Two-Round Multiparty Secure Computation
Minimizing Public Key Operations *

Sanjam Garg, Peihan Miao, and Akshayaram Srinivasan

University of California, Berkeley
{sanjamg,peihan,akshayaram}@berkeley.edu

Abstract. We show new constructions of semi-honest and malicious
two-round multiparty secure computation protocols using only (a fixed)
poly(n,) invocations of a two-round oblivious transfer protocol (which
use expensive public-key operations) and poly()\, |C|) cheaper one-way
function calls, where X is the security parameter, n is the number of
parties, and C is the circuit being computed. All previously known two-
round multiparty secure computation protocols required poly(), |C|) ex-
pensive public-key operations.

1 Introduction

Secure multiparty computation (MPC) allows a set of mutually distrusting par-
ties to compute a joint function on their private inputs with the guarantee that
only the output of the function is revealed and everything else about the private
inputs of the parties is hidden. This is a classic problem in cryptography and
was originally studied by Yao [Yao82] for the case of two parties. Later, Goldre-
ich, Micali and Wigderson [GMW87] considered the multiparty case and gave
protocols for securely computing any multiparty functionality.

A key metric in determining the efficiency of a secure computation protocol
is its round complexity or in other words, the number of sequential messages
exchanged between the parties. Starting with the first constant round proto-
col by Beaver, Micali and Rogaway [BMRO0], there has been a tremendous
amount of research to reduce the round complexity to its absolute minimum.
It was shown in [HLP11] that two rounds are necessary to securely compute
certain functionalities and a sequence of works have tried to realize this goal.
The first two-round construction was obtained by Garg, Gentry, Halevi and
Raykova based on indistinguishability obfuscation [GGHR14, GGH'13]. Subse-
quently, a sequence of works improved the needed assumptions, first to witness
encryption [GLS15, GGSW13], and then to learning with errors assumption

* Research supported in part from DARPA/ARL SAFEWARE Award
WI11NF15C0210, AFOSR Award FA9550-15-1-0274, AFOSR YIP Award,
DARPA and SPAWAR under contract N66001-15-C-4065, a Hellman Award and
research grants by the Okawa Foundation, Visa Inc., and Center for Long-Term
Cybersecurity (CLTC, UC Berkeley). The views expressed are those of the author
and do not reflect the official policy or position of the funding agencies.

[MW16, BP16, PS16]. Improving these results, recent works obtained two-round
constructions based on the DDH assumption [BGI16, BGI17b] (for the case of
constant number of parties) or on bilinear maps [GS17] (in the general case).
Finally, very recent results have also yielded constructions based on the minimal
assumption of two-round oblivious transfer [BL18, GS18].

Apart from round complexity, another metric that is crucial for computa-
tional efficiency in MPC protocols is the number of public-key operations per-
formed by each party. Typically, public key operations are orders of magnitude
more expensive than symmetric key operations and minimizing them typically
leads to more efficient protocols. The question of minimizing public key op-
erations in secure computation was first considered by Beaver [Bea96] for the
case of oblivious transfer. In particular, Beaver gave a construction for obtain-
ing a large number L > X of oblivious transfers (OTs) using only a fixed
number A public key operations along with the use of poly(L) cheaper one-
way function calls. This task of extending A OTs to a larger L OTs using
only one-way functions is referred to as oblivious transfer extension. Follow-
ing Beaver’s result, a rich line of work [IKNP03, Nie07, HIKN08, KK13] gave
concretely efficient protocols for OT extension which have served as a crucial
ingredient in the design of several concretely efficient secure computation proto-
cols [HIK07, NNOB12, ALSZ17, KRS16].

In this work, we are interested in getting the best of both worlds, namely,
constructing two-round MPC protocols while minimizing the number of public-
key operations performed. Indeed, the number of public-key operations in the
prior two-round MPC protocols grows with the size of the circuit computed.
Given this state of affairs, we would like to address the following question.

Can we construct two-round, secure multiparty computation protocols where the
number of public key operations performed by each party is independent of the
size of the circuit being computed?

1.1 Owur Results

We give a positive answer to the above question. We show new constructions of
semi-honest and malicious two-round, multiparty computation protocols where
the number of public key operations performed by each party is a fixed poly-
nomial (in the security parameter and the number of participants) and is inde-
pendent of the circuit size of the function being computed. Further, we prove
the security of these protocols under the minimal assumption that two-round
semi-honest /malicious oblivious transfer (OT) exists. More formally, our main
theorem is:

Theorem 1 (Informal). Let X € {semi-honest in plain model, malicious in
common random/reference sting model}. Assuming the existence of a two-round
X secure OT protocol, there exists a two-round, X secure, n-party protocol com-
puting a function f (represented as a circuit C'y) where the number of public key
operations performed by each party is poly(n, A). Here, poly(-) is a fized polyno-
mial independent of |Cy| and X is the security parameter.

The focus of this work is theoretical feasibility rather than concrete opti-
mization of the polynomial. We leave the goal of obtaining concretely efficient
protocols for future work. Additionally, in the malicious case, this work focuses
on obtaining protocols in the common random/reference string model. Obtain-
ing round optimal MPC protocols in the plain model [GMPP16, ACJ17, BHP17,
COSV17, HHPV17, BGJT17, BL18] has been a problem of significant interest
and we expect that our techniques will be useful in reducing the number of
public-key operations needed in these protocols. We leave this as an open prob-
lem.

2 Technical Overview

In this section, we give a high-level overview of the main challenges and the tech-
niques used to overcome them in our construction of two-round MPC protocols
minimizing the number of public key operations.

Starting Point. The starting point of our work is the recent results of Ben-
hamouda and Lin [BL18] and Garg and Srinivasan [GS18] that provide con-
structions of two-round, secure multiparty computation (MPC) protocol based
on two-round oblivious transfer. These works provide a method of squishing the
round complexity of an arbitrary round secure computation protocol to just two
rounds. The key idea behind this method is the concept of “talking garbled cir-
cuits,” i.e., garbled circuits that can interact with each other by sending and
receiving messages. Let us briefly explain how this primitive helps in squishing
the round complexity of a multi-round MPC protocol.

To squish the round complexity, each party generates “talking garbled cir-
cuits” that emulates its actions as per the specification of the multi-round MPC
protocol. The parties then broadcast these “talking garbled circuits” so that ev-
ery party has access to the “talking garbled circuits” of every other party. Finally,
all parties evaluate these “talking garbled circuits” that internally executes the
multi-round MPC protocol. This step does not involve any further interactions
between the parties. Thus, the only overhead in the round complexity of this
approach is the number of rounds needed for generating the “talking garbled
circuits.”

Let us give a very high level overview of how the “talking garbled circuits”
are generated. In these two works, the “talking garbled circuits” are generated
via a two-round protocol that makes use of (plain) garbled circuits and two-
round oblivious transfer (OT).! At the end of the two rounds, every party has
access to every other party’s “talking garbled circuits” and can evaluate them
without any further interaction. The first round of this two-round protocol can
be visualized as setting up a channel for the garbled circuits to communicate.
Without going into the actual details on how this is achieved, we note that this

! Recall that in a two-round oblivious transfer, the first message is generated by the
receiver and it encodes the receiver’s choice bit and the second message is generated
by the sender and it encodes its two messages.

step involves generating several first round OT messages. Next, in the second
round, the actual garbled circuits are sent which interact with each other via
the channel set up in the first round. Again, without going into the details,
a message sent from one party (the sender) to another party (the receiver) is
communicated via the sender’s garbled circuit outputting the randomness used
in generating a subset of the first round OT messages and the receiver’s garbled
circuit outputting some second round OT messages.

Computational Overhead. One major source of inefficiency in the approaches
of [BL18, GS18] is the number of expensive OT instances needed. In particular,
these protocols use §2(1) OTs in enabling the garbled circuits to communicate a
single bit. Hence, the number of OTs needed for compiling an arbitrary secure
computation protocol grows with the circuit size of the function being com-
puted.?2 Our goal is to remove this dependency between the number of OTs
needed and the circuit size of the function being computed.

Can we use OT extension? A natural first attempt to minimize the number
of instances of oblivious transfer would to be use an OT extension protocol
[Bea96, IKNP03]. We need this OT extension protocol to run in two-rounds, as
otherwise the protocol for computing “talking garbled circuits” will run in more
rounds. Further, we need the OT extension protocol to satisfy the following three
properties for it to be useful in constructing “talking garbled circuits.” We also
explain why a general two-round OT satisfies each of these properties.

1. Delegatability. For every OT computed between a sender and a receiver,
the receiver should be able to delegate its decryption capabilities for that OT
to any party by revealing a decryption key. This key and the transcript could
then be used to compute the message that the receiver would have obtained
in the OT execution. A general two-round OT satisfies delegatability as
revealing the receiver’s random coins allows any party to obtain the receiver’s
message.

2. Independence. We require independence between multiple parallel invoca-
tions of the underlying OT protocol. More specifically, revealing the receiver’s
delegation key for one of the instances of an OT execution does not affect
the receiver security for the other OTs. Again, a general two-round OT sat-
isfies independence as each OT instance is generated using an independent
random tape.

3. Availability of Delegation Keys. The keys for delegating the decryption
must be available at the end of the first round i.e., after the receiver sends
its message. This property is trivially satisfied by a two-round OT as the
delegation key is in fact the receiver’s random tape.

Let us first explain the intuition on why these three properties are required
for the construction of “talking garbled circuits.” The delegatability property is

2 In fact, the number of OTs grows with the computational complexity of the under-
lying multiparty protocol.

required since the garbled circuits sent in the second round reveal the delegation
keys for a subset of the OT messages generated in the first round. Recall that
this is required for one garbled circuit to send a message to another. The key
availability property is needed since the delegation keys are to be hardwired in
the second round garbled circuits so that the appropriate delegation keys can
be output by these circuits during evaluation. The independence property is
needed since the second round garbled circuits reveal the delegation keys for
only a subset of the first round OT messages. We need the other OT messages
to still be secure.

We stress that even though the above three properties are trivially satisfied
by every two-round OT, a two-round OT extension protocol need not satisfy all
of them. To demonstrate this, let us first see why does the two-round version of
Beaver’s OT extension protocol [Bea96, GMMM17] not satisfy all the properties.

Why doesn’t Beaver’s OT extension work? In order to understand why
this does not work, we first recall a two-round version [GMMM17] of the OT
extension protocol of Beaver that expands A two-round, base OTs to L = poly(})
OTs. In the first round of the OT extension protocol, the receiver (having input
c € {0,1}F) samples a “short” seed s of a PRG : {0,1}* — {0, 1}¥ and computes
e = ¢ ® PRG(s). Additionally, it computes A first round OT messages using s
as its choice bits. It sends these OT messages along with e to the sender. The
sender garbles a circuit C' that has its messages {msg; o, msg; 1 }ic(z) hardwired
along with the string e received in the first round. The circuit C' takes as input
the A-bit string s, expands it to L bits using the PRG and uses it to unmask e to
obtain c. Specifically, it computes ¢ := e & PRG(s), and outputs {msg, .;; }ic(r)-
The sender sends this garbled circuit and uses the A second round OT messages
to communicate the labels of the garbled circuit to the receiver. The receiver
decrypts the labels corresponding to the bits of its seed s and uses it to evaluate
the garbled circuit to obtain {msg; .;; }ic(1)-

The above OT extension protocol of Beaver is delegatable as revealing all
the randomness used by the receiver allows any party to decrypt all the mes-
sages. However, the protocol does not satisfy the independence requirement as
the randomness used for generating L different OTs is highly correlated. In fact,
revealing all the random coins for generating the first round OT messages com-
promises the security of all the L OTs.

Delegatable and Independent Two-Round OT Extension. Towards con-
structing an OT extension that satisfies all the properties, we first construct
a protocol that is both delegatable and independent. In the new protocol, the
receiver’s first round message is the same as before. However, the sender’s mes-
sage is generated differently. In particular, the sender samples a set of masks
M = {m;, mi,l}ie[L] where each mask m; is a random string with the same
length as msg, ;. It constructs the circuit C' (described above) with the set of
masks hardwired in place of the messages. It garbles this circuit. It additionally
computes ct;, = msg; , & m;; for each i € [L] and b € {0,1} and sends the

garbled circuit, the set {ct;}ie(r) pefo,13 and A second round OT messages to
communicate the labels of the garbled circuit to the receiver. The receiver then
recovers the labels corresponding to its seed s, evaluates the garbled circuit to
obtain {m; ; }ic(z), and computes msg; (] = Clicli) © M [for every i € [L].

This scheme is delegatable as the receiver can use m; ;) as the delegation
key. It is also independent, as revealing m; .[;) does not leak any information of
clk] for k # i. However, this construction does not satisfy the third property,
namely key availability. This is because m; ;) can be computed by the receiver
only at the end of the second round and is not available at the end of the first
round.

Weakening the Key Availability Property. We first observe that we can
in fact, weaken the key availability property. Recall that the key availability
property requires the delegation keys to be available at the end of the first
round so that they can be hardwired inside the garbled circuits that performs
the communication. However, for the construction to work, we just need the
delegation keys to be given as inputs to these garbled circuits and need not be
hardwired. We will now construct a two-round, OT extension that satisfies the
weakened key availability property. For the ease of exposition, let us overload the
notation and call the these communicating garbled circuits (sent in the second
round) as “talking garbled circuits.”

Satisfying All Properties. Recall that the problem with the previous approach
was because the receiver could evaluate the sender’s garbled circuit only at the
end of the second round. Our solution to the key availability problem is in
having the receiver “offload” its evaluation of this garbled circuit. This solution
makes use of the fact that in the MPC setting the sender and the receiver
are connected via a simultaneous message exchange model. At a high level, we
require the sender to send its garbled circuit in the first round. The receiver now
garbles a wrap-circuit, which has the sender’s garbled circuit hardwired in it.
This wrap-circuit evaluates the sender’s circuit inside and translates its output to
the labels of the “talking garbled circuits.” In particular, the receiver “offloads”
the evaluation of the sender’s garbled circuit via the wrap-circuit which helps
in achieving the weakened key availability property. Let us explain our idea in
more detail.

Key Idea: “Offloading” Garbled Circuit Evaluation. We first give the de-
scription of the protocol and then explain why it satisfies all the three properties.
The key steps in the protocol are depicted in Figure 1.

In the new protocol, the receiver’s first round message is unchanged. Addi-
tionally, in the first round, the sender samples the random set M as before and
constructs a circuit Cg that has the set M hardwired in it. This circuit takes
as input a seed s, expands it using the PRG and outputs {m; prg(s)i] }ie[z]- The

sender garbles Cg to obtain a garbled circuit Cg and sends this to the receiver.

Round-1: 53

Round-1: e

Round-2: {cti0, cti1}icir)

Cs labels . S, Cuwrap labels
Sender 2-Step Translation Receiver

Input labels

Round-2: éwrap [53]

Input labels

Talking GC

Figure 1: Semi-honest OT extension satisfying delegatability, independence and weak-
ened key availability

In the second round, the sender computes ct; o = msg; o & m; ;) and ct; 1 =
msg; 1 © m;1_.[; (Where e is obtained from the receiver’s first round message)
and sends {ct;p}icr],pefo,1) to the receiver. The receiver constructs a wrap-
circuit Cyrap that has 5’5 and the input labels for the “talking garbled circuits”
hardwired in it. Cwrap takes as input the labels for evaluating 53, evaluates
it using these labels to obtain {miprg(S)[i]}ie[L], and outputs a set of labels
corresponding to {m; prg(s)[i fie[z]- The output will later be treated as the input
labels for evaluating the “talking garbled circuits.” The receiver garbles Clyrap
and sends the garbled circuit a,wap to the sender.

Notice that m; prg(s)[i can serve as the delegation keys as it can be used to
unmask ct; ([to obtain msg; .;;), and the other message msg; ;_[; is hidden.
This approach inherits the delegatability and independence from the previous
approach. Now, this scheme also satisfies the weakened key availability property!
In particular, the delegation keys are passed to the “talking garbled circuits” via
the wrap circuit.

How to obtain labels for evaluating a,wap? However, there is one question
that we have not answered yet. In particular, how to obtain the labels for eval-
uating the garbled wrap-circuit Cyr,p? Recall that the warp-circuit Cyrap takes
as input the labels for evaluating C~'|3. Hence, to evaluate éwrap we need its input
labels that correspond to the labels for evaluating 53. We therefore need a two-
step translation mechanism: one from the seed s to the labels for evaluating Cp
and then from these labels to the labels for evaluating Cyrap.

For this purpose, we use the two-round MPC protocol from [BL18, GS18] to
securely compute the two-step translation functionality. This functionality takes
as input the seed s and the set of labels for Cyyrap from the receiver and the set of
labels for 5’3 from the sender. It first chooses the labels of 53 that correspond to
the string s. It then outputs the labels of Cyap that correspond to those chosen
labels of Cg. Given such a two-round MPC protocol, we can run this protocol
in parallel of the aforementioned protocol to obtain the labels for evaluating
Cwrap- We then evaluate Cyrap to obtain the labels for evaluating the “talking
garbled circuits.” Note that the circuit size computing this two-step translation
functionality is polynomially dependent on A and is independent of L and hence
we can use these two-round MPC results to securely compute this functionality.
This helps in minimizing the number of public key operations.

Tackling Malicious Adversaries. Plugging the above OT extension protocol
into the compilers of [BL18, GS18] gives us the desired result in the semi-honest
setting. However, a couple of major challenges arise in the malicious setting.

1. Adaptive Security. The first issue arises because a malicious receiver might
wait until it receives the garbled circuit Cg before choosing its seed s. This
leads to adaptive security issues [BHR12] in garbling Cg.

2. Input Dependent Abort. The second issue arises because a malicious
sender might generate an ill-formed Cg that may lead to an honest receiver to
abort on specific choices of the receiver’s input. This leaks information about
the receiver’s input to the sender. To give a concrete example, a corrupted
sender might generate Cg such that it outputs L if the first bit of PRG(s) is
1 instead of outputting the valid mask. Thus, if the honest receiver aborts
then the sender can recover c[1] from e[1].

Solving these two issues requires development of new tools and techniques which
we now elaborate.

Solving Adaptive Security Issue. A tempting approach to solving this issue
is use the recent constructions of adaptively secure garbling [HJO*16, JW16,
JKK™*17] to generate C~'B. However, this does not work! Recall that the length
of the garbled input of an adaptively secure garbling scheme must at least grow
with the output length of the circuit [ATIKW13]. In our case, the output length
of Cp is L, hence the garbled input of Ce grows with L. Therefore, the circuit
size of the two-step translation functionality that first translates the seed s to
the garbled input of Cg must grow with L. This implies that the number of
public key operations in the two-round protocol that securely computes this
functionality grows with L. This Kkills the efficiency of the overall protocol.

On the one hand, we need our garbling scheme to satisfy the stronger notion
of adaptive security and on the other hand, we need to minimize the number of
public key operations. These two requirements seem contradictory to each other
and it seems that we need to trade one requirement in order to achieve the other.
We resolve this deadlock by observing that full blown adaptive security is not

needed in garbling Cg. We note that it is sufficient for this garbling scheme to
be somewhere adaptive. Let us explain this in more detail.

To understand our approach, the first step is to break the circuit Cg down to
L individual circuits C1, . .., Cr, where C; has {m; 9, m; 1} hardwired and outputs
m; PRG(s)[i] ON input s. The garbled circuit 5’3 comprises of garbled versions of
each C;, i.e., 6‘1,...,5L. The key trick we employ in garbling C1,...,C is
that we use the same set of input labels in generating each C;. Notice that even
though we break Cg down to L circuits, the garbled input for Cg only grows
with the input length of Cg and is independent of L. To simulate Cg, we design
a sequence of carefully chosen hybrids where in each hybrid, it is sufficient to
simulate a single C;. But things get complicated as the simulation of this C;
requires knowledge of the adaptively chosen s. It seems that we again run into
the adaptive security issue. However, notice that the output length of the circuit
C; is independent of L and thus the length of the garbled input for C; (and hence
all other 5j, J # 1) need not grow with L! Thus, we can now use the standard
tricks in the adaptive garbling circuits literature to “adaptively garble” C;. We
now explain how this is done.

Instead of sending the garbled circuits {éi}ie[L] in the clear, we encrypt
them using a somewhere equivocal encryption scheme [HJOT16] and send the
ciphertext as the garbled circuit Cg. The key for decrypting this ciphertext
is revealed in the garbled input along with the labels for evaluating each C;.
Recall that we use the same set of labels for evaluating each C;. Intuitively, a
somewhere equivocal encryption allows to equivocate a bunch of positions of a
ciphertext with arbitrary message values. What makes a somewhere equivocal
encryption different from a fully equivocal encryption is that the size of the
key only grows with the number of positions that are to be equivocated and
is otherwise independent of the message size. Somewhere equivocal encryption
allows us to solve the above adaptivity issue as we can equivocate the positions
that correspond to C; in the ciphertext to a simulated circuit (that can depend
on the adaptively chosen s) by deriving a suitable key. Further, the size of the
garbled input (that also includes the key) only grows with the size of C; and is
independent of L. This helps us in ensuring that the circuit size of the two-step
translation functionality is independent of L.

Solving Input Dependent Aborts. Suppose the sender sends a proof that
Cp is correctly generated, then the problem of input dependent aborts does not
arise. We additionally require this proof to be zero-knowledge so that it does
not leak any information about the sender’s secrets to the receiver. A natural
approach would be to give a Non-Interactive Zero-Knowledge proof (NIZK).
However, we only know constructions of NIZK based on public key assumptions
such as trapdoor permutations or factoring. Furthermore, the number of public
key operations in computing a NIZK proof grows with the instance size. Here,
the instance size grows with the size of Cg which is at least L. This again kills
the efficiency.

Our approach to solving this issue is to design a two-round, special purpose
zero-knowledge proof (in the CRS model) where the number of public key oper-
ations is independent of the instance size. Indeed, given such a zero-knowledge
proof, we can solve the problem of input dependent aborts and also ensure that
the number of public key operations is independent of L. We now explain the
main ideas behind this construction.

Let us first consider the simpler task of constructing a two-round, zero-
knowledge proof with constant soundness error where the number of public key
operations is independent of the instance size. We first observe that if we allow
one more round of interaction then we know constructions (e.g., Blum’s Hamil-
tonicity protocol) that completely avoid any public key operations. The main
idea behind our construction is a method of compressing the round complexity
of these protocols (in the simultaneous message exchange model) using a small
number of public key operations (that is independent of the instance size). To ex-
plain the idea, let us take the example of compressing the Blum’s Hamiltonicity
protocol to two rounds using a two-round oblivious transfer (used in the recent
works of [JKKR17, BGI"17a]). The Blum’s protocol can be abstractly described
using three messages: zk; sent by the prover in the first round, a random bit b
sent by the verifier in the second round and zks ; sent by the prover in the third
round.

To compress the protocol to two rounds, we require the verifier to send a
receiver OT message with b as its choice bit in the first round. In addition to
sending zk; in the first round, the prover also sends commitment (cg,c1) to
zks o and zks ; respectively. In the second round, the sender sends a sender OT
message with the randomness used to compute cg and ¢; as its messages.> The
receiver obtains the randomness used in generating ¢, and then uses it to check
if (zky, b, zks) is a valid proof. Note that to minimize the number of public key
operations, the length of the random string used to generate the commitment
should be independent of the size of the message. This is indeed true when we
use a pseudorandom generator to expand the length of the randomness to any
desired length.

The above idea helps us in achieving constant soundness error but to be
useful in solving the problem of input dependent aborts, we need the protocol to
have negligible soundness error. One approach to achieve negligible soundness
is to do a parallel repetition of the constant soundness protocol but it is well-
known that parallel repetition is not guaranteed to preserve the zero-knowledge
property. Fiege and Shamir [FS90] showed that parallel repetition preserves the
weaker property of witness indistinguishability and we make use of this fact to
to achieve the stronger property of zero-knowledge. In our actual construction,
we incorporate a trapdoor (such as pre-image of a one-way function) in the CRS
and the simulator uses this trapdoor while generating the zero-knowledge proof.
Witness indistinguishability guarantees that no verifier can distinguish between
the prover’s messages that uses the real witness and the simulator’s messages
that uses the trapdoor witness. This helps us achieve zero-knowledge against

3 We assume that given the randomness, we can obtain the message that is committed.

10

malicious verifiers and parallel repetition helps us achieve negligible soundness
error against cheating provers. Additionally, the number of public key operations
is a fixed polynomial in the security parameter and is independent of the instance
size. We believe that this primitive may be of independent interest.

3 Preliminaries

We recall some standard cryptographic definitions in this section. Let A denote
the security parameter. A function u(-) : N — R* is said to be negligible if
for any polynomial poly(-) there exists Ao such that for all A > Ay we have
(X)) < m. We will use negl(-) to denote an unspecified negligible function
and poly(+) to denote an unspecified polynomial function.

For a probabilistic algorithm A, we denote A(x;r) to be the output of A on
input = with the content of the random tape being r. When r is omitted, A(x)
denotes a distribution. For a finite set .S, we denote x < S as the process of
sampling x uniformly from the set S. We will use PPT to denote Probabilistic
Polynomial Time algorithm.

For a binary string = € {0,1}", we denote the i* bit of = by x[i]. Similarly,
we denote the substring of x from the i*" to j** position for any i < j by z[i, j].
For any lab := {lab; g, lab; 1 };e[z] where lab;;, € {0,1}* and a string ¢ € {0, 1}%,
we define Projection(c, lab) = {lab; c[i }ie[z)- We treat the output of Projection as
a string. That is, we treat the output as |[;ez)(lab; c[i))-

3.1 Selective Garbled Circuits

We recall the definition of selectively secure garbled circuits [Yao82] (see Lin-
dell and Pinkas [LP09] and Bellare et al. [BHR12] for a detailed proof and
further discussion). A garbling scheme for circuits is a tuple of PPT algorithms
(Garble, Eval). Very roughly, Garble is the circuit garbling procedure and Eval
the corresponding evaluation procedure. We use a formulation where input la-
bels for a garbled circuit are provided as input to the garbling procedure rather
than generated as output. This simplifies the presentation of our construction.
We additionally model security wherein the simulator is provided with a set of
labels corresponding to the input. This helps in simplifying the security proofs.
More formally:

— C « Garble (1)‘, C, {Iabmb}weinp(c)71,6{071}): Garble takes as input a security
parameter A, a circuit C, and input labels lab,, , where w € inp(C) (inp(C)
is the set of input wires to the circuit C') and b € {0,1}. This procedure

outputs a garbled circuit C. We assume that for each w, b, laby,; is chosen
uniformly from {0, 1}*.

— y < Eval (E, {laby g, }weinp(c)): Given a garbled circuit Canda sequence of

input labels {laby ., }weinp(c) (referred to as the garbled input), Eval outputs
a string y.

11

Correctness. For correctness, we require that for any circuit C, input =z €
{0, 1}Inp(] and input labels {labu b bweinp(c),pef0,13 We have that:

Pr {C(;c) — Eval (E, {labw,w}weinp(c))] -1
where C < Garble (1%, C, {laby, 4 }uweinp(c) be{0.1}) -

Selective Security. For security, we require that there exists a PPT simulator
Simeke such that for any circuit C, an input € {0, 1}l and {laby, », }weinp(c),
we have that

{E, {labw,ww}weinp(C)} ~ {Simckt (1A7 119, C(x), {labyz, }weinp(c)) ;{laby 2., }weinp(C)}

where C < Garble (1>\7C7{labw,b}weinp(C),be{O,l}) and for each w € inp(C) we

have lab,, 1., « {0,1}*. Here ~ denotes that the two distributions are com-
putationally indistinguishable.

3.2 Somewhere Adaptive Garbled Circuits

In this section, we define and construct somewhere adaptive garbled circuits.
Intuitively, somewhere adaptive garbled circuits satisfy the stronger notion of
adaptive security in the computation of a particular block of the output. Before
we define this primitive, we give a notation to denote circuits.

Circuit Notation. We model a circuit C : {0,1}" — {0,1}* as a sequence
of m circuits Cq,Cs,...,Cy where Ci(x) = C(x)[(i — 1A + 1,iA] for every
z €{0,1}"™ and i € [m].

We now give the definition of somewhere adaptive garbled circuits.

Definition 1. A somewhere adaptive garbling scheme for circuits is a tuple of
PPT algorithms (SAdpGarbleCkt, SAdpGarblelnp, SAdpEvalCkt) such that:

— (C,state) + SAdpGarbleCkt(1*, C) : It is a PPT algorithm that takes as in-
put the security parameter 1* (encoded in unary) and a circuit C : {0,1}" —
{0,1}™* as input and outputs a garbled circuit C and state information state.

— T < SAdpGarblelnp(state, x) : It is a PPT algorithm that takes as input the
state information state and an input x € {0,1}" and outputs the garbled
input T. ~ _

— y = SAdpEvalCkt(C, Z) : Given a garbled circuit C and a garbled input T, it
outputs a value y € {0,1}m*,

Correctness. For every A € N, C : {0,1}"™ — {0,1}™ and z € {0,1}" it holds
that:

Pr [(C,state) + SAdpGarbleCkt(1*, C); & < SAdpGarblelnp(state, z) : C(z) = SAdpEvalCkt(C,7)] = 1.

12

Security. There exists a PPT simulator Sim such that for all non-uniform PPT
adversary A:

| Pr[Exp/®(1*,0) = 1] — Pr[Expy®(1*,1) = 1]| < negl())
where the experiment EprAL\dp(l/\7 b) is defined as follows:

1. (C,j) + A(1*) where C : {0,1}" — {0,1}™* and j € [m]. We assume that
C is given as a sequence of m circuits C1,Ca, ..., Ch,.
2. The adversary obtains C where C is created as follows:
— Ifb=0: (C,state) + SAdpGarbleCkt(1*, ().
— Ifb=1: (C,state) « Sim(1*,Cy,...,C; 1,111 Cj 1, ..., Cp).
8. The adversary A specifies the input © and gets T created as follows:
— Ifb=0: Z + SAdpGarblelnp(state, x).
— Ifb=1: 7 < Sim(state, z, C;(x)).
4. Finally, the adversary outputs a bit ', which is the output of the experiment.

Efficiency. We require that the running time of SAdpGarblelnp to be max; |Cy] -
poly(fz], A).

We give a construction of somewhere adaptive garbled circuits assuming the
existence of one-way functions.

Lemma 1. Assuming the existence of one-way functions, there exists a con-
struction of somewhere adaptive garbled circuits.

We give the proof of Lemma 1 in the full version [GMS18].

3.3 Universal Composability Framework

We work in the the Universal Composition (UC) framework [Can01] to formalize
and analyze the security of our protocols. (Our protocols can also be analyzed
in the stand-alone setting, using the composability framework of [Can00a]). We
provide a brief overview of the framework in the full version of our paper [GMS18]
and refer the reader to [Can00b] for details.

3.4 Prior MPC Results

We will use the two-round secure multiparty computation protocol from the
work of [GS18] computing special functionalities that have small circuit size in
our constructions. We could also use the protocol from [BL18] but their pro-
tocol against malicious adversaries additionally relies on non-interactive zero-
knowledge proofs. Below we restate the result from [GS18]. The ideal function-
ality F¢ for the MPC is defined in Figure 2.

13

Theorem 2 ([GS18]). For any polynomial-time function f computed by n par-
ties, there exists a two-round UC-secure semi-honest/malicious multiparty com-
putation protocol Iy that realizes the ideal functionality Fy, assuming the ex-
istence of semi-honest/malicious, two-round oblivious transfer. The number of
total public key operations is bounded by poly(X, |f|), where |f| is the size of the
Boolean circuit that computes f.

Fy parameterized by a function f, running with n parties Pi, P, ..., P, (of which
some may be corrupted) and an adversary S, proceeds as follows:
— Every party P; sends (sid, 4, x;) to the functionality.
— Upon receiving the inputs from all the parties, compute y := f(x1,...,2n),
and output (sid, y) to every party and S.

Figure 2: Ideal Functionality Fy

4 Semi-Honest Protocol

In this section, we give a construction of two-round multiparty computation pro-
tocol with security against semi-honest adversaries that performs poly(n, \) pub-
lic key operations which is independent of the circuit size being computed. We
start with the definition of conforming protocols which was a notion introduced
in [GS18] in subsection 4.1 and then give our construction in subsection 4.2.

4.1 Conforming Protocols

This subsection is taken verbatim from [GS18]. Consider an n party determinis-
tic* MPC protocol @ between parties Py, ..., P, with inputs x1,...,x,, respec-
tively. For each i € [n], we let ; € {0,1}™ denote the input of party P;. A
conforming protocol @ is defined by functions pre, post, and computation steps
or what we call actions ¢1,---dr. The protocol @ proceeds in three stages: the
pre-processing stage, the computation stage and the output stage.

— Pre-processing phase: For each i € [n], party P; computes
(Zi, ’Ui) — pre(l)‘, i, xz)

where pre is a randomized algorithm. The algorithm pre takes as input the
index i of the party, its input 2; and outputs z; € {0,1}¥/™ and v; € {0, 1}

4 Randomized protocols can be handled by including the randomness used by a party
as part of its input.

14

(where £ is a parameter of the protocol). Finally, P; retains v; as the secret
information and broadcasts z; to every other party. We require that v;[k] = 0
forall k € [(\{(i — 1)¢/n+1,...,il/n}.

— Computation phase: For each i € [n], party P; sets

st; := (21| -+ ||2n) @ v

Next, for each ¢t € {1---T} parties proceed as follows:
1. Parse action ¢; as (i, f, g, h) where i € [n] and f,g,h € [{].
2. Party P; computes one NAND gate as

st;[1] = NAND(st;[f], st;[g])

and broadcasts st;[h] @ v;[h] to every other party.

3. Every party P; for j # ¢ updates st;[h] to the bit value received from P;.
We require that for all ¢, € [T] such that ¢t # ¢/, we have that if ¢; =
(,+,-,h) and ¢y = (-,-,-,h’) then h # h’. Also, we denote A; C [T] to be the
set of rounds in which party P; sends a bit. Namely, A; = {t € T | ¢+ = (4,+,-,*)}.

— Output phase: For each i € [n], party P; outputs post(i,st;).

The following lemma was shown in [GS18]

Lemma 2 ([GS18]). Any MPC protocol IT can be written as a conforming pro-
tocol & while inheriting the correctness and the security of the original protocol.

4.2 Construction

In this subsection, we describe our construction of two-round, n-party compu-
tation protocol computing a function f. Our construction uses the following
primitives.

1. An n-party semi-honest secure conforming protocol @ computing the func-
tion f.

2. (Garble, Eval) be a garbling scheme for circuits.

A pseudorandom generator PRG : {0,1}* — {0, 1}*7.

4. A UC-secure two-round MPC protocol computing the function g described
in Figure 3.

@

Notations. For a bit string ¢, we use c[i] to denote the i-th bit of it. For
each t € [T] and o, 8 € {0,1}, we use (¢, «, 8) to succinctly denote the integer
4t + 2+ B — 3. In particular, we use c[(t, «, 8)] to denote c[4t + 2a+ 3 — 3] for
any ¢ € {0,1}*T. We use lab to denote the set of both labels per input wire of
a garbled circuit, and lab denotes the set of one label per input wire. Recall the
definition of Projection from Section 3.

We give an overview of the construction below and describe the formal con-
struction later.

15

Parties: Py, Ps,..., P,.
Inputs:

— P; (also called as the receiver) inputs s € {0,1}* and rlaba, ..., rlab, where
each rlab; is a collection of labels {rlab} ", rlab’ 7"} c(52) with each label of
length A.

— Tor each i € [2,n], P; (also called as the sender) inputs slab;, where slab; is a

collection of labels {slabi ", slab’7'},c[n with each label having length A.

Output: {Projection(Projection(s, slab;), rlab;) }ic(2,n)-

Figure 3: The function g computed by the internal MPC where P; acts as the receiver

Overview. As explained in Section 2, our construction combines a special pur-
pose OT extension protocol (which is delegatable, fine-grained secure and satis-
fies key availability) along with the two-round MPC protocols of [BL18, GS18|
to obtain a protocol that minimizes the number of public key operations. Recall
that the protocols of [BL18, GS18] used the concept of “talking garbled circuits”
to squish the round complexity of a conforming protocol to two rounds. At a high
level, in the first round, every pair of parties sets up a channel to enable their
garbled circuits to interact, and then in the second round, they send “talking
garbled circuits” that emulate the interactions in the conforming protocol. The
interaction between the “talking garbled circuits” is done via oblivious transfer.
In our new construction, we use a special purpose OT extension protocol that
allows the parties to set-up the channel for interaction while minimizing the
number of public key operations.

A major modification from the description given in Section 2 is in modeling
the special oblivious transfer as a protocol between a single receiver and n — 1
senders. We do this to ensure that the receiver uses the same choice bits in
interactions with every sender. Even though this is not an issue in the semi-
honest case, it causes issues in the malicious setting if the corrupted receiver uses
different choice bits in two different interactions. For uniformity of treatment,
we adopt an approach where the special oblivious transfer is a protocol between
a single receiver and n — 1 senders.

Description of the Protocol. We give a formal description of our protocol
below in the F4-hybrid model.

Round-1: Each party P; does the following:
1. Compute (2;,v;) < pre(1*,4, x;).
2. For each ¢ € [T] and for each o, 5 € {0,1}
¢il(t, a, B)] := v;[h] ® NAND(v;[f] ® o, v;5[g] © B)

where ¢t = (*7 fvg7 h)

16

e

Sample s; + {0,1}* and compute e; := PRG(s;) @ ¢;.
4. For each j € [n] \ {i}, sample

rlabl ;" + {0,1}* for all k € [\?],b € {0,1}
slabj, 7 « {0,1}* for all k € [A],b € {0,1}
my ;7 {0,1}* for all k € [4T],b € {0,1}

5. For each j € [n] \ {i}, compute

Ci—i Garble [C { i—j i%j} ,{ | biaj}
B A e< B[M0 Mk.1 ke[4T),be{0,1} >1aPk.b ke[N],be{0,1}

where Cg is described in Figure 4.

6. Send (ssid =, s;, {rlabj "} jen)\i}) to Fy acting as the receiver.

7. For each j € [n] \ {i}, send (ssid = j, {slabzzj) to Fy acting as the
sender o

8. Send <zi, {Cs ™ }iempqips ei) to every other party.

Cs [{mk,o, mk,l}ke[4T]:|

Input: s € {0,1}*.
1. d := PRG(s) where d € {0,1}*.

2. Output {mk,d[k] }k€[4T].

Figure 4: Circuit Cg

Round-2: Each party P; does the following:

1. Set st; := (z1]| - - ||2n) ® v;.
2. Set N = £+ 4TA\(n — 1).
3. Set Tab"" = {lab;;;zﬂ,labzzﬂ}kem] where Iab}?z“ = 0* for each

k € [N],b e {0,1}.
4. for each ¢ from 7" down to 1 do:
(a) Parse (bt as (Z*v fa g, h)
(b) If 4 = ¢* then compute (where P is described in Figure 6)

(ﬁi’t,@i’t) + Garble(1*, P[i, ¢y, vs, L,@MH]).

(c) If i # i* then for every a, 3 € {0,1}, set m], 5 = m’é;’ijﬁ))eﬁ[(maﬁ)]

L
and m, 5, = mé?&,ﬁ),l@ei*[(t,a,ﬁ)]' '
Compute ct}, 5 := (M}, 5@ Iab;l’f(;rl, m, 5, @ Iab;;f;rl) and compute

(P, Tab"") « Garble(1*, P[i, ¢y, vy, {ct’, 5}, Tab "]).

17

5. Compute
l ~ . . 71"71 . .
Clyap < Garble (erap {{C]B_m}je[n]\{i}ystm lab } 7{rlabgc,_b”}je[n]\{i},kE[AQ],be{O,l})

where Cyrap is described in Figure 5.

6. Send ({5i’t}t€m,€3wap) to every other party.

o i
Curap [{Cf? Yietnl\ iy Sti, lab’ }

——j—i
Input: {slab” };cinp\ (i}

1. For each j € [n]\ {i}, compute {mi ™"}, _ ., Eval (€377 slab’ ")
2. Let m:= I (miﬂl).

JEn\{i},ke[aT])
3. Output Projection(stiHm,Ez'l).

Figure 5: Circuit Curap

Evaluation: Every party P; does the following:
1. For each j € [n],

Obtaln ssid = 7, rlab from F, where party P, acts as the receiver.
g J

(b) lab” <— Eval(C&,,ap,rIab)
2. for each ¢ from 1 to T do:

() Parse ¢t aS(fvg7)
it

(b) Compute ((v, 8,7), {w'} e fi-}» lab

(c) Set st;[h] := v ® v;[h]

(d) for each j # i* do: 4
i. Compute (ct = (0o, 01), {Iabi’tﬂ}ke[;\q\{h}) := Eval(P7, I’avb]’t).
ii. Recover lab)"™! =4, @ w.

—~—jt+1 .
iii. Set lab”"" = {labl" e).
3. Compute the output as post(s, st;).

1 R
) := Eval(P" ' /lab).

Correctness. In order to prove correctness, it is sufficient to show that the label
Iab%’tﬂ computed in Step 2(d)ii of the evaluation procedure corresponds to the
bit NAND(st;« [f], sti«[g]) ®v;+ [h]. Notice that by the structure of v;+ we have for
every j # i*, sty|f] = sti-[f] © vz [f]. |
First, w? is computed in Step 2b. Let k := (¢,«, 3), and we have w! =

j—i* j—i*
my, = Mk PRG(s;%) [k]"

18

P [i, ¢, i, {cta.s }a,se(0,1}, 12D]

Input. Z = (sti7 {mk }Je n\{i} ke 4T])
Hardcoded. The index 4 of the party, the action ¢, = (i*, f, g, k), the secret value
v;, the strings {cta,s}a,seq0,1}, and a set of labels lab = {laby o, labg,1}re[n-

1. ifi—i then:

(a) Compute st;[h] := NAND(st;[f], sti[g]), and update Z[h] accordingly.
(b) a:=sti[f] @ vi[f], B :=stilg] © vilg] and v := st;[h] & vi[h].
(c) Output ((a,ﬁ,’y),{m{?{im}je[n]\m,Projection(Z,E)).
2. else:
() Output (Ctstl[f st; {Iabk Z[k] }ke N]\{h})

Figure 6: The program P

Second, ¢t = (dg,01) is computed in Step 2(d)i. Note that a = st«[f] @
vi-[f] = stj[f], B = sti=[g] ® vi-[g] = stj[g]. From the functionality of PJ* we
know that ct = cts,[f]st,1g] = ctiﬂ = (m ;7570 &) Iabib’foﬂ, m:lﬁ71 &) Iabib’flﬂ) =

j—>z EBIabJ t-l—l7 J—i @lab] t+1).

(M}.c eix [K]@1

Therefore, §., Gw! = mfjei (K] @Iabiﬂ“@ ?c?:zc(s k- Recall that ¢« [k] =
NAND(st;- [f], sti<[g])@vl [h] = 7, thus e;«[k] vy = e;- [k‘}@cl [k] = PRG(s;+)[k].

Hence 6, & w’/ = Iab] 1 This concludes the proof.

It is useful to keep in mind that for every i, € [n] and k € [¢], we have that
st;[k] @ v;[k] = st;[k] @ vj[k]. Let us denote this shared value by st*. Also, we
denote the transcript of the interaction in the computation phase by Z.

Efficiency. Let the number of OT invocations in @ be npkg and in one exe-
cution of F; be npk,. Since we make non-black box use of the underlying con-
forming protocol ¢ (but make black-box use of F;), we augment the circuit
computing IT and F, to have OT gates (this is similar in spirit to the works
of [GMM17a, GMM17b]) to count the number of public-key operations. An OT
gate enables one execution of one of the algorithms provided by the OT protocol.
We choose the conforming protocol that performs OT extension between every
pair of parties so that npkg is bounded by O(n?)). Thus, the total number of
public-key operations (including the non-black-box public-key operations) in our
two-round construction is O(npkg + 1 - npk,). It follows from Theorems 2 that
this number is bounded by poly(n, \).

Security. The proof of security is given in the full version [GMS18].

19

5 Special Zero-Knowledge Protocol

In this section, we define and construct a special zero-knowledge protocol which
will later be used in our construction against malicious adversaries. We give the
formal definition below.

Fzx parameterized by an NP relation R, running with n parties Pi, Pa, ..., P, (of
which some may be corrupted) and an adversary S, proceeds as follows:
— Pi sends (prover,sid,z,w) to the functionality. The functionality sends
(request, z, R(xz,w)) to S. If S has corrupted P», then S sends (response, 1) to
the ideal functionality, and the ideal functionality broadcasts (R(z,w),z, 1)
to every other party and goes offline. Else, P> sends (verifier, sid, 10, pt1) to the
functionality, where up € {0,1}.
— Upon receiving the inputs from both P; and P,, functionality checks if
R(z,w) = 1. If yes, it sends (1,z,p1) to every party. Otherwise, it sends
(0, z, po) to all parties.

Figure T7: Special Zero-Knowledge Functionality Fzk

Definition 2. A special zero-knowledge protocol is a two-round protocol that
securely realizes the Fzx functionality given in Figure 7. Further, we require
the number of pubic key operations performed in the protocol to be bounded by
poly(n, A) independent of the size of v and w.

We give a proof of the following theorem.

Theorem 3. Assuming the existence of two-round UC secure oblivious transfer,
there exists a construction of special zero-knowledge protocol.

5.1 Construction

We first describe the tools used in the construction.

1. Special Non-interactive Statistically Binding Commitment. We use
a special non-interactive, statistically binding commitment scheme (com, decom)
where the length of the randomness used to commit to arbitrary length mes-
sages is A. We note that any standard commitment can be made to satisfy
this property by using a pseudorandom generator to expand the random
string to required length.

2. Blum’s Hamiltonicity Protocol. We use the three-round, constant sound-
ness zero-knowledge (zki, zka, zks) protocol of Blum. We note that in Blum’s
protocol zky € {0,1} and we let zks ; be the response when zky = b. We also
assume without loss of generality that zk; includes the instance.

20

3. Two-Round Secure Computation Protocol. We make use of the two-
round secure computation protocol of [GS18] (that can be based on any
two-round UC secure oblivious transfer) computing the ideal functionality
F¢ described in Figure 10.

4. Length Doubling Pseudorandom Generator: We use a pseudorandom
generator PRG : {0, 1}* — {0,1}2*.

Common Random String: Sample ¢ < {0,1}** and set o as the CRS.
Message from P;: On input an instance z and a witness w, P; does the follow-
ing:
1. If R(xz,w) = 0, broadcast (NotlnL, z, R(x,w)) to every other party.
2. Else, for each i € [)\] do:
(a) Prepare zkj for the language £ using the witness w where £ is defined
below.

L:={(z,0):3 (w,s) s.t. R(z,w) =1V PRG(s) =0}

(b) Let zkj, be the third round message when zky = b. Sample 1}, <+
{0,1}* for each b € {0,1} and compute cj := com(zk} ,; 7¢).
(c) Broadcast zk}, cj, ci to every other party.
Message from P,: On input the message from P; :
1. If P; has sent (NotInL, z,0), broadcast uo to every other party and every
party outputs (0, z, o). Else, do:
(a) Sample ch «+ {0,1}*.
(b) Sample lab, , + {0,1}* for each 4,w € [A] and b € {0,1}.
(c) Compute C' <« Garble(C[ch, {zki, cp, ci bie(n, {1 bvefo,13], {labe, b })
where the C is described in Figure 9.
(d) Broadcast C to every party.

Internal MPC: The parties in parallel call F; to jointly compute the function
f shown in Figure 10. More specifically, P; sends {ré, Ti}ie[k] to Fy; P sends
ch,{laby, s }i,welr) befo,1) to Fy; and Ps, Py, ..., P, send nothing. Every party
then gets {laby, }; we[n) back from Fy.

Evaluation: Every party does the following:
1. Compute (b, z, u) < Eval (5, {Iabfu}iywe[x])
2. Output (b, z, u).

Figure 8: Special Zero-Knowledge Protocol I1zk

Overview. We present the formal construction in the Fy hybrid model in Fig-
ure 8.
Correctness. To argue the correctness of the protocol, we only need to prove

21

C [Ch» {Zkll’c(l)»cll}ie[xh {#b}be{o,l}]
Input: r*, r2,
Hardcoded parameters: ch, {zki, c, ci Yien {1 toeqo1y
1. Use the randomness r* to obtain the message zkj committed in ¢}, for each
i€ [A].
2. For each i € [\], check if (zki, ch[i], zk}) is a valid proof for the membership
in language L.
3. If any of the checks fails, output (0, z, o). Else, output (1, z, u1).

Figure 9: Circuit C

Parties: Py, Ps,..., P,.

Inputs:
— P inputs {ré,r{}ie[k], where r? € {0,1}.
— P, inputs ch, {labl, ,}; wep,peqo,1}, Where labl, , € {0, 1}
— P3, Py, ..., P, input nothing.

Output: {Iabfu’ri [w]}i,we[k] (same for every party).

chli]

Figure 10: The Function f Computed by the Internal MPC

that in the evaluation step, p is either pg or p; based on whether R(z,w) =0
or R(z,w) = 1. We know that the output of F; is {|3b1u}i N where lab;, =

Iabfﬂ,ri’ ol Notice that Iabfu)b’s are the input keys of C, hence lab’, is the label

corresponding to the w-th bit of Tih[i]. Using these input labels to evaluate C
gives us Eval (C, {labw}i,we[)\]) =C ({rchm}iep\])
In the circuit evaluation of C, rih[i] is used to obtain Zké,ch[i] from cih[i]. It

now follows from the completeness of (zk!, ch[i],zk;ch[i]) that u is either g or
w1 based on R(z,w) =0 or R(z,w) = 1.

Efficiency. The number of public key operations performed in the protocol is
poly(n, A) which follows from Theorem 2 when applied to function f.

Security. We give the security proof in the full version [GMS18].

22

6 Malicious Secure Protocol

In this section, we give a construction of two-round, multiparty computation
that is secure against malicious adversaries and minimizes the number of public
key operations.

6.1 Construction
Our two-round protocol computing a function f uses the following primitives.

1. An n-party malicious secure conforming protocol ¢ computing the function

f-

A selective garbling scheme for circuits (Garble, Eval).

3. A pseudorandom generator PRG : {0,1}* — {0,1}*T where each output
bit can be computed by a circuit of size poly(\, log T).?

4. A somewhere adaptive garbling scheme for circuits (SAdpGarbleCkt, SAdpGarblelnp,
SAdpEvalCkt) (defined in Section 3.2). We assume that the length of the gar-
bled input when SAdpGarbleCkt is used to garbled Cg (described in Figure 11)
is M.

5. A maliciously secure two-round MPC protocol computing the function g

described in Figure 12.

A non-interactive statistically binding commitment scheme (Com, Decom).

7. The special ZK protocol parameterized by an NP relation R described below.

o

e

R:= { (x = (EB,cm) ,w= (£2, CB7state,w)) :
(Decom(cm, state,w) = 1) A ((ég,state) = SAdpGarbleCkt (Cg; Q)) }

Description of the Protocol. We now give a formal description of our con-
struction in below in the F; and F, hybrid model.

Round-1: Each party P; does the following;:
1. Compute (z;,v;) + pre(1*,4, ;).
2. For each t € [T] and for each «, 3 € {0,1}

cil(t, o, B)] == vi[h] © NAND(vs[f] & a, vilg] ©)

where ¢t = (*7 f7ga h)
3. Sample s; + {0,1}* and compute e; := PRGpa(s;) @ ¢;.
4. For each j € [n] \ {i}, sample
o g = {011
rlab) " < {0,1}* for all k € [M],b € {0,1}
my 7 {0,1}* for all k € [4T],b € {0,1}

® The GGM PRF [GGMS86] can be easily modified to give such a PRG based on
one-way functions.

23

. Garbling Cg: For each j € [n]\ {i}, compute

i =4} .— A leCk i ;82
(Cg 7/, state’7) := SAdpGarbleCkt (CB {{mk oMy }ke[4T],be{0,1}:| ;)
cm®™J := Com(state’7; w™7)

where Cpg is described in Figure 11 and £2,w?™7 are sampled randomly.
Messages to Fy: Send (ssid = i sz,{rlabkb Fiem\{i} ke[M],pef0,1}) tO
F, acting as the receiver and for each j € [n]\{i}, send (ssid = j, {cm'™7,

statelﬁ] w'™7}) to F, acting as the sender.
J—t g

. Messages to Fu: For each j € [n]\{3}, send (ssid = (j — 4), 1l " 11)

to Fo acting as the verifier, and send (ssid = (i — j), X779, W'™J) to

Fu acting as the prover where X7 = <€E_>j,cmi_’j and W9 =

(Q, Cg {ml_”, l_”} 7statei_”',wi_’j).
k00 ME1 ke[4T),be{0,1}

. Send (Zi7 {CzB%j Yiem\{i} € {cmi_’j}je[n]\{i}) to every other party.

Input: s € {0,1}*.
1. d:= PRGpmal(s) where d € {0,1}*7.
2. Output {mkvd[k]}keHT]'

B [{mk,m mk,l}ke[4T]]

Figure 11: Circuit Cg

Round-2: Each party P; does the following:

1.
2.

3.

Set st; := (1] ... ||zn) ® v;.
Set N = £+ 4TA(n — 1),
Set b ! = {labz AHL b T+1}ke[N] where Iab}i’z“ = 0* for each

ke [N},be{o 1}.

. for each ¢ from T down to 1 do:

() Pa‘rse(bt a,S(fag7)
(b) If ¢ = ¢* then compute (where P is described in Figure 6)

—1,t+1

(P, Tab™") « Garble(1*, P[i, ¢y, v;, L,Tab "]).

(c) If i # i* then for every a, B € {0,1}, set mlo¢7ﬁ70 = mé?ci,*,e),eﬁ[(t,a,ﬁ)]
A —
and my, 5, = m(t o 5) 16e (106

Compute ctf , 5:= (m/, 5,® lab” t+1, m,, 5.1 @ labl; H'1) and compute

D

(P, Tab"") « Garble(1*, P[i, ¢, vy, {cti o 5},1ab"

24

Parties: Py, Ps,..., P,.

Inputs:
— P; (also called as the receiver) inputs s € {0,1}* and rlaba, ..., rlab, where
each rlab; is a collection of labels {rlab’ ", rlabi 7'} c(a with each label of
length A.

— For each ¢ € [2,n], P, (also called as the sender) inputs
(em'™! state’™!, w'™!), where cm’™! is a commitment and is a public
input, state’ ! is the secret state of the somewhere adaptive garbling scheme,
and w'™! is a string.

Output: Check if for each i € [2,n], Decom(cm‘™?! state’™! w*™') = 1. If all the
checks pass, output {Projection(SAdpGarbIeInp(stateiﬁl,s),ﬁi)}ie[gyn] to every
party.

Figure 12: The function g computed by the internal MPC where P; acts as the receiver

5. Garbling Cy,p: Compute
~. ~i_si 71',1
Cévrap — Garble(CW,ap [{Cé_) }je[n]\{i}a st;, lab R
{{uﬁﬂ}je[n]\{i}, {flabﬁi}je[n]\{i},ke[M],be{o,l}})

where Cy,p is described in Figure 13.
6. Send ({ﬁi’t}tem,aé\,,ap) to every other party.

~i i —
erap |:{Cf3_> }je[n]\{i},sti,labl i|

Input: {67 e (3o {F 7 Hiepnin

1. Y7 =1forall j€n]\{i} do: o

(a) For each j € [n] \ {i}, compute {mi”"
SAdpEvalCkt (Ef;i, gﬂ”i)
(b) Letm= | (mi™)
JelNGi} helT)

(c) Output Projection(stiHm,ml’l).

2. Else, output L.

T

}k€[4T]

Figure 13: Circuit C"P

Evaluation: Every party P; does the following:
1. For each j € [n],

25

(a) Obtain (ssid = j, {ﬁ;T)J}) from F, where party P; acts as the receiver.
(b) For each k € [n] \ {j}, obtain (ssid = (k — §), 08 Xk=a k=)
from Fo. Set i = {7} e (53
— '71 ~ . T)
(c) lab « Eval(C{vrap,uJHrlabJ).
for each t from 1 to T" do:
(a) Parse (bt as (Z*7 f7 9, h)
. i
(b) Compute ((, 8,7), {w }jem)\ (i} lab
(c) Set st;[h] := v ® v;[h].
(d) for each j # i* do:
4 ~. . it
1. Compute (Ct = (50,(51), {|ab?€’t+1}ke[]\;]\{h}) = EVE!|(P]’t7 Iab])
ii. Recover labl"™! := 5, @ w.
—~— jt+1 .
iii. Set lab”"" = {labl" e pwy-
3. Compute the output as post(s, st;).

2.

)

1 ~ o~
) := Eval(Pi"t,Iab ™).

Correctness. The correctness follows via a similar argument to the semi-honest
case.

Efficiency. Let the number of public key operations in @ be npkg, in one ex-
ecution of Fz be npk,, and in one execution of F; be npk,. We choose the
conforming protocol that performs OT extension between every pair of parties
so that npkg is bounded by O(n?)). The total number of public key operations
in our two-round construction is O(npkg + n? - npk,, +n - npk,). It follows from
Theorems 3, 2 that this number is bounded by poly(n, A).

Security. The security proof will be given in the full version [GMS18].

References

[ACJ1T] Prabhanjan Ananth, Arka Rai Choudhuri, and Abhishek Jain. A new
approach to round-optimal secure multiparty computation. In Jonathan
Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401
of LNCS, pages 468—499. Springer, Heidelberg, August 2017.

[AIKW13] Benny Applebaum, Yuval Ishai, Eyal Kushilevitz, and Brent Waters. En-
coding functions with constant online rate or how to compress garbled
circuits keys. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part II, volume 8043 of LNCS, pages 166-184. Springer, Heidelberg, Au-
gust 2013.

[ALSZ17] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner.
More efficient oblivious transfer extensions. Journal of Cryptology,
30(3):805-858, July 2017.

[Bea96] Donald Beaver. Correlated pseudorandomness and the complexity of pri-
vate computations. In Proceedings of the Twenty-Eighth Annual ACM
Symposium on the Theory of Computing, Philadelphia, Pennsylvania,
USA, May 22-24, 1996, pages 479-488, 1996.

26

[BGI16]

[BGIt17a]

[BGI17b)

[BGJT17]

[BHP17]

[BHR12]

[BL18]

[BMRI0]

[BP16]

[Can00a]

[Can00b]

[Can01]

[COSV17]

[FS90]

Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the circuit size barrier
for secure computation under DDH. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 509—
539. Springer, Heidelberg, August 2016.

Saikrishna Badrinarayanan, Sanjam Garg, Yuval Ishai, Amit Sahai, and
Akshay Wadia. T'wo-message witness indistinguishability and secure com-
putation in the plain model from new assumptions. In Tsuyoshi Takagi
and Thomas Peyrin, editors, ASTACRYPT 2017, Part III, volume 10626
of LNCS, pages 275-303. Springer, Heidelberg, December 2017.

Elette Boyle, Niv Gilboa, and Yuval Ishai. Group-based secure compu-
tation: Optimizing rounds, communication, and computation. In Jean-
Sébastien Coron and Jesper Buus Nielsen, editors, FUROCRYPT 2017,
Part I, volume 10211 of LNCS, pages 163—-193. Springer, Heidelberg, May
2017.

Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain, Yael Tauman
Kalai, Dakshita Khurana, and Amit Sahai. Promise zero knowledge and
its applications to round optimal mpc. Cryptology ePrint Archive, Report
2017/1088, 2017. https://eprint.iacr.org/2017/1088.

Zvika Brakerski, Shai Halevi, and Antigoni Polychroniadou. Four round
secure computation without setup. In Yael Kalai and Leonid Reyzin, edi-
tors, TCC 2017, Part I, volume 10677 of LNCS, pages 645—677. Springer,
Heidelberg, November 2017.

Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of
garbled circuits. In Ting Yu, George Danezis, and Virgil D. Gligor, editors,
ACM CCS 12, pages 784-796. ACM Press, October 2012.

Fabrice Benhamouda and Huijia Lin. k-round mpc from k-round ot via
garbled interactive circuits. To appear in Eurocrypt, 2018. https://
eprint.iacr.org/2017/1125.

Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity
of secure protocols (extended abstract). In 22nd ACM STOC, pages 503~
513. ACM Press, May 1990.

Zvika Brakerski and Renen Perlman. Lattice-based fully dynamic multi-
key FHE with short ciphertexts. In Matthew Robshaw and Jonathan Katz,
editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 190-213.
Springer, Heidelberg, August 2016.

Ran Canetti. Security and composition of multiparty cryptographic pro-
tocols. Journal of Cryptology, 13(1):143-202, 2000.

Ran Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. Cryptology ePrint Archive, Report 2000/067, 2000.
http://eprint.iacr.org/2000/067.

Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In 42nd FOCS, pages 136-145. IEEE Computer Society
Press, October 2001.

Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti.
Round-optimal secure two-party computation from trapdoor permuta-
tions. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume
10677 of LNCS, pages 678—710. Springer, Heidelberg, November 2017.
Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding
protocols. In 22nd ACM STOC, pages 416-426. ACM Press, May 1990.

27

[GGH'13]

[GGHR14]

[GGMS6]

[GGSW13]

[GLS15]

[GMM17a]

[GMM17b]

Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai,
and Brent Waters. Candidate indistinguishability obfuscation and func-
tional encryption for all circuits. In 5/th FOCS, pages 40—49. IEEE Com-
puter Society Press, October 2013.

Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-
round secure MPC from indistinguishability obfuscation. In Yehuda Lin-
dell, editor, TCC' 2014, volume 8349 of LNCS, pages 74-94. Springer, Hei-
delberg, February 2014.

Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions. J. ACM, 33(4):792-807, 1986.

Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness en-
cryption and its applications. In Dan Boneh, Tim Roughgarden, and Joan
Feigenbaum, editors, 45th ACM STOC, pages 467-476. ACM Press, June
2013.

S. Dov Gordon, Feng-Hao Liu, and Elaine Shi. Constant-round MPC
with fairness and guarantee of output delivery. In Rosario Gennaro and
Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of
LNCS, pages 63-82. Springer, Heidelberg, August 2015.

Sanjam Garg, Mohammad Mahmoody, and Ameer Mohammed. Lower
bounds on obfuscation from all-or-nothing encryption primitives. In
Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, vol-
ume 10401 of LNCS, pages 661-695. Springer, Heidelberg, August 2017.
Sanjam Garg, Mohammad Mahmoody, and Ameer Mohammed. When
does functional encryption imply obfuscation? In Yael Kalai and Leonid
Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS, pages 82-115.
Springer, Heidelberg, November 2017.

[GMMM17] Sanjam Garg, Mohammad Mahmoody, Daniel Masny, and Izaak Meckler.

[GMPP16]

[GMS1§]

[GMWS7]

[GS17]

[GS18]

[HHPV17]

On the round complexity of ot extension. Cryptology ePrint Archive,
Report 2017/1187, 2017. https://eprint.iacr.org/2017/1187.

Sanjam Garg, Pratyay Mukherjee, Omkant Pandey, and Antigoni Poly-
chroniadou. The exact round complexity of secure computation. In Marc
Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part 11,
volume 9666 of LNCS, pages 448—-476. Springer, Heidelberg, May 2016.
Sanjam Garg, Peihan Miao, and Akshayaram Srinivasan. Two-round mul-
tiparty secure computation minimizing public key operations. Cryptology
ePrint Archive, Report 2018/180, 2018. https://eprint.iacr.org/2018/
180.

Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In
Alfred Aho, editor, 19th ACM STOC, pages 218-229. ACM Press, May
1987.

Sanjam Garg and Akshayaram Srinivasan. Garbled protocols and two-
round MPC from bilinear maps. In 58th FOCS, pages 588-599. IEEE
Computer Society Press, 2017.

Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure
computation from minimal assumptions. To appear in Eurocrypt, 2018.
https://eprint.iacr.org/2017/1156.

Shai Halevi, Carmit Hazay, Antigoni Polychroniadou, and Muthuramakr-
ishnan Venkitasubramaniam. Round-optimal secure multi-party com-
putation. Cryptology ePrint Archive, Report 2017/1056, 2017. http:
//eprint.iacr.org/2017/1056.

28

[HIKO7]

[HIKNOS]

[HJOT16]

[HLP11]

[IKNP03]

[JKK*17)

[JKKR17]

[JW16]

[KK13]

[KRS16]

[LP09)]

[MW16]

[Nie07]

Danny Harnik, Yuval Ishai, and Eyal Kushilevitz. How many oblivi-
ous transfers are needed for secure multiparty computation? In Alfred
Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages 284-302.
Springer, Heidelberg, August 2007.

Danny Harnik, Yuval Ishai, Eyal Kushilevitz, and Jesper Buus Nielsen.
OT-combiners via secure computation. In Ran Canetti, editor, TCC 2008,
volume 4948 of LNCS, pages 393—411. Springer, Heidelberg, March 2008.
Brett Hemenway, Zahra Jafargholi, Rafail Ostrovsky, Alessandra Scafuro,
and Daniel Wichs. Adaptively secure garbled circuits from one-way func-
tions. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016,
Part III, volume 9816 of LNCS, pages 149-178. Springer, Heidelberg, Au-
gust 2016.

Shai Halevi, Yehuda Lindell, and Benny Pinkas. Secure computation on
the web: Computing without simultaneous interaction. In Phillip Rogaway,
editor, CRYPTO 2011, volume 6841 of LNCS, pages 132-150. Springer,
Heidelberg, August 2011.

Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending obliv-
ious transfers efficiently. In Dan Boneh, editor, CRYPTO 2003, volume
2729 of LNCS, pages 145-161. Springer, Heidelberg, August 2003.

Zahra Jafargholi, Chethan Kamath, Karen Klein, Ilan Komargodski,
Krzysztof Pietrzak, and Daniel Wichs. Be adaptive, avoid overcommitting.
In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I,
volume 10401 of LNCS, pages 133-163. Springer, Heidelberg, August 2017.
Abhishek Jain, Yael Tauman Kalai, Dakshita Khurana, and Ron Roth-
blum. Distinguisher-dependent simulation in two rounds and its applica-
tions. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017,
Part II, volume 10402 of LNCS, pages 158-189. Springer, Heidelberg, Au-
gust 2017.

Zahra Jafargholi and Daniel Wichs. Adaptive security of Yao’s garbled
circuits. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B,
Part I, volume 9985 of LNCS, pages 433—-458. Springer, Heidelberg, Octo-
ber / November 2016.

Vladimir Kolesnikov and Ranjit Kumaresan. Improved OT extension for
transferring short secrets. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 54-70. Springer,
Heidelberg, August 2013.

Ranjit Kumaresan, Srinivasan Raghuraman, and Adam Sealfon. Network
oblivious transfer. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part II, volume 9815 of LNCS, pages 366-396. Springer,
Heidelberg, August 2016.

Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol
for two-party computation. Journal of Cryptology, 22(2):161-188, April
2009.

Pratyay Mukherjee and Daniel Wichs. Two round multiparty computa-
tion via multi-key FHE. In Marc Fischlin and Jean-Sébastien Coron, edi-
tors, FEUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 735-763.
Springer, Heidelberg, May 2016.

Jesper Buus Nielsen. Extending oblivious transfers efficiently - how to get
robustness almost for free. Cryptology ePrint Archive, Report 2007/215,
2007. http://eprint.iacr.org/2007/215.

29

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and

[PS16]

[Yao82]

Sai Sheshank Burra. A new approach to practical active-secure two-party
computation. In CRYPTO, 2012.

Chris Peikert and Sina Shiehian. Multi-key FHE from LWE, revisited. In
Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part II, volume
9986 of LNCS, pages 217-238. Springer, Heidelberg, October / November
2016.

Andrew Chi-Chih Yao. Protocols for secure computations (extended ab-
stract). In 23rd FOCS, pages 160-164. IEEE Computer Society Press,
November 1982.

30

