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Abstract. For many cryptographic primitives, it is relatively easy to
achieve selective security (where the adversary commits a-priori to some
of the choices to be made later in the attack) but appears difficult to
achieve the more natural notion of adaptive security (where the adversary
can make all choices on the go as the attack progresses). A series of several
recent works shows how to cleverly achieve adaptive security in several
such scenarios including generalized selective decryption (Panjwani, TCC
’07 and Fuchsbauer et al., CRYPTO ’15), constrained PRFs (Fuchsbauer
et al., ASIACRYPT ’14), and Yao garbled circuits (Jafargholi and Wichs,
TCC ’16b). Although the above works expressed vague intuition that
they share a common technique, the connection was never made precise.
In this work we present a new framework that connects all of these
works and allows us to present them in a unified and simplified fashion.
Moreover, we use the framework to derive a new result for adaptively
secure secret sharing over access structures defined via monotone circuits.
We envision that further applications will follow in the future.
Underlying our framework is the following simple idea. It is well known
that selective security, where the adversary commits to n-bits of infor-
mation about his future choices, automatically implies adaptive security
at the cost of amplifying the adversary’s advantage by a factor of up to
2n. However, in some cases the proof of selective security proceeds via
a sequence of hybrids, where each pair of adjacent hybrids locally only
requires some smaller partial information consisting of m� n bits. The
partial information needed might be completely different between differ-
ent pairs of hybrids, and if we look across all the hybrids we might rely
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on the entire n-bit commitment. Nevertheless, the above is sufficient to
prove adaptive security, at the cost of amplifying the adversary’s advan-
tage by a factor of only 2m � 2n.
In all of our examples using the above framework, the different hybrids
are captured by some sort of a graph pebbling game and the amount
of information that the adversary needs to commit to in each pair of
hybrids is bounded by the maximum number of pebbles in play at any
point in time. Therefore, coming up with better strategies for proving
adaptive security translates to various pebbling strategies for different
types of graphs.

1 Introduction

Many security definitions come in two flavors: a stronger “adaptive” flavor, where
the adversary can arbitrarily make various choices during the course of the at-
tack, and a weaker “selective” flavor where the adversary must commit to some
or all of his choices a-priori. For example, in the context of identity-based en-
cryption, selective security requires the adversary to decide on the identity of
the attacked party at the very beginning of the game whereas adaptive security
allows the attacker to first see the master public key and some secret keys be-
fore making this choice. Often, it appears to be much easier to achieve selective
security than it is to achieve adaptive security.

A series of recent works achieves adaptive security in several such scenarios
where we previously only knew how to achieve selective security: generalized
selective decryption (GSD) [23,8], constrained PRFs [9], and garbled circuits [16].
Although some of these works suggest a vague intuition that there is a general
technique at play, there was no attempt to make this precise and to crystallize
what the technique is or how these results are connected. In this work we present
a new framework that connects all of these works and allows us to present them
in a unified and simplified fashion. Moreover, we use the framework to derive a
new result for adaptively secure secret sharing over access structures defined via
monotone circuits.

At a high level, our framework carefully combines two basic tools commonly
used throughout cryptography: random guessing (of the adaptive choices to be
made by the adversary)5 and the hybrid argument. Firstly, “random guessing”
gives us a generic way to qualitatively upgrade selective security to adaptive
security at a quantitative cost in the amount of security. In particular, assume
we can prove the security of a selective game where the adversary commits to
n-bits of information about his future choices. Then, we can also prove adap-
tive security by guessing this commitment and taking a factor of 2n loss in the

5 In many previous works – including [8,9,16], and by the authors of this paper – this
random guessing was referred to as “complexity leveraging”, but this seems to be
an abuse of the term. Instead, complexity leveraging [7] refers to the use of two
different schemes, S1, S2, where the two schemes are chosen with different values of
the security parameter, k1 and k2, where k1 < k2 and such that an adversary against
S2 (or perhaps even the honest user of S2) can break the security of S1.



security advantage. However, this quantitative loss is often too high and hence
we usually wish to avoid it or at least lower it. Secondly, the hybrid argument
allows us to prove the indistinguishability of two games GL and GR by defining a
sequence of hybrid games GL ≡ H0,H1, . . . ,H` ≡ GR and showing that each pair
of neighboring hybrids Hi and Hi+1 are indistinguishable.

Our Framework. Our framework starts with two adaptive games GL and GR that
we wish to show indistinguishable but we don’t initially have any direct way of
doing so. Let HL and HR be selective versions of the two games respectively,
where the adversary initially has to commit to some information w ∈ {0, 1}n
about his future choices. Furthermore, assume there is some sequence of selective
hybrids HL = H0,H1, . . . ,H` ≡ HR such that we can show that Hi and Hi+1

are indistinguishable. A näıve combination of the hybrid argument and random
guessing shows that GL and GR are indistinguishable at a factor of 2n · ` loss in
security, but we want to do better.

Recall that the hybrids Hi are selective and require the adversary to commit
to w. However, it might be the case that for each i we can prove that Hi and Hi+1

would be indistinguishable even if the adversary didn’t have to commit to all of
w but only some partial-information hi(w) ∈ {0, 1}m for m � n (formalizing
this condition precisely requires great care and is the major source of subtlety in
our framework). Notice that the partial information that we need to know about
w may be completely different for different pairs of hybrids, and if we look across
all hybrids then we may need to know all of w. Nevertheless, we prove that this
suffices to show that the adaptive games GL and GR are indistinguishable with
only a 2m · `� 2n · ` loss of security.

Applications of Our Framework. We show how to understand all of the prior
works mentioned above as applications of our framework. In many cases, this
vastly simplifies prior works. We also use the framework to derive a new result,
proving the adaptive security of Yao’s secret sharing scheme for access structures
defined via monotone circuits.

In all of the examples, we get a series of selective hybrids H1, . . . ,H` that cor-
respond to pebbling configurations in some graph pebbling game. The amount of
information needed to show that neighboring hybrids Hi and Hi+1 are indistin-
guishable only depends on the configuration of the pebbles in the i’th step of the
game. Therefore, using our framework, we translate the problem of coming up
with adaptive security proofs to the problem of coming up with pebbling strate-
gies that only require a succinct representation of each pebbling configuration.

We now proceed to give a high level overview of each of our results applying
our general framework to specific problems, and refer to the main body for
technical details.

1.1 Adaptive Secret Sharing for Monotone Circuits

Secret sharing schemes, introduced by Blakley [4] and Shamir [27], are methods
that enable a dealer, that has a secret piece of information, to distribute this



secret among n parties such that a “qualified” subset of parties has enough
information to reconstruct the secret while any “unqualified” subset of parties
learns nothing about the secret. The monotone collection of “qualified” subsets
is known as an access structure. Any access structure admits a secret sharing
scheme but the share size could be exponential in n [14]. We are interested in
efficient schemes in which the share size is polynomial (in n and possibly in a
security parameter).

Many of the classical schemes for secret sharing are perfectly (information
theoretically) secure. The largest class of access structures that admit such a
(perfect and efficient) scheme was obtained by Karchmer and Wigderson [18]
for the class of all functions that can be computed by monotone span programs.
This result generalized a previous work of Benaloh and Leichter [3] (which,
in turn, improved a result of Ito, Saito and Nishizeki [14]) that showed the
same result but for a smaller class of access structures: those functions that
can be computed by monotone Boolean formulas. Under cryptographic hardness
assumptions, efficient schemes for more general access structures are known (but
security is only for bounded adversaries). In particular, in an unpublished work
(mentioned in [1], see also Vinod et al. [28]), Yao showed how to realize schemes
for access structures that are described by monotone circuits. This construction
could be used for access structures which are known to be computed by monotone
circuits but are not known to be computed by monotone span programs, e.g.,
directed connectivity [17,24].6 Komargodski, Naor, and Yogev [21] showed how
to realize the class of access structures described by monotone functions in NP7

under the assumption that witness encryption for NP [10] and one-way functions
exist.89

Selective vs. adaptive security. All of the schemes described above guarantee se-
curity against static adversaries, where the adversary chooses a subset of parties
it controls before it sees any of the shares. A more natural security guarantee
would be to require that even an adversary that chooses its set of parties in an
adaptive manner (i.e., based on the shares it has seen so far) is unable to learn
the secret (or any partial information about it).

It is known that the schemes that satisfy perfect security (including the
works [14,3,18] mentioned above) actually satisfy this stronger notion of adaptive
security. However, the situation for the schemes that are based on cryptographic
assumptions (including Yao’s scheme and the scheme of [21]) is much less clear.

6 In the access structure for directed connectivity, the parties correspond to an edge in
the complete directed graph and the “qualified” subsets are those edges that connect
two distinguished nodes s and t.

7 For access structures in NP, a qualified set of parties needs to know an NP witness
that they are qualified.

8 Witness encryption for a language L ∈ NP allows to encrypt a message relative to a
statement x ∈ L such that anyone holding a witness to the statement can decrypt
the message, but if x /∈ L, then the message is computationally hidden.

9 One can relax the additional assumption of one-way functions to an average-case
hardness assumption in NP [20].



Using random guessing (see Lemma 1) it can be shown that these schemes are
adaptively secure, but this reduction loses an exponential (in the number of
parties) factor in the security of the scheme. Additionally, as noted in [21], their
scheme can be shown to be adaptively secure if the witness encryption scheme is
extractable.10 The latter is a somewhat controversial assumption that we prefer
to avoid.

Our results. We analyze the adaptive security of Yao’s scheme under our frame-
work and show that in some cases the security loss is much smaller than 2n.
Roughly, we show that if the access structure can be described by a monotone
circuit of depth d and s gates (with unbounded fan-in and fan-out) the security
loss is proportional to sO(d). Thus, for shallow circuits our analysis shows that
an exponential loss is avoidable.

To exemplify the usefulness of the result, consider, for instance, the directed
st-connectivity access structure mentioned in Footnote 6. It is known that it can
be computed by a monotone circuit of size O(n3 log n) and depth O(log2 n), but

its monotone formula and span-program complexity is 2Ω(log2 n) [17,24]. Thus,
no efficient perfectly secure scheme is known, and our proof shows that Yao’s
scheme for this access structure is secure based on the assumption that quasi-
polynomially-secure one-way functions exist.

Yao’s scheme. In this scheme, an access structure is described by a monotone
circuit. The sharing procedure first labels the output wire of the circuit with the
shared secret and then proceeds to assign labels to all wires of the circuit; in the
end the label on each input wire is included in the share of the corresponding
party. The procedure for assigning labels is recursive and in each step it labels the
input wires of a gate g assuming its output wires are already labeled (recall that
we assume unbounded fan-in and fan-out so there are many input and output
wires). To do so, we first sample a fresh encryption key s for a symmetric-key
encryption scheme. If the gate is an AND gate, then we label each input wire
with a random string conditioned on their XOR being s, and if the gate is an OR
gate, then we label each input wire with s. In either case, we encrypt the labels
of the output wires under s and include these ciphertexts associated with the
gate g as part of ever party’s share. The reconstruction of the scheme works by
reversing the above procedure from the leaves to the root. This scheme is indeed
efficient for access structures that have polynomial-size monotone circuits.

Security proof. Our goal is to show that as long as an adversary controls an
unqualified set, he cannot learn anything about the secret. We start by outlining
the selective security proof (following the argument of [28]), where the adversary
first commits to the “corrupted” set. The proof is via a series of hybrids in which
we slowly replace the ciphertexts associated with various gates g with bogus ci-
phertexts. Once we do this for the output gate, the shares become independent of

10 This is a knowledge assumption that says that if an adversary can decrypt a witness
encryption ciphertext, then it must know a witness which can be extracted from it.



the secret which proves security. The gates for which we can replace the cipher-
texts with bogus ones are the gates for which the adversary cannot compute the
corresponding encryption key. Since the adversary controls an unqualified set, a
sequence which eventually results with replacing the encryption of the root gate
must exist. Since in every hybrid we “handle” one gate and never consider it
again, the number of hybrids is at most the number of gates in the circuit.

The problem with lifting this proof to the adaptive case is that it seems
inherent to know the corrupted set of parties in order to know for which gates
g to switch the ciphertexts from real to bogus (and in what order). However, in
the adaptive game this set is not known during the sharing procedure. A näıve
use of random guessing would result in an exponential security loss 2n, where n
is the number of parties.

To overcome this we associate each intermediate hybrid Hi with a pebbling
configuration in which each gate in the circuit is either pebbled (ciphertexts are
bogus) or unpebbled (ciphertexts are real). The pebbling rules are:

1. Can place or remove a pebble on any AND gate for which (at least) one
input wire is either not corrupted or comes out of a gate with a pebble on
it.

2. Can place or remove a pebble on any OR gate for which all of the incoming
wires are either non-corrupted input wires or come out of gates all of which
have pebbles on them.

The initial hybrid corresponds to the case in which all gates are unpebbled and
the final hybrid corresponds to the case in which all gates are unpebbled except
the root gate which has a pebble. Now, any pebbling strategy that takes us from
the initial configuration to the final one, corresponds to a sequence of selective
hybrids Hi. Furthermore, to prove indistinguishability of neighboring hybrids
Hi,Hi+1 we don’t need the adversary to commit to the entire set of corrupted
parties ahead of time but it suffices if the adversary only commits to the pebble
configuration in steps i and i + 1. Therefore, if the pebbling strategy has the
property that each configuration requires few bits to describe, then we would
be able to use our framework. We show that for every corrupted set and any
monotone circuit of depth d and s gates, there exists such a pebbling strategy,
where the number of moves is roughly 2O(d) and each configuration has a very
succinct representation: roughly d · log s bits. Plugging this into our framework,
we get a proof of adaptive security with security loss proportional to sO(d). We
refer to Section 4 for the precise details.

1.2 Generalized Selective Decryption

Generalized Selective Decryption (GSD), introduced by Panjwani [23], is a game
that captures the difficulty of proving adaptive security of certain protocols, most
notably the Logical Key Hierarchy (LKH) multicast encryption protocol. On a
high level, it deals with scenario where we have many secret keys ki and various
ciphertexts encrypting one key under another (but no cycles). We will discuss



this problem in depth in the full version [15], here giving a high level overview
on how our framework applies to this problem.

Let (Enc,Dec) be a CPA-secure symmetric encryption scheme with (proba-
bilistic) Enc : K ×M → C and Dec : K × C → M. We assume K ⊆ M, i.e., we
can encrypt keys. In the game, the challenger — either GL or GR — picks n+ 1
random keys k0, . . . , kn ∈ K, and the adversary A is then allowed to make three
types of queries:11

– Encryption query: on input (encrypt, i, j) receives Enc(ki, kj).

– Corruption queries: on input (corrupt, i) receives ki.

– Challenge query, only one is allowed: on input (challenge, i) receives ki in
the real game GL, and a random value in the random game GR.

We think of this game as generating a directed graph, with vertex set V =
{0, . . . , n}, where every (encrypt, i, j) query adds a directed edge (i, j), and we
say a vertex vi is corrupted if a query (corrupt, i) was made, or vi can be reached
from a corrupted vertex. The goal of the adversary is to distinguish the games
GL or GR, with the restriction that the constructed graph has no cycles, and the
challenge vertex is a sink. To prove security, i.e., reduce the indistinguishability
of GL or GR to the security of Enc, we can consider a selectivized version of this
game where A must commit to the graph as described above (which uses < n2

bits). The security of this selectivized game can then be reduced to the security
of Enc by a series of < n2 hybrids, where a distinguisher for any two consecutive
hybrids can be used to break the security of Enc with the same advantage. Using
random guessing followed by a hybrid argument we conclude that if Enc is δ-
secure, the GSD game is δ · n2 · 2n2

-secure. Thus, we lose an exponential in n2

factor in the reduction.

Fortunately, if we look at the actual protocols that GSD is supposed to
capture, it turns out that the graphs that A can generate are not totally arbitrary.
Two interesting cases are given by GSD restricted to graphs of bounded depth,
and to trees. For these cases better reductions exist. Panjwani [23] shows that if
the adversary is restricted to play the game such that the resulting graph is of
depth at most d, a reduction losing a factor (2n)d exists. Moreover, Fuchsbauer
et al. [8] give a reduction losing a factor n3 logn when the underlying graph is
a tree. In the full version we prove these results in our framework. Our proofs
are much simpler than the original ones, especially than the proof of [23] which
is very long and technical. This is thanks to our modular approach, where our
general framework takes care of delicate probabilistic arguments, and basically
just leaves us with the task of designing pebbling strategies, where each pebbling
configuration has a succinct description, for various graphs, which is a clean
combinatorial problem. The generic connection between adaptive security proofs
of the GSD problem and graph pebbling is entirely new to this work.

11 In the actual game the adversary can also make standard CPA encryption queries
Enc(ki,m) for chosen m, i. As this doesn’t meaningfully change the security proof
we ignore this here.



GSD on a Path. Let us sketch the proof idea for the [8] result, but for an even
more restricted case where the graph is a path visiting every node exactly once.
In other words there is a permutation σ over {0, . . . , n} and the adversary’s
queries are of the form (encrypt, σ(i− 1), σ(i)) and (challenge, σ(n)). We first
consider the selective game where A must commit to this permutation σ ahead
of time. Let HL,HR be the selectivized versions of GL, GR respectively.

To prove selective security, we can define a sequence of hybrid games HL =
H0, . . . ,H` = HR. Each hybrid is defined by a path, 0 → 1 → . . . → n, with a
subset of the edges holding a black pebble. In the hybrid games, a pebble on
(i, i + 1) means that instead of answering the query (encrypt, σ(i), σ(i + 1))
with the “real” answer Enc(kσ(i), kσ(i+1)), we answer it with a “fake” answer
Enc(kσ(i), r) for a random r. The goal is to move from a hybrid with no pebbles
(this corresponds to HL) to one with a single black pebble on the “sink” edge
(n− 1, n) (this corresponds to HR). We can prove that neighboring hybrids are
indistinguishable via a reduction from CPA-security as long as the pebbling
configurations are only modified via the following legal moves:

1. We can put/remove a pebble on the source edge (0, 1) at any time.

2. We can put/remove a pebble on an edge (i, i + 1) if the preceding edge
(i− 1, i) has a pebble.

This is because adding/removing a pebble (i, i + 1) means changing what we
encrypt under key kσ(i) and therefore we need to make sure that either the edge
is a source edge or there is already a pebble on the preceding edge to ensure that
the key kσ(i) is never being encrypted under some other key.

The simplest “basic pebbling strategy” consists of 2n moves where we add
pebbles on the path 0→ 1→ . . .→ n, one by one starting on the left and then
remove one by one starting on the right, keeping only the pebble on the sink
edge (n − 1, n). This is illustrated in Figure 1.(a) for n = 8. The strategy uses
n pebbles. However, there are other pebbling strategies that allow us to trade
off more moves for fewer pebbles. For example there is a “recursive strategy”
(recursively pebble the middle vertex, then recursively pebble the right-most
vertex, then recursively remove the pebble from the middle vertex) that uses at
most logn + 1 pebbles (instead of n), but requires 3logn + 1 moves (instead of
just 2n). This is illustrated in Figure 1.(b).

As we described, each pebbling strategy with ` moves gives us a sequence
of hybrids HL = H0, . . . ,H` = HR that allows us to prove selective security.
Furthermore, we can prove relatively easily that neighboring hybrids Hj ,Hj+1 are
indistinguishable even if the adversary doesn’t commit to the entire permutation
σ but only to the value σ(i) of vertices i where either Hj or Hj+1 has a pebble
on the edge (i− 1, i). Using our framework, we therefore get a proof of adaptive
security where the security loss is ` · np where p is the maximum number of
pebbles used and ` is the number of pebbling moves. In particular, if we use the
recursive pebbling strategy described above we only suffer a quasipolynomial
security loss 3logn · nlogn+1, as compared with 2n · (n + 1)! for näıve random
guessing where the adversary commits to the entire permutation σ.
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Fig. 1. “Classical” hybrid argument vs. improved hybrid argument. In both diagrams,
the edges that carry a pebble are faked. (a). Illustration of the classical hybrids
H0, . . . ,H15 for GSD on a path graph with n = 8 edges: the number of hybrids
is 2n = 16, and the number of fake edges is at most n. (b.) A sequence of hy-
brids H̃0, . . . , H̃27 that use fewer fake edges: even though the number of hybrids is
3logn + 1 = 28, the number of fake edges is at most logn + 1 = 4. The argument on
the right is identical to the one using nested hybrids in [8].



GSD on Low Depth and Other Families of Graphs. The proof outline for GSD
on paths is just a very special case of our general result for GSD for various
classes of graphs, which we discuss in the full version. If we consider a class of
graphs which can be pebbled using ` pebbling configurations, each containing at
most q pebbles, we get a reduction showing that GSD for this class is δ · ` · 2q
secure, assuming the underlying Enc scheme is δ-secure.

Unfortunately, this approach will not gain us much for graphs with high in-
degree: we can only put a pebble on an edge (i, j) if all the edges (∗, i) going into
node i are pebbled. So if we consider graphs which can have large in-degree d,
any pebbling strategy must at some point have pebbled all the parents of i, and
thus we’ll lose at least a factor 2d in the reduction. But remember that to apply
our Theorem 2, we just need to be able to “compress” the information required
to simulate the hybrids. So even if the hybrids correspond to configurations with
many pebbles, that is fine as long as we can generate a short hint which will
allow to emulate it (we use the same idea in the proof of adaptive security of
the secret sharing scheme for monotone circuits with large fan-in).

Consider the selective GSD game, where the adversary commits to all of
its queries, we can think of this as a DAG, where each edge comes with an
index indicating in which query this node was added. Assume the adversary is
restricted to choose DAGs of depth l (but no bound on the in-degree). One can
show that there exists a pebbling sequence (of length (2n)l), such that in any
pebbling configuration, all pebbles lie on a path from a sink to a root (which is
of length at most l), and on edges going into this path. Moreover, we can ensure
that in any configuration the following holds: if for a node j on this path, there
is a pebble on edge (i, j) with index t, then all edges of the form (∗, j) with index
< t must also have a pebble.

To describe such a configuration, we will output the ≤ l nodes on the path,
specify for every edge on this path if it is pebbled, and for any node j on the
path, the number of edges going into j that have a pebble (note that there are at
most 2ln2l choices for this hint). The hint is sufficient to emulate a hybrid, as for
any query (encrypt, i, j) the adversary makes, we will know if the corresponding
edge has a pebble or not. This is clear if the edge (i, j) is on the path, as we
know this path in full. But also for the other edges that can hold a pebble, where
j is on the path but i is not. The reason is that we just have to count which
query of the form (∗, j) this is, as we got a number c telling us that the first c
such edges will have a pebble.

Applying Theorem 2, we recover Panjwani’s result [23] showing that if the
GSD game restricted to graphs of depth l only loses a factor nO(l) in the reduc-
tion.

1.3 Yao’s Garbled Circuits

Garbled circuits, introduced by Yao in (oral presentations of) [29,30], can be
used to garble a circuit C and an input x in a way that reveals C(x) but hides
everything else. More precisely, a garbling scheme has three procedures; one to
garble the circuit C and produce a garbled circuit C̃, one to garble the input x



and produce a garbled input x̃, and one that evaluates the garbled circuit C̃ on
the garbled input x̃ to get C(x). Furthermore, to prove security, there must be a
simulator that only gets the output of the computation C(x) and can simulate

the garbled circuit C̃ and input x̃, such that no PPT adversary can distinguish
them from the real garbling.

Adaptive vs. Selective Security. In the adaptive setting, the adversary A first
chooses the circuit C and gets back the garbled circuit C̃, then chooses the input
x, and gets back garbled input x̃. The adversary’s goal is to decide whether he
was interacting with the real garbling scheme or the simulator. In the selective
setting, the adversary has to choose the circuit C as well as the input x at the
very beginning and only then gets back C̃, x̃.

Prior Work. The work of Bellare, Hoang and Rogaway [2] raised the ques-
tion of whether Yao’s construction or indeed any construction of garbled cir-
cuits achieves adaptive security. The work of Hemenway et al. [12] gave the first
construction of non-trivial adaptively secure garbled circuits based on one-way
functions, by modifying Yao’s construction with an added layer of encryption
having some special properties. Most recently, the work of Jafargholi and Wichs
[16] gives the first analysis of adaptive security for Yao’s unmodified garbled
circuit construction which significantly improves on the parameters of trivial
random guessing. See [16] for a more comprehensive introduction and broader
background on garbled circuits and adaptive security.

Here, we present the work of [16] as a special case of our general framework.
Indeed, the work of [16] already implicitly follows our general framework fairly
closely and therefore we only give a high level overview of how it fits into it.

Selective Hybrids. We start by outlining the selective security proof for Yao’s
garbled circuits, following the presentation of [12,16] which is in turn based on
the proof of Lindell and Pinkas [22]. Essentially the proof proceeds via series of
hybrids which modify one garbled gate at a time from the Real distribution to
a Simulated one. However, this cannot be done directly in one step and instead
requires going through an intermediate distribution called InputDep (we explain
the name later). There are important restrictions on the order in which these
steps can be taken:

1. We can switch a gate from Real to InputDep (and vice versa) if it is at the
input level or if its predecessor gates are already InputDep.

2. We can switch a gate from InputDep to Simulated (and vice versa) if it is at
the output level or if its successor gates are already Simulated.

The simplest strategy to switch all gates from Real to Simulated is to start
with the input level and go up one level at a time switching all gates to InputDep.
Then start with the output level and go down one level at a time switching all
gates to Simulated. This corresponds to the basic proof of selective security of
Yao garbled circuits.



However, the above is not the only possibility. In particular, any strategy for
switching all gates from Real to Simulated following rules (1) and (2) corresponds
to a sequence of hybrid games for proving selective security. We can identify the
above with a pebbling game where one can place pebbles on the gates of the
circuit. The Real distribution corresponds to not having a pebble and there are
two types of pebbles corresponding to the InputDep and Simulated distributions.
The goal is to start with no pebbles and finish by placing a Simulated pebble on
every gate in the circuit while only performing legal moves according to rules
(1) and (2) above. Every pebbling strategy gives rise to a sequence of hybrid
games H0,H1, . . . ,H` for proving selective security, where the number of hybrids
` corresponds to the number of moves and each hybrid Hi is defined by the
configuration of pebbles after i moves.

From Selective to Adaptive. The problem with translating selective security
proofs into the adaptive setting lies with the InputDep distribution of a gate.
This distribution depends on the input x (hence the name) and, in the adaptive
setting, the input x that the adversary will choose is not yet known at the time
when the garbled circuit is created. To be more precise, the InputDep distri-
bution of a gate i only depends on the 1-bit value going over the output wire
of that gate during the computation C(x). Moreover, if we take any two fixed
hybrid games Hi,Hi+1 corresponding to two neighboring pebble configurations
(ones which differ by a single move) we can prove indistinguishability even if
the adversary does not commit to the entire n-bit input x ahead of time but
only commits to the bits going over the output wires of all gates i that are in
InputDep mode in either configuration. This means that as long as the pebbling
strategy only uses m pebbles of the InputDep type at any point in time, each
pair of hybrids Hi,Hi+1 can proved indistinguishable in a partially selective set-
ting where the adversary only commits to m bits of information about his input
ahead of time, rather than committing to the entire n bit input x. Using our
framework, this shows that whenever there is a pebbling strategy for the circuit
C that requires ` moves and uses at most m pebbles of the InputDep type, we
can translate the selective hybrids into a proof of adaptive security where the
security loss is ` · 2m.

It turns out that for any graph of depth d there is a pebbling strategy that
uses O(d) pebbles and ` = 2O(d) moves, meaning that we can prove adaptive
security with a 2O(d) security loss. This leads to a proof of adaptive security
for NC1 circuits where the reduction has only polynomial security loss, but more
generally we can often get a much smaller security loss than the trivial 2n bound
achieved by näıve random guessing.12

12 The presentation in [16] follows the above outline fairly closely and the reader can
easily match it with our general framework. The one conceptual difference is that
we think of all the hybrids Hi as existing in the selective setting where the adversary
commits to the entire input but then we analyze indistinguishability of neighboring
hybrids in a partially selective setting. The work of [16] thought of the hybrids Hi
as already being partially selective, which made it difficult to compare neighboring



1.4 Constrained Pseudorandom Functions

Goldreich et al. [11] introduced the notion of a pseudorandom function (PRF).
A PRF is an efficiently computable keyed function F : K×X → Y, where F(k, ·),
instantiated with a random key k ← K, cannot be distinguished from a function
randomly chosen from the set of all functions X → Y with non-negligible proba-
bility. More recently, the notion of constrained pseudorandom functions (CPRF)
was introduced as an extension of PRFs, by Boneh and Waters [5], Boyle et al. [6]
and Kiayias et al. [19], independently. Informally, a constrained PRF allows the
holder of a master key to derive keys which are constrained to a set, in the sense
that such a key can be used to evaluate the PRF on that set, while the outputs
on inputs outside of this set remain indistinguishable from random.

Goldreich et al., in addition to formally defining PRFs, gave a construction
of a PRF from any length doubling pseudorandom generator (PRG). Their con-
struction is depicted in Figure 2. All three of the aforementioned results [5,6,19]
show that this GGM construction already gives a so-called “prefix-constrained”
PRF, which is a CPRF where for any x ∈ {0, 1}∗, one can give out keys which
allow to evaluate the PRF on all inputs whose prefix is x. This is a simple but
already very interesting class of CPRFs as it can be used to construct a punc-
tured PRF, which in turn is a major tool in constructing various sophisticated
primitives based on indistinguishability obfuscation (see, for example, [5,26,13]).
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Fig. 2. Illustration of the GGM PRF. Every left child kx‖0 of a node kx is defined
as the first half of PRG(kx), the right child kx‖1 as the second half. The circled node
corresponds to GGM(k∅, 010).

Prior work. To show that the GGM construction is a prefix-constrained PRF
one must show how to transform an adversary that breaks GGM as a prefix-
constrained PRF into a distinguisher for the underlying PRG. The proofs in
[5,6,19] only show selective security, where the adversary must initially commit
to the output he wants to be challenged on in the security game. There is a loss in
tightness by a factor of 2n. This can then be turned into a proof against adaptive

hybrids, since the adversary was expected to commit to different information in each
one. We view our new framework as being conceptually simpler.



adversaries via random guessing, losing an additional exponential factor 2n in
the input length n.

Fuchsbauer et al. [9] showed that it is possible to achieve adaptive security
by losing only factor of (3q)logn, where q denotes the number of queries made by
the adversary — if q is polynomial, the loss is not exponential as before, but just
quasi-polynomial. The bound relies on the so-called “nested hybrids” technique.
Informally, the idea is to iterate random guessing and hybrid arguments several
times. The random guessing is done in a way where one only has to guess some
tiny amount of information, which although insufficient to get a full reduction
using the hybrid argument, nevertheless reduces the complexity of the task sig-
nificantly. Every such iteration “cuts” the domain in half, so after logarithmically
many iterations the reduction is done. If the number of iterations is small, and
the amount of information guessed in each iteration tiny, this can still lead to a
reduction with much smaller loss than “single shot” random guessing.

Our results. We cast the result in [9] in our framework, giving an arguably
simpler and more intuitive proof. To this aim, we first describe the GGM con-
struction and sketch its security proof.

Given a PRG : {0, 1}m → {0, 1}2m, the PRF GGM : {0, 1}m × {0, 1}n →
{0, 1}m is defined recursively as

GGM(k, x) = kx where k∅ = k and kx‖0‖kx‖1 = PRG(kx).

The construction is also a prefix-constrained PRF: given a key kx for any x ∈
{0, 1}∗, one can evaluate GGM(k, x′) for all x′ whose prefix is x.

The security of the GGM as a PRF is given in [11]. In particular, they show
that if an adversary exists who distinguishes GGM(k, ·) (real experiment) from
a uniformly random function (random experiment) with advantage ε making q
(adaptive) queries, then an adversary of roughly the same complexity exists who
distinguishes PRG(Um) from U2m with advantage ε/nq. Thus if we assume that
PRG is δ-secure, then GGM is δnq-secure against any q-query adversary of the
same complexity. This is one of the earliest applications of the hybrid argument.

The security definition for CPRFs is quite different from that of standard
PRFs: the adversary will get to query the CPRF F(k, ·) in both, the real and
random experiment (and can ask for constrained keys, not just regular outputs),
and only at the very end the adversary will choose a challenge query x∗, which
is then answered with either the correct CPRF output F(k, x∗) (in the real
experiment) or a random value (in the random experiment). In the selective
version of these security experiments, the adversary has to choose the challenge
x∗ before making any queries. In particular, for the case of prefix-constrained
PRFs, the experiment is as follows. The challenger samples k ∈ {0, 1}n uniformly
at random. The adversary A first commits to some x∗ ∈ {0, 1}n. Then it can
make constrain queries x ∈ {0, 1}∗ for any x which is not a prefix of x∗, and
receives the constrained key kx in return. Finally, A gets either GGM(k, x∗) (in
the real game) or a random value, and must guess which is the case.



Selective hybrids. A näıve sequence of selective hybrids, which is of length 2n,
relies just on the knowledge of x∗. For n = 8 the corresponding 16 hybrid games
are illustrated in Figure 1.a. Each path C(n) corresponds to a hybrid, and it
“encodes” how the value of the function F is computed on the challenge input
x∗ (and this determines how the function is computed on the rest of the inputs
too). An edge that does not carry a pebble is computed, normally, as defined in
GGM — i.e., if the ith edge is not pebbled then kx∗[1,i−1]‖0‖kx∗[1,i−1]‖1 is set to
PRG(kx[1,i−1]), where for x ∈ {0, 1}n, x[1, i] denotes its i bit prefix. On the other
hand, for an edge with a pebble, we replace the PRG output with a random value
— i.e., kx∗[1,i−1]‖0‖kx∗[1,i−1]‖1 is set to a uniformly random string in {0, 1}2m.
It’s not hard to see that any distinguisher for two consecutive hybrids can be
directly used to break the PRG with the same advantage by embedding the
PRG-challenge – which is either U2m or PRG(Um) – at the right place. Using
random guessing we can get adaptive security losing an additional factor 2n in
the distinguishing advantage by initially guessing x∗ ∈ {0, 1}n.

From selective to adaptive. Before we explain the improved reduction, we take
a step back and consider an even more selective game where A must com-
mit, in addition to the challenge query xq = x∗, also to the constrain queries
{x1, . . . , xq−1}. We can use the knowledge of x1, . . . , xq−1 to get a better se-
quence of hybrids: this requires two tricks. First, as in GSD on a path, instead
of using the pebbling strategy in Figure 1.a, we switch to the recursive peb-
bling sequence in Figure 1.b. Second, we need a more concise “indexing” for the
pebbles: unlike in the proof for GSD, here we can’t simply give the positions of
the (up to log n + 1) pebbles as hint to simulate the hybrids, as the graph has
exponential size, thus even the position of a single pebble would require as many
bits to encode as the challenge x∗. Instead, we assume there’s an upper bound q
on the number of queries made by the adversary. For a pebble on the ith edge,
we just give the index of the first constrain query whose i bit prefix coincides
with x∗, i.e., the minimum j such that xj [1, i] = x∗[1, i]. This information is
sufficient to tell when exactly during the experiment we have to compute a value
that corresponds to a pebbled edge.

As there are 3logn hybrids, and each hint comes from a set of size qlogn (i.e.,
a value ≤ q for every pebble), our Theorem 2 implies that GGM is a δ(3q)logn

secure prefix-constrained PRF if PRG is δ secure. Details are given in the full
version [15].

2 Notation

Throughout, we use λ to denote the security parameter. We use capital let-
ters like X to denote variables, small letters like x to denote concrete values,
calligraphic letters like X to denote sets and sans-serif letters like X to denote
algorithms. Our algorithms can all be modelled as (potentially interactive, prob-
abilistic, polynomial time) Turing machines. With X ≡ Y we denote that X has
exactly the same input/output distribution as Y, and X ∼ Y denotes that X



and Y have the same distributions. UX denotes the uniform distribution over X .
In particular, Un denotes the uniform distribution over {0, 1}n. For a set X , sX
denotes the complexity of sampling uniformly at random from X . For a, b ∈ N,
a ≥ b, by [a, b] we denote the set {a, a + 1, . . . , b}. For x ∈ {0, 1}n we’ll denote
with x[1, i] its i bit prefix.

3 The Framework

We consider a game described via a challenger G which interacts with an ad-
versary A. At the end of the interaction, G outputs a decision bit b and we let
〈A,G〉 denote the random variable corresponding to that bit.

Definition 1. We say that two games defined via challengers G0 and G1 are
(s, ε)-indistinguishable if for any adversary A of size at most s:

|Pr[〈A,G0〉 = 1]− Pr[〈A,G1〉 = 1]| ≤ ε.

We say that two games are perfectly indistinguishable and write G0 ≡ G1 if they
are (∞, 0)-indistinguishable.

Selectivized Games. We define two operations that convert adaptive or partially
selective games into further selective games.

Definition 2 (Selectivized Game). Given an (adaptive) game G and some
function g : {0, 1}∗ → W we define the selectivized game H = SELW [G, g] which
works as follows. The adversary A first sends a commitment w ∈ W to H.
Then H runs the challenger G against A, at the end of which G outputs a
bit b′. Let transcript denote all communication exchanged between G and A. If
g(transcript) = w then H outputs the bit b′ and else it outputs 0. See Figure 3.(a).

Note that the selectivized game gets a commitment w from the adversary but
essentially ignores it during the rest of the game. Only, at the very end of the
game, it checks that the commitment matches what actually happened during
the game.

Definition 3 (Further Selectivized Game). Assume Ĥ is a (partially selec-
tive) game which expects to receive some commitment u ∈ U from the adversary
in the first round. Given functions g : {0, 1}∗ → W and h : W → U we define
the further selectivized game H = SELU→W [Ĥ, g, h] as follows. The adversary A
first sends a commitment w ∈ W to H and H begins running Ĥ and passes it
u = h(w). It then continues running the game between Ĥ and A at the end of
which Ĥ outputs a bit b′. Let transcript denote all communication exchanged be-
tween Ĥ and A. If g(transcript) = w then H outputs the bit b′ and else it outputs
0. See Figure 3.(b).

Note that if Ĥ is a (partially selective) game where the adversary sends some
commitment u, then in the further selectivized game the adversary might have to



commit to more information w. The further selectivized game essentially ignores
w and only relies on the partial information u = h(w) during the course of the
game but only at the very end is still checks that the full commitment w matches
what actually happened during the game.
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Fig. 3. Selectivizing. (a): SELW [G, g], and (b): SELU→W [Ĥ, g, h]. The symbol τ is short
for transcript, the nodes with g and h compute the respective functions, whereas the
node with = outputs a bit b as prescribed in the consistency check.

Random Guessing. We first present the basic reduction using random guessing.

Lemma 1. Assume we have two games defined via challengers G0 and G1 re-
spectively. Let g : {0, 1}∗ →W be an arbitrary function and define the selectivized
games Hb = SELW [Gb, g] for b ∈ {0, 1}. If H0, H1 are (s, ε)-indistinguishable then
G0, G1 are (s− sW , ε · |W|)-indistinguishable, where sW denotes the complexity
of sampling uniformly at random from W.

Proof. We prove the contrapositive. Assume that there is an adversary A of size
s′ = s− sW such that

|Pr[〈A,G0〉 = 1]− Pr[〈A,G1〉 = 1]| > ε · |W|.

Let A∗ be the adversary that first chooses a uniformly random w ←W and then
runs A. Then for b ∈ {0, 1}:

Pr[〈A∗,Hb〉 = 1] = Pr[〈A,Gb〉 = 1]/|W|



and therefore
|Pr[〈A∗,H0〉 = 1]− Pr[〈A∗,H1〉 = 1]| > ε.

Moreover, since A∗ is of size s′ + sW = s this shows that H0 and H1 are not
(s, ε)-indistinguishable.

Partially Selective Hybrids. Consider the following setup. We have two adap-
tive games GL and GR. For some function g : {0, 1}∗ → W we define the selec-
tivized games HL = SELW [GL, g], HR = SELW [GR, g] where the adversary com-
mits to some information w ∈ W. Moreover, to show the indisitinguishability of
HL,HR we have a sequence of ` (selective) hybrid games HL = H0,H1, . . . ,H` =
HR.

If we only assume that neighboring hybrids Hi,Hi+1 are indistinguishable
then by combining the hybrid argument and random guessing we know that GL

and GR are indistinguishable at a security loss of ` · |W|.

Theorem 1. Assume that for each i ∈ {0, . . . , ` − 1}, the games Hi,Hi+1 are
(s, ε)-indistinguishable. Then GL and GR are (s−sW , ε ·` · |W|)-indistinguishable,
where sW denotes the complexity of sampling uniformly at random from W.

Proof. Follows from Lemma 1 and the hybrid argument.

Our goal is to avoid the loss of |W| in the above theorem. To achieve this, we
will assume a stronger condition: not only are neighboring hybrids Hi,Hi+1 indis-
tinguishable, but they are selectivized versions of less selective games Ĥi,0, Ĥi,1
which are already indistinguishable. In particular, we assume that for each pair
of neighboring hybrids Hi,Hi+1 there exist some less selective hybrids Ĥi,0, Ĥi,1
where the adversary only commits to much less information hi(w) ∈ U instead
of w ∈ W. In more detail, for each i there is some function hi : W → U that lets
us interpret Hi+b as a selectivized version of Ĥi,b via Hi+b ≡ SELU→W [Ĥi,b, g, hi].
In that case, the next theorem shows that we only get a security loss propor-
tional to |U| rather than |W|. Note that different pairs of “less selective hybrids”
Ĥi,0, Ĥi,1 rely on completely different partial information hi(w) about the adver-
sary’s choices. Moreover, the “less selective” hybrid that we associate with each
Hi can be different when we compare Hi−1,Hi (in which case it is Ĥi−1,1) and

when we compare Hi and Hi+1 (in which case it is Ĥi,0).

Theorem 2 (main). Let GL and GR be two adaptive games. For some func-
tion g : {0, 1}∗ → W we define the selectivized games HL = SELW [GL, g], HR =
SELW [GR, g]. Let HL = H0,H1, . . . ,H` = HR be some sequence of hybrid games.

Assume that for each i ∈ {0, . . . , ` − 1}, there exists a function hi : W → U
and games Ĥi,0, Ĥi,1 such that:

Hi ≡ SELU→W [Ĥi,0, g, hi] , Hi+1 ≡ SELU→W [Ĥi,1, g, hi]. (1)

Furthermore, assume that Ĥi,0, Ĥi,1 are (s, ε)-indistinguishable. Then GL and
GR are (s − sU , ε · ` · |U|)-indistinguishable, where sU denotes the complexity of
sampling uniformly at random from U .



Proof. Assume that A is an adaptive distinguisher for GL and GR of size s′ such
that

|Pr[〈A,GL〉 = 1]− Pr[〈A,GR〉 = 1]| > ε′.

Let A∗ be a fully selective distinguisher that guesses w ←W uniformly at random
in the first round and then runs A. By the same argument as in Lemma 1 and
Theorem 1 we know that there exists some i ∈ [0, `) such that:

|Pr[〈A∗,Hi〉 = 1]− Pr[〈A∗,Hi+1〉 = 1]| ≥ ε′/(` · |W|) (2)

Let A′ be a partially selective distinguisher that guesses u← U uniformly at
random in the first round and then runs A. We want to relate the probabilities
Pr[〈A∗,Hi+b〉 = 1] and Pr[〈A′, Ĥi,b〉 = 1].

Recall that the game 〈A∗,Hi+b〉 consists of A∗ selecting a uniformly random
value w ←W (which we denote by the random variable W ) and then we run A
against Ĥi,b(u) (denoting the challenger Ĥi,b that gets a commitment u in first
round) which results in some transcript and an output bit b∗; if g(transcript) = w
the final output is b∗ else 0.

Similarly, the game 〈A′, Ĥi,b〉 consists of A′ selecting a uniformly random
value u ← U (which we denote by the random variable U) and then we run A
against Ĥi,b(u). Therefore:

Pr[〈A∗,Hi+b〉 = 1]

=
∑
u∈U

Pr[hi(W ) = u︸ ︷︷ ︸
I

] · Pr[〈A, Ĥi,b(u)〉 = 1︸ ︷︷ ︸
II

] · Pr[W = g(transcript)|I, II]

=
∑
u∈U

|h−1i (u)|
|W|

· Pr[〈A, Ĥi,b(u)〉 = 1] · 1

|h−1i (u)|

=
1

|W|
·
∑
u∈U

Pr[〈A, Ĥi,b(u)〉 = 1]

=
|U|
|W|
·
∑
u∈U

Pr[〈A, Ĥi,b(u)〉 = 1] · Pr[U = u]

=
|U|
|W|
· Pr[〈A′, Ĥi,b〉 = 1]

Combining the above with equation 2 we get:

|Pr[〈A′, Ĥi,0〉 = 1]− Pr[〈A′, Ĥi,1〉 = 1]| ≥ ε′/(` · |U|)

Since by assumption Ĥi,0, Ĥi,1 are (s, ε)-indistinguishable and A′ is of size
s′ + sU this shows that when s′ = s − sU then ε′ ≤ ε · ` · |U| which proves the
theorem.



3.1 Example: GSD on a Path

As an example, we consider the problem of generalised selective decryption
(GSD) on a path graph with n edges, where n is a power of two.

Let (Enc,Dec) be a symmetric encryption scheme with (probabilistic) Enc : K×
M→ C and Dec : K×C →M. We assume K ⊆M so that we can encrypt keys,
and that the encryption scheme is (s, δ)-indistinguishable under chosen-plaintext
attack.13 In the game, the challenger — either GL or GR — picks n+ 1 random
keys k0, . . . , kn ∈ K, and the adversary A is then allowed to make two types of
queries:

– Encryption queries, (encrypt, vi, vj): it receives back Enc(ki, kj).
– Challenge query, (challenge, vi∗): here the answer differs between GL and

GR, with GL answering with ki∗ (real key) and GR answering with r ← K
(random, “fake” key).

A cannot ask arbitrary queries: it is restricted to encryption queries that form
a path graph with the challenge query as the sink. That is, a valid attacker A
is allowed exactly n encryption queries (encrypt, vit , vjt), for t = 1, . . . , n, and
a single (challenge, vi∗) query such that the directed graph Gκ = (V, E) with
V = {v0, . . . , vn} and E = {(vi1 , vj1), . . . , (vin , vjn)} forms a path with sink vi∗ .

Fully selective hybrids. Let’s look at a näıve sequence of intermediate hybrids
H0, . . . ,H2n−1. The fully selective challenger HI receives as commitment the
exact permutation σ that A will query — i.e, vσ(i) is the ith vertex on the path.
Therefore, W = Sn+1 (the symmetry group over 0, . . . , n) and g is the function
that outputs the observed permutation from transcript. Next, HI samples 2(n+1)
keys k0, . . . , kn, r0, . . . , rn, and when A makes a query (encrypt, vσ(i), vσ(i+1)),
it returns

for 0 ≤ I ≤ n :

Enc(kσ(i), rσ(i+1)) if (0 ≤ i ≤ I) (Fake edge)
Enc(kσ(i), kσ(i+1)) otherwise. (Real edge)

for n < I ≤ 2n− 1 :

Enc(kσ(i), rσ(i+1)) if (0 ≤ i ≤ 2n− 1− I) ∨ (i = n− 1) (Fake edge)
Enc(kσ(i), kσ(i+1)) otherwise. (Real edge)

(3)

Thus, in the sequence H0, . . . ,H2n−1, edges are “faked” sequentially down the
path, and then “restored”, except for the last edge, in the reverse order up
the path— see Figure 1.a. By definition, H0 = GL and H2n−1 = GR. More-
over, HI and HI+1 can be shown (s, δ)-indistinguishable: when A queries for

13 To be precise, we only need the encryption scheme to be secure in a weaker model
where encryptions of two random messages m0,m1 ∈ K under a random key k ∈
K are (s, δ)-indistinguishable, with the adversary having access to ciphertexts on
random messages from K.



(encrypt, vσ(I), vσ(I+1)), the reduction RI returns the challenge ciphertext

C(·, kσ(I+1), rσ(I+1)) if (I ≤ n) (Real to fake)
C(·, rσ(I+1), kσ(I+1)) otherwise. (Fake to real)

(4)

For the rest of the queries, RI works as prescribed in eq.3.14 It is easy to see that
RI simulates HI when the ciphertext corresponds to the first message, and HI+1

otherwise. By Theorem 1, (s− n · sEnc, δ(2n+ 1)(n+ 1)!)-indistinguishability of
GL and GR follows, where sEnc is the complexity of the Enc algorithm and the
(n+ 1)! factor is the size of the set W = Sn+1.

Partially selective hybrids. In order to simulate according to the strategy just
described, it suffices for the hybrid (as well as the reduction) to guess the edges
that are faked — however, this number can be at most n (e.g., in the middle
hybrids) and, therefore, the simulator guesses the whole path anyway. Intuitively,
this is where the overall looseness of the bound stems from. Now, consider the
alternative sequence of hybrids H̃0, . . . , H̃27 given in Figure 1.b: the edges in this
sequence are faked and restored, one at a time, in a recursive manner to ensure
that at most four edges end up fake per hybrid. In particular, the new hybrid
H̃I , fakes all the edges that belong to a set PI ⊆ E . That is, when A makes a
query (encrypt, vi, vj) — instead of following eq.3, — H̃I returns

Enc(ki, rj) if ((vi, vj) ∈ PI) (Fake edge)
Enc(ki, kj) otherwise. (Real edge)

(5)

This strategy can be extended to arbitrary n, and there exists such a sequence
of sets P0, . . . ,P3log n where the sets are of size at most log n+ 1.15

Next, we show that the above simulation strategy satisfies the requirements
for applying Theorem 2. Firstly, as shown in Algorithm 1, the strategy is partially
selective — i.e., H̃I+b = SELU→W [ĤI,b, g, hI ], where, for I ∈ [0, ` = 3logn], the
function hI : Sn+1 → E logn+1 computes PI . Secondly, as the simulation in
ĤI,0 and ĤI,1 differ by exactly one edge — which is real in one and fake in
the other — they can be shown to be (s, δ)-indistinguishable. To be precise,
if (vi∗ , vj∗) := PI4PI+1, where 4 denotes the symmetric difference, when A

queries for (encrypt, vi∗ , vj∗), the reduction R̃I returns

C(·, kj∗ , rj∗) if (PI ⊂ PI+1) (Real to fake)
C(·, rj∗ , kj∗) otherwise. (Fake to real)

(6)

with the rest of the queries answered as in eq.5.
Although, the number of hybrids is greater than in the previous sequence,

the number of fake edges in any hybrid is at most log n+ 1. Thus, the reduction

14 Even though RI does not know the key kσ(I), the query (encrypt, vσ(I−1), vσ(I)) does
not cause a problem as its response is Enc(kσ(I), rσ(I−1)).

15 In the full version, one can see that the sequence P0, . . . ,P3log n corresponds to an
“edge-pebbling” of the path graph.



H̃A
I+b

1: Obtain σ ∈ Sn+1 from A
2: Compute P := P0, . . . ,P`
3: Run ĤI,b((PI ,PI+1))
4: if g(transcript) = σ then
5: return ĤI,b’s output
6: else return 0
7: end if

ĤA
I,b((PI ,PI+1))

1: Choose 2n keys r1, . . . , rn, k1, . . . , kn ← K
2: Whenever A queries (encrypt, vi, vj):
3: if (vi, vj) ∈ PI+b then return Enc(ki, rj)
4: else return Enc(ki, kj)
5: end if
6: return A’s output

Algorithm 1: H̃I+b = SELU→W [ĤI,b, g, hI ]

can work with less information than earlier. By Theorem 2, (s−n · sEnc− sP , δ ·
3logn · n2(logn+1))-indistinguishability of GL and GR follows, where sP is the size
of the algorithm that generates the set P = {P0, . . . ,P`}, and the n2(logn+1)

factor results from the fact that the compressed set U = E logn+1. Thus, the
bound is improved considerably from exponential to quasi-polynomial. A more
formal treatment is given in the full version [15].

4 Adaptive Secret Sharing for Monotone Circuits

Throughout history there have been many formulations of secret sharing schemes,
each providing a different notion of correctness or security. We focus here on the
computational setting and adapt the definitions of [21] for our purposes. Bellare
and Rogaway [25] survey many different definitions, so we refer there for more
information.

A computational secret sharing scheme involves a dealer who has a secret, a
set of n parties, and a collection M of “qualified” subsets of parties called the
access structure.

Definition 4 (Access structure). An access structure M on parties [n] is a
monotone set of subsets of [n]. That is, M ⊆ 2[n] and for all X ∈M and X ⊆ X ′
it holds that X ′ ∈M .

We sometimes think of M as a characteristic function M : 2[n] → {0, 1} that
outputs 1 on input X if and only if X is in the access structure. Here, we mostly
consider access structures that can be described by a monotone Boolean circuit.
These are directed acyclic graphs (DAGs) in which leaves are labeled by input
variables and every internal node is labeled by an OR or AND operation. We as-
sume that the circuit has fan-in kin and fan-out (at most) kout. The computation
is done in the natural way from the leaves to the root which corresponds to the
output of the computation. A circuit in which every gate has fan-out kout = 1 is
called a formula.

A secret sharing scheme for M is a method by which the dealer efficiently
distributes shares to the parties such that (1) any subset in M can efficiently
reconstruct the secret from its shares, and (2) any subset not in M cannot



efficiently reveal any partial information on the secret. We denote by Πi the
share of party i and by ΠX the joint shares of parties X ⊆ [n].

Definition 5 (Secret sharing). Let M : 2[n] → {0, 1} be an access structure.
A secret sharing scheme for M consists and secret space S of efficient sharing
and reconstruction procedures S and R, respectively, that satisfy the following
requirements:

1. S(1λ, n, S) gets as input the unary representation of a security parameter,
the number of parties and a secret S ∈ S, and generates a share for each
party.

2. R(1λ, ΠX) gets as input the unary representation of a security parameter,
the shares of a subset of parties X, and outputs a string S′.

3. Completeness: For a qualified set X ∈ M the reconstruction procedure R
outputs the shared secret:

Pr
[
R(1λ, ΠX) = S

]
= 1,

where the probability is over the randomness of the sharing procedure Π1,
. . . , Πn ← S(1λ, n, S).

4. Adaptive security: For every adversary A of size s it holds that

|Pr[〈A,G0〉 = 1]− Pr[〈A,G1〉 = 1]| ≤ ε,

where the challenger Gb is defined as follows:
(a) The adversary A specifies a secret S ∈ S.

i. If b = 0: the challenger generate shares Π1, . . . ,Πn ← S(1λ, n, S).
ii. If b = 1: the challenger samples a random S′ ∈ S and generate shares

Π1, . . . ,Πn ← S(1λ, n, S′).
(b) The adversary adaptively specifies an index i ∈ [n] and if the set of

parties he requested so far is unqualified, he gets back Πi, the share of
the i-th party.

(c) Finally, the adversary outputs a bit b′, which is the output of the exper-
iment.

The selective security variant is obtained by changing item 4b in the definition
of the challenger Gb so that the adversary first sends a commitment to the set
of shares X he wants to see ahead of time before seeing any share. We denote
this challenger by Hb = SEL2[n] [Gb, X].

4.1 The scheme of Yao

Here we describe the scheme of Yao (mentioned in [1], see also Vinod et al. [28]).
The access structure M is given by a monotone Boolean circuit that is composed
of AND and OR gates with fan-in kin and fan-out (at most) kout. Each leaf in
the circuit is associated with an input variable x1, . . . , xn (there may be multiple
inputs corresponding to the same input variable). During the sharing process,
each wire in the circuit is assigned a label and the shares of party i ∈ [n]



corresponds to the labels of the wires corresponding to the input variable xi.
The sharing is done from the output wire to the leaves. The reconstruction is
done in reverse: using the shares of the parties (that correspond to labels of the
input wires), we recover the label of the output wire which will correspond to
the secret.

The scheme (S,R) uses a symmetric-key encryption scheme SKE = (Enc,
Dec) in which keys are uniformly random strings in {0, 1}λ and is ε-secure: any
polynomial-time adversary cannot distinguish the encryption of m1 ∈ {0, 1}λ
from an encryption of m2 ∈ {0, 1}λ with probability larger than ε. The sharing
procedure S is described in Figure 4.

The sharing procedure S:

Input : A secret S ∈ {0, 1}λ.

1. Initialize Π(S, i) = ∅ for every i ∈ [n].
2. Label the output wire ow with the secret `ow = S.
3. Repeat the following until all input wires of the circuit are labeled.

(a) Let g be a gate with kin input wires and (at most) kout output wires.
Let w′1, . . . , w

′
kout be the output wires of g having labels `w′1 , . . . , `w′kout

and

w1, . . . , wkin be the input wires. Associate with g a fresh encryption key
sg ← {0, 1}λ.

(b) If g = AND, assign the label of w1, . . . , wkin to be random conditioned on
`w1 ⊕ · · · ⊕ `wkin

= sg.
(c) If g = OR, assign the label of w1, . . . , wkin to be sg.
(d) For every i ∈ [n], add to the share of the ith party an encryption of the labels

of the w′i’s under sg. That is,

Π(S, i) = Π(S, i) ∪ {(g,Encsg (`w′1), . . . ,Encsg (`w′
kout

))}.

4. For every input wire w associated with the input variable xi, add to the share of
the ith party the tuple that consists of the name of the wire and its label:

Π(S, i) = Π(S, i) ∪ {(w, `w)}.

5. Output Π(S, 1), . . . , Π(S, n).

Fig. 4. Yao’s secret sharing scheme (S,R) for an access structure M described by a
monotone Boolean circuit.

The reconstruction procedure R of the scheme is essentially applying the
reverse operations from the leaves of the circuit to the root. Given the labels
of the input wires of an AND gate g, we recover the key associated with g by
applying a XOR operation on the labels of the input wires, and then recover the
labels of the output wires by decrypting the corresponding ciphertexts. Given
the labels of the input wires of an OR gate g, we recover the key associated with
g by setting it to be the label of any input wire, and then recover the labels of



the output wires by decrypting the corresponding ciphertexts. The label of the
output wire of the root gate is the recovered secret.

The scheme is efficient in the sense that the share size of each party is bounded
by kout · λ · s, where s is the number of gates in the circuit. So, if the circuit is
of polynomial-size (in n), then the share size is also polynomial (in n and in the
security parameter).

Correctness of the scheme follows by an induction on the depth of the circuit
and we omit further details here. Vinod et al. [28] proved that this scheme16 is
selectively secure by a sequence of roughly s hybrid arguments, where s is the
number of gates in the circuit representation of M . By the basic random guessing
lemma (Lemma 1), this scheme is also adaptively secure but the security loss
is exponential in the number of players the adversary requests to see. The later
can be exponential in O(n) so for our scheme to be adaptively secure, we need
the encryption scheme to be exponentially secure.

Theorem 3 ([28]). Assume that SKE is a ε-secure symmetric-key encryption
scheme. Then, for any polynomial-time adversary A and any access structure on
n parties described by a monotone circuit with s gates, it holds that

|Pr[〈A,H0〉 = 1]− Pr[〈A,H1〉 = 1]| ≤ kout · s · ε,

and (using Lemma 1),

|Pr[〈A,G0〉 = 1]− Pr[〈A,G1〉 = 1]| ≤ 2n · kout · s · ε,

In the following subsection we prove that the scheme is adaptively secure and
the security loss is roughly 2d·log s, where d and s are the depth and number of
gates, respectively, in the circuit representing the access structure.

Theorem 4. Assume that SKE is ε-secure. Then, for any polynomial-time ad-
versary A and any access structure on n parties described by a monotone circuit
of depth d and s gates with fan-in kin and fan-out kout, it holds that

|Pr[〈A,G0〉 = 1]− Pr[〈A,G1〉 = 1]| ≤ 2d·(log s+log kin+2) · (2kin)2d · kout · ε.

4.2 Hybrids and pebbling configurations

To prove Theorem 4 we rely on the framework introduced in Theorem 2 that
we briefly recall here. Our goal is to prove that an adversary cannot distinguish
the challengers GL = G0 and GR = G1, corresponding to the adaptive game.
We define the selective version of the games HL = SEL2[n] [GL, X] and HR =
SEL2[n] [GR, X], where the adversary has to commit to the whole set of shares it
wished to see ahead of time. We construct a sequence of ` selective hybrid games

16 To be more precise, the scheme that Vinod et al. presented and analyzed is slightly
different. Specifically, they considered AND and OR gates with fan-out 1 and showed
how to separately handle FAN-OUT gates (gates that have fan-in 1 and fan-out 2).
Their analysis can be modified to handle our scheme.



HL = H0,H1, . . . ,H`−1,H` = HR. For each Hi we define two selective games Ĥi,0
and Ĥi,1 and show that for every i ∈ {0, . . . , `−1}, there exists a mapping hi such

that the games Hi+b and Ĥi,b (for b ∈ {0, 1}) are equivalent up to the encoding
of the inputs to the games (given by hi). Then, we can apply Theorem 2 and
obtain our result.

The fully-selective hybrids. The sequence of fully selective hybrids HL = H0,
H1, . . . ,H`−1,H` = HR is defined such that each experiment is associated with a
pebbling configuration. In a pebbling configuration, each gate is either pebbled or
unpebbled. A configuration is specified by a compressed string that fully specifies
the names of the gates which have a pebble on them (and the rest of the gates
implicitly do not). We will define the possible pebbling configurations later but
for now let us denote by Q the number of possible pebbling configurations.

We define for every j ∈ [Q], a hybrid experiment Hj in which the adversary
first commits to the set X of parties it wishes to see their shares, and then the
challenger executes a new sharing procedure Sj that depends on the j-th peb-
bling configuration. Roughly, this sharing procedure acts exactly as the original
sharing procedure S, but whenever it encounters a gate with a pebble it gen-
erates bogus ciphertexts rather than the real ones. This sharing procedure is
described in Figure 5.

Observe that the hybrid that corresponds to the configuration in which all
gates are unpebbled is identical to the experiment HL and the configuration in
which there is a pebble only on the root gate corresponds to the experiment HR.

Pebbling rules and strategies. The rules of the pebbling game depend on the
subset of parties whose shares the adversary sees. The rules are:

1. Can place or remove a pebble on any AND gate for which (at least) one
input wire is either not in X or comes out of a gate with a pebble on it.

2. Can place or remove a pebble on any OR gate for which all of the incoming
wires are either input wires not in X or come out of gates all of which have
pebbles on them.

Our goal is to find a sequence of pebbling rules so that starting with the initial
configuration (in which there are no pebbles at all) will end up with a pebbling
configuration in which only the root has a pebble. Jumping ahead, we would like
for the sequence of pebbling rules to have the property that each configuration
is as short to describe as possible (i.e., minimize Q). One way to achieve this
is to have at any configuration along the way, as few pebbles as possible. An
even more succinct representation can be obtained if we allow many pebbles but
have a way to succinctly represent their location. This is what we achieve in the
following lemma.

Lemma 2. For every subset of parties X and any monotone circuit of depth
d, fan-in kin, and s gates, there exists a sequence of (2kin)

2d pebbling rules such
that every pebbling configuration can be uniquely described by at most d · (log s+
log kin + 1) bits.



The sharing procedure Sj:

Input : A secret S ∈ {0, 1}λ.

1. Initialize Πi = ∅ for every i ∈ [n].
2. Label the output wire ow with the secret `ow = S.
3. Repeat the following until all input wires of the circuit are labeled.

(a) Let g be a gate with kin input wires and (at most) kout output wires.
Let w′1, . . . , w

′
kout be the output wires of g having labels `w′1 , . . . , `w′kout

and

w1, . . . , wkin be the input wires. Associate with g a fresh encryption key
sg ← {0, 1}λ.

(b) If g = AND, assign the label of w1, . . . , wkin to be random conditioned on
`w1 ⊕ · · · ⊕ `wkin

= sg.
(c) If g = OR, assign the label of w1, . . . , wkin to be sg.
(d) If g has no pebble on it: For every i ∈ [n], add to the share of the ith party

an encryption of the labels of the w′i’s under sg. That is,

Πi = Πi ∪
(
g,Encsg (`w′1), . . . ,Encsg (`w′

kout
)
)
.

(e) If g has a pebble on it: Sample fresh random strings r1, . . . , rkout and for every
i ∈ [n], add to the share of the ith party an encryption of ri and under sg.
That is,

Πi = Πi ∪ {(g,Encsg (r1), . . . ,Encsg (rkout))}.

4. For every input wire w associated with the input variable xi, add to the share of
the ith party the tuple that consists of the name of the wire and its label:

Πi = Πi ∪ {(w, `w)}.

5. Output Π1, . . . , Πn.

Fig. 5. The sharing procedure Sj for an access structure M , described by a monotone
Boolean circuit, and the j-th pebbling configuration which encodes the color of the
pebble on each gates.

Proof. A pebbling configuration is described by a list of pairs (gate name,
counter), where the counter is a number between 1 and kin, and another bit
b to specify whether the root gate has a pebble or not. The counter will repre-
sent the number of predecessors, ordered from left to right, that have a pebble
on them. Any encoding uniquely defines a pebbling configuration (but notice
that the converse is not true).

Denote by TX(d) the number of pebbling rules needed (i.e., the length of the
sequence) and by PX(d) the maximum size of the description of the pebbling
configuration during the sequence. The sequence of pebbling rules is defined via a
recursive procedure in the depth d. We first pebble each of the kin predecessors of
the root from left to right and add a pair (root gate, counter) to the configuration.
After we finish pebbling each predecessor we increase the counter by 1 to keep



track of how many predecessors have been pebbled. To pebble all predecessors
we used kin · TX(d− 1) pebbling rules and the maximal size of a configuration is
at most PX(d−1)+(log s+log kin+1). The log s term comes from specifying the
name of the root gate, the log kin term come from the number of predecessors of
the root gate that have a pebble on them, and the single bit is to signal whether
the root gate is pebbled or not.

After this recursive pebbling each of the predecessors have a pebble only at
their root gate and the root (of the depth d circuit) has no pebble. Now, we need
to remove the pebble from the root of every predecessor of the root gate and put
a pebble on the root gate. For the latter we apply one pebbling rule and put a
pebble on the root gate. To remove the pebbles from the predecessors of the root
gate we reverse the recursive pebbling procedure (by “unpebbling” from right
to left and updating the counter appropriately), resulting in the application of
additional kin · TX(d − 1) pebbling rules. When we finish unpebbling, since the
root has no predecessors with pebbles, we remove from the description of the
configuration the pair corresponding to the root gate. Thus, we get that the
maximum size of a pebbling configuration at any point in time is is

PX(d) ≤ PX(d− 1) + (log s+ log kin + 1)⇒ PX(d) ≤ d · (log s+ log kin + 1).

The total number of pebbling rules we apply is

TX(d) ≤ 2kin · TX(d− 1) + 1⇒ TX(d) ≤ (2kin)
2d.

This completes the proof of the lemma.

Recall that we denote by Q the number of possible pebbling configurations.
Using the pebbling strategy from Lemma 2, we get that

Q ≤ 2d·(log s+log kin+1).

The partially-selective hybrids. We define the partially selective hybrids Ĥj,0 and

Ĥj,1 for every Hj and j ∈ [Q]. In both hybrid games Ĥj,0 and Ĥj,1, the adversary
first commits to the j-th pebbling configuration and the next pebbling rule to
apply. Denote by j′ ∈ [Q] the index of the pebbling configuration resulting from
applying the next configuration rule to the j-th pebbling configuration. In Ĥj,0
the challenger samples the shares from Sj and in Ĥj,1 the challenger samples the

shares from Sj
′

(but other than this the games do not change).
Denote by U the space of messages that the adversary has to commit in

the partially selective hybrids Ĥj,b. This space includes all tuples of pebbling
configurations and an additional valid pebbling rule. First, recall that there are
Q possible pebbling configurations. Seocnd, observe that a pebbling rule can be
described by a gate name: a pebbling rule is just flipping the color of the pebble
on that gate. For a circuit with s gates this requires additional log s bits. Thus,
U = {(i, g) | i ∈ [Q], g ∈ [s]} and this means that the size of U is bounded by

|U| ≤ Q · s ≤ 2d·(log s+log kin+1) · s.



By semantic security of the symmetric-key encryption scheme and the fact
that we replace kout ciphertexts with bogus ones, we have that the games Ĥj,0
and Ĥj,1 are indistinguishable. The proof is by planting the challenge ciphertext

as the ciphertext in the gate where the “next pebbling rule” is applied. In Ĥj,0
it is a “real” ciphertext while in Ĥj,1 it is a bogus one.

Lemma 3. Assume that SKE is ε-secure. Then, for any polynomial-time adver-
sary A and any access structure on n parties described by a monotone circuit it
holds that

|Pr[〈A, Ĥj,0〉 = 1]− Pr[〈A, Ĥj,1〉 = 1]| ≤ kout · ε.

Applying Theorem 2 with the fact that ` ≤ (2kin)
2d and |U| ≤ 2d·(log s+log kin+1)·

s, we get that if SKE is ε-secure, then for any polynomial-time adversary A and
any access structure on n parties described by a monotone circuit of depth d
and s gates of fan-in kin and fan-out kout, it holds that

|Pr[〈A,G0〉 = 1]− Pr[〈A,G1〉 = 1]| ≤ 2d·(log s+log kin+1) · s · (2kin)2d · kout · ε
≤ 2d·(log s+log kin+2) · (2kin)2d · kout · ε.

5 Open Problems

In this work we presented a framework for proving adaptive security of various
schemes including secret sharing over access structures defined via monotone
circuits, generalized selective decryption, constrained PRFs, and Yao’s garbled
circuits. The most natural future direction is to find more applications where
our framework can be used to prove adaptive security with better security loss
than using the standard random guessing. Also, improving our results in terms
of security loss is an open problem.

In all of our applications of the framework, the security loss of a scheme is
captured by the existence of some pebbling strategy. Does there exist a connec-
tion in the opposite direction between the security loss of a scheme and possible
pebbling strategies? That is, is it possible to use lower bounds for pebbling
strategies to show that various security losses are necessary?
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