichs. Multiparty computation with low
communication, computation and interaction via threshold FHE. In David
Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume
7237 of LNCS, pages 483–501. Springer, Heidelberg, April 2012.

ALSZ13. Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner.
More efficient oblivious transfer and extensions for faster secure computa-
tion. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors,
ACM CCS 13, pages 535–548. ACM Press, November 2013.

App16. Benny Applebaum. Garbling XOR gates ”for free” in the standard model.
J. Cryptology, 29(3):552–576, 2016.

Bea92. Donald Beaver. Efficient multiparty protocols using circuit randomization.
In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 420–
432. Springer, Heidelberg, August 1992.

BLO16. Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. Optimizing semi-honest
secure multiparty computation for the internet. In Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi,
editors, ACM CCS 16, pages 578–590. ACM Press, October 2016.

BLO17. Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. Efficient scalable
constant-round MPC via garbled circuits. In ASIACRYPT, 2017.

BMR90. Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity
of secure protocols (extended abstract). In 22nd ACM STOC, pages 503–
513. ACM Press, May 1990.

BO17. Aner Ben-Efraim and Eran Omri. Concrete efficiency improvements for
multiparty garbling with an honest majority. In Latincrypt 2017, 2017.

BOGW88. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness the-
orems for non-cryptographic fault-tolerant distributed computation (ex-
tended abstract). In 20th ACM STOC, pages 1–10. ACM Press, May 1988.

Bra85. Gabriel Bracha. AnO(lgn) expected rounds randomized byzantine generals
protocol. In 17th ACM STOC, pages 316–326. ACM Press, May 1985.

Can01. Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society
Press, October 2001.

CCD88. David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty uncondi-
tionally secure protocols (extended abstract). In 20th ACM STOC, pages
11–19. ACM Press, May 1988.

DKS+17. Ghada Dessouky, Farinaz Koushanfar, Ahmad-Reza Sadeghi, Thomas
Schneider, Shaza Zeitouni, and Michael Zohner. Pushing the communi-
cation barrier in secure computation using lookup tables. In NDSS, 2017.

DMS04. Roger Dingledine, Nick Mathewson, and Paul F. Syverson. Tor: The
second-generation onion router. In USENIX, pages 303–320, 2004.

DN07. Ivan Damg̊ard and Jesper Buus Nielsen. Scalable and unconditionally se-
cure multiparty computation. In Alfred Menezes, editor, CRYPTO 2007,
volume 4622 of LNCS, pages 572–590. Springer, Heidelberg, August 2007.

29

Gen09. Craig Gentry. Fully homomorphic encryption using ideal lattices. In
Michael Mitzenmacher, editor, 41st ACM STOC, pages 169–178. ACM
Press, May / June 2009.

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In
Alfred Aho, editor, 19th ACM STOC, pages 218–229. ACM Press, May
1987.

Gol04. Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic Ap-
plications. Cambridge University Press, 2004.

HOSS18. Carmit Hazay, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-
Vazquez. Efficient MPC from syndrome decoding (or: Honey, I shrunk
the keys). 2018. https://eprint.iacr.org/2018/208.

HSS17. Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. Low cost constant
round MPC combining BMR and oblivious transfer. In ASIACRYPT, pages
598–628, 2017.

IKNP03. Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending obliv-
ious transfers efficiently. In Dan Boneh, editor, CRYPTO 2003, volume
2729 of LNCS, pages 145–161. Springer, Heidelberg, August 2003.

KK13. Vladimir Kolesnikov and Ranjit Kumaresan. Improved OT extension for
transferring short secrets. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 54–70. Springer,
Heidelberg, August 2013.

KMR14. Vladimir Kolesnikov, Payman Mohassel, and Mike Rosulek. FleXOR: Flex-
ible garbling for XOR gates that beats free-XOR. In Juan A. Garay and
Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of LNCS,
pages 440–457. Springer, Heidelberg, August 2014.

KS08. Vladimir Kolesnikov and Thomas Schneider. Improved garbled cir-
cuit: Free XOR gates and applications. In Luca Aceto, Ivan Damg̊ard,
Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor
Walukiewicz, editors, ICALP 2008, Part II, volume 5126 of LNCS, pages
486–498. Springer, Heidelberg, July 2008.

LPSY15. Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. Efficient
constant round multi-party computation combining BMR and SPDZ. In
Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015,
Part II, volume 9216 of LNCS, pages 319–338. Springer, Heidelberg, August
2015.

LSS16. Yehuda Lindell, Nigel P. Smart, and Eduardo Soria-Vazquez. More efficient
constant-round multi-party computation from BMR and SHE. In Martin
Hirt and Adam D. Smith, editors, TCC 2016-B, Part I, volume 9985 of
LNCS, pages 554–581. Springer, Heidelberg, October / November 2016.

NR17. Jesper Buus Nielsen and Samuel Ranellucci. On the computational over-
head of MPC with dishonest majority. In Serge Fehr, editor, PKC 2017,
Part II, volume 10175 of LNCS, pages 369–395. Springer, Heidelberg,
March 2017.

TX03. Stephen R Tate and Ke Xu. On garbled circuits and constant round secure
function evaluation. CoPS Lab, University of North Texas, Tech. Rep,
2:2003, 2003.

Yao86. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended
abstract). In 27th FOCS, pages 162–167. IEEE Computer Society Press,
October 1986.

30

https://eprint.iacr.org/2018/208

	TinyKeys: A New Approach to Efficient Multi-Party Computation

