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Abstract. We study the complexity of securely evaluating an arithmetic
circuit over a finite field F in the setting of secure two-party computation
with semi-honest adversaries. In all existing protocols, the number of
arithmetic operations per multiplication gate grows either linearly with
log |F| or polylogarithmically with the security parameter. We present
the first protocol that only makes a constant (amortized) number of field
operations per gate. The protocol uses the underlying field F as a black
box, and its security is based on arithmetic analogues of well-studied
cryptographic assumptions.
Our protocol is particularly appealing in the special case of securely eval-
uating a “vector-OLE” function of the form ax + b, where x ∈ F is the
input of one party and a, b ∈ Fw are the inputs of the other party. In
this case, which is motivated by natural applications, our protocol can
achieve an asymptotic rate of 1/3 (i.e., the communication is dominated
by sending roughly 3w elements of F). Our implementation of this proto-
col suggests that it outperforms competing approaches even for relatively
small fields F and over fast networks.
Our technical approach employs two new ingredients that may be of
independent interest. First, we present a general way to combine any
linear code that has a fast encoder and a cryptographic (“LPN-style”)
pseudorandomness property with another linear code that supports fast
encoding and erasure-decoding, obtaining a code that inherits both the
pseudorandomness feature of the former code and the efficiency features
of the latter code. Second, we employ local arithmetic pseudo-random
generators, proposing arithmetic generalizations of boolean candidates
that resist all known attacks.

1 Introduction

There are many situations in which computations are performed on sensitive nu-
merical data. A computation on numbers can usually be expressed as a sequence
of arithmetic operations such as addition, subtraction, and multiplication.4

4 More complex numerical computations can typically be efficiently reduced to these
simple ones, e.g., by using suitable low-degree approximations.



In cases where the sensitive data is distributed among multiple parties, this
calls for secure arithmetic computation, namely secure computation of functions
defined by arithmetic operations. It is convenient to represent such a function
by an arithmetic circuit, which is similar to a standard boolean circuit except
that gates are labeled by addition, subtraction, or multiplication. It is typically
sufficient to consider such circuits that evaluate the operations over a large finite
field F, since arithmetic computations over the integers or (bounded precision)
reals can be reduced to this case. Computing over finite fields (as opposed to
integers or reals) can also be a feature, as it is useful for applications in threshold
cryptography (see, e.g., [15, 26]). In the present work we are mainly interested
in the case of secure arithmetic two-party computation in the presence of semi-
honest adversaries.5 From here on, the term “secure computation” will refer
specifically to this case.

Oblivious Linear-function Evaluation. A natural complete primitive for secure
arithmetic computation is Oblivious Linear-function Evaluation (OLE). OLE is
a two-party functionality that receives a field element x ∈ F from Alice and field
elements a, b ∈ F from Bob and delivers ax+ b to Alice. OLE can be viewed as
the arithmetic analogue of 1-out-of-2 Oblivious Transfer of bits (bit-OT) [22]. In
the binary case, every boolean circuit C can be securely evaluated with perfect
security by using O(|C|) invocations of an ideal bit-OT oracle via the “GMW
protocol” [30, 27]. A simple generalization of this protocol can be used to evaluate
any arithmetic circuit C over F using O(|C|) invocations of OLE and O(|C|) field
operations [35].

The complexity of secure arithmetic computation. The goal of this work is to min-
imize the complexity of secure arithmetic computation. In light of the above, this
reduces to efficiently realizing multiple instances of OLE. We start by surveying
known approaches. The most obvious is a straightforward reduction to standard
secure computation methods by emulating field operations using bit operations.
This approach is quite expensive both asymptotically and in terms of concrete
efficiency. In particular, it typically requires many “cryptographic” operations
for securely emulating each field operation.

A more direct approach is via homomorphic encryption. Since OLE is a
degree-1 function, it can be directly realized by using “linear-homomorphic”
encryption schemes (that support addition and scalar multiplication). This ap-
proach can be instantiated using Paillier encryption [48, 18, 26] or using encryp-
tion schemes based on (ring)-LWE [43, 19]. While these techniques can be opti-
mized to achieve good communication complexity, their concrete computational
cost is quite high. In asymptotic terms, the best instantiations of this approach
have computational overhead that grows polylogarithmically with the security
parameter k. That is, the computational complexity of such secure computation
protocols (in any standard computational model) is bigger than the compu-

5 Our results extend naturally to the case of secure multi-party computation with no
honest majority. We restrict the attention to the two-party case for simplicity.



tational complexity of the insecure computation by at least a polylogarithmic
factor in k.

Another approach, first suggested by Gilboa [26] and recently implemented
by Keller et al. [37], is to use a simple information-theoretic reduction of OLE to
string-OT. By using a bit-decomposition of Alice’s input x, an OLE over a field F
with `-bit elements can be perfectly reduced to ` instances of OT, where in each
OT one of two field elements is being transferred from Bob to Alice. Using fast
methods for OT extension [31, 12], the OTs can be implemented quite efficiently.
However, even when neglecting the cost of OTs, the communication involves 2`
field elements and the computation involves O(`) field operations per OLE. This
overhead can be quite large for big fields F that are often useful in applications.

A final approach, which is the most relevant to our work, uses a computation-
ally secure reduction from OLE to string-OT that assumes the peudorandomness
of noisy random codewords in a linear code. This approach was first suggested by
Naor and Pinkas [46] and was further developed by Ishai, Prabhakaran, and Sa-
hai [35]. The most efficient instantiation of these protocols relies on the assump-
tion that a noisy random codeword of a Reed-Solomon code is pseudorandom,
provided that the noise level is sufficiently high to defeat known list-decoding
algorithms. In the best case scenario, this approach has polylogarithmic compu-
tational overhead (using asymptotically fast FFT-based algorithms for encoding
and decoding Reed-Solomon codes). See Section 1.3 for a more detailed overview
of existing approaches and [35] for further discussion of secure arithmetic com-
putation and its applications.

The above state of affairs leaves the following question open:

Is it possible to realize secure arithmetic computation with constant com-
putational overhead?

To be a bit more precise, by “constant computational overhead” we mean
that there is a protocol which can securely evaluate any arithmetic circuit C over
any finite field F, with a computational cost (on a RAM machine) that is only
a constant times bigger than the cost of performing |C| field operations with no
security at all. Here we make the standard convention of viewing the size of C
also as a security parameter, namely the view of any adversary running in time
poly(|C|) can be simulated up to a negligible error (in |C|). In the boolean case,
Ishai, Kushilevitz, Ostrovsky, and Sahai [34] showed that secure computation
with constant computational overhead can be based on the conjectured existence
of a local polynomial-stretch pseudo-random generator (PRG). In contrast, in
all known protocols for the arithmetic case the computational overhead either
grows linearly with log |F| or polylogarithmically with the security parameter.

1.1 Our Contribution

We improve both the asymptotic and the concrete efficiency of secure arith-
metic computation. On the asymptotic efficiency front, we settle the above open
question in the affirmative under plausible cryptographic assumptions. More



concretely, our main result is a protocol that securely evaluates any arithmetic
circuit C over F using only O(|C|) field operations, independently of the size of F.
The protocol uses the underlying field F as a black box, where the number of field
operations depends only on the security parameter and not on the field size.6

The security of the protocol is based on arithmetic analogues of well-studied
cryptographic assumptions: concretely, an arithmetic version of an assumption
due to Alekhnovich [1] (or similar kinds of “LPN-style” assumptions) and an
arithmetic version of a local polynomial-stretch PRG [34, 4, 11].7

On the concrete efficiency front, our approach is particularly appealing for
a useful subclass of arithmetic computations that efficiently reduce to a multi-
output extension of OLE that we call vector-OLE. A vector-OLE of width w is a
two-party functionality that receives a field element x ∈ F from Alice and a pair
of vectors a, b ∈ Fw from Bob and delivers ax+ b to Alice. We obtain a secure
protocol for vector-OLE with constant computational overhead and with an
asymptotic communication rate of 1/3 (i.e., the communication is dominated by
sending roughly 3w elements of F). Our implementation of this protocol suggests
that it outperforms competing approaches even for relatively small fields F and
over fast networks. The protocol is also based on more conservative assumptions,
namely it can be based only on the first of the two assumptions on which our
more general result is based. This assumption is arguably more conservative
than the assumption on noisy Reed-Solomon codes used in [46, 35], since the
underlying codes do not have an algebraic structure that gives rise to efficient
(list-)decoding algorithms.

Vector-OLE can be viewed as an arithmetic analogue of string-OT. Similarly
to the usefulness of string-OT for garbling schemes [54], vector-OLE is useful
for arithmetic garbling [10, 5] (see Section 4). Moreover, there are several natu-
ral secure computation tasks that can be directly and efficiently realized using
vector-OLE. One class of such tasks are in the domain of secure linear alge-
bra [17]. As a simple example, the secure multiplication of an n×n matrix by a
length-n vector easily reduces to n instances of vector-OLE of width n. Another
class of applications is in the domain of securely searching for nearest neigh-
bors, e.g., in the context of secure face recognition [21]. The goal is to find in
a database of n vectors of dimension d the vector which is closest in Euclidean
distance to a given target vector. This task admits a simple reduction to d in-
stances of width-n vector OLE, followed by non-arithmetic secure computation
of a simple function (minimum) of n integers whose size is independent of d. The
cost of such a protocol is dominated by the cost of vector-OLE. See Section 5
for a more detailed discussion of these applications.

6 The protocol additionally uses standard “bit-operations,” but their complexity is
dominated by the field operations for every field size.

7 More precisely, we need a polynomial-stretch PRG with constant locality and con-
stant degree, or equivalently, a polynomial-stretch PRG which can be computed by a
constant-depth (NC0) arithmetic circuit. For brevity, through the introduction we
refer to such a PRG as being local and implicitly assume the additional constant-
degree requirement.



1.2 Overview of Techniques

Our constant-overhead protocol for a general circuit C is obtained in three steps.
The first step is a reduction of the secure computation of C to n = O(|C|)
instances of OLE via an arithmetic version of the GMW protocol.

The second step is a reduction of n instances of OLE to roughly
√
n in-

stances of vector-OLE of width w = O(
√
n). This step mimics the approach for

constant-overhead secure computation of boolean circuits taken in [34], which
combines a local polynomial-stretch PRGs with an information-theoretic gar-
bling scheme [54, 32]. To extend this approach from the boolean to the arith-
metic case, two changes are made. First, the information-theoretic garbling
scheme for NC0 is replaced by an arithmetic analogue [10]. More interestingly,
the polynomial-stretch PRGs in NC0 needs to be replaced by an arithmetic
analogue. We propose candidates for such arithmetic PRGs that generalize the
boolean candidates from [28, 11] and can be shown to resist known classes of at-
tacks. While the security of these PRG candidates remains to be further studied,
there are no apparent weaknesses that arise from increasing the field size.

The final, and most interesting, step is a constant-overhead protocol for
vector-OLE. As noted above, the protocol obtained in this step is independently
useful for applications, and our implementation of this protocol beats competing
approaches not only asymptotically but also in terms of its concrete efficiency.

Our starting point is the code-based OLE protocol from [46, 35]. This proto-
col can be based on any randomized linear encoding scheme E over F that has a
the following “LPN-style” pseudorandomness property: If we encode a message
x ∈ F and replace a small random subset of the symbols by uniformly random
field elements, the resulting noisy codeword is pseudorandom. For most linear
encoding schemes this appears to be a conservative assumption, since there are
very few linear codes for which efficient decoding techniques are known. The
OLE protocol proceeds by having Alice compute a random encoding y = E(x)
and send a noisy version y′ of y to Bob. Bob returns c′ = ay′ + b to Alice,
where b = E(b) is a random linear encoding of b. Knowing the noise locations,
Alice can decode c = ax + b from c′ via erasure-decoding in the linear code
defined by E. If we ignore the noise coordinates, c′ does not reveal to Alice any
additional information about (a, b) except the output ax+ b. However, the noise
coordinates can reveal more information. To prevent this information from being
leaked, Alice uses oblivious transfer (OT) to selectively learn only the non-noisy
coordinates of c′.

An attempt to extend the above protocol to the case of vector-OLE imme-
diately encounters a syntactic difficulty. If the single value a is replaced by a
vector a, it is not clear how to “multiply” y′ by a. A workaround taken in [35] is
to use a “multiplicative” encoding scheme E based on Reed-Solomon codes. The
encoding and decoding of these codes incurs a polylogarithmic computational
overhead, and the high noise level required for defeating known list-decoding al-
gorithms results in a poor concrete communication rate. The algebraic nature of
the codes also makes the underlying intractability assumption look quite strong.
It is therefore desirable to base a similar protocol on other types of linear codes.



Our first idea for using general linear codes is to apply “vector-OLE rever-
sal.” Concretely, we apply a simple protocol for reducing vector-OLE to the
computation of ax+ b where a is the input of Bob, x and b the are the inputs
of Alice, and the output is delivered to Bob. Now a general linear encoding E
can be used by Bob to encode its input a, and since x is a scalar Alice can mul-
tiply the encoding by x and add an encoding of b. If we base E on a linear-time
encodable and decodable code, such as the code of Spielman [51], the protocol
can be implemented using only O(w) field operations. The problem with this
approach the is that the pseudorandomness assumption looks questionable in
light of the existence of an efficient decoding algorithm for E. Even if the noise
level can chosen in a way that still respects linear-time erasure-decoding but
makes error-correction intractable (which is not at all clear), this would require
a high noise rate and hurt the concrete efficiency.

Our final idea, which may be of independent interest, is that instead of re-
quiring a single encoding E to simultaneously satisfy both “hardness” and “eas-
iness” properties, we can combine two types of encoding to enjoy the best of
both worlds. Concretely, we present a general way to combine any linear code
C1 that has a fast encoder and a cryptographic (“LPN-style”) pseudorandomness
property with another linear code C2 that supports fast encoding and erasure-
decoding (but has no useful hardness properties) to get a randomized linear
encoding E that inherits the pseudorandomness feature from C1 and the effi-
ciency features from C2. This is achieved by using a noisy output of C1 to mask
the output of C2, which we pad with a sufficient number of 0s. Given the knowl-
edge of the noise locations in the padding zone, the entire C1 component can
be recovered in a “brute-force” way via Gaussian elimination, and one can then
compute and decode the output of C2. When the expansion of E is sufficiently
large, the Gaussian elimination is only applied to a short part of the encoding
length and hence does not form an efficiency bottleneck. Using these ideas, we
obtain a constant-overhead vector-OLE protocol under a seemingly conserva-
tive assumption, namely a natural arithmetic analogue of an assumption due to
Alekhnovich [1] or a similar assumption for other linear-time encodable codes
that do not have the special structure required for fast erasure-decoding.

1.3 Related Work

We first give an overview of known techniques for OLE (with semi-honest secu-
rity) and compare to what can be obtained using our approach.

First, the work of Gilboa [26] (see also [37]) implements OLE in a field with
n-bit elements using n oblivious transfers of field elements. The asymptotic com-
munication complexity of this approach is larger than ours by a factor Ω(n).

In particular, if the goal is to implement vector-OLE, we can say something
more concrete. Our vector-OLE implementation sends n/r bits to do 1 OLE
on n-bit field elements, where r is the rate, which is between 1/5 and 1/10 for
our implementation. The OT based approach will need to send at least n2 bits
to do the same. So in cases where network bandwidth is the bottleneck, we can
expect to be faster than the OT based approach by a factor nr. Our experiments



indicate that this happens for network speeds around 20-50 Mbits/sec. Actually,
also at large network speeds, our vector-OLE implementation outperforms the
OT based approach: The latest timings for semi-honest string OT on the type of
architecture we used (2 desktop computers connected by a LAN) are from [12]
(see also [37]) and indicate that one OT can be done in amortised time about
0.2 µs, so that 0.2nµs would an estimate for the time needed for one OLE. In
contrast, our times (for 100-bit security) are much smaller, even for the smallest
case we considered (n = 32) we have 0.7 µs amortised time per OLE. For larger
fields, the picture is similar, for instance for n = 1024, we obtain 19.5µs per
OLE, where the estimate for the OT based technique is about 200µs.

A second class of OLE protocols can be obtained from homomorphic encryp-
tion schemes: one party encrypts his input under his own key and sends the
ciphertext to the other party. He can now multiply his input “into the cipher-
text” and randomize it appropriately before returning it for decryption. This will
work based on Paillier encryption (see, e.g., [21] for an application of this) but
will be very slow because exponentiation is required for the plaintext multiplica-
tion. A more efficient approach is to use (ring)-LWE based schemes, as worked
out in [19] by Damg̊ard et al. Here the asymptotic communication overhead is
worse than ours by a poly-logaritmic factor, at least for prime fields if one uses
the so-called SIMD variant where the plaintext is a vector of field elements. How-
ever, the approach becomes very problematic for extension fields of large degree
because key generation requires that we find a cyclotomic polynomial that splits
in a very specific way modulo the characteristic, and one needs to go to very
large keys before this happens. Quantifying this precisely is non-trivial and was
not done in [19], but as an example, the overhead in ciphertext size is a factor
of about 7 for a 64-bit prime fields, but is 1850 for F28 . Also, the computational
overhead for ring-LWE based schemes is much higher than ours: even if we pack
as many field elements, say λ, into a ciphertext as possible, the overhead involved
in encryption and decryption is superlinear in λ. Further λ needs to grow with
the field size, again the asymptotic growth is hard to quantify exactly, but it
is definitely super logarithmic. In more concrete terms, the computational over-
head of homomorphic encryption makes these protocols slower in practice than
the pure OT-based approach (see [37]), which is in turn generally slower than
our approach for the case of vector-OLE.

A final class of protocols is more closely related to ours, namely the code-
based approach of Naor and Pinkas [46] and its generalizations from [35]. The
most efficient instantiation of these protocols is based on an assumption on
pseudo-randomness of noisy Reed-Solomon codewords, whereas we use codes
generated from sparse matrices. Because encoding and decoding Reed-Solomon
codes is not known to be in linear time, these protocols are asymptotically slower
that ours by a poly-logarithmic factor. As for the communication, we obtain
an asymptotic rate of 1/3 and can obtain a practical rate of around 1/4. The
rate of the protocol from [35] is also constant but much smaller: one loses a
factor 2 because the protocol involves point-wise multiplication of codewords, so
codewords need to be long enough to allow decoding of a Reed-Solomon code



based on polynomials of double degree. Even more significantly, on top of the
above, the distance needs to be increased (so the rate decreases) to protect
against attacks that rely on efficient list-decoding algorithms for Reed-Solomon
codes. This class of attacks does not apply to our approach, since it does not
require the code for which the pseudorandomness assumption holds to have any
algebraic structure.

2 Preliminaries

2.1 The arithmetic setting

Our formalization of secure arithmetic computation follows the one from [35],
but simplifies it to account for the simpler setting of security against semi-honest
adversaries. We also refine the computational model to allow for a more concrete
complexity analysis. We refer the reader to [35] for more details.

Functionalities. We represent the functionalities that we want to realize securely
via a multi-party variant of arithmetic circuits.

Definition 1 (Arithmetic circuits). An arithmetic circuit C has the same
syntax as a standard boolean circuit, except that the gates are labeled by ‘+’
(addition), ‘-’ (subtraction) or ‘*’ (multiplication). Each input wire can be labeled
by an input variable xi or a constant c ∈ {0, 1}. Given a finite field F, an
arithmetic circuit C with n inputs and m outputs naturally defines a function
CF : Fn → Fm. An arithmetic functionality circuit is an arithmetic circuit whose
inputs and outputs are labeled by party identities. In the two-party case, such a
circuit C naturally defines a two-party functionality CF : Fn1×Fn2 → Fm1×Fm2 .
We denote by CF(x1, x2)P the output of Party P on inputs (x1, x2).

Protocols and complexity. To allow for a concrete complexity analysis, we view a
protocol as a finite object that is generated by a protocol compiler (defined be-
low). We assume that field elements have an adversarially chosen representation
by `-bit strings, where the protocol can depend on ` (but not on the representa-
tion). The representation is needed for realizing our protocols in the plain model.
When considered as protocols in the OT-hybrid model, our protocols can be cast
in the more restrictive arithmetic model of Applebaum et al. [5], where the par-
ties do not have access to the bit-length of field elements or their representation,
but can still perform field operations and communicate field elements over the
OT channel. Protocols in this model have the feature that the number of field
operations is independent of the field size.

By default, we model a protocol by a RAM program.8 The choice of compu-
tational model does not change the number of field operations, which anyway

8 This choice is related to our use of the linear-time decoding algorithm of Spiel-
man [51], which can only be implemented in linear time in the RAM model (and
requires quasi-linear circuit size).



dominates the overall cost as the field grows. In our theorem statements we will
only refer to the number of field operations T , with the implicit understanding
that all other computations can be implemented using O(T`) bit operations.
(Note that T` bit operations are needed just for writing the outputs of T field
operations.)

Protocol compiler. A protocol compiler P takes a security parameter 1k, an
arithmetic (two-party) functionality circuit C and bit-length parameter ` as
inputs, and outputs a protocol Π that realizes C given an oracle to any field F
whose elements are represented by `-bit strings. It should satisfy the following
correctness and security requirements.

– Correctness: For every choice of k,C,F, `, any representation of elements
of F by `-bit strings, and every possible pair of inputs (x1, x2) for C, the
execution of Π on (x1, x2) ends with the parties outputting C(x1, x2), except
with negligible probability in k.

– Security: For every polynomial-size non-uniform A there is a negligible func-
tion ε such that the success probability of A in the following game is bounded
by 1/2 + ε(k):

• On input 1k, the adversary A picks a functionality circuit C, positive
integer ` and field F whose elements are represented by `-bit strings. The
representation of field elements and field operations are implemented by a
circuit F output by A. (Note that all of the above parameters, including
the complexity of the field operations, are effectively restricted to be
polynomial in k.)

• Let ΠF be the protocol returned by the compiler P on 1k, C, `, instan-
tiating the field oracle F using F .

• A picks a corrupted party P ∈ {1, 2} and two input pairs x0 = (x01, x
0
2),x1 =

(x11, x
1
2) such that CF(x0)P = CF(x1)P .

• Challenger picks a random bit b.

• A is given the view of Party P in ΠF (xb) and outputs a guess for b.

OLE and vector OLE. We will be particularly interested in the following two
arithmetic computations: an OLE takes an input x ∈ F from Alice and a pair
a, b ∈ F from Bob and delivers ax+b to Alice. Vector OLE of width w is similar,
except that the input of Bob is a pair of vectors a, b ∈ Fw and the output is
ax+ b. OLE and vector OLE can be viewed as arithmetic analogues of bit-OT
and string-OT, respectively. Indeed, in the case F = F2, the OLE functionalities
coincide with the corresponding OT functionalities up to a local relabeling of the
inputs. An arithmetic generalization of the standard “GMW Protocol” [30, 35]
compiles any arithmetic circuit functionality C into a perfectly secure protocol
that makes O(s×) calls to an ideal OLE functionality, where s× is the number of
multiplication gates, and O(|C|) field operations. Hence, to securely compute C
with O(|C|) field operations in the plain model it suffices to realize n instances
of OLE using O(n) field operations.



2.2 Decomposable affine randomized encoding (DARE)

Let f : F` → Fm where F is some finite field.9 We say that a function f̂ :
F` × Fρ → Fm is a perfect randomized encoding [32, 8] of f if for every input

x ∈ F`, the distribution f̂(x; r) induced by a uniform choice of r
$←Fρ, “encodes”

the string f(x) in the following sense:

1. (Correctness) There exists a decoding algorithm Dec such that for every
x ∈ F` it holds that

Pr
r

$← Fρ
[Dec(f̂(x; r)) = f(x)] = 1.

2. (Privacy) There exists a randomized algorithm S such that for every x ∈ F`

and uniformly chosen r
$←Fρ it holds that

S(f(x)) is distributed identically to f̂(x; r).

We say that f̂(x; r) is decomposable and affine if f̂ can be written as f̂(x; r) =

(f̂0(r), f̂1(x1; r), . . . , f̂n(x`; r)) where f̂i is linear in xi, i.e., it can be written as
aixi + bi where the vectors ai and bi arbitrarily depend on the randomness r.

It follows from [33] (cf. [10]) that every single-output function f : Fd → F
which can be computed by constant-depth circuit (aka NC0 function) admits
a decomposable encoding which can be encoded and decoded by an arithmetic
circuit of finite complexity D which depends only in the circuit depth. Note
that any multi-output function can be encoded by concatenating independent
randomized encodings of the functions defined by its output bits. Thus, we have
the following:

Fact 1 Let f : F` → Fm be an NC0 function. Then, f has a DARE f̂ which can
be encoded, decoded and simulated by an arithmetic circuit of size O(m) where
the constant in the big-O notation depends on the circuit depth.10

We mention that the circuits for the encoding, decoder, and simulator can be
all constructed efficiently given the circuit for f .

3 Vector OLE of large width

In this section, our goal is to construct a semi-honest secure protocol for Vector
OLE of width w over the field F = Fp for parties Alice and Bob.

As a stepping stone, we will first implement a “reversed” version of this that
can easily be turned into what we actually want: for the Reverse vector OLE

9 The following actually holds even for the case of general rings.
10 This hidden constant corresponds to the maximal complexity of encoding an output

of f . The latter is at most cubic in the size of the branching program that computes
fi (and can be even smaller for some concrete useful special cases).



functionality, Bob has input a ∈ Fw, while Alice has input x ∈ F, b ∈ Fw, and
the functionality outputs nothing to Alice and a · x+ b to Bob. The latter will
be based on a special gadget (referred to as fast hard/easy code) that allows
fast encoding and decoding under erasures but semantically hides the encoded
messages in the presence of noise. We describe first this gadget and then give
the protocol.

3.1 Ingredients

The main ingredient we need is a public matrix M over F with the following pseu-
dorandomness property: If we take a random vector y in the image of M , and
perturb it with “noise”, the resulting vector ŷ is computationally indistinguish-
able from a truly random vector over F. Our noise distribution corresponds to
the p-ary symmetric channel with crossover over probability µ, that is, ŷ = y+e
where for each coordinate of e we assign independently the value zero with prob-
ability 1 − µ and a uniformly chosen non-zero element from F with probability
1− µ. We let D(F)tµ denote the corresponding noise distributions for vectors of
length t (and occasionally omit the parameters F, µ and t when they are clear
from the context). For concreteness, the reader may think of µ as 1/4. The prop-
erties needed for our protocol are summarized in the following assumption, that
will be discussed in Section 7.

Assumption 2 (Fast pseudorandom matrix) There exists a constant µ <
1/2 and an efficient randomized algorithm M that given a security parameter
1k and a field representation F, samples a k3× k matrix M over F such that the
following holds:

1. (Linear-time computation) The mapping fM : x 7→Mx can be computed in
linear-time in the output length. Formally, we assume that the sampler out-
puts a description of an O(k3)-size arithmetic circuit over F for computing
fM .

2. (Pseudorandomness) The following ensembles (indexed by k) are computa-
tionally indistinguishable for poly(k) adversaries

(M,Mr + e) and (M,z),

where M
$←M(1k, p), r

$←Fkp, e
$←Dµ(Fp)` and z

$←Fk3p .

3. (Linear independence) If we sample M
$←M(1k,F) and keep each of the first

k log2 k rows independently with probability µ (and remove all other rows),
then, except with negligible probability in k, the resulting matrix has full rank.

We will also need a linear error correcting code Ecc over F with constant rate
R and linear time encoding and decoding, where we only need decoding from
a constant fraction of erasures µ′ which is slightly larger than the noise rate µ.
(For µ = 1/4 we can take µ′ = 1/3.) Such codes are known to exist (cf. [51]) and
can be efficiently constructed given a black-box access to F.



Fast hard/easy code We combine the “fast code” Ecc and the “fast pseudo-
random code”M into a single gadget that provides fast encoding and decoding
under erasures, but hides the encoded message when delivered through a noisy
channel. The gadget supports messages of length w = Θ(k3). Our gadget is ini-
tialized by sampling a k3 × k matrix M over F using the randomized algorithm
M promised in Assumption 2. We view the matrix M as being composed of two
matrices M top with u = 2k log2 k rows and k columns, placed above Mbottom

which has v = k3 − u rows and k columns. Let w = Rv = Θ(k3) be a message
length parameter (corresponding to the width of the vector-OLE). Note that our
Ecc encodes vectors of length w into vectors of length v.

For a message a ∈ Fw, and random vector r ∈ Fk, define the mapping

Er(a) = Mr + (0u ◦ Ecc(a)),

where ◦ denotes concatenation (and so (0u ◦Ecc(a)) is a vector of length u+ v).
We will make use of the following useful properties of E:

1. (Fast and Linear) The mapping Er(a) can be computed by making only
O(k3) arithmetic operations. Moreover, it is a linear function of (r,a) and
so Er(a) + Er′(a′) = Er+r′(a+ a′).

2. (Hiding under errors) For any message a and r
$←Fk e $←D(F)k

3

µ , the vector
Er(a) + e is pseudorandom and, in particular, it computationally hides a.

3. (Fast decoding under erasures) Given a random (1 − µ)-subset I of the co-
ordinates of z = Er(a) (i.e., each coordinate is erased with independently
probability µ) it is possible to recover the vector a, with negligible error prob-
ability, by making only O(|z|) = O(k3) arithmetic operations. Indeed, letting
I0 (resp., I1) denote the coordinates received from the u-prefix of z (resp.,
v-suffix of z), we first recover r by solving the linear system zI0 = (M topr)I0
via Gaussian elimination in O(k3) arithmetic operations. By Assumption 2
(property 3) the system is likely to have a unique solution. Then we compute
(Mbottomr)I1 in time O(k3), subtract from (Er(a))I1 to get Ecc(a)I1 , from
which a can be recovered by erasure decoding in time O(k3).

3.2 From Fast hard/easy code to reverse vector-OLE

Our protocol uses the gadget E to implement a reversed vector-OLE. In the
following we assume that the parties have access to a variant Oblivious Transfer
of field elements which we assume (for now) is given as an ideal functionality.
To be precise, the variant we need is one where Alice sends a field element f ,
Bob chooses to receive f , or to receive nothing, while Alice learns nothing new.

We describe the protocol under the assumption that the width w is taken to
be Θ(k3). A general value of w will be treated either by padding or by partition-
ing into smaller blocks of size O(k3) each. (See the proof of Theorem 3.)

Construction 1 (Reverse Vector OLE protocol) To initialize the protocol

one of the parties samples the matrix M
$←M(1k,F) and publish it. The gadget E

(and the parameters u, v and w) are now defined based on M and k as described
above.



1. Bob has input a ∈ Fw. He selects random r ∈ Fk, chooses e according to
D(F)u+vµ and sends to Alice the vector c = Er(a) + e.

2. Alice has input x, b. She chooses r′ ∈ Fk at random and computes d =
x · c+ Er′(b).

3. Let I be an index set that contain those indices i for which ei = 0. These
are called the noise free positions in the following. The parties now execute,
for each entry i in d, an OT where Alice sends di. If i ∈ I, Bob chooses to
receive di, otherwise he chooses to receive nothing.

4. Notice that, since the function E is linear, we have

d = Exr+r′(xa+ b) + xe.

Using subscript-I to denote restriction to the noise-free positions, what Bob
has just received is

dI = (Es(xa+ b))I ,

where s = xr + r′. Using the fast-decoding property of E (property 3), Bob
recovers the vector xa + b (by making O(k3) arithmetic operations) and
outputs xa+ b.

We are now ready to show that the reverse vector OLE protocol works:

Lemma 1. Suppose that Assumption 2 holds. Then Construction 1 implements
the Reverse Vector-OLE functionality of width w = Θ(k) over F with semi-honest
and computational security in the OT-hybrid model. Furthermore, ignoring the
cost of initialization, the arithmetic complexity of the protocol is O(w).

Proof. The running time follows easily by inspection of the protocol. We prove
correctness. By Assumption 2 (property 3), except with negligible probability
Bob recovers the vector s correctly. Also, by a Chernoff bound, the v-suffix of
the error vector e contains at most µ′v non-zero coordinates. Therefore, the
decoding procedure of the error-correcting code succeeds.

As for privacy, consider first the case where Alice is corrupt. We can then sim-
ulate Bob’s message with a random vector in Fu+v which will be computationally
indistinguishable by Assumption 2. If Bob is corrupt, we can simulate what Bob
receives in OTs given Bob’s output xa+ b, namely we compute f = Es(xa+ b)
for a random s and sample a set I as in the protocol (each coordinate i ∈ [k3] is
chosen with probability 1−µ). Then for the OT in position i, we let Bob receive
f i if i ∈ I and nothing otherwise. This simulates Bob’s view perfectly, since in
the real protocol s = xr+r′ is indeed uniformly random, and the received values
for positions in I do not depend on x or e, only on s and Bob’s output. ut

3.3 From reverse vector-OLE to vector-OLE

Finally, to get a protocol for the vector OLE Functionality, note that we can get
such a protocol from the Reverse vector OLE functionality:

Construction 2 (vector-OLE Protocol) Given an input a, b ∈ Fw for Bob,
and x ∈ F for Alice, the parties do the following:



1. Call the Reverse Vector-OLE functionality, where Bob uses input a and Alice

uses input x and a randomly chosen b′
$←Fw. As a result, Bob will receive

xa+ b′.
2. Bob sends b+(xa+b′) to Alice. Now, Alice outputs (b+(xa+b′)−b′ = xa+b.

It is trivial to show that this implements the vector-OLE functionality with
perfect security. Combining the above with Lemma 1, we derive the following
theorem.

Theorem 3. Suppose that Assumption 2 holds. Then, there exists a protocol
that implements the vector-OLE functionality of width w over F with semi-honest
computational security in the OT-hybrid model with arithmetic complexity of
O(w) + poly(k).

Proof. For w < k3, the theorem follows directly from Construction 2 and Lemma 1
(together with standard composition theorem for secure computation). The more
general case (where w is larger) follows by reducing long w-vector OLE’s into
t calls to w0-vector OLE for w0 = Θ(k3) and t = w/w0. Since initialization is
only performed once (with a one-time poly(k) cost) and M is re-used, the overall
complexity is poly(k) +O(tw0) = poly(k) +O(w) as claimed. ut

Remark 1 (Implementing the OTs). First, note that the OT variant we need can
be implemented efficiently for large fields as follows: Alice chooses a short seed
for a PRG and to send field element f , she sends f ⊕PRG(seed) and then does
an OT where she offers Bob seed and a random value. If Bob wants to receive
f , he chooses to get seed, otherwise he choose the random value.

Our protocol employs O(w) such OTs on field elements, or equivalently, on
strings of length log |F| bits. For sufficiently long strings (i.e., w = poly(k) for
sufficiently large polynomial) one can get these OT very cheaply both practically
and theoretically.

Indeed, the implementation we described (which is similar to an observation
from [34]), can be done with optimal asymptotic complexity of O(w log |F|) bit
operations assuming the existence of a linear-stretch pseudorandom generator
G : {0, 1}k → {0, 1}2k which is computable in linear-time O(k). Moreover, such
a generator can be based on the binary version of Assumption 2, as follows
from [9]. In practice, we can get the OT’s very efficiently via OT extension and
perhaps (for very large fields) using a PRG based on AES which is extremely
efficient on modern Intel CPUs.

Remark 2 (On the achievable rate). Note that the full vector OLE protocol com-
municates u+v field elements, does u+v OTs and finally sends w field elements.
The rate is defined as the size of the output (w) divided by the communication
complexity. Now, asymptotically, we can ignore u since it is o(v). Furthermore,
v is the length of the code Ecc, which needs to be about w/(1− µ) to allow for
erasure decoding w values from a fraction of µ random erasures. By the previ-
ous remark, an OT can be done at rate 1, so it counts as 1 field element. So
we find that the rate asymptotically at best approaches (1 − µ)/(3 − µ) (i.e.,



3/11 ≈ 1/4 for µ = 1/4). If we are willing to believe that Assumption 2 holds
for any constant error rate (and large enough code length k) then we can obtain
rate approaching 1/3− ε for any constant ε > 0.

4 Batch-OLEs

In this section we implement n copies of OLE (of width 1) with constant compu-
tational overhead based on vector-OLE with constant computational overhead
and a polynomial-stretch arithmetic pseudorandom generator of constant depth.
The transformation is similar to the one described in [34] for the binary setting,
and is based on a combination Beaver’s OT extension [13] with a decomposable
randomized encoding.

4.1 From vector-OLE to NC0 functionalities

We begin by observing that local functionalities can be reduced to vector-OLE
with constant computational overhead. This follows from an arithmetic variant of
Yao’s protocol [54] where the garbled circuit is replaced with fully-decomposable
randomized encoding. For simplicity, we restrict our attention to functionalities
in which only the first party Alice gets the input.

Lemma 2. Let F be a finite field and let f be a two-party NC0 functionality
that takes `1 field elements from the sender, `2 field elements from the receiver,
and delivers m field elements to the receiver. Then, we can securely compute f
with an information-theoretic security in the semi-honest model with arithmetic
complexity of O(m) and by making O(`2) calls to ideal O(m/`2)-width OLE.

The constant in the big-O notation depends on the circuit depth of f .

Proof. View f as a function over F` where ` = `1 + `2. By Fact 1, there exists a
DARE f̂ which can be encoded and decoded by an O(m)-size arithmetic circuit.
Recall, that

f̂(x; r) = (f̂0(r), (f̂i(xi; r))i∈[`]), where f̂i(xi; r) = xiai(r) + bi(r).

Since the encoding is computable by O(m)-size circuit, it is also possible to take r
and collectively compute (ai(r), bi(r))i∈[`] by O(m) arithmetic operations. Also,
the total length of these vectors is O(m).

Let us denote by A ∪ B the partition of [`] to the inputs given to Alice and
the inputs given to Bob, and so |A| = `1 and |B| = `2. Let w = m/`2 and assume
an ideal vector OLE of width w. Given an input xA for Alice and xB for Bob,
the parties use Yao’s garbled-circuit protocol to compute f as follows:

– Bob selects randomness r
$←Fρ for the encoding and sends f̂0(r) together

with (f̂i(xi; r))i∈B .



– For every i ∈ A the parties invoke width w-OLE where Alice uses xi as her
input and Bob uses (ai(r), bi(r)) as his inputs. If the length Wi of ai(r) and
bi(r) is larger than w, the vectors are partitioned to w-size blocks and the
parties use d(Wi/w)e calls to w-width OLE. (In the j-th call Bob uses the
j-th block of (ai(r), bi(r)) as his input and Alice uses xi as her input.)

– Finally, Alice aggregates the encoding f̂(x; r), applies the decoder and re-
covers the output f(x).

It is not hard to verify that both parties can be implemented by making at
most O(`) arithmetic operations. (In fact, they can be implemented by O(`)-
size arithmetic circuits). Moreover, the number of call to the w vector-OLE is∑
i∈AdWi/we = O(m/w) = O(`2). The correctness of the protocol follows from

the correctness of the DARE. Assuming perfect OLE, the protocol provides
perfect security for Bob (who gets no message during the protocol) and for Alice
(whose view can be trivially simulated using the perfect simulator of the DARE).

ut

4.2 From pseudorandom-OLE to OLE

The following lemma is an arithmetic variant of Beaver’s reduction from batch-
OT to OT with “pseudorandom” selection bits.

Lemma 3. Let G : Fk → Fn be a pseudorandom generator. Consider the two-
party functionality g that takes a seed s ∈ Fk from Alice and n pairs of field
elements (ai, bi), i ∈ [n] from Bob and delivers to Alice the value yiai + bi where
y = G(s). Then, in the g-hybrid model it is possible to securely compute n copies
of OLE of width 1 with semi-honest computational security and complexity of
O(n) arithmetic operations and a single call to g.

Proof. Let x = (xi)i∈[n] be Alice’s input and let (ai, bi), i ∈ [n] be Bob’s input.

1. Alice and Bob call the protocol for g where Alice uses a random seed s
$←Fk

as an input and Bob uses the pairs (ai, ci), i ∈ [n] where ci
$←F are chosen

uniformly at random. Alice gets back the value ui = yiai + ci for i ∈ [n].

2. Alice sends to Bob the values ∆i = xi − yi, for every i ∈ [n].

3. Bob responds with vi = ∆iai + (bi − ci) for every i ∈ [n].

4. Alice outputs zi = ui + vi for every i ∈ [n].

It is not hard to verify that correctness holds, i.e., zi = xiai + bi. To prove
security, observe that Alice’s view, which consists of (x, s,u,v), can be perfectly

simulated. Indeed, given an input x and an output z: Sample s
$←Fk together

with u
$←Fn and set v = z − u. As for Bob, his view consists of a, b, c and a

pseudorandom string ∆. We can therefore simulate Bob’s view by sampling ∆
(and c) uniformly at random. ut



4.3 From NC0 PRG to batch-OLE

To get our final result, we need a polynomial-stretch NC0 arithmetic pseudo-
random generator. In fact, it suffices to have a collection of such PRG’s.

Assumption 4 (polynomial-stretch NC0 PRG (arithmetic version)) There
exists a polynomial-time algorithm that given 1k and a field representation F
samples an NC0 mapping G : Fk → Fk2 (represented by a circuit) such that
with all but negligible probability G is a pseudorandom generator against poly(k)
adversaries.

Assumption 4 is discussed in Section 7. For now, let us mention that similar
assumptions were made in the binary setting and known binary candidates have
natural arithmetic variants.

Combining Lemmas 2 with 3, we get the following theorem.

Theorem 5. Suppose that Assumption 4 holds. Then, it is possible to securely
compute n copies of OLE over F in the semi-honest model by making O(n/k) calls
to ideal O(k)-width OLE and O(n) + poly(k) additional arithmetic operations.

Proof. Let t = n/k2. Implement the OLE’s using t batches each of size k2. By
Lemmas 2 and 3, each such batch can be implemented by making k calls to
ideal O(k)-width OLE and O(k2) additional arithmetic operations. Since the
initialization of the pseudorandom generator has a one-time poly(k) cost, we get
the desired complexity. ut

Combining Theorems 3 and 5, together with an optimal OT implementa-
tion (which by Remark 1 follows from standard OT), and plugging in standard
composition theorem for secure computation, we derive the following theorem.

Corollary 1 (main result). Suppose that Assumptions 2 and 4 hold, and a
standard binary OT exists. Then, there exists a protocol for securely computing
n copies of OLE over F with semi-honest computational security, and arithmetic
complexity of O(n) + poly(k).

5 Applications of Vector-OLE

In the previous section we used vector-OLE only as a tool to obtain OLE. How-
ever, there are applications where vector-OLE is precisely what we need.

First, it is easy to see that a secure multiplication of an n × n matrix by a
length-n vector reduces to n instances of width-n vector-OLE. Therefore, using
our implementation of vector-OLE, it is straightforward to multiply a matrix
by a vector with with O(n2) field operations, which is asymptotically optimal,
and with a small concrete overhead. This can be used as a building block for
other natural secure computation tasks, such as matrix multiplication and other
instances of secure linear algebra; see [17, 44] for other examples and motivating
applications.



Another class of applications is where a party holds some object that needs to
be compared to entries in a database held by another party. The characteristic
property is that the input of party is fixed whereas the input from the other
party varies (as we run through the database). A good example is secure face
recognition, where a face has been measured in some location and we now want to
securely test if the measurement is close to an object in a database – containing,
say, suspects of some kind. This reduces to computing the Euclidean distance
from one point in a space of dimension m (say) to n points in the same space,
and then comparing these distances, perhaps to some threshold. It is clearly
sufficient to compute the square distance, so this means that what we need to
compute will numbers of form∑

i

(xi − yji )
2 =

∑
i

x2i + (yji )
2 − 2xiy

j
i ,

where (x1, ..., xm) is the point held by the client, and (yj1, ..., y
j
m) is the j′th point

in the database. Clearly, additive shares of x2i and (yji )
2 can be computed locally,

while additive shares of 2xiy
j
i can be done using vector-OLE, namely we fix i

and compute 2xi · (y1i , ..., yni ).
Once we have additive shares of the square distances, the comparisons can be

done using standard Yao-garbling. Since this only requires small circuits whose
size is independent of the dimension m, this can be expected to add negligible
overhead.

We note that the secure face recognition problem was considered in [21],
where a solution based on Paillier encryption was proposed (see [50] for optimiza-
tions). This adds a very large computational overhead compared our solution,
since an exponentiation is required for each product 2xiy

j
i .

Similar applications of vector-OLE can apply in many other contexts of se-
curely computing on numerical data that involve computations of low-degree
polynomials. See, e.g., [16, 24] and references therein for some recent relevant
works in the context of secure machine learning.

6 Implementation

We have implemented the vector-OLE protocol. This is the most practical of our
constructions and, as we explained in the previous section, it has applications of
its own, even without the conversion to OLEs of width 1.

6.1 Choice of the matrix M

For the vector OLE protocol, we need a fast pseudorandom matrix M (see
Assumption 2). For this, we have chosen to use a random d-sparse matrix for a
suitable constant d. This means we are basing ourselves on Assumption 6 from
Section 7, which essentially just says that a random d-sparse matrix is likely
to satisfy a good “expansion” property which leads to pseudorandomness (i.e.,



satisfy Assumption 2). In particular, to get b bits of security, we select the size
of M , such that, except with tiny probability, every set S of at most b rows
have joint support which is larger than |S| (i.e., S is non-shrinking). This level
of expansion is somewhat optimistic, but still seems to defend against known
attacks. (See the discussion in Section 7.)

In the earlier theory sections we have assumed that the number rows in M is
Θ(k3). This was because we wanted to amortize away the O(k3) amount of work
needed to do Gaussian elimination using the top part of the matrix. However,
to achieve this number of rows in the concrete security analysis we would need
to go to rather large values of k, and this would create some issues with memory
management. Hence, to get a more practical version with a relatively small
footprint, we chose to settle for O(k2) rows. Then, for 80-bit security and d = 10
it turns out that we will need approximately k = 182 columns and k2 rows, while
for 100-bit security we need k = 240.

Note that once the number of rows and columns is fixed, this also fixes the
parameters u, v from the vector OLE protocol.

6.2 ECC: Using Luby Transform Codes

It remains to consider the erasure correcting code ECC. For this, we want to use
Luby Transform (LT) codes [42]. LT codes have extremely simple and efficient
en- and decoding algorithms, using only field addition and subtraction, no mul-
tiplications or inversions are needed. On the other hand, LT codes were designed
for a streaming scenario, where one continues the stream until the receiver has
enough data to decode. In our case, we must stop at some finite codeword size,
and this means we will have a non-negligible probability that decoding fails. In
practice, one can think of this as a small but constant error probability, say 1%.
On the other hand, this be detected, and the event that decoding fails only de-
pends on the concrete choice of LT code and the choice of the noiseless positions.

Since the player A knows the LT code to be used and is also the one who
chooses the noise pattern, he can simply choose a random noise pattern subject
to the condition that decoding succeeds.

The protocol will then always terminate successfully, but we need to make a
slightly stronger computational assumption to show that the protocol is secure:
the pseudorandomness condition for the matrix M must hold even if we exclude,
say 1% of the possible noise patterns. It turns out that, given the known attacks,
excluding any 1% of the noise patterns makes no significant difference.11

11 Indeed, since we remove a small subset of all possible noise patters, the remaining
patterns cannot be linearized, i.e., cannot be written as a low-degree function of
few fresh variables, and so known attacks do not seem to apply. Of course, one
should make sure that the excluded noise patterns do not correlate somehow with
the choice of the “pseudoranodm” matrix M (say in a way that leaves few “special”
coordinates of the secret random seed, r, uncovered). However, in our case, the
matrix M is chosen at random independently of the choice of the LT-code (which
determines the excluded noise patterns). See also the discussion in Section 7.



More concretely we instantiate the encoding function Ecc : Fw → Fv over the
Robust Soliton distribution also defined in [42]. One generates a output symbol
by sampling a degree dec from that distribution and defining the symbol as the
sum of dec input symbols chosen uniformly among alle the input symbols. This
distribution is defined over two constant parameters δ and c. Here δ denotes
the probability of failed decoding, which together with c adds extra weight to
the probability of smaller degree encoding symbols. The two parameters also
determine a constant β for which v = wβ, but since v and w is fixed in our
construction, β is also fixed, and we have one degree of freedom less. Thus we
instantiate the distribution with parameters w, v and δ and let those determine
c such that β = v/w.

Note that δ may deviate from the actual probability of failed decoding λ
depending on the concrete code. We estimate λ by testing our code on 50.000
random codewords. Note that we fixed the value of v earlier, as a result of
choosing M . Given this, we tested different combinations of w and δ to achieve
a code decodes w/4 errors with probability λ. Our concrete parameters are shown
in Table 1. Here is presented different choices for w and δ that shows how one
may trade width for failure probability. In the implementation we will use the
codes corresponding to δ = 0.01 for both security parameters.

Table 1: Implementation parameters

k u v w δ λ

182 244 33.124

5.000 0.001 0.0017

10.000 0.01 0.016

14.000 0.1 0.095

240 320 57.600

10.000 0.001 0.0003

20.000 0.01 0.015

23.000 0.1 0.069

6.3 Doing Oblivious Transfers

In the vector OLE protocol we need 1 OT for each row of M . It is natural
to implement this via OT extension which can be done very efficiently in a
situation like ours where we need a substantial number of OTs. For instance,
in [36, 12], an amortised time of about 0.2 µs per semi-honestly secure string
OT was obtained, when generating enough of them in one go. Note that in the
protocol specification, we required a special OT variant where one message is sent
and the receiver chooses to get it or not. But this can of course be implemented
using standard 1-2 string OT where the sender offers the message in question
and a dummy.



In order to not require a specific relation between the number of OTs pro-
duced by one run of an OT extension and what our protocol requires, we have
assumed that we precompute a number of random OTs, which we then adjust
to the actual values using standard techniques. The adjustment requires one
message in both directions where the first one can be sent in parallel with the
message in the Vector OLE protocol, so we get a protocol with a total of 3
messages.

We have not implemented the OT extension itself, instead we simulate the
data and communication needed when using the preprocessed OTs. The hy-
pothesis is that that time required to create the random OTs in the first place
is insignificant compared to the rest of the computation required. We discuss
below the extent to which this turned out to be true.

6.4 Communication Overhead

Having fixed the parameter choices, we can already compute the communication
we will need: we can ignore the communication relating to the top part of the
matrix M as this is responsible for less than 1% of the communication. Then,
by simple inspection of the protocol, one sees that we need to send v + w field
element and do v OTs. We implement the OTs directly from 1-2 OT which
means an OT costs communication of 2 field elements and 1 bit. So we get a
total of 3v + w field elements (plus v bits, which we can ignore when the field
is large). With our choice of LT code, v is roughly 3w, so we have 10w field
elements to send. Hence the rate is indeed constant, as expected, namely 1/10.
Accepting a larger failure probability for LT decoding, we could get a rate of
roughly 1/7. As explained in Remark 2, the best we can hope for asymptotically
is about 1/4 when the noise rate is 1/4.

There are two reasons why we do not reach this goal: first, we chose to use
LT codes for erasure correction to optimize the computational overhead, but
this comes at the price of a suboptimal rate. Second we implement the OTs at
rate 1/2. As explained in Remark 1, rate (almost) 1 is possible, but only for
large fields. So for fields of size 1000 bits or more, we believe the rate of our
implementation can be pushed to about 1/5 without significantly affecting its
concrete computational overhead.

6.5 Test Set-up and Results

Our set-up consists of two identical machines, each with 32GB RAM and a 64-
bit i7-3770K CPU running at 3.5GHz. The machines are connected on a 1GbE
network with 0.15ms delay.

A b-bit field is instantiated by chosing Fp for the largest prime p < 2b.
All matrix operations are optimized to that of sparse matrices except for the
Gaussian elimination, where we construct an augmented matrix and do standard
row reduction. All parameters are loaded into memory prior to the protocol
execution including the matrix M , the LT code and a finite set of test vectors.



First a version is implemented using the GNU Multiple Precision Arithmetic
Library for finite field arithmetic. We benchmark this version with b-bit field
for b ∈ {32, 64, . . . , 2048}. In this setting we allocate 2b bits for each element
once, such that we never have to allocate more e.g. at multiplication operations,
which consists of a mul and mod GMP call. We further replace the mod call
after addition and subtraction with a conditional sum.

Since most computation in the protocol includes field operations, we opti-
mized the finite field for 32-bit and 64-bit versions. Here the 32-bit version only
use half of the machine’s word size, but offers fast modulo operation after a
multiplication with the div instruction. The 64-bit version utilizes the full word
size, but relies on the compiler’s implementation of the modulo operation for
uint128 t as supported in GCC-based compilers. For random number genera-
tion, we use the Mersenne Twister SFMT variant instead of GMP.

In Table 2 and Table 3 it is shown how the GMP and the optimized version
compare for respectively k = 182 and k = 240. Here, we measure the amortized
time per single OLE, or more precisely, since the protocol securely computes the
multiplication of a scalar by a vector of length w, we divide the time for this by w
to get the time per oblivious multiplication. We obtain these times by having as
many threads as possible run the protocol in a loop and counting only successful
executions. These amortized timings are also depicted in Figure 1. Afterwards
we run the protocol sequentially in a single thread and measure how fast we can
execute one instance of the protocol. This indicates the latency, i.e., the time
taken from the protocol starts until data is ready. Finally, since we use much
less network speed than what is available, we present the network bandwidth we
actually use, as this may become a limiting factor in low-bandwidth networks.
The reason why the optimized versions use more bandwidth than corresponding
GMP versions is that they are computationally faster, so the network is forced
to handle the same amount of communication in shorter time. Then for larger
fields, bandwidth usage increases because larger field elements need to be sent,
but for the largest field size (2048 bits) we see a decrease because computation
now has slowed down to the extent that there is more than twice the time to
send field elements of double size (compared to 1024 bits).

We note the protocol latency for 100-bit security is about 2-3 times that of
80-bit security. But for the amortized times the increase in security parameter
comes cheaply because we double w in going from 80 to 100-bit security.

In our setup, we need to execute between 2 and 3 OTs per single OLE. Given
the results from [12] which were obtained on an architecture similar to ours, we
can expect these to take an amortised time of 0.6 µs, which as expected becomes
insignificant as the field size grows, but cannot be ignored for the optimized
version on smaller fields.

As computation is the bottleneck compared to network bandwidth, we iden-
tify which part of the computation is the most expensive. We test the optimized
32-bit version for k = 182 and focus on the Gaussian elimination, the Luby en-
coding and decoding and a matrix-vector product c = M · r. This is presented



Table 2: Benchmark of the Vector-OLE protocol for k = 182

Field size Version OLE time Latency Network

32 bit Optimized 0.56µs 0.04s 45.53 MB/s

64 bit Optimized 1.00µs 0.14s 50.83 MB/s

32 bit GMP 3.65µs 0.26s 6.98 MB/s

64 bit GMP 3.66µs 0.27s 13.92 MB/s

128 bit GMP 4.24µs 0.31s 24.03 MB/s

256 bit GMP 6.37µs 0.47s 31.98 MB/s

512 bit GMP 9.58µs 0.64s 42.50 MB/s

1024 bit GMP 18.29µs 1.15s 44.53 MB/s

2048 bit GMP 50.85µs 2.87s 32.04 MB/s

Table 3: Benchmark of the Vector-OLE protocol for k = 240

Field size Version OLE time Latency Network

32 bit Optimized 0.70µs 0.12s 31.70 MB/s

64 bit Optimized 1.14µs 0.25s 38.86 MB/s

32 bit GMP 3.96µs 0.48s 5.57 MB/s

64 bit GMP 3.97µs 0.48s 11.12 MB/s

128 bit GMP 4.52µs 0.56s 19.56 MB/s

256 bit GMP 6.61µs 0.82s 26.75 MB/s

512 bit GMP 9.93µs 1.15s 35.59 MB/s

1024 bit GMP 19.48µs 2.22s 36.29 MB/s

2048 bit GMP 51.73µs 5.45s 27.34 MB/s

in Table 4 as an index set. Here the Gaussian elimination acts as base value and
takes 45% of the total protocol time including communication.

Table 4: Timing of computation

Operation Index

Gauss elimination 100

Luby decoding 22

Luby encoding (Ecc) 3

Encode c = M · r 13
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Fig. 1: Amortized time per OLE compared to field size

Since the Gaussian elimination costs more than other parts of the protocol,
this means that one would need to increase w for the amortization to work. How-
ever one could replace this step with any algorithm for solving linear systems, in
particular algorithms taking advantage of matrix sparsity such as [53]. Finally
one may take advantage of specific constructions of finite fields allowing for even
faster arithmetic operations.

7 About the Assumptions

Our results rely on two types of assumptions, both of which can be viewed as nat-
ural arithmetic analogues of assumptions that have been studied in the boolean
case. We discuss our instantiations of these assumptions below. In Section 7.1 we
discuss the assumption we use for instantiating our constant-overhead vector-
OLE protocol, whereas in Section 7.2 we discuss the additional assumption used
for obtaining constant-overhead protocol for general arithmetic computations.

7.1 Instantiating Assumption 2 (Fast pseudorandom matrix)

An distribution ensemble M = {Mk} over m(k)× k matrices is pseudorandom
for noise rate µ if it satisfies property 2 of Assumption 2. It is natural to assume
that, for every m = poly(k), a random m× k matrix is pseudorandom over any
finite field. (This is the arithmetic analogue of the Decisional-Learning-Parity-
with-Noise assumption [29, 14, 49]). However, Assumption 2 requires the corre-
sponding linear map to be computable in O(m) arithmetic operations (together
with an additional linear-independency condition). We suggest two possible in-
stantiations for this assumption.

The Druk-Ishai Ensemble. Druk and Ishai [20] constructed, for any fi-
nite field F and any code length m ∈ poly(k), an ensemble M of linear-time
computable (m, k) error-correcting code over F whose distance approaches the



Gilbert-Varshamov bound [25, 52] with overwhelming probability. It was fur-
ther conjectured that, over the binary field, the ensemble is pseudorandom for
arbitrary polynomial m(k).12 The assumption seems to hold for arbitrary finite
fields as well. Moreover, the ensemble satisfies Condition 3 of Assumption 2 since,
by [20, Theorem 5], every subset of m′ = ω(k) rows of the code generates, except
with negligible probability, a code of distance 1− 1/|F| − o(1).

Alechnovich’s Ensemble. Alekhnovich [1, Remark 1] conjectured that sparse
binary matrices which are “well expanding” are pseudorandom for constant noise
rate. We will use the arithmetic version of this assumption. For this we will need
the following definition.

Definition 2. Let G = (S1, . . . , Sm) as a d-uniform hypergraph with m hyper-
edges over k nodes (hereafter referred to as (k,m, d)-hypergraph). We say that
G is expanding with threshold r and expansion factor c (in short G is (r, c)-
expanding) if the union of every set of ` ≤ r hyperedges Si1 , . . . , Si` contains at
least c` nodes. For a field F and (k,m, d)-hypergraph G we define a probability
distribution M(G,F) over m × k matrices as follows: Take Mi,j to be a fresh
random non-zero field element if j appears in the i-th hyperedge of G; otherwise,
set Mi,j to zero.

Assumption 6 (Arithmetic version of Alekhnovich’s assumption) For ev-
ery constant d > 3, m = poly(k), real µ ∈ (0, 1/2) and finite field F, the fol-
lowing holds for all sufficiently large k’s. If G is a (k,m, d)-hypergraph which
is (t, 2d/3)-expanding then any circuit of size T = exp(Ω(t)) cannot distin-
guish with advantage better than 1/T between (M,v) and (M,Mr + e) where

M
$←M(G,F), v

$←Fm, r
$←Fk and e

$←Dµ(Fp)`.

Remarks:

1. (Expansion vs. Security) The assumption says that the level of security is
exponential in the size of the smallest expanding set. In particular, an expan-
sion threshold of (kε) guarantees sub-exponential hardness.13 This bound is
consistent with the best known attacks, and, over the binary field, can be
analytically established for a large family of algorithms including myopic al-
gorithms, semi-definite programs, linear-tests, low-degree polynomials, and
constant depth circuits (see [6] and references therein). Many of these re-
sults can be established for the arithmetic setting as well. The constant

12 The basic construction is described for codes with codeword of length m = O(k);
however, one can extend it for codes with codeword of polynomial length m(k), by in-
dependently sampling polynomially many O(k)× k generating matrixes and placing
them one on top of the other to get a poly(k)×k matrix. The pseudorandomness as-
sumption of [20, Section 5.1] applies to this variant for arbitrary polynomial number
of samples.

13 An exponential level of security requires expansion threshold of Ω(k) which can be
achieved only when the number of rows is linearly larger than the number of columns.



2d/3 (and the hidden constant in the Omega notation), determine the exact
relation between expansion and security. The choice of 2d/3 is somewhat
arbitrary, and it may be the case that an absolute expansion factor (which
does not grow with d) suffice. For our practical implementation, we take an
“optimistic” estimate and require an expansion factor slightly larger than 1,
which guarantees that the support of r-size sets do not shrink.

2. (Variants) One may conjecture that the assumption holds with probability
1 over the choice of M . That is, any matrix (including 0-1 matrix) whose
underlying graph is expanding is pseudorandom.

3. (Efficiency) Observe that since G is (k,m, d)-hypergraph any matrix in the
support ofM(G,Fp) is d-sparse in the sense that each of its rows has exactly
d non-zero elements. The linear mapping fM : x 7→ Mx can be therefore
computed by performing O(dm) = O(m) arithmetic operations.

4. (Linear Independency) Recall that Assumption 2 requires that a random
subset of k log2 k of the rows of M have, except with negligible probability,
full rank. In Lemma 5 we show that this condition holds as long as G is semi-
regular in the sense that each of its nodes participates in at least Ω(m/k)
hyperedges.

5. (Different noise distributions) The choice of i.i.d based noise is somewhat
arbitrary and it seems likely that other noise distributions can be used. In
fact, it seems plausible that one can use any noise distribution which has
high entropy and cannot be approximated by a low-degree function of few
fresh variables (and thus is not subject to linearization attacks).

Given the above discussion, Assumption 2 now follows from Assumption 6
and the existence of an explicit family of expanders. The latter point is discussed
in Section 7.2.

7.2 Instantiating Assumption 4 (NC0 polynomial-stretch PRG)

In the binary setting, the existence of locally-computable polynomial-stretch
PRG was extensively studied in the last decade. (See [4] and references therein.)
Let f : Fk → Fm be a d-local function which maps a k-long vector x into an
m-long vector (P1(xS1

), . . . , P (xSm)) where Si ∈ [k]d is a d-tuple and Pi is a
d-variate multi-linear polynomial. Over the binary field, it is conjectured that as
long as the (k,m, d) hypergraph G = (S1, . . . , Sm) is expanding and the Pi’s are
sufficiently “non-degenerate” the function forms a good pseudorandom genera-
tor. (This is an extension of Goldreich’s original one-wayness conjecture [28].)
In fact, this is conjectured to be the case even if all the polynomials P1, . . . , Pm
are taken to be the same polynomial P . We denote the resulting function by
fG,P and make the analog arithmetic assumption. In the following we say that
a function f : Fk → Fm is T -pseudorandom if every circuit of size at most T

cannot distinguish f(x), x
$←Fk from y

$←Fm with advantage better than 1/T .

Assumption 7 For every finite field F and every polynomial m(k) there exists a
constant d and a d-variate multi-linear polynomial P : Fd → F such that for every



(k,m, d) hypergraph G which is (t, 2d/3)-expanding the function fG,P : Fk → Fm
is exp(Ω(t))-pseudorandom over F.

As in the case of Alechnovich’s assumption, the constant 2/3 is somewhat arbi-
trary and a smaller constant may suffice. (A lower-bound of 1/d can be estab-
lished.) In the binary setting, security was reduced to one-wayness assumption [3]
and was analytically established for a large family of algorithms including my-
opic algorithms, linear tests, statistical algorithms, semi-definite programs and
algebraic attacks [6, 7, 23, 47, 11, 38]. Some of these results can be extended to
the arithmetic setting as well.

On explicit unbalanced constant-degree expanders. In order to employ
Assumption 6 and 7 one needs an explicit family of (k,m = k1+δ, d = O(1))
hypergraphs which are (kε, (1+Ω(1))d)-expanding.14 This assumption is known
to be necessary for the existence of d-local (binary) PRG that stretches k bits to
m bits [9], and so it was used (either explicitly or implicitly) in previous works
who employed such a local PRG (e.g., [34, 39, 41, 40, 2]).

While recent advances in the theory of pseudoranodmness have come close
to generating such explicit highly-expanding hypergraphs, in our regime of pa-
rameters (m = ω(k) and d = O(1)), an explicit provable construction is still
unknown. It is important to mention that, by a standard calculation (cf. [45]),
a uniformly chosen hypergraph G (i.e., each hyperedge contains a random d-
subset of the nodes) is likely to be (r = poly(k), 2d/3)-expanding except with
some inverse polynomial failure probability ε(k) . Moreover, we can reduce the
failure probability to 1/kc for an arbitrary (predetermined) constant c at the ex-
pense of increasing the sampling complexity to kbc , where the constant b grows
with c. (This can be done by rejecting hypergraphs which fail to expand for sets
of size at most bc, and re-sampling the hypergraph if needed). As a result one
gets a protocol that fails with “tunable” inverse polynomial probability which is
independent of the running-time of the adversary. Moreover, the failure event is
restricted to a one-time setup phase and its probability does not increase with
the number of times the protocol is executed. Such a guarantee seems to be sat-
isfactory in most practical scenarios. Finally, we mention that there are several
heuristic approaches for constructing unbalanced constant-degree expanding hy-
pergraphs. For example, by using some fixed sequence of bits (e.g., the binary
expansion of π) and interpreting it as an (k,m, d)-hypergraph via some fixed
translation. Assuming such a heuristic to give an explicit construction can be
viewed as being a conservative “combinatorial” assumption, in the spirit of stan-
dard cryptographic assumptions.

14 One can always increase the number of hyperedges to arbitrary polynomial m =
ka at the expense of a minor loss in the other parameters. This can be done by

taking a sequence of hypergraphs G1, . . . , Gc where Gi is a (k(1+δ)
i−1

, k(1+δ)
i

, d)-
hypergraphs which is (r, bd)-expanding and compose them together (by treating the
hyperedges of the i-th graph as the nodes of the (i + 1)-th hypergraph) and get a

(k, k(1+δ)
i

, D = dc)-hypergraph which is (r/(bd)c−1, bD)-expanding. Taking c to be
a sufficiently large constant (i.e., log1+δ a), yields the required result.
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A The Rank of Sparse Matrices

In this section we analyze the rank of matrices which are sampled from the
distribution M(G,Fp) where G is a hypergraph with m hyperedges and k. We
begin with the following key observation.

Lemma 4. Let F be a field of cardinality p > 2 and let G be a hypergraph over
k nodes and ` hyperedges with the property that every set of nodes S appears in

at least t|S| hyperedges for t = ω(log k). Then, a random matrix M
$←M(G,Fp)

will have full rank except with probability exp(−Ω(t)).

Proof. To prove the claim it suffices to show that

Pr
M

[∃v 6= 0k s.t Mv = 0`] = exp(−Ω(t))

For a non-empty subset S ⊆ [k], let VS be the set of all vectors v ∈ Fk whose
support (set of non-zero coordinates) equals to S. By a union-bound, it suffices
to upper-bound ∑

S 6=∅

qS , where qS = Pr[∃v ∈ VS s.t Mv = 0`]. (3)

We will later show that

qS ≤ 2−|S|(t−1) log(p−1) = 2−Ω(|S|t) (4)

Hence we can upper-bound (3) by

k∑
w=1

∑
S:|S|=w

qS ≤
k∑

w=1

kw2−Ω(wt) ≤
k∑

w=1

2−Ω(wt) ≤ 2−Ω(t).

It is left to prove (4). Fix a set S of cardinality w, and let us assume without
loss of generality that the first t hyperedges of G touch S. Fix some vector
v ∈ VS and recall that the vector ri, i ∈ [t] is sampled by assigning a random
non-zero field element to every j ∈ [k] that participates in the i-th hyperedges.
Therefore, every such row is orthogonal to v independently with probability at
most 1/(p− 1). We conclude that, for every v ∈ VS , we have that

Pr
M

[Mv = 0`] ≤ (p− 1)−tw.



By a union-bound, we conclude that

qS ≤
∑
v∈VS

Pr[Mv = 0`] ≤ (p− 1)−w(t−1),

as required. ut

Lemma 5. Let G be a (k,m, d) hypergraph with m = ω(kr) where d = O(1) and
r = ω(k log k). Assume that each node of G participates in at least Ω(m/k) hy-

peredges. Then, for any field F of size larger than 2, if we sample M
$←M(G,F)

and sub-sample r rows from M , then the resulting matrix M ′ will have full rank
except with negligible probability. Moreover, the above is true even if the rows of
M ′ are sampled from M with replacement.

For m = k3 and r = k log2 k, we conclude that the distributionM(G,F) satisfies
the linear-independence condition from Assumption 2.

Proof. Let us describe the sampling procedure in an equivalent way: First sam-
ple a hypergraph G′ by sub-sampling r hyperedges from G, and then sample
M ′ from M(G′,F). By Lemma 4, it suffices to show that, except with negligi-
ble probability, every set S of nodes in G′ participates in at least ω(log k)|S|
hyperedges. Below, we will show that each fixed subset S participates in at
least ω(log k)|S| hyperedges except with probability exp(−ω(k)). The theorem
therefore follows by a union bound over all 2k possible subsets.

Fix some non-empty set of nodes S. By assumption, the number of “good”
hyperedges in G that touch S is at least m0 = |S|Ω(m/(dk)). Observe that
whenever we sample an hyperedge from M the probability of hitting a good
hyperedge is at least q = (m0− r)/m, regardless of the “history” of the previous
samples. (This is true for both sampling with or without replacement.) There-
fore, the probability of “failure”, i.e., hitting less than qr/2 good hyperedges, is
upper-bounded by the probability of failure in a binomial experiment where we
sample r hyperedges where is good independently with probability q. By a mul-
tiplicative Chernoff bound, the probability of seeing less that qr/2 successes is at

most exp(−Ω(qr)). Noting that qr = Ω( r|S|dk ) − r2

m = |S|Ω(r/k) = |S|ω(log2 k),
concludes the proof. ut

By taking G to be the complete (k,m =
(
k
d

)
, d) hypergraph, we derive the

following lemma.

Lemma 6. Let F be a field of cardinality p > 2, and let d be a constant. Then,
except with negligible probability in k, a random d-sparse k log2 k × k matrix M
over F has full rank.

Proof. Let G the complete (k,m =
(
k
d

)
, d) hypergraph and note that the distri-

bution of M can be obtained by sampling T
$←M(G,F) and then sub-sampling

k log2 k rows from T . The lemma follows from Lemma 5. ut
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