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Abstract. We aim to understand, formalize and provably achieve the

goals underlying the core key-ratcheting technique of Borisov, Goldberg

and Brewer, extensions of which are now used in secure messaging sys-

tems. We give syntax and security definitions for ratcheted encryption

and key-exchange. We give a proven-secure protocol for ratcheted key

exchange. We then show how to generically obtain ratcheted encryption

from ratcheted key-exchange and standard encryption.

1 Introduction

The classical view of cryptography was that the endpoints (Alice and Bob) are

secure and the adversary is on the communication channel. The prevalence of

malware and system vulnerabilities however makes endpoint compromise a se-

rious and immediate threat. In their highly influential OTR (Off the Record)

communication system, Borisov, Goldberg and Brewer (BGB) [10] attempt to

mitigate the damage from endpoint compromise by regularly updating (ratch-

eting) the encryption key. (They do not call it ratcheting, this term originating

later with Langley [19].) Ratcheting was then used by Open Whisper Systems in

their Signal protocol [22], which in turn is used by WhatsApp and other secure

messaging systems.

This widespread usage —WhatsApp alone reports handling 42 billion text

messages per day— motivates an understanding and analysis of ratcheting: what

is it aiming to accomplish, and does it succeed? The answer to this question

does not seem clear. Indeed, in their SOK (Systemization of Knowledge) paper

on secure messaging, UDBFPGS [25] survey many of the systems that existed at

the time and attempt to classify them in terms of security, noting that security

claims about ratcheting in different places include “forward-secrecy,” “backward-

secrecy,” “self-healing” and “future secrecy,” and concluding that “The terms

are controversial and vague in the literature” [25, Section 2.D].

In this paper, we aim to formalize the goals that ratcheting appears to be tar-

geting. We give definitions for ratcheted encryption and ratcheted key-exchange.
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We then give protocols (based on ones in use but not identical to them) to

provably achieve the goals.

Our work aims to be selective rather than comprehensive. Our intent is to for-

malize and understand the simplest form of ratcheting that captures the essence

of the goal, which is single, one-sided ratcheting. This (as we will see) is already

complex enough. Extended forms of ratcheting are left as future work.

Ratcheting. The setting we consider is that sender Alice and receiver Bob hold

keys Ks = (k, . . .) and Kr = (k, . . .), respectively, k representing a shared sym-

metric key and the ellipses indicating there may be more key information that

may be party dependent. In practice, these keys are the result of a session-key

exchange protocol that is authenticated either via the parties’ certificates (TLS)

or out-of-band (secure messaging), but ratcheting is about how these keys are

used and updated, not about how they are obtained, and so we will not be con-

cerned with the distribution method, instead viewing the initial keys as created

and distributed by a trusted process.

In TLS, all data is secured under the shared key k with an authenticated

encryption scheme. Under ratcheting, the key is constantly changing. As per

BGB [10] it works roughly like this:

B → A: gb1 ; A→ B: ga1 , E(k1,M1) ; B → A: gb2 , E(k2,M2) ; . . . (1)

Here ai and bi are random exponents picked by A and B respectively; k1 =

H(k, gb1a1), k2 = H(k1, g
a1b2), . . .; H is a hash function; E is an encryption

function taking key and message to return a ciphertext; and g is the generator

of an underlying group. Each party deletes its exponents and keys once they are

no longer needed for encryption or decryption.

Contributions. This paper aims to lift ratcheting from a technique to a cryp-

tographic primitive, with a precise syntax and formally-defined security goals.

Once this is done, we specify and prove secure some protocols that are closely

related to the in-use ones.

If ratcheting is to be a primitive, a syntax is the first requirement. As em-

ployed, the ratcheting technique is used within a larger protocol, and one has to

ask what it might mean in isolation. To allow a modular treatment, we decouple

the creation of keys from their use, defining two primitives, ratcheted key ex-

change and ratcheted encryption. For each, we give a syntax. While ratcheting

in apps is typically per message, our model is general and flexible, allowing the

sender to ratchet the key at any time and encrypt as many messages as it likes

under a given key before ratcheting again.

Next we give formal, game-based definitions of security for both ratcheted

key exchange and ratcheted encryption. At the highest level, the requirement

is that compromise (exposure in our model) revealing a party’s current key

and state should have only a local and temporary effect on security: a small

hiccup, not compromising prior communications and after whose passage both

privacy and integrity are somehow restored. This covers forward security (prior
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keys or communications remain secure) and backward security (future keys and

communications remain secure). Amongst the issues in formalizing this is that

following exposure there is some (necessary) time lag before security is regained,

and that privacy and integrity are related. For ratcheted key exchange, un-

exposed keys are required to be indistinguishable from random in the spirit of [5]

—rather than merely, say, hard to recover— to allow them to be later securely

used. For ratcheted encryption, the requirement is in the spirit of nonce-based

authenticated encryption [23], so that authenticity in particular is provided.

The definitions are chosen to allow a modular approach to constructions.

We exemplify by showing how to build ratcheted encryption generically from

ratcheted key-exchange and multi-user-secure nonce-based encryption [8]. This

allows us to focus on ratcheted key exchange.

We give a protocol for ratcheted key exchange that is based on DH key ex-

changes. The core technique is the same as in [10] and the in-use protocols, but

there are small but important differences, including MAC-based authentication

of the key-update values and the way keys are derived. We prove that our proto-

col meets our definition of ratcheted key exchange under the SCDH (Strong Com-

putational Diffie-Hellman) assumption [1] in the random oracle model (ROM) [4].

The proof is obtained in two steps. The first is a standard-model reduction to an

assumption we call ODHE (Oracle Diffie-Hellman with Exposures). The second

is a validation of ODHE under SCDH in the ROM.

Model and syntax. Our syntax specifies a scheme RKE for ratcheted key ex-

change via three algorithms: initial key generation RKE.IKg, sender key genera-

tion RKE.SKg and receiver key generation RKE.RKg. See Fig. 3 for an illustration.

The parties maintain output keys (representing the keys they are producing for

an overlying application like ratcheted encryption) and session keys (local state

for their internal use). At any time, the sender A can run RKE.SKg on its cur-

rent keys to get update information upd that it sends to the receiver, as well

as updated keys for itself. The receiver B correspondingly will run RKE.RKg on

received update information and its current keys to get updated keys, transmit-

ting nothing. RKE.IKg provides initial keys for the parties, what we called Ks

and Kr above, that in particular contain an initial output key k (the same for

both parties) and initial session keys. A ratcheted encryption scheme RE main-

tains the same three key-generation algorithms, now denoted RE.IKg, RE.SKg
and RE.RKg, and adds an encryption algorithm RE.Enc for the sender —in the

nonce-based vein [23], taking a key, nonce, message and header to determinis-

tically return a ciphertext— and a corresponding decryption algorithm RE.Dec
for the receiver. The key for encryption and decryption is what ratcheted key

exchange referred to as the output key.

Besides a natural correctness requirement, we have a robustness requirement:

if the receiver receives an update that it rejects, it maintains its state and will

still accept a subsequent correct update. This prevents a denial-of-service at-
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tack in which a single incorrect update sent to the receiver results in all future

communications being rejected.

Security. In the spirit of BR [5] we give the adversary complete control of com-

munication. Our definition of security for ratcheted key exchange in Section 4.2

is via a game KIND. After (trusted) initial key-generation, the game gives the

adversary oracles to invoke either sender or receiver key generation and also

to expose sender keys (both output and session). Roughly the requirement is

that un-exposed keys be indistinguishable from random. The delicate issue is

that this is true only under some conditions. Thus, exposure in one session will

compromise the next session. Also, a post-expose active attack on the receiver

(in which the adversary supplies the update information) can result in contin-

ued violation of integrity. Our game makes the necessary restrictions to capture

these and other situations. For ratcheted encryption, the game RAE we give in

Section 5 captures ratcheted authenticated encryption with nonce-based secu-

rity. The additional oracles for the adversary are encryption and decryption. The

requirement is that, for un-exposed and properly restricted keys, the adversary

cannot distinguish whether its encryption and decryption oracles are real, or

return random ciphertexts and ⊥ respectively.

Schemes. Our ratcheted key exchange scheme in Section 4.3 is simple and efficient

and uses the same basic DH technique as ratcheting in OTR [10] or WhatsApp,

but analysis is quite involved. The sender’s initial key includes gb where b is

part of the receiver’s initial key, these quantities remaining static. Sender key

generation algorithm RKE.SKg picks a random a and sends the update upd

consisting of ga together with a mac under the prior session key that is crucial

to security. The output and next session key are derived via a hash function

applied to gab. Theorem 1 establishes that the scheme meets our stringent notion

of security for ratcheted key exchange. The proof uses a game sequence that

includes a hybrid argument to reduce the security of the ratcheted key exchange

to our ODHE (Oracle Diffie-Hellman with Exposures) assumption. The latter is

an extension of the ODH assumption of [1] and, like the latter, can be validated

in the ROM under the SCDH assumption of [1] (which in turn is a variant of the

Gap-DH assumption of [21]). We show this in [7]. Ultimately, this yields a proof

of security for our ratcheted key exchange protocol under the SCDH assumption

in the ROM.

Our construction of a ratcheted encryption scheme in Section 5 is a generic

combination of any ratcheted key exchange scheme (meeting our definition of

security) and any nonce-based authenticated encryption scheme. Theorem 2 es-

tablishes that the scheme meets our notion of security for ratcheted encryption.

The analysis is facilitated by assuming multi-user security for the base nonce-

based encryption scheme as defined in [8], but a hybrid argument reduces this

to the standard single-user security defined in [23]. Encryption schemes meeting

this notion are readily available.
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Setting and discussion. There are many variants of ratcheting. What we treat

is one-sided ratcheting. This means one party (Alice) is a sender and the other

(Bob) a receiver, rather than both playing both roles. In our model, compromises

(exposures) are allowed only on the sender, not on the receiver. In particular

the receiver has a static secret key whose compromise will immediately violate

privacy of our schemes, regardless of updates. From the application perspective,

our model and schemes are suitable for settings where the sender (for example a

smartphone) is vulnerable to compromise but the receiver (for example a server

with hardware-protected storage) can keep keys safely. In two-sided ratcheting,

both the sender and the receiver may be compromised. Another dimension is

single (what we treat) versus double ratcheting. In the latter, keys are also

locally ratcheted via a forward-secure pseudorandom generator [9]. Conceptually,

we decided to focus on the single, one-sided case to keep definitions (already

quite complex) as simple as possible while capturing the essence of the goal and

method. But we note that what Signal implements, and what is thus actually

used, is double, two-sided ratcheting. Treating this does not seem like a simple

extension of what we do and is left as future work.

Secure Internet communication protocols (both TLS and messaging) start

with a session-key exchange that provides session keys, Ks for the sender and

Kr for the receiver. These are our initial keys, the starting points for ratcheting.

These keys are not to be confused with higher-level, long-lived signing or other

keys that are certified either explicitly (TLS) or out-of-band (messaging) and

used for authentication in the session-key exchange.

Messaging sessions tend to be longer lived than typical TLS sessions, with

conversations that are on-going for months. This is part of why messaging se-

curity seeks, via ratcheting, fine-grained forward and backward security. Still,

exactly what threat ratcheting prevents in practice needs careful consideration.

If the threat is malware on a communicant’s phone that can directly exfiltrate

text of conversations, ratcheting will not help. Ratcheting will be of more help

when users delete old messages, when the malware is exfiltrating keys rather than

text, and when its presence on the phone is limited through software security.

Related work. In concurrent and independent work, Cohn-Gordon, Cremers,

Dowling, Garratt and Stebila (CCDGS) [11] give a formal analysis of the Signal
protocol. The protocol they analyze includes ratcheting steps but stops at key

distribution: unlike us, they do not consider, define or achieve ratcheted encryp-

tion. They treat Signal as a multi-stage session-key exchange protocol [18] in the

tradition of authenticated session-key exchange [5, 3], with multiple parties and

sessions. We instead consider ratcheted key exchange as a two-party protocol

based on a trusted initial key distribution. This isolates ratcheted key exchange

from the session key exchange used to produce the initial keys and allows a more

modular treatment. They prove security (like us, in the ROM) under the Gap-

DH [21] assumption while we prove it under the weaker SCDH [1] assumption.

Ultimately their work and ours have somewhat different goals. Theirs is to ana-
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lyze the particular Signal protocol. Ours is to isolate the core ratcheting method

(as one of the more novel elements of the protocol) and formalize primitives

reflecting its goals in the simplest possible way.

Cohn-Gordon, Cremers and Garratt (CCG) [12] study and compare different

kinds of post-compromise security in contexts including authenticated key ex-

change. They mention ratcheting as a technique for maintaining security in the

face of compromise.

Key-insulated cryptography [13–15] also targets forward and backward se-

curity but in a model where there is a trusted helper and an assumed-secure

channel from helper to user that is employed to update keys. Implementing the

secure channel is problematic due to the exposures [2]. Ratcheting in contrast

works in a model where all communication is under adversary control.

2 Preliminaries

Notation and conventions. Let N = {0, 1, 2, . . .} be the set of non-negative inte-

gers. Let ε denote the empty string. If x ∈ {0, 1}∗ is a string then |x| denotes its

length, x[i] denotes its i-th bit, and x[i..j] = x[i] . . . x[j] for 1 ≤ i ≤ j ≤ |x|. If

mem is a table, we use mem[p] to denote the element of the table that is indexed

by p. By x ‖ y we denote a uniquely decodable concatenation of strings x and y

(if lengths of x and y are fixed then x ‖ y can be implemented using standard

string concatenation). If X is a finite set, we let x←$X denote picking an ele-

ment of X uniformly at random and assigning it to x. We use a special symbol

⊥ to denote an empty table position, and we also return it as an error code

indicating an invalid input; we assume that adversaries never pass ⊥ as input to

their oracles.

Algorithms may be randomized unless otherwise indicated. Running time is

worst case. If A is an algorithm, we let y ← A(x1, . . . ; r) denote running A

with random coins r on inputs x1, . . . and assigning the output to y. We let

y←$A(x1, . . .) be the result of picking r at random and letting y ← A(x1, . . . ; r).

We let [A(x1, . . .)] denote the set of all possible outputs of A when invoked with

inputs x1, . . .. Adversaries are algorithms.

We use the code based game playing framework of [6]. (See Fig. 2 for an

example.) We let Pr[G] denote the probability that game G returns true. In

code, uninitialized integers are assumed to be initialized to 0, Booleans to false,

strings to the empty string, sets to the empty set, and tables are initially empty.

Function families. A family of functions F specifies a deterministic algorithm F.Ev.

Associated to F is a key length F.kl ∈ N, an input set F.In, and an output length

F.ol. Evaluation algorithm F.Ev takes fk ∈ {0, 1}F.kl and an input x ∈ F.In to

return an output y ∈ {0, 1}F.ol.

Strong unforgeability under chosen message attack. Consider game SUFCMA of

Fig. 1, associated to a function family F and an adversary F . In order to win
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Game SUFCMAFF

fk←$ {0, 1}F.kl

win← false

FTag,Verify

Return win

Tag(m)

σ ← F.Ev(fk,m)

S ← S ∪ {(m,σ)}
Return σ

Verify(m,σ)

σ′ ← F.Ev(fk,m)

If (σ = σ′) and ((m,σ) 6∈ S) then

win← true

Return (σ = σ′)

Game MAENSE

b← {0, 1} ; v ← 0

b′←$NNew,Enc,Dec ; Return (b′ = b)

New

v ← v + 1 ; sk[v]←$ {0, 1}SE.kl

Enc(i, n,m, h)

If not (1 ≤ i ≤ v) then return ⊥
If (i, n) ∈ U then return ⊥
c1 ← SE.Enc(sk[i], n,m, h) ; c0←$ {0, 1}SE.cl(|m|)

U ← U ∪ {(i, n)} ; S ← S ∪ {(i, n, cb, h)}
Return cb

Dec(i, n, c, h)

If not (1 ≤ i ≤ v) then return ⊥
If (i, n, c, h) ∈ S then return ⊥
m← SE.Dec(sk[i], n, c, h)

If b = 1 then return m else return ⊥

Fig. 1. Games defining strong unforgeability of function family F under chosen message
attack, and multi-user authenticated encryption security of SE.

the game, adversary F has to produce a valid tag σforge for any message mforge,

satisfying the following requirement. The requirement is that F did not pre-

viously receive σforge as a result of calling its Tag oracle with mforge as in-

put. The advantage of F in breaking the SUFCMA security of F is defined

as Advsufcma
F,F = Pr[SUFCMAFF ]. If no adversaries can achieve a high advantage

in breaking the SUFCMA security of F while using only bounded resources, we

refer to F as a MAC algorithm and we refer to its key fk as a MAC key.

Symmetric encryption schemes. A symmetric encryption scheme SE specifies de-

terministic algorithms SE.Enc and SE.Dec. Associated to SE is a key length

SE.kl ∈ N, a nonce space SE.NS, and a ciphertext length function SE.cl : N→ N.

Encryption algorithm SE.Enc takes sk ∈ {0, 1}SE.kl, a nonce n ∈ SE.NS, a

message m ∈ {0, 1}∗ and a header h ∈ {0, 1}∗ to return a ciphertext c ∈
{0, 1}SE.cl(|m|). Decryption algorithm SE.Dec takes sk, n, c, h to return message

m ∈ {0, 1}∗∪{⊥}, where ⊥ denotes incorrect decryption. Decryption correctness

requires that SE.Dec(sk, n,SE.Enc(sk, n,m, h), h) = m for all sk ∈ {0, 1}SE.kl, all

n ∈ SE.NS, all m ∈ {0, 1}∗, and all h ∈ {0, 1}∗. Nonce-based symmetric encryp-

tion was introduced in [24], whereas [23] also considers it in the setting with

associated data. In this work we consider only nonce-based symmetric encryp-

tion schemes with associated data; we omit repeating these qualifiers throughout

the text, instead referring simply to “symmetric encryption schemes”.
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Multi-user authenticated encryption. Consider game MAE of Fig. 1, associated to

a symmetric encryption scheme SE and an adversary N . It extends the definition

of authenticated encryption with associated data for nonce-based schemes [23] to

the multi-user setting, first formalized in [8]. The adversary is given access to

oracles New,Enc and Dec. It can increase the number of users by calling oracle

New, which generates a new (secret) user key. For any of the user keys, the

adversary can request encryptions of plaintext messages by calling oracle Enc

and decryptions of ciphertexts by calling oracle Dec. In the real world (when

b = 1), oracles Enc and Dec provide correct encryptions and decryptions. In the

random world (when b = 0), oracle Enc returns uniformly random ciphertexts

and oracle Dec returns the incorrect decryption symbol ⊥. The goal of the

adversary is to distinguish between these two cases. In order to avoid trivial

attacks, N is not allowed to call Dec with ciphertexts that were returned by

Enc. Likewise, we allow N to call Enc only once for every unique user-nonce

pair (i, n). This can be strengthened to allow queries with repeated (i, n) and

instead not allow queries with repeated (i, n,m, h), but the stronger requirement

is satisfied by fewer schemes. The advantage of N in breaking the MAE security

of SE is defined as Advmae
SE,N = 2 Pr[MAENSE]− 1.

3 Oracle Diffie-Hellman with Exposures

The Oracle Diffie-Hellman (ODH) assumption [1] in a cyclic group requires that

it is hard to distinguish between a random string and a hash function H applied

to gxy, even given gx, gy and an access to an oracle that returns H(Xy) for

arbitrary X (excluding X = gx). We extend this assumption for multiple queries,

based on a fixed gy and arbitrarily many gx[0], gx[1], . . .. For each index v we allow

either to expose x[v], or to get a challenge value; the challenge value is either a

random string, or H applied to gx[v]·y. We also extend the hash function oracle

to take a broader class of inputs.

Oracle Diffie-Hellman with Exposures assumption. Let G be a cyclic group of order

p ∈ N, and let G∗ denote the set of its generators. Let H be a function family

such that H.In = {0, 1}∗. Consider game ODHE of Fig. 2 associated to G,H
and an adversary O, where O is required to call oracle Up at least once prior

to making any oracle queries to Ch and Exp. The game starts by sampling a

function key hk, a group generator g and a secret exponent y. The adversary

is given hk, g, gy and it has access to oracles Up, Ch, Exp, Hash. Oracle Up

generates a new challenge exponent x[v] and returns gx[v], where v is an integer

counter that denotes the number of the current challenge exponent (indexed

from 0) and is incremented by 1 at the start of every call to oracle Up. Oracle

Hash takes an arbitrary integer i, an arbitrary string s and a group element

X to return H.Ev(hk, i ‖ s ‖Xy). For each counter value v, the adversary can

choose to either call oracle Exp to get the value of x[v] or call oracle Ch with

input s to get a challenge value that is generated as follows. In the real world
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Game ODHEOG,H

b←$ {0, 1} ; hk←$ {0, 1}H.kl ; g←$ G∗ ; y←$ Zp ; v ← −1

b′←$OUp,Ch,Exp,Hash(hk, g, gy) ; Return (b′ = b)

Up

op← ε ; v ← v + 1 ; x[v]←$ Zp ; Return gx[v]

Ch(s)

If (op = “exp”) or ((v, s, gx[v]) ∈ Shash) then return ⊥
op← “ch” ; Sch ← Sch ∪ {(v, s, gx[v])} ; e← gx[v]·y

If mem[v, s, e] =⊥ then mem[v, s, e]←$ {0, 1}H.ol

r1 ← H.Ev(hk, v ‖ s ‖ e) ; r0 ← mem[v, s, e] ; Return rb

Exp

If op = “ch” then return ⊥
op← “exp” ; Return x[v]

Hash(i, s,X)

If (i, s,X) ∈ Sch then return ⊥
If i = v then Shash ← Shash ∪ {(i, s,X)}
Return H.Ev(hk, i ‖ s ‖Xy)

Fig. 2. Game defining Oracle Diffie-Hellman with Exposures assumption for G,H.

(when b = 1) oracle Ch returns H.Ev(hk, v ‖ s ‖ gx[v]·y) and in the random world

(when b = 0) it returns a uniformly random element from {0, 1}H.ol. The goal

of the adversary is to distinguish between these two cases. Oracle Ch can be

called multiple times per challenge exponent, and it returns consistent outputs

regardless of the challenge bit’s value. The advantage of O in breaking the ODHE

security of G,H is defined as AdvodheG,H,O = 2 Pr[ODHEOG,H]− 1.

In order to avoid trivial attacks, O is not allowed to query oracle Hash on

input (i, s,X) if X = gx[i] and if oracle Ch was already called with input s when

the counter value was v = i. Note that adversary is allowed to win the game if

it happens to guess a future challenge exponent x and query it to oracle Hash

ahead of time; the corresponding triple (i, s,X) will not be added to the set of

inputs Shash that are not allowed to be made to oracle Ch. Finally, recall that

the string concatenation operator ‖ is defined to produce uniquely decodable

strings, which helps to avoid trivial string padding attacks.

Plausibility of the ODHE assumption. We do not know of any group G and func-

tion family H that can be shown to achieve ODHE in the standard model. The

original ODH assumption of [1] was justified by a reduction in the random or-

acle model to the Strong Computational Diffie-Hellman (SCDH) assumption.

The latter was defined in [1] and is a weaker version of the Gap Diffie-Hellman

assumption from [21]. In [7] we give a definition for the SCDH assumption and

prove that it also implies the ODHE assumption in the random oracle model.
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We provide this result as a corollary of two lemmas. The lemmas use the

Strong Computational Diffie-Hellman with Exposures (SCDHE) assumption as

an intermediate step, where SCDHE is a novel assumption that extends SCDH

to allow multiple challenge queries, and to allow exposures. To formalize our

result, we define the Oracle Diffie-Hellman with Exposures in ROM (ODHER)

assumption that is equivalent to the ODHE assumption in the random oracle

model.

The first lemma establishes that SCDHE implies ODHE in the random oracle

model, by a reduction from ODHER to SCDHE. The proof of this lemma emu-

lates the ODH to SCDH reduction of [1]. In their reduction, the SCDH adversary

simulates the random oracle and the hash oracle for the ODH adversary; it uses

its own decisional-DH oracle to check whether the ODH adversary feeds gxy for

the challenge values of x and y, and to maintain consistency between simulated

oracle outputs. This consistency maintenance is the main source of complexity in

our reduction because —in addition to the oracles mentioned above— we must

also ensure that the simulated challenge oracle is consistent.

The second lemma is a standard model reduction from SCDHE to SCDH.

This reduction is a standard “guess the index” reduction in which our SCDH

adversary guesses which query the SCDHE adversary will attack. The SCDH

adversary replaces the answer to this query with the challenge values it was given

and replaces all other oracle queries with challenges that it has generated itself.

As usual, this results in a multiplicative loss of security, so the final theorem

(combining both lemmas) has a bound of the form AdvodherG,H,O ≤ qUp · AdvscdhG,S ,

where S is the SCDH adversary and qUp is the number of Up queries made by

ODHER adversary O.

Because of the multiplicative loss of security caused by the second lemma we

also examine the possibility of using Diffie-Hellman self-reducibility techniques to

obtain a tighter bound on the reduction from SCDHE to SCDH. The possibility

of exposures in SCDHE makes this much more difficult than one might immedi-

ately realize. We present a reduction that succeeds despite these difficulties, by

using significantly more complicated methods than in our first example of this

deduction. Specifically we build an SCDH adversary that makes guesses about

the future behavior of the SCDHE adversary it was given, and “rewinds” this

adversary whenever its guess was incorrect. Thus we ultimately obtain the much

tighter bound of AdvodherG,H,O ≤ AdvscdhG,Su +qUp ·2−u. Here Su is the SCDH adversary

that is defined for any parameter u ∈ N that bounds its worst case running time,

and qUp is the number of Up queries made by ODHER adversary O.

4 Ratcheted key exchange

Ratcheted key exchange allows users to agree on shared secret keys while pro-

viding very strong security guarantees. In this work we consider a setting that

encompasses two parties, and we assume that only one of them sends key agree-
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Fig. 3. The interaction between ratcheted key exchange algorithms.

ment messages. We call this party a sender, and the other party a receiver. This

model enables us to make the first steps towards capturing the schemes that

are used in the real world messaging applications. Future work could extend our

model to allow both parties to send key agreement messages, and to consider

the group chat setting where multiple users engage in shared conversations.

4.1 Definition of ratcheted key exchange

Consider Fig. 3 for an overview of algorithms that constitute a racheted key

exchange scheme RKE, and the interaction between them. The algorithms are

RKE.IKg, RKE.SKg and RKE.RKg. We will first provide an informal description of

their functionality, and then formalize their syntax and correctness requirements.

Initial key generation algorithm RKE.IKg generates and distributes the fol-

lowing keys: k, stks, stkr , seks, sekr . Output key k is the initial shared secret key

that can be used by both parties for any purpose such as running a symmetric

encryption scheme. Static keys stks and stkr are long-term keys that will not

get updated over time. It is assumed that stks is known to all parties, whereas

stkr contains potentially secret information and will be known only by the re-

ceiver. Session keys seks and sekr contain secret information that is required

for future key exchanges, such as MAC keys (to ensure the authenticity of key

exchange) and temporary secrets (that could be used for the generation of the

next output keys). As a result of running RKE.IKg, the sender gets stks, seks, ks
and the receiver gets stks, stkr , sekr , kr , where ks = kr = k. We use “s” and “r”

as subscripts for output keys and session keys, to indicate that the particular

key is owned by the sender or by the receiver, respectively. Note that normally
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both parties will have the same output key (i.e. ks = kr), but this might not be

true if an attacker succeeds to tamper with the protocol.

Next we define sender’s and receiver’s key generation algorithms RKE.SKg
and RKE.RKg. These algorithms model the key ratcheting process that generates

new session keys and output keys while deleting the corresponding old keys.

Sender’s key generation algorithm RKE.SKg is run whenever the sender wants

to produce a new shared secret key. It takes the sender’s static key stks and the

sender’s session key seks. It returns an updated sender’s session key seks, a new

output key ks, and update information upd. The update information is used by

the receiver to generate the same output key.

Receiver’s key generation algorithm RKE.RKg takes sender’s static key stks,

receiver’s static key stkr , receiver’s session key sekr , update information upd

(received from the sender) and the current shared output key kr . It returns re-

ceiver’s session key sekr , output key kr , and a Boolean flag acc indicating whether

the new keys were generated succesfully. Setting acc = false will generally mean

that the received update information was rejected; our correctness definition will

require that in such case the receiver’s output key kr and the receiver’s session

key sekr should remain unchanged. This requirement is the reason why RKE.RKg
takes the old value of kr as one of its inputs.

Ratcheted key exchange schemes. A ratcheted key exchange scheme RKE specifies

algorithms RKE.IKg, RKE.SKg and RKE.RKg. Associated to RKE is an output

key length RKE.kl ∈ N and sender’s key generation randomness space RKE.RS.

Initial key generation algorithm RKE.IKg returns k, seks, (stks, stkr , sekr), where

k ∈ {0, 1}RKE.kl is an output key, seks is a sender’s session key, and stks, stkr , sekr

are sender’s static key, receiver’s static key and receiver’s session key, respec-

tively. The sender’s and receiver’s output keys are initialized to ks = kr = k.

Sender’s key generation algorithm RKE.SKg takes stks, seks and randomness

r ∈ RKE.RS to return a new sender’s session key seks, a new sender’s out-

put key ks ∈ {0, 1}RKE.kl, and update information upd. Receiver’s key gener-

ation algorithm RKE.RKg takes stks, stkr , sekr ,upd and receiver’s output key

kr ∈ {0, 1}RKE.kl to return a new receiver’s session key sekr , a new receiver’s

output key kr ∈ {0, 1}RKE.kl, and a flag acc ∈ {true, false}.

Correctness of ratcheted key exchange. Consider game RKE-COR of Fig. 4 asso-

ciated to a ratcheted key exchange scheme R and an adversary C, where C is

provided with an access to oracles Up and RatRec.

Oracle Up runs algorithm R.SKg to generate a new sender’s output key ks
along with the corresponding update information upd; it then runs R.RKg with

upd as input to generate a new receiver’s output key kr . It is required that

acc = true and ks = kr at the end of every Up call. This means that if the

receiver uses update information received from the sender (in the correct order),

it is guaranteed to successfully generate the same output keys as the sender.
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Game RKE-CORCR

bad← false
(k, seks, (stks, stkr , sekr))← R.IKg
ks ← k ; kr ← k
CUp,RatRec ; Return (bad = false)

Game RE-CORCR

bad← false
(k, seks, (stks, stkr , sekr))← R.IKg
ks ← k ; kr ← k
CUp,RatRec,Enc ; Return (bad = false)

Up

r←$ R.RS ; (seks, ks,upd)← R.SKg(stks, seks; r)
(sekr , kr , acc)←$ R.RKg(stks, stkr , sekr , upd, kr)
If not ((acc = true) and (ks = kr)) then bad← true

RatRec(upd)

(sek′r , k
′
r , acc)←$ R.RKg(stks, stkr , sekr , upd, kr)

If (acc = false) and not ((k′r = kr) and (sek′r = sekr)) then bad← true

Enc(n,m, h)

c← R.Enc(ks, n,m, h) ; m′ ← R.Dec(kr , n, c, h) ; If (m′ 6= m) then bad← true

Fig. 4. Game RKE-COR defining correctness of ratcheted key exchange scheme R, and
game RE-COR defining correctness of ratcheted encryption scheme R. Oracles Up and
RatRec are used in both games, whereas oracle Enc is only used in game RE-COR.

Oracle RatRec takes update information upd of adversary’s choice and

attempts to run R.RKg with upd (and current receiver’s keys) as input. The

correctness requires that if the receiver’s key update fails (meaning acc = false)

then the receiver’s keys kr , sekr remain unchanged. This means that if receiver’s

attempt to generate new keys is not successful (e.g. if the update information is

corrupted in transition), then the receiver’s key generation algorithm should not

corrupt the receiver’s current keys. This is a usability property that requires that

it is possible to recover from failures, meaning that the receiver can later re-run

its key generation algorithm with the correct update information to successfully

produce its next pair of (session and output) keys.

We consider an unbounded adversary and allow it to call its oracles in

any order. The advantage of C breaking the correctness of R is defined as

AdvrkecorR,C = 1−Pr[RKE-CORCR]. Correctness property requires that AdvrkecorR,C = 0

for all unbounded adversaries C. Note that our definition of the correctness game

with an unbounded adversary is equivalent to a more common correctness def-

inition that would instead explicitly quantify over all randomness choices of all

algorithms. We stress that our correctness definition does not require any secu-

rity properties. In particular, it does not require that the update information is

authenticated because oracle RatRec considers only the case when R.RKg sets

acc = false.

Our definition requires perfect correctness. However, it can be relaxed by re-

quiring that adversary C can only make a bounded number of calls to its oracles,

and further requiring that its advantage of winning the game is negligible.
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4.2 Security of ratcheted key exchange

Ratcheted key exchange attempts to provide strong security guarantees even

in the presence of an attacker that can steal the secrets stored by the sender.

Specifically, we consider an active attacker that is able to intercept and modify

any update information sent from the sender to the receiver. The goal is that the

attacker cannot distinguish the produced output keys from random strings, and

cannot make the two parties agree on output keys that do not match. Further-

more, we desire certain stronger security properties to hold even if the attacker

manages to steal secrets stored by the sender, which we refer to as forward se-

curity and backward security. Forward security requires that such an attacker

cannot distinguish prior keys from random. Backward security requires that the

knowledge of sender’s secrets at the current time period can not be used to dis-

tinguish keys generated (at some near point) in the future from random strings.

Recall that our model is intentionally one-sided; exposure of receiver’s secrets is

not allowed. In particular, compromise of all of the receiver’s secrets will perma-

nently compromise security.

It is clear that if an attacker steals the secret information of the sender, then

it can create its own update information resulting in the receiver agreeing on

a “secret” key that is known by the attacker. It can be difficult to say what

restrictions should be placed on the keys that the attacker makes the receiver

agree to. Is it a further breach of security if the attacker then later causes the

sender and the receiver to agree on the same secret key? What should happen if

the attacker later forwards update information that was generated by the sender

to the receiver?

In our security model we choose to insist on two straightforward policies in

this scenario. The first is that whenever update information not generated by

the sender is accepted by the receiver, even full knowledge of the key that the

receiver has generated should not leak any information about other correctly

generated keys. The second is that at any fixed point in time, if update infor-

mation generated by the sender is accepted by the receiver then the receiver

should agree with the sender on what the corresponding output key is, and the

adversary should not be able to distinguish the shared output key from random.

Key indistinguishability of ratcheted key exchange schemes. Consider game KIND

on the left side of Fig. 5 associated to a ratcheted key exchange scheme RKE and

an adversary D. The advantage of D in breaking the KIND security of RKE is

defined as AdvkindRKE,D = 2 Pr[KINDDRKE]− 1.

The adversary is given the sender’s static key stks as well as access to oracles

RatSend, RatRec, Exp, ChSend, and ChRec. It can call oracle RatSend to

receive update information upd from the sender, and it can call oracle RatRec

to pass arbitrary update information to the receiver. Oracle Exp returns the

current secrets seks, ks possessed by the sender as well as the random seed r

that was used to create the most recent upd in RatSend. Note that according

to our notation convention from Section 2, integer variable r is assumed to be
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initialized to 0 at the beginning of the security game; this value will be returned

if adversary calls Exp prior to RatSend.

The challenge oracles ChSend and ChRec provide the adversary with keys

ks and kr in the real world (when b = 1), or with uniformly random bit strings

in the random world (when b = 0). The goal of the adversary is to distinguish

between these two worlds. To disallow trivial attacks the game makes use of

tables op and auth (initialized as empty) as well as a boolean flag restricted
(initialized as false). Specifically, op keeps track of the oracle calls made by the

adversary and is used to ensure that it can not trivially win the game by calling

oracle Exp to get secrets that were used for one of the challenge queries. Table

auth keeps track of the update information upd generated by RatSend so that

we can set the flag restricted whenever the adversary has taken advantage of an

Exp query to send maliciouly generated upd to RatRec. In this case we do

not expect the receiver’s key kr to look random or match the sender’s key ks so

ChRec is “restricted” and will return kr in both the real and random worlds.

Authenticity of key exchange. Our security definition implicitly requires the au-

thenticity of key exchange. Specifically, assume that an adversary can violate

the authenticity in a non-trivial way, meaning without using Exp oracle to ac-

quire the relevant secrets. This means that the adversary can construct malicious

update information upd∗ that is accepted by the receiver, while not setting the

restricted flag to true. By making the receiver accept upd∗, the adversary achieves

the situation when the sender and the receiver produce different output keys

ks 6= kr . Now adversary can call oracles ChSend and ChRec to get both keys

and compare them to win the game. In the real world (b = 1) the returned keys

will be different, whereas in the random world (b = 0) they will be the same. We

formalize this attack in [7].

Allowing recovery from failures. Consider a situation when an attacker steals all

sender’s secrets, and hence has an ability to impersonate the sender. It can drop

all further packets sent by the sender and instead use the exposed secrets to

agree on its own shared secret keys with the receiver. In the security game this

corresponds to the case when the adversary calls Exp and then starts calling

oracle RatRec with maliciously generated update information upd. This sets

the restricted flag to true, making the ChRec oracle always return the real

receiver’s key kr regardless of the value of game’s challenge bit b. The design

decision at this point is – do we want to allow the game to recover from this

state, meaning should the restricted flag be ever set back to false?

Our decision on this matter was determined by the two “policies” discussed

above. As long as the adversary keeps sending maliciously generated update

information upd, the restricted flag will remain true. In this case, the real re-

ceiver’s key kr returned from ChRec should be of no help in distinguishing the

real sender’s key ks from random, as desired from the first policy. To match

the second policy, the next time adversary forwards the upd generated by the
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Game KINDDRKE

b←$ {0, 1} ; is ← 0 ; ir ← 0
(k, seks, (stks, stkr , sekr))←$ RKE.IKg
ks ← k ; kr ← k
b′←$DRatSend,RatRec,Exp,ChSend,ChRec(stks)
Return (b′ = b)

RatSend

r←$ RKE.RS
(seks, ks, upd)← RKE.SKg(stks, seks; r)
auth[is]← upd ; is ← is + 1
Return upd

RatRec(upd)

z←$ RKE.RKg(stks, stkr , sekr , upd, kr)
(sekr , kr , acc)← z
If not acc then return false
If op[ir ] = “exp” then restricted← true
If upd = auth[ir ] then restricted← false
ir ← ir + 1 ; Return true

Exp

If op[is] = “ch” then return ⊥
op[is]← “exp” ; Return (r, seks, ks)

ChSend

If op[is] = “exp” then return ⊥
op[is]← “ch”

If rkey[is] =⊥ then rkey[is]←$ {0, 1}RKE.kl
If b = 1 then return ks else return rkey[is]

ChRec

If restricted then return kr

If op[ir ] = “exp” then return ⊥
op[ir ]← “ch”

If rkey[ir ] =⊥ then rkey[ir ]←$ {0, 1}RKE.kl
If b = 1 then return kr else return rkey[ir ]

Game RAEARE

b←$ {0, 1} ; is ← 0 ; ir ← 0
(k, seks, (stks, stkr , sekr))←$ RE.IKg
ks ← k ; kr ← k
b′←$ARatSend,RatRec,Exp,Enc,Dec(stks)
Return (b′ = b)

RatSend

r←$ RE.RS
(seks, ks, upd)← RE.SKg(stks, seks; r)
auth[is]← upd ; is ← is + 1
Return upd

RatRec(upd)

z←$ RE.RKg(stks, stkr , sekr , upd, kr)
(sekr , kr , acc)← z
If not acc then return false
If op[ir ] = “exp” then restricted← true
If upd = auth[ir ] then restricted← false
ir ← ir + 1 ; Return true

Exp

If op[is] = “ch” then return ⊥
op[is]← “exp” ; Return (r, seks, ks)

Enc(n,m, h)

If op[is] = “exp” then return ⊥
op[is]← “ch”
If (is, n) ∈ U then return ⊥
c1 ← RE.Enc(ks, n,m, h)

c0←$ {0, 1}RE.cl(|m|) ; U ← U ∪ {(is, n)}
S ← S ∪ {(is, n, cb, h)}
Return cb

Dec(n, c, h)

If restricted then
Return RE.Dec(kr , n, c, h)

If op[ir ] = “exp” then return ⊥
op[ir ]← “ch”
If (ir , n, c, h) ∈ S then return ⊥
m← RE.Dec(kr , n, c, h)
If b = 1 then return m else return ⊥

Fig. 5. Games defining key indistinguishability of ratcheted key exchange scheme RKE,
and authenticated encryption security of ratcheted encryption scheme RE.

sender (i.e. upd = auth[ir ]) to RatRec, if upd is accepted by the receiver then

the restricted flag is set back to false. This makes the output of ChRec again
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depend on the challenge bit, thus requiring kr to be equal to ks and indistin-

guishable from random.

Alternative treatment of restricted flag. Our security definition of KIND can be

strengthened by making it never reset the restricted flag back to false. Instead, the

game could require that if the adversary exposes sender’s secrets and uses them to

agree on its own shared output key with the receiver, then all the communication

between the sender and the receiver should be disrupted. Meaning that any

future attempt to simply forward sender’s update information upd to the receiver

should result in RatRec rejecting it. Otherwise adversary would be defined to

win the game. This can be formalized in a number of ways. Our construction of

ratcheted key exchange from Section 4.3 should be secure for a stronger definition

like that, but would likely require stronger assumptions to prove.

4.3 Construction of a ratcheted key exchange scheme

In this section we construct a ratcheted key exchange scheme, and discuss some

design considerations by presenting a number of attacks that our scheme man-

ages to evade. In Section 4.4 we will deduce a bound on the success of any

adversary attacking the KIND security of our scheme. The idea of our construc-

tion is as follows. We let the sender and the receiver perform the Diffie-Hellman

key exchange. The receiver’s static key contains a secret DH exponent stkr = y

and the sender’s static key contains the corresponding public value stks = gy

(working in some cyclic group with generator g). In order to generate a new

shared secret key, the sender picks its own secret exponent x and computes the

output key (roughly) as ks = H(stkx
s ) = H(gxy), where H is some hash func-

tion. The sender then sends update information containing gx to the receiver,

enabling the latter to compute the same output key. In order to ensure the se-

curity of the key exchange, both parties use a shared MAC key, meaning the

update information also includes a tag of gx.

Note that the used MAC key should be regularly renewed in order to ensure

that the scheme provides backward security against exposures. As a result, the

output of applying the hash function on gxy is also used to derive a new MAC

key. The initial key generation provides both parties with a shared MAC key and

a shared secret key that are sampled uniformly at random. The formal definition

of our key exchange scheme is as follows.

Ratcheted key exchange scheme RATCHET-KE. Let G be a cyclic group of order

p ∈ N, and let G∗ denote the set of its generators. Let F be a function family such

that F.In = G. Let H be a function family such that H.In = {0, 1}∗ and H.ol >
F.kl. We build a ratcheted key exchange scheme RKE = RATCHET-KE[G,F,H]

as defined in Fig. 6, with RKE.kl = H.ol− F.kl and RKE.RS = Zp.

Design considerations. We will examine some of the design decisions of RKE by

considering several ratcheted key exchange schemes that are weakened versions
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Algorithm RKE.IKg

k←$ {0, 1}RKE.kl
fk←$ {0, 1}F.kl
hk←$ {0, 1}H.kl

g←$ G∗ ; y←$ Zp

stks ← (hk, g, gy) ; stkr ← y
seks ← (0, fk)
sekr ← (0, fk)
z ← (k, seks, (stks, stkr , sekr))
Return z

Algorithm RKE.SKg((hk, g, Y ), (is, fks); r)

x← r ; X ← gx ; σ ← F.Ev(fks, X)
s← H.Ev(hk, is ‖σ ‖X ‖Y x) ; ks ← s[1 . . .RKE.kl]
fks ← s[RKE.kl + 1 . . .RKE.kl + F.kl]
Return ((is + 1, fks), ks, (X,σ))

Algorithm RKE.RKg((hk, g, Y ), y, (ir , fkr), (X,σ), kr)

acc ← (σ = F.Ev(fkr , X))
If not acc then return ((ir , fkr), kr , acc)
s← H.Ev(hk, ir ‖σ ‖X ‖Xy) ; kr ← s[1 . . .RKE.kl]
fkr ← s[RKE.kl + 1 . . .RKE.kl + F.kl]
Return ((ir + 1, fkr), kr , acc)

Fig. 6. Ratcheted key exchange scheme RKE = RATCHET-KE[G,F,H].

Adversary D1(stks)

(hk, g, Y )← stks

x←$ Zp ; RatRec(gx)
kr ← ChRec
k′r ← H.Ev(hk, Y x)
If k′r = kr then return 1
Else return 0

Adversary D2(stks)

(hk, g, Y )← stks

x←$ Zp ; RatRec(gx)
kr ← ChRec
(r, fks, ks)← Exp
k ‖ fk ← H.Ev(hk, fks ‖Y x)
If k = kr then return 1
Else return 0

Adversary D3(stks)

upd0 ← RatSend ; RatRec(upd0) ; ks ← ChSend
upd1 ← RatSend ; RatRec(upd1)
(r, fks, ks)← Exp ; (X0, σ0)← upd0

σ ← F.Ev(fks, X0) ; upd2 ← (X0, σ)
RatRec(upd2) ; kr ← ChRec
If ks = kr then return 1 else return 0

Adversary D4(stks)

(r, seks, ks)← Exp
((i∗s , fk

∗
s ), k∗s , upd

∗)←$ RKE.SKg(stks, seks)
upd0 ← RatSend ; RatRec(upd∗)
upd1 ← RatSend ; (X,σ)← upd1

σ∗ ← F.Ev(fk∗s , X) ; upd∗ ← (X,σ∗) ; RatRec(upd∗)
ks ← ChSend ; kr ← ChRec
If ks = kr then return 1 else return 0

Fig. 7. Attacks against insecure variants of RKE = RATCHET-KE[G,F,H].

of RKE, and corresponding adversaries that are able to successfully attack these

schemes. The first two will omit the use of a MAC and thus be vulnerable

to attacks where the adversary sends its own update information to RatRec

without having called Exp first (though the second will have to make an expose

query afterwards). In the latter two examples we consider variations of RKE that

use fewer inputs to the hash function. Our adversaries against these schemes

thereby justify the choices we made for the input to the hash function. For the

sake of compactness we omit showing that the constructed KIND adversaries

have access to oracles RatSend,RatRec,Exp,ChSend,ChRec, and we omit

showing that oracle calls return any output whenever this output is not used by

the adversary.
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Schemes without a MAC. First let us consider changing RKE to not use its MAC

F and instead simply use an unauthenticated gx as its update information. For

simplicity we will additionally assume that the only input to H is a group element

gxy. Consider adversary D1 shown in Fig. 7. It makes a RatRec query with a

gx of its own choice, then calls oracle ChRec and checks whether the key it

received was real or random by comparing it to H(hk, Y x). Referring to this

weakened scheme as RKE1, it is clear that AdvkindRKE1,D1
= 1− 2−RKE.kl.

Besides using a MAC, another way to prevent the specific attack given above

would be to put a shared secret key fk into the hash function along with gxy for

every update. Let RKE2 denote a version of RKE that still does not use a MAC

but updates its keys with the hash function via k ‖ fk ← H.Ev(hk, fk ‖ gxy). An

adversary like D1 will not work against RKE2 because computing the new value

of k requires knowing the secret value fk. But there is still a simple attack against

RKE2. Consider adversary D2 shown in Fig. 7. It works in the same way as D1

except it needs to make an expose query to obtain fks before it can compute k

using the hash function. One subtle point to notice is that it is important that D2

calls Exp after its call to RatRec. Otherwise the restricted flag in KIND would

have been set to true and ChRec would always return the real key (instead of

returning a randomly chosen key when the challenge bit in KIND is set to 0).

Having noticed this it is clear that AdvkindRKE2,D2
= 1− 2−RKE.kl.

In [7] we give an attack against any ratcheted encryption scheme, showing

that if it is possible for an adversary to generate its own upd that the receiver

will accept, than the adversary can use this ability to successfully attack the

ratcheted encryption scheme. This proves that some sort of authentication is

required for the update information if we want a scheme to be secure.

Authenticating the update information in the Double Ratchet algorithm. The de-

fault version of the Double Ratchet algorithm [20, 16] — which is used in the

Signal protocol [22] — does not authenticate the update information. A single,

one-sided version of this algorithm would evolve its keys in a way that is vaguely

similar to the RKE2 scheme discussed above, so it would not meet our security

definition. This does not immediately lead to any real-world attacks, and could

mean that our security definition is stronger than necessary. Furthermore, [16]

describes the header encryption variant of the Double Ratchet algorithm. A

single, one-sided version of this algorithm provides some form of authentication

for update information and might meet our security definition.

Necessity of inputs to H. In the construction of RATCHET-KE, function H(hk, ·)
takes a string w = i ‖σi ‖ gxi ‖ gxiy as input. The most straightforward part

of w is gxiy, which provides unpredictability to ensure that the generated keys

are indistinguishable from uniformly random strings. String w also includes the

counter i, and the corresponding update information updi = (gxi , σi). The in-

clusion of counter i in w ensures that an attacker cannot perform a “key-reuse”

attack to make the receiver generate an output key that was already used before;
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we provide an example of such attack below. We also describe a “key-collision”

attack against the KIND security of the scheme that is prevented by including

updi in w. Finally, note that our concatenation operator ‖ is defined to produce

uniquely decodable strings, so the mapping of (i, σi, g
xi , gxiy) into string w is

injective; this helps to avoid attacks that take advantage of malleable encodings.

Key-reuse attack. Game KIND makes sure that if challenge keys are acquired

from the sender and the receiver for the same value of i (i.e. is = ir), then these

keys are consistent even if they are picked randomly. Otherwise it would be

trivial to attack any ratcheted key exchange scheme. However, the game does not

maintain such consistency between different values of i. Let RKE3 denote RKE if

it was changed to use only gxy as input to the hash function. Consider the “key-

reuse” attack D3 shown in Fig. 7 that exploits the above as follows. Adversary

D3 starts by calling RatSend, RatRec and ChSend to get a sender’s challenge

key ks. Note that if the challenge bit is b = 1 in game KIND, then ks equals

to H.Ev(hk, Y x) for some exponent x generated during RatSend. Next, the

adversary calls both RatSend and RatRec to ratchet the key forward, in

order to be able to make Exp queries. It calls Exp to get fks so that it can re-

authenticate the same value of X = gx that was used for the sender’s challenge

query. Then it sends X and its new MAC tag σ to the receiver, which sets the

restricted flag true. The latter means that calling ChRec results in getting the

receiver’s real output key regardless of the challenge bit. If this key is equal to

the previously learned sender’s challenge key then it is highly likely that the

challenge bit b equals 1, otherwise it must be 0. This gives the advantage of

AdvkindRKE3,D3
= 1− 2−RKE.kl.

Key-collision attacks. We now describe the final attack idea that does not work

against our construction but would have been possible if the update informa-

tion upd = (gxi , σ) was not included in the hash function. Consider changing

RATCHET-KE[G, F, H] to have H(hk, ·) take inputs of the form w = i ‖ gxiy. Call

this scheme RKE4. This enables the following attack, as defined by the adversary

D4 in Fig. 7. Assume that an attacker compromises the sender’s keys ks and fks

and immediately uses the compromised authenticity to establish new keys k∗s
and fk∗s , shared between the attacker and the receiver. Now let upd = (X,σ)

be the next update information produced by the sender. The attacker can con-

struct malicious update information upd∗ = (X,σ∗), where σ∗ = F.Ev(fk∗s , X),

and send it to the receiver. The receiver would accept upd∗ and use the output

of H.Ev(hk, i ‖Xy) as new key material, resulting in the same keys as those gen-

erated by the sender. Now the the receiver and the sender share an output key,

while the restricted flag is set true, so checking whether the output of the two

challenge oracles is the same yields a good attack.

We will not give the exact advantage of D4. If σ∗ and σ happen to be exactly

the same, then the restricted flag would be set back to false and the attack would

fail because the two keys received from the sender’s and the reciever’s challenge
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oracles would be the same regardless of game’s challenge bit. But if σ∗ = σ was

likely to occur then the ratcheted key exchange scheme would be insecure for

other reasons. One could formalize this by building a second adversary against

RKE4 to show that one of the two adversaries must have a high advantage. For

the purpose of this section we simply note that this event is extremely unlikely

to occur for any typical choice of hash function and MAC.

4.4 Security proof for our ratcheted key exchange scheme

In previous section we showed that several variations of our ratcheted key ex-

change scheme RKE = RATCHET-KE[G, F, H] are insecure. In this section we

will prove that our scheme is secure. We now present our theorem bounding the

advantage of an adversary breaking the KIND-security of RKE to the SUFCMA-

security of F and to the ODHE-security of G,H.

Theorem 1. Let G be a cyclic group of order p ∈ N, and let G∗ denote the

set of its generators. Let F be a function family such that F.In = G. Let H
be a function family such that H.In = {0, 1}∗ and H.ol > F.kl. Let RKE =

RATCHET-KE[G,F,H]. Let D be an adversary attacking the KIND-security of

RKE that makes qRatSend queries to its RatSend oracle, qRatRec queries to its

RatRec oracle, qExp queries to its Exp oracle, qChSend queries to its ChSend

oracle, and qChRec queries to its ChRec oracle. Then there is an adversary

F attacking the SUFCMA-security of F, and adversaries O1,O2 attacking the

ODHE-security of G,H, such that

AdvkindRKE,D ≤ 2·(qRatSend+1) · Advsufcma
F,F + 2·qRatSend ·AdvodheG,H,O1

+ 2·AdvodheG,H,O2
.

Adversary F makes at most qRatSend queries to its Tag oracle and qRatRec

queries to its Verify oracle. Adversary O1 makes at most qRatSend queries to

its Up oracle, 2 queries to its Ch oracle, qExp queries to its Exp oracle, and

qRatSend + qRatRec − 2 queries to its Hash oracle. Adversary O2 makes at most

qRatSend queries to its Up oracle, qRatSend+qRatRec queries to its Ch oracle,qExp
queries to its Exp oracle, and qRatRec + qExp queries to its Hash oracle. Each

of F , O1, O2 has a running time approximately that of D.

The proof requires careful attention to detail due to subtleties. The most natural

proof method may be to proceed one RatSend query at a time, first replacing

the output of the hash function with random bits (unless an expose happens) and

then using the security of the MAC to argue that the adversary cannot produce

any modified update information that will be accepted by the receiver without

exposing. But there is a subtle flaw with this proof technique. The adversary

may attempt to create a forged upd before it has decided whether to expose. In

this case we need to check the validity of their forgery with a MAC key, before

we know whether it should be random or a valid output of the hash function.

To avoid this problem we first use a hybrid argument to show that no such

forgery is possible before replacing all non-exposed keys with random. We pro-

ceed one RatSend query at a time, showing that we can temporarily replace the
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key with random when checking the sort of attempted forgery described above.

This then allows us to use the security of the MAC to assume that the forgery

attempt failed without us having to commit to a key to verify with. We thus are

able to show one step at a time that all such forgery attempts can be assumed

to fail without having to check.

Once this is done, we are never forced to use a key before the adversary has

committed to whether it will perform a relevant exposure of the secret state.

As such we can safely delay our decision of whether or not the key should be

replaced by random values until it is known whether an expose will happen. This

allows us to use the ODHE security of H and G to argue that we can replace all

of the generated keys with randomness, only using H to generate the real keys

at the last moment whenever an expose query is made.

Some explanation has been removed from the proof below due to lack of

space. A more detailed proof is available in the full version of the paper [7].

Proof (Theorem 1). Consider the sequence of games shown in Fig. 8. Lines not

annotated with comments are common to all games. G0,0 is identical to KINDDRKE
with the code of RKE inserted. Additionally, a flag unchanged has been added.

This flag keeps track of whether the most recent update information was passed

unchanged from the sender to the receiver and thus the keys kr and fkr should

be indistinguishable from random to adversary D. In this case, the adversary

should not be able to create update information upd that is accepted by RatRec

unless it calls Exp or forwards along the upd generated by the sender. We prove

this with a hybrid argument over the games G0,0, . . . ,G0,qRatSend+1. Game G0,j

assumes forgery attempts fail for the first j keys, sets a bad flag if D is successful

at forging against the (j+1)-th key, and performs normally for all following keys.

Game G∗0,j is the same except it also acts as if D failed to forge even when the bad
flag is set. Thus, from the perpective of an adversary G∗0,j is simply assumping

that forgery attempts fail for the first j+1 keys, making it equivalent to G0,j+1.

Thus for all j ∈ {0, . . . , qRatSend},
Pr[G0,0] = Pr[KINDDRKE] and Pr[G∗0,j ] = Pr[G0,j+1].

Furthermore, for all j ∈ {1, . . . , qRatSend}, games G0,j and G∗0,j are identical

until bad, so the fundamental lemma of game playing [6] gives:

Pr[G0,j ]− Pr[G∗0,j ] ≤ Pr[badG∗0,j ],

where Pr[badQ] denotes the probability of setting the bad flag in game Q.

We cannot directly bound Pr[badG∗0,j ] using the security of F because the key

being used for F is chosen as output from H instead of uniformly at random,

consider the relationship between games G∗0,j and Ij (the latter also shown in

Fig. 8). Game Ij is identical to G∗0,j , except that in Ij the output of hash function

H is replaced with a uniformly random string whenever i+ 1 = j (thus the key

used to check whether bad should be set when i = j is uniformly random).
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Games G0,j ,G
∗
0,j ,Ij

b←$ {0, 1} ; is ← 0 ; ir ← 0 ; unchanged← true ; rand←$ {0, 1}H.ol

ks ←$ {0, 1}RKE.kl ; kr ← ks ; fks ←$ {0, 1}F.kl ; fkr ← fks

hk←$ {0, 1}H.kl ; g←$ G∗ ; y←$ Zp ; stks ← (hk, g, gy)

b′←$DRatSend,RatRec,Exp,ChSend,ChRec(stks) ; Return (b′ = b)

RatSend

If op[is] = ⊥ then op[is]← “ch”

x←$ Zp ; σ ← F.Ev(fks, g
x) ; upd ← (gx, σ)

s← H.Ev(hk, is ‖σ ‖ gx ‖ gxy)

If is + 1 = j then s← rand // Ij
auth[is]← upd ; is ← is + 1 ; ks ← s[1 . . .RKE.kl]

fks ← s[RKE.kl + 1 . . .RKE.kl + F.kl] ; Return upd

RatRec(upd)

(X,σ)← upd

If unchanged and (op[ir ] 6= “exp”) and (upd 6= auth[ir ]) then

If ir < j then return false

If ir = j then

If σ 6= F.Ev(fkr , X) then return false

bad← true

Return false // G∗0,j ,Ij
If σ 6= F.Ev(fkr , X) then return false

If op[ir ] = “exp” then restricted← true

If upd = auth[ir ] then

unchanged← true ; restricted← false

Else

unchanged← false

s← H.Ev(hk, ir ‖σ ‖X ‖Xy)

If ir + 1 = j then s← rand // Ij
ir ← ir + 1 ; kr ← s[1 . . .RKE.kl]

fkr ← s[RKE.kl + 1 . . .RKE.kl + F.kl] ; Return true

Exp

If op[is] = “ch” then return ⊥
op[is]← “exp” ; Return (x, (is, fks), ks)

ChSend

If op[is] = “exp” then return ⊥
op[is]← “ch”

If rkey[is] =⊥ then rkey[is]←$ {0, 1}RKE.kl

If b = 1 then return ks else return rkey[is]

ChRec

If restricted then return kr

If op[ir ] = “exp” then return ⊥
op[ir ]← “ch”

If rkey[ir ] =⊥ then rkey[ir ]←$ {0, 1}RKE.kl

If b = 1 then return kr else return rkey[ir ]

Fig. 8. Games G0,j ,G
∗
0,j , Ij for proof of Theorem 1.
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Games G1–G2

b←$ {0, 1} ; is ← 0 ; ir ← 0 ; unchanged← true

ks[0]←$ {0, 1}RKE.kl ; kr ← ks[0] ; fks[0]←$ {0, 1}F.kl ; fkr ← fks[0]

hk←$ {0, 1}H.kl ; g←$ G∗ ; y←$ Zp ; stks ← (hk, g, gy)

b′←$DRatSend,RatRec,Exp,ChSend,ChRec(stks) ; Return (b′ = b)

RatSend

If op[is] = ⊥ then op[is]← “ch”

x←$ Zp ; σ ← F.Ev(fks[is], g
x) ; upd ← (gx, σ)

s← H.Ev(hk, is ‖σ ‖ gx ‖ gxy) // G1

s←$ {0, 1}H.ol // G2

auth[is]← upd ; is ← is + 1 ; ks[is]← s[1 . . .RKE.kl]

fks[is]← s[RKE.kl + 1 . . .RKE.kl + F.kl] ; Return upd

RatRec(upd)

(X,σ)← upd

If unchanged and (op[ir ] 6= “exp”) and (upd 6= auth[ir ]) then

Return false

If unchanged then fkr ← fks[ir ]

If (σ 6= F.Ev(fkr , X)) then return false

If op[ir ] = “exp” then restricted← true

If upd = auth[ir ]

unchanged← true ; restricted← false ; ir ← ir + 1

Else

unchanged← false

s← H.Ev(hk, ir ‖σ ‖X ‖Xy)

ir ← ir + 1 ; kr ← s[1 . . .RKE.kl]

fkr ← s[RKE.kl + 1 . . .RKE.kl + F.kl]

Return true

Exp

If op[is] = “ch” then return ⊥
op[is]← “exp” ; (X,σ)← auth[is − 1]

s← H.Ev(hk, (is − 1) ‖σ ‖X ‖Xy) ; ks[is]← s[1 . . .RKE.kl]

fks[is]← s[RKE.kl + 1 . . .RKE.kl + F.kl]

Return (x, (is, fks[is]), ks[is])

ChSend

If op[is] = “exp” then return ⊥
op[is]← “ch”

If rkey[is] =⊥ then rkey[is]←$ {0, 1}RKE.kl

If b = 1 then return ks[is] else return rkey[is]

ChRec

If restricted then return kr

If op[ir ] = “exp” then return ⊥
op[ir ]← “ch”

If rkey[ir ] =⊥ then rkey[ir ]←$ {0, 1}RKE.kl

If unchanged then kr ← ks[ir ]

If b = 1 then return kr else return rkey[ir ]

Fig. 9. Games G1,G2 for proof of Theorem 1.
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Note that when j = 0 the games G∗0,0 and I0 are identical so Pr[badG∗0,0 ] =

Pr[badI0 ]. For other values of j we relate the probability that these games set

bad to the advantage of the oracle Diffie-Hellman adversary O1 that is defined in

Fig. 10. Adversary O1 picks j′ at random and then uses its oracles to simulate

G∗0,j or Ij . Then if the bad flag is set it sets a bit b′ equal to 1. This bit is

ultimately returned by O. Thus the probability that O outputs 1 is exactly the

probability that the bad flag would be set in the game it is simulating.

Let bodhe denote the challenge bit in game ODHEO1

G,H, and let b′ denote the

corresponding guess made by the adversary O1. Let j′ be the value sampled in

the first step of O1. For each choice of j′, adversary O1 perfectly simulates the

view of D in either G∗0,j′ or Ij′ depending on whether its Ch oracle is returning

real output of the hash function or a random value. If D performs an action

that would prevent bad from being set (such as calling Exp when is = j′) then

O1 no longer perfectly simulates the view of D, but it does not matter for our

analysis because we already know bad (and thus b′) will not be set. So for all

j ∈ {1, . . . , qRatSend}, we have

Pr[badG∗0,j ] = Pr[ b′ = 1 | bodhe = 1, j′ = j ],

Pr[badIj ] = Pr[ b′ = 1 | bodhe = 0, j′ = j ].

Combining the above for all values of j (using Pr[badG∗0,0 ] = Pr[badGis ]) gives

AdvodheG,H,O1
= Pr[ b′ = 1 | bodhe = 1 ]− Pr[ b′ = 1 | bodhe = 0 ]

=

qRatSend∑
j=1

Pr[j = j′](Pr[badG∗0,j ]− Pr[badIj ]) =

qRatSend∑
j=0

Pr[badG∗0,j ]− Pr[badIj ]

qRatSend
.

Note that we were able to change the starting index of j for that last summation

because Pr[badG∗0,0 ] = Pr[badI0 ], as we noted before.

To complete the hybrid argument part of the proof, we bound the prob-

ability that bad gets set true in Ij . Adversary F (shown in Fig. 11) guesses

when D will first create a forgery and uses that to create its own forgery.

Thus for j ∈ {0, . . . , qRatSend}, Pr[badIj ] ≤ Pr[ SUFCMAFF | j′ = j ] which gives

Advsufcma
F,F ≥ (1/(qRatRec + 1))

∑qRatRec

j=0 Pr[badIj ].

The above work allows us to transition to game G0,qRatSend+1 as shown in the

following equations. From there we will move to games G1,G2 shown in Fig. 9.

All of the summations below are from j = 0 to j = qRatSend.

Pr[KINDDRKE] = Pr[G0,0] = Pr[G1,qRatSend
] +

∑
j Pr[G0,j ]− Pr[G∗0,j ]

≤ Pr[G1,qRatSend
] +

∑
j Pr[badG∗0,j ]

= Pr[G1,qRatSend
] + qRatSend · AdvodheG,H,O1

+
∑

j Pr[badIj ]
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Adversary OUp,Ch,Exp,Hash
1 (hk, g, Y )

j′←$ {1, . . . , qRatSend} ; b←$ {0, 1} ; b′ ← 0
is ← 0 ; ir ← 0 ; unchanged← true
ks ←$ {0, 1}RKE.kl ; kr ← ks

fks ←$ {0, 1}F.kl ; fkr ← fks ; stks ← (hk, g, Y )
DRatSendSim,RatRecSim,ExpSim,ChSendSim,ChRecSim(stks)
Return b′

RatRecSim(upd)

(X,σ)← upd
forge← ((op[ir ] 6= “exp”) ∧ (upd 6= auth[ir ]))
If unchanged and forge then

If ir < j′ then return false
If ir = j′ then

If σ 6= F.Ev(fkr , X) then return false
bad← true ; b′ ← 1 ; Return false

If σ 6= F.Ev(fkr , X) then return false
If op[ir ] = “exp” then restricted← true
If upd = auth[ir ] then

unchanged← true ; restricted← false
Else unchanged← false
If ir + 1 6= j′ then s← Hash(ir , σ ‖X,X)
Else s← Ch(σ ‖X)
ir ← ir + 1 ; kr ← s[1 . . .RKE.kl]
fkr ← s[RKE.kl + 1 . . .RKE.kl + F.kl]
Return true

ExpSim

If op[is] = “ch” then return ⊥
op[is]← “exp” ; x← Exp
Return (x, (is, fks), ks)

RatSendSim

If op[is] = ⊥ then op[is]← “ch”
X ← Up ; σ ← F.Ev(fks, X)
upd ← (X,σ)
If is + 1 6= j′ then
s← Hash(is, σ ‖X,X)

Else
s← Ch(σ ‖X)

auth[is]← upd ; is ← is + 1
ks ← s[1 . . .RKE.kl]
fks ← s[RKE.kl + 1 . . .RKE.kl + F.kl]
Return upd

ChSendSim

If op[is] = “exp” then return ⊥
op[is]← “ch”
If rkey[is] =⊥ then

rkey[is]←$ {0, 1}RKE.kl
If b = 1 then return ks

Else return rkey[is]

ChRecSim

If restricted then return kr

If op[ir ] = “exp” then return ⊥
op[ir ]← “ch”
If rkey[ir ] =⊥ then

rkey[ir ]←$ {0, 1}RKE.kl
If b = 1 then return kr

Else return rkey[ir ]

Fig. 10. Adversary O1 for proof of Theorem 1.

≤ qRatSend · AdvodheG,H,O1
+ (qRatSend + 1) · Advsufcma

F,F + Pr[G1,qRatSend
].

Game G1 is identical to G0,qRatSend+1, but has been rewritten to allow make

the final game transition of our proof easier to follow. The complicated, nested

if-condition at the beginning of RatRec has been simplified because ir <

qRatSend+1 always holds when unchanged is true. Additionally, when unchanged is

true (and thus upd has been directly forwarded between RatSend and RatRec

without being modified) we delay setting kr , fkr until they are about to be used,

at which point they are set to match the appropriate ks, fks that have been

stored in a table. We have Pr[G0,qRatSend+1] = Pr[G1].

Games G1 and G2 differ only in that, in G2, values of k0 and fks are chosen

at random instead of as the output of H (unless Exp is called in which case we

reset them to the correct output of H). We bound the difference between Pr[G1]
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Adversary FTag,Verify

j′←$ {0, . . . , qRatSend} ; b←$ {0, 1}
is ← 0 ; ir ← 0 ; unchanged← true
rand←$ {0, 1}H.ol ; ks ←$ {0, 1}RKE.kl ; kr ← ks

fks ←$ {0, 1}F.kl ; fkr ← fks ; hk←$ {0, 1}H.kl
g←$ G∗ ; y←$ Zp ; stks ← (hk, g, gy)
DRatSendSim,RatRecSim,ExpSim,ChSendSim,ChRecSim(stks)

RatRecSim(upd)

(X,σ)← upd
forge← ((op[ir ] 6= “exp”) ∧ (upd 6= auth[ir ]))
If unchanged and forge then

If ir < j′ then return false
If ir = j′ then

If not Verify(X,σ) then return false
bad← true
Return false

If (ir = j′) then
If not Verify(X,σ) then return false

Else
If σ 6= F.Ev(fkr , X) then return false

If op[ir ] = “exp” then restricted← true
If upd = auth[ir ] then

unchanged← true ; restricted← false
Else

unchanged← false
s← H.Ev(hk, ir ‖σ ‖X ‖Xy)
If ir + 1 = j then s← rand
ir ← ir + 1 ; kr ← s[1 . . .RKE.kl]
fkr ← s[RKE.kl + 1 . . .RKE.kl + F.kl]
Return true

RatSendSim

If op[is] = ⊥ then op[is]← “ch”
x←$ Zp

If is = j′ then σ ← Tag(gx)
Else σ ← F.Ev(fks, g

x)
s← H.Ev(hk, is ‖σ ‖ gx ‖ gxy)
If is + 1 = j then s← rand
upd ← (gx, σ) ; auth[is]← upd
is ← is + 1 ; ks ← s[1 . . .RKE.kl]
fks ← s[RKE.kl + 1 . . .RKE.kl + F.kl]
Return upd

ExpSim

If op[is] = “ch” then return ⊥
op[is]← “exp”
Return (x, (is, fks), ks)

ChSendSim

If op[is] = “exp” then return ⊥
op[is]← “ch”
If rkey[is] =⊥ then

rkey[is]←$ {0, 1}RKE.kl
If b = 1 then return ks

Else return rkey[is]

ChRecSim

If restricted then return kr

If op[ir ] = “exp” then return ⊥
op[ir ]← “ch”
If rkey[ir ] =⊥ then

rkey[ir ]←$ {0, 1}RKE.kl
If b = 1 then return kr

Else return rkey[ir ]

Fig. 11. Adversary F for proof of Theorem 1.

and Pr[G2] by the advantage of the Diffie-Hellman adversary O2 that is defined

in Fig. 12. Specifically, we have AdvodheG,H,O2
= Pr[G1]− Pr[G2]. As a result of the

above and our previous sequence of inequalities, we get:

Pr[KINDDRKE] ≤ qRatSend · AdvodheG,H,O1
+ (qRatSend + 1) · Advsufcma

F,F + Pr[G1]

= qRatSend · AdvodheG,H,O1
+ (qRatSend + 1) · Advsufcma

F,F + AdvodheG,H,O2
+ Pr[G2].

Finally, Pr[G2] = 1/2 because the view of D is independent of b in G2. This

yields the claimed bound on the advantage of D. The bounds on the number of

oracle queries made by the adversaries are obtained by examining their code. ut
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Adversary OUp,Ch,Exp,Hash
2 (hk, g, Y )

b←$ {0, 1} ; is ← 0 ; ir ← 0 ; unchanged← true
ks[0]←$ {0, 1}RKE.kl ; kr ← ks[0]

fks[0]←$ {0, 1}F.kl ; fkr ← fks[0] ; hk←$ {0, 1}H.kl
g←$ G∗ ; y←$ Zp ; stks ← (hk, g, Y )
b′←$DRatSendSim,RatRecSim,ExpSim,ChSendSim,ChRecSim(stks)
If (b′ = b) then return 1 else return 0

RatSendSim

If op[is] = ⊥ then
op[is]← “ch”
If is 6= 0 then

(X,σ)← auth[is − 1] ; s← Ch(σ||X)
SaveKeys(is, s)

X ← Up ; σ ← F.Ev(fks[is], X) ; upd ← (X,σ)
auth[is]← upd ; is ← is + 1 ; Return upd

RatRecSim(upd)

(X,σ)← upd
forge← ((op[ir ] 6= “exp”) ∧ (upd 6= auth[ir ]))
If unchanged and forge then return false
If unchanged then fkr ← fks[ir ]
If (σ 6= F.Ev(fkr , X)) then return false
If op[ir ] = “exp” then restricted← true
If upd = auth[ir ]

unchanged← true ; restricted← false ; ir ← ir + 1
Else

unchanged← false ; s← Hash(ir , σ||X,X)
ir ← ir + 1 ; kr ← s[1 . . .RKE.kl]
fkr ← s[RKE.kl + 1 . . .RKE.kl + F.kl]

Return true

SaveKeys(i, s)

ks[i]← s[1 . . .RKE.kl]
fks[i]← s[RKE.kl + 1 . . .RKE.kl + F.kl]

ExpSim

If op[is] = “ch” then return ⊥
If (op[is] =⊥) and (is 6= 0) then
x← Exp
(X,σ)← auth[is − 1]
s← Hash(is − 1, σ||X,X)
SaveKeys(is, s)

op[is]← “exp”
Return (x, (is, fks[is]), ks[is])

ChSendSim

If op[is] = “exp” then return ⊥
If (op[is] =⊥) and (is 6= 0) then

(X,σ)← auth[is − 1]
s← Ch(σ||X)
SaveKeys(is, s)

op[is]← “ch”
If rkey[is] =⊥ then

rkey[is]←$ {0, 1}RKE.kl
If b = 1 then return ks[is]
Else return rkey[is]

ChRecSim

If restricted then return kr

If op[ir ] = “exp” then return ⊥
If (op[ir ] =⊥) and (ir 6= 0) then

(X,σ)← auth[ir − 1]
s← Ch(σ||X)
SaveKeys(ir , s)

op[ir ]← “ch”
If rkey[ir ] =⊥ then

rkey[ir ]←$ {0, 1}RKE.kl
If unchanged then kr ← ks[ir ]
If b = 1 then return kr

Else return rkey[ir ]

Fig. 12. Adversary O2 for proof of Theorem 1.

5 Ratcheted encryption

In this section we define ratcheted encryption schemes, and show how to con-

struct them by composing ratcheted key exchange with symmetric encryption.

This serves as a starting point for discussing ratcheted encryption, and we also

discuss possible extensions.

Ratcheted encryption schemes. Our definition of ratcheted encryption extends the

definition of ratcheted key exchange by adding encryption and decryption algo-

rithms. Ratcheted encryption schemes inherit the key generation algorithms from

ratcheted key exchange schemes, and use the resulting shared keys as symmetric
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encryption keys. In line with our definition for ratcheted key exchange, we only

consider one-sided ratcheted encryption, meaning that the sender uses its key

only for encryption, and the receiver uses its key only for decryption.

A ratcheted encryption scheme RE specifies algorithms RE.IKg, RE.SKg,

RE.RKg, RE.Enc and RE.Dec, where RE.Enc and RE.Dec are deterministic. Asso-

ciated to RE is a nonce space RE.NS, sender’s key generation randomness space

RE.RS, and a ciphertext length function RE.cl : N → N. Initial key generation

algorithm RE.IKg returns k, seks, (stks, stkr , sekr), where k is an encryption

key, stks, seks are a sender’s static key and session key, and stkr , sekr are re-

ceiver’s static key and receiver’s session key, respectively. The sender’s and

receiver’s (symmetric) encryption keys are initialized to ks = kr = k. Sender’s

key generation algorithm RE.SKg takes stks, seks and randomness r ∈ RE.RS
to return a new sender’s session key seks, a new sender’s encryption key ks,

and update information upd. Receiver’s key generation algorithm RE.RKg takes

stks, stkr , sekr ,upd and receiver’s encryption key kr to return a new receiver’s

session key sekr , a new receiver’s encryption key kr , and a flag acc ∈ {true, false}.
Encryption algorithm RE.Enc takes ks, a nonce n ∈ RE.NS, a plaintext message

m ∈ {0, 1}∗ and a header h ∈ {0, 1}∗ to return a ciphertext c ∈ {0, 1}RE.cl(|m|).
Decryption algorithm RE.Dec takes kr , n, c, h to return m ∈ {0, 1}∗ ∪ {⊥}.

Correctness of ratcheted encryption. Correctness of ratcheted encryption extends

that of ratcheted key exchange. It requires that messages encrypted using

sender’s key should correctly decrypt using the corresponding receiver’s key.

Consider game RE-COR of Fig. 4 associated to a ratcheted encryption

scheme R and an adversary C, where C is provided with an access to oracles Up,

RatRec and Enc. The advantage of C breaking the correctness of R is defined

as AdvrecorR,C = 1− Pr[RE-CORCR]. Correctness property requires that AdvrecorR,C = 0

for all unbounded adversaries C. Compared to the correctness game for ratch-

eted key exchange, the new element is that adversary C also gets access to an

encryption oracle Enc, which can be queried to test the decryption correctness.

Ratcheted authenticated encryption. Consider game RAE on the right side of

Fig. 5 associated to a ratcheted encryption scheme RE and an adversary A.

It extends the security definition of ratcheted key exchange (as defined in game

KIND on the left side of Fig. 5) by replacing oracles ChSend and ChRec with

oracles Enc and Dec. Oracles RatSend, RatRec and Exp are the same in

both games. Oracles Enc and Dec are defined as follows. In the real world (when

b = 1) oracle Enc encrypts messages under the sender’s key, and oracle Dec

decrypts ciphertexts under the receiver’s key. In the random world (when b = 0)

oracle Enc returns uniformly random strings, and oracle Dec always returns

an incorrect decryption symbol ⊥. The goal of the adversary is to distinguish

between the two cases. The advantage of A in breaking the RAE security of RE
is defined as AdvraeRE,A = 2 Pr[RAEARE]− 1.
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We note that the adversary is only allowed to get a single encryption for each

unique pair of (is, n). This restriction stems from the fact that most known nonce-

based encryption schemes are not resistant to nonce-misuse. Our definition can

be relaxed to only prevent queries where (is, n,m) — or even (is, n,m, h) — are

repeated, but it would increasingly limit the choice of the underlying symmetric

schemes that can be used for this purpose (fewer schemes would satisfy stronger

security definitions of multi-user authenticated encryption).

Revisiting the treatment of the restricted flag. Similar to the definition of KIND,

one could consider strengthening the definition of RAE by never resetting the

restricted flag back to false (as discussed in Section 4.2). There would seem to

be a more clear motivation to use the stronger definition in the case of encryp-

tion. Namely, our current security definition allows adversary to comprimse the

sender, use the exposed secrets to communicate with the receiver, and then re-

store the inital conversation link between the sender and the receiver. This repre-

sents an ability to stealthily insert arbitrary messages in the middle of someone’s

conversation, without ultimately disrupting the conversation. However, note that

even a stonger definition (one that does not reset the restricted flag) appears to

allow such attack, because the adversary might be able to compromise the sender

and insert the messages before the next time the key ratcheting happens. The

success of such attack would depend on how often the keys are being ratcheted.

Ratcheted encryption scheme RATCHET-ENC. We build a ratcheted encryption

scheme by combining a ratcheted key exchange scheme with a symmetric encryp-

tion scheme. In our composition the output keys of the ratcheted key exchange

scheme are used as encryption keys for the symmetric encryption scheme.

Let RKE be a ratcheted key exchange scheme. Let SE be a symmetric en-

cryption scheme such that SE.kl = RKE.kl. We build a ratcheted encryption

scheme RE = RATCHET-ENC[RKE,SE] with RE.NS = SE.NS, RE.RS = RKE.RS
and RE.cl = SE.cl as follows. Let RE.IKg = RKE.IKg, RE.SKg = RKE.SKg,

RE.RKg = RKE.RKg, RE.Enc = SE.Enc, and RE.Dec = SE.Dec. Thus RE is

directly using RKE for key generation and SE for encryption.

Security of ratcheted encryption scheme RATCHET-ENC. The following says that

the RAE security of ratcheted encryption scheme RE = RATCHET-ENC[RKE,SE]

can be reduced to the KIND security of the ratcheted key exchange scheme RKE
and MAE security of the symmetric encryption scheme SE. The proof is in [7].

Theorem 2. Let RKE be a ratcheted key exchange scheme. Let SE be a symmet-

ric encryption scheme such that SE.kl = RKE.kl. Let RE = RATCHET-ENC[RKE,
SE]. Let A be an adversary attacking the RAE-security of RE that makes qRatSend

queries to its RatSend oracle, qRatRec queries to its RatRec oracle, qExp
queries to its Exp oracle, qEnc queries to its Enc oracle, and qDec queries to its

Dec oracle. Then there is an adversary D attacking the KIND-security of RKE
and an adversary N attacking the MAE-security of SE such that

AdvraeRE,A ≤ 2 · AdvkindRKE,D + Advmae
SE,N .
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Adversary D makes at most qExp queries to its Exp oracle, qEnc queries to

its ChSend oracle, qDec queries to its ChRec oracle, and the same number

of queries as A to oracles RatSend, RatRec. Adversary N makes at most

max(qRatSend, qRatRec) queries to its New oracle, qEnc queries to its Enc or-

acle, and qDec queries to its Dec oracle. Each of D, N has a running time

approximately that of A.

Extensions. We defined our encryption schemes to be one-sided in both commu-

nication (meaning that the messages are assumed to be sent only in one direc-

tion, from the sender to the receiver), and in security (only protecting against

the exposure of the sender’s secrets). It would be useful to consider two-sided

communication (but still one-sided security). In our model the sender and the

receiver already share the same key, but one would need to update the security

game to allow using either key for encryption and decryption.

An important goal in studying ratcheted encryption is to model the Double

Ratchet algorithm [20, 16] used in multiple real-world messaging applications,

such as in WhatsApp [26] and in the Secret Conversations mode of Facebook Mes-
senger [17]. This work models the asymmetric layer of key ratcheting, whereas the

real-world applications also have a second layer of key ratcheting that happens

in a symmetric setting. In our model, this can be possibly achieved by using the

output keys of ratcheted key exchange to initialize a forward-secure symmetric

encryption scheme. We do not capture this possibility; both the syntax and the

security definitions would need to be significantly extended.
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