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Abstract. Non-malleable codes�introduced by Dziembowski, Pietrzak
and Wichs at ICS 2010�are key-less coding schemes in which maul-
ing attempts to an encoding of a given message, w.r.t. some class of
tampering adversaries, result in a decoded value that is either identi-
cal or unrelated to the original message. Such codes are very useful for
protecting arbitrary cryptographic primitives against tampering attacks
against the memory. Clearly, non-malleability is hopeless if the class of
tampering adversaries includes the decoding and encoding algorithm. To
circumvent this obstacle, the majority of past research focused on design-
ing non-malleable codes for various tampering classes, albeit assuming
that the adversary is unable to decode. Nonetheless, in many concrete
settings, this assumption is not realistic.
In this paper, we explore one particular such scenario where the class
of tampering adversaries naturally includes the decoding (but not the
encoding) algorithm. In particular, we consider the class of adversaries
that are restricted in terms of memory/space. Our main contributions
can be summarized as follows:
� We initiate a general study of non-malleable codes resisting space-

bounded tampering. In our model, the encoding procedure requires
large space, but decoding can be done in small space, and thus can be
also performed by the adversary. Unfortunately, in such a setting it is
impossible to achieve non-malleability in the standard sense, and we
need to aim for slightly weaker security guarantees. In a nutshell, our
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main notion (dubbed leaky space-bounded non-malleability) ensures
that this is the best the adversary can do, in that space-bounded
tampering attacks can be simulated given a small amount of leakage
on the encoded value.

� We provide a simple construction of a leaky space-bounded non-
malleable code. Our scheme is based on any Proof of Space (PoS)�
a concept recently put forward by Ateniese et al. (SCN 2014) and
Dziembowski et al. (CRYPTO 2015)�satisfying a variant of sound-
ness. As we show, our paradigm can be instantiated by extending the
analysis of the PoS construction by Ren and Devadas (TCC 2016-A),
based on so-called stacks of localized expander graphs.

� Finally, we show that our �avor of non-malleability yields a natural
security guarantee against memory tampering attacks, where one
can trade a small amount of leakage on the secret key for protection
against space-bounded tampering attacks.

1 Introduction

Non-malleable codes (NMC) [21] were originally proposed by Dziembowski,
Pietrzak and Wichs [21] in 2010 and have since been studied intensively by the
research community (see, e.g., [35,25,13,26,33,1,10] for some examples). Non-
malleable codes are an extension of the concept of error correction and detection
and can guarantee the integrity of a message in the presence of tampering attacks
when error correction/detection may not be possible. Informally, a non-malleable
code (Encode,Decode) guarantees that a codeword modi�ed via an algorithm A,
from some class A of allowed tampering attacks,4 either encodes the original
message, or a completely unrelated value. Notice that non-malleable codes do
not need to correct or detect errors. This relaxation enables us to design codes
that resist much broader tampering classes A than what is possible to achieve
for error correcting/detecting codes. As an illustrative example, it is trivial to
construct non-malleable codes for the class of constant tampering functions; that
is, e.g., functions that replace the codeword by a di�erent but valid codeword.
Clearly, the output of a constant tampering function is independent of the orig-
inal encoded message, and hence satis�es the non-malleability property. On the
other hand, it is impossible to achieve error correction/detection against such
tampering classes, as by de�nition valid codewords do not contain errors.

Applications of non-malleable codes. The fact that non-malleable codes can be
built for broader tampering classes makes them particularly attractive as a mech-
anism for protecting the memory of physical devices from tampering attacks [8,3].
To protect a cryptographic functionality F against tampering with respect to a
class of attacks A applied to a secret key κ that is stored in memory, we can pro-
ceed as follows. Instead of storing κ directly in memory, we use a non-malleable
code for A, and store the codeword c ← Encode(κ). Thus, each time when F
wants to access κ, we �rst decode κ̃ = Decode(c), and, only if Decode(c) 6= ⊥,
4 Sometimes, the tampering algorithms are also called tampering functions.
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we run F(κ̃, ·) on any input of our choice. Intuitively, as long as the adver-
sary can only apply tampering attacks from the class A, non-malleability of
(Encode,Decode) guarantees that any tampering results into a key that is unre-
lated to the original key, and hence the output of F does not reveal information
about the original secret key. For further discussion on the application of non-
malleable codes to tamper resilience we refer the reader to [21].

The tampering class A. It is impossible to have codes that are non-malleable for
all possible (e�cient) tampering algorithms A. For instance, if A contains the
composition of Encode and Decode, then given a codeword c the adversary can
apply a tampering algorithm A that �rst decodes c to get the encoded value x;
then, e.g., it �ips the �rst bit of x to obtain x̃, and re-encodes x̃. Clearly, such an
attack results into x̃ that is related to the original value x, and non-malleability
is violated. A major research direction is hence to design non-malleable codes
for broad classes of tampering attacks that exclude the above obvious attacks.
Prominent examples are bit-wise tampering [21], where the adversary can mod-
ify each bit of the codeword individually, split-state tampering [2], where the
codeword consists of two (possibly large) parts that can be tampered with indi-
vidually, and tampering functions with bounded complexity [27].

All the above mentioned classes of attacks have in common that the Decode
algorithm is not part ofA. Indeed, if we want to achieve non-malleability, then we
must have that Decode /∈ A, as otherwise the following attack becomes possible.
Let A be the tampering algorithm that �rst decodes the codeword c to get the
encoded value x, and then, depending on the �rst bit b of x, it overwrites c with
cb, where Decode(c0) 6= Decode(c1). In this work, we aim at codes that achieve a
weaker security guarantee than standard non-malleability, but for the �rst time
can protect the security of cryptographic functionalities F with respect to a class
of tampering attacks A with Decode ∈ A.

On the importance of Decode ∈ A. Besides being an obvious extension of the
class of tampering attacks for which we can design non-malleable codes (albeit
achieving a weaker security guarantee, which we will outline in Section 1.1),
allowing that Decode ∈ A has some important advantages for cryptographic ap-
plications, as emphasized by the following example. Consider a physical device
storing an encoded key Encode(κ) in memory, and implementing a cryptographic
functionality F . If the device attempts to implement the cryptographic function-
ality F , then whenever it is executed, it has to run the Decode function to recover
the original secret key κ before running F(κ, ·). Suppose that a malicious piece
of software A, e.g., a virus, infects the device and attempts to learn information
about the secret key κ. Clearly, once A infects the device, it may use the resources
available on the device itself, which in particular have to be su�cient to run the
Decode algorithm. Hence, if we view the virus A as the tampering algorithm,
to maintain the functionality of the device (which in particular requires to run
Decode) and at the same time to allow the virus A to control the resources of

3



attacked device, it is necessary that Decode ∈ A.5 Our main contribution is to
design non-malleable codes that can guarantee meaningful security in the above
described setting. We provide more details on our results in the next section.

1.1 Our Contribution

Leaky non-malleable codes. The standard non-malleability property guarantees
that decoding the tampered codeword reveals nothing about the original encoded
message x. Formally, this is modelled by a simulation-based argument, where we
consider the following tampering experiment. First, the message x gets encoded
to c ← Encode(x) and the adversary can apply a tampering algorithm A ∈ A
resulting in a modi�ed codeword c̃; the output of the tampering experiment is
then de�ned as Decode(c̃). Roughly speaking, non-malleability is guaranteed if
we can construct an (e�cient) simulator S that can produce a distribution that
is (computationally) indistinguishable from the output of the tampering exper-
iment, without having access to x; the simulator is typically allowed to return a
special symbol same? to signal that (it believes) the adversarial tampering did
not modify the encoded message.

As explained above, if Decode ∈ A, then the above notion is trivially impos-
sible to achieve, since the adversary can easily learn O(log k) bits, where k is
the size of the message.6 In this work, we introduce a new notion that we call
leaky non-malleability, which models the fact that, when A ∈ A, the adversary
is allowed to learn some (bounded) amount of information about the message
x. Formally, we give the simulator S additional access to a leakage oracle; more
concretely, this means that in order to simulate the output of the tampering
experiment, S can specify a leakage function L : {0, 1}k → {0, 1}` and receive
L(x).7 Clearly, if ` = k, then the simulation is trivial, and hence our aim is to
design codes where ` is as close as possible to the necessary bound of O(log k).
Notice that, due to the allowed leakage, our notion of leaky non-malleability
makes most sense when the message x is sampled from a distribution of high
min-entropy. But, indeed, this is the case in the main application of NMC, where
the goal is to protect a secret key of a cryptographic scheme; and in fact, as we
show at the end of the paper, leaky non-malleability still allows to guarantee
protection against memory tampering in many interesting cases.

5 In particular, when resources are measured by space as considered in this work,
assuming that running Decode requires more space than what is available on the
device would imply assuming a trusted part of memory that the virus cannot exploit,
which seems unnatural.

6 For instance, the adversary may just guess the �rst O(log k) bits of the message
and replace c with cu (where u ∈ {0, 1}O(log k)) depending on whether its guess was
correct; this attack succeeds with non-negligible probability.

7 Although, later in the paper, we de�ne leaky non-malleability only for the case of
space-bounded tampering, we point out that this weaker security guarantee makes
sense for arbitrary tampering classes A.
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Modelling space-bounded tampering adversaries. In the above application with
the virus, we allow the virus to use all resources of the device when it tampers
with the codeword. Of course, this means that the virus is limited in the amount
of space it can use. We exploit this observation by putting forward the notion
of non-malleable codes that resist adversaries operating in bounded space. That
is, in contrast to earlier works on NMC, we do not require any independence of
the tampering (like, e.g., in the split-state model), nor the fact that tampering
comes from a restricted complexity class. Instead, we allow arbitrary e�cient
tampering attacks that can globally modify the codeword, as long as the attacks
operate in the space available on the device. Since the lower bounds in space
complexity are notoriously hard, we follow earlier works [20,19,4,18] that argue
about space-bounded adversaries (albeit in a di�erent setting), using the random
oracle methodology and its connection to graph pebbling games.

Let us provide some more details on our model. Our setting follows the earlier
work of Dziembowski, Kazana and Wichs [20,19] and considers a �big adversary�
B that has unlimited space (though runs in PPT) and creates �small adversaries�
A (e.g., viruses) that it sends to the device. On the device, A can use the available
space to modify the codeword in some arbitrary way. We emphasize that A has
no granular restrictions, and hence can read the entire codeword. Moreover, it
can follow an arbitrary e�cient (PPT) tampering strategy. The only restriction
is that A has to operate in bounded space. Both adversaries A and B have access
to a random oracle H. After A has �nished its tampering attack, we proceed
as in the normal NMC experiment, i.e., we decode the modi�ed codeword and
output the result. We further strengthen our de�nition by allowing the adversary
to repeat the above attack multiple times, which is sometimes referred to as
continuous tampering [25,33]. We note that, as in [33], we require an a-priori
�xed upper bound on the number of viruses A that B can adaptively choose.

Technical overview of our construction. Our construction is based on Proofs
of Space (a.k.a. PoS), introduced in [4,18]. First, let us recall the notion of PoS
brie�y. In a PoS protocol, a prover P proves that �it has su�cient space� available
to a space-bounded veri�er V. Using the Fiat-Shamir [29] transformation, the
entire proof can be presented by πid for some identity id . The veri�er can verify
the pair (id , πid) within bounded space (say s). The soundness guarantee is that
a cheating prover, with overwhelming probability, can not produce a correct
proof unless it uses a large amount of space. Our NMC construction encodes a
value x ∈ {0, 1}k by setting id := x and then computing the proof πid . Hence,
the codeword is c = (x, πx). Decoding is done just by running the veri�cation
procedure of the PoS.

Now, if the codeword is stored in an s-bounded device, then decoding is possi-
ble within the available space whereas encoding is not � in particular, even if the
adversary can obtain x, it can not re-encode to a related value, say (x+1, πx+1),
as guaranteed by the soundness of the underlying PoS.8 We stress that our

8 Notice that since the space-bounded attacker A is able to decode anyway, we do not
aim to hide x in c.

5



soundness requirement is slightly di�erent than the existing PoS constructions,
as we require some form of �extractability� from the PoS: Given an honestly gen-
erated pair (x, πx), if the space-bounded virus can compute a valid pair (x′, πx′)
where x′ 6= x, then one can e�ciently extract x′ from the set of random oracle
queries that the big adversary made before installing the virus. Our put di�er-
ently, the only way to compute a valid proof is to overwrite (x, πx) with a valid
pair (x′, πx′) �pre-computed� by the big adversary.

To formally prove the leaky non-malleability of our construction, we need to
show that the output of the tampering experiment can be simulated given only
�limited� leakage on x. For simplicity, let us explain how this can be done for
one tampering query. Intuitively this is possible because the big adversary can
hard-code at most polynomially many (say q) correct pairs {xi, πxi}i∈[q] into the
virus. Now, since any such xi 6= x can be e�ciently �extracted� from the random
oracle queries made by B prior to choosing the virus, log(q) bits of leakage are
su�cient to compute the exact xi from the list {xi}i∈[q].9 For multiple adaptive
tampering queries things get more complicated. Nonetheless, we are able to show
that each such query can be simulated by logarithmic leakage.

We emphasize that our encoding scheme is deterministic for a �xed choice of
the random oracle. In particular, the only randomness comes from the random
oracle itself. Also, in the security proof, we do not require to program the random
oracle in the on-line phase of the security reduction, in that the random oracle can
just be �xed at the beginning of the security game.10. We concretely instantiate
our construction by adapting the PoS protocol from Ren and Devadas [40], that
uses so-called stacks of localized expander graphs.

Applications: Trading leakage for tamper resilience. One may ask if our notion
of leaky non-malleability is useful for the original application of tamper protec-
tion. In Section 7 we show that cryptographic primitives which remain secure
if the adversary obtains some bounded amount of leakage from the key, can
naturally be protected against tampering attacks using our new notion of leaky
non-malleability. Since there is a large body of work on bounded leakage-resilient
cryptographic primitives, including signature schemes, symmetric and public key
encryption [32,16,34,38,39,22,23], and many more, our transformation protects
these primitives against any e�cient space-bounded tampering attack.

1.2 Additional Related Work

Only very few works consider non-malleable codes for global tampering func-
tions [5]. Very related to our attack model are in particular the works of Dziem-

9 In slightly more detail, the set {xi}i∈[q] can be extracted by the simulator outside
the leakage oracle as it does not depend on x, so the simulator can just ask for the
index of the exact xi to later reconstruct xi in full.

10 Since adaptive (i.e. on-line) programming is not required, for all practical purposes
our construction can be instantiated by standard hash functions like SHA-1. How-
ever, our proof crucially relies on the ability of the simulator to control the random
oracle (albeit non adaptively), in order to make the �extraction� work.
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bowski, Kazana and Wichs [20,19]. In these works, the authors also consider a
setting where a so-called �big-adversary� infects a machine with a space-bounded
�small adversary�. Using techniques from graph pebbling, the authors show how
to construct one-time computable functions [20] and leakage resilient key evolu-
tion schemes [19] when the �small adversary� has to operate in bounded space.

The �avor of non-malleable codes in which there is an a-priory upper bound
on the total number of tampering queries, without self-destruct, was originally
considered in [9]. This concept has a natural application to the setting of bounded
tamper resilience (see, e.g., [15,14,24]).

For other related works on non-malleable codes and its applications we refer
to [37].

2 Preliminaries

2.1 Notation

For a string x, we denote its length by |x|; if X is a set, |X | represents the number
of elements in X . When x is chosen randomly in X , we write x ← X . When A
is an algorithm, we write y ← A(x) to denote a run of A on input x and output
y; if A is probabilistic, then y is a random variable and A(x; r) denotes a run of
A on input x and randomness r. An algorithm A is probabilistic polynomial-time
(PPT) if A is probabilistic and for any input x, r ∈ {0, 1}∗ the computation of
A(x; r) terminates in at most a polynomial (in the input size) number of steps.
We often consider algorithms AO(·), with access to an oracle O(·).

We denote with λ ∈ N the security parameter. A function ν : N → [0, 1]
is negligible in the security parameter (or simply negligible), denoted ν(λ) ∈
negl(λ), if it vanishes faster than the inverse of any polynomial in λ, i.e. ν(λ) =
λ−ω(1). A function µ : N→ R is a polynomial in the security parameter, written
µ(λ) ∈ poly(λ), if, for an arbitrary constant c > 0, we have µ(λ) ∈ O(λc).

2.2 Coding Schemes

We recall the standard notion of a coding scheme for binary messages.

De�nition 1 (Coding scheme). A (k, n)-code Π = (Init,Encode,Decode) is
a triple of algorithms speci�ed as follows: (i) The (randomized) generation al-
gorithm Init takes as input λ ∈ N and returns public parameters ω ∈ {0, 1}∗;
(ii) The (randomized) encoding algorithm Encode takes as input hard-wired pub-
lic parameters ω ∈ {0, 1}∗ and a value x ∈ {0, 1}k, and returns a codeword
c ∈ {0, 1}n; (iii) The (deterministic) decoding algorithm Decode takes as in-
put hard-wired public parameters ω ∈ {0, 1}∗ and a codeword c ∈ {0, 1}n, and
outputs a value in {0, 1}k ∪ {⊥}, where ⊥ denotes an invalid codeword.

We say that Π satis�es correctness if for all ω ∈ {0, 1}∗ output by Init(1λ)
and for all x ∈ {0, 1}k, Decodeω(Encodeω(x)) = x with overwhelming probability
over the randomness of the encoding algorithm.

7



In this paper we will be interested in modelling coding schemes where there is
an explicit bound on the space complexity required to decode a given codeword.

De�nition 2 (Time/space-bounded algorithm). Let A be an algorithm.
For any s, t ∈ N we say that A is s-space bounded and t-time bounded (or simply
(s, t)-bounded) if at any time during its execution the entire state of A can be
described by at most s bits and A runs for at most t time-steps.

For such algorithms we have sA ≤ s and tA ≤ t (with the obvious meaning).
We often omit the time parameter and simply say that A is s-bounded, which
means that A is an s-bounded polynomial-time algorithm. Given an input x ∈
{0, 1}n, and an initial con�guration σ ∈ {0, 1}s−n, we write (y, σ̃) := A(x;σ) for
the output y of A including its �nal con�guration σ̃ ∈ {0, 1}s−n. The class of all
s-space bounded deterministic polynomial-time algorithms is denoted by Asspace.

We stress that, similarly to previous works [20,19], in case A is modelled
as a Turing machine, we count the length of the input tape and the position
of all the tape heads within the space bound s. However we emphasize that,
although A is space-bounded, we allow to hard-wire auxiliary information of
arbitrary polynomial length in its description that is not accounted for in the
space-bound. Intuitively, a coding scheme can be decoded in bounded space if
the decoding algorithm is space bounded.

De�nition 3 (Space-bounded decoding). Let Π = (Init,Encode,Decode) be
a (k, n)-code, and d ∈ N. We call Π a (k, n)-code with d-bounded decoding, if for
all ω output by Init(1λ) the decoding algorithm Decodeω(·) is d-bounded.

Notice that we do not count the length of the public parameters in the space
bound; this is because the value ω is hard-coded into the description of the
encoding and decoding algorithms.

3 Non-Malleability in Bounded Space

3.1 Space-Bounded Tampering

The standard way of formalizing the non-malleability property is to require that,
for any �allowed adversary�11 A, tampering with an honestly computed target
encoding of some value x ∈ {0, 1}k, there exists an e�cient simulator S that is
able to emulate the outcome of the decoding algorithm on the tampered code-
word, without knowing x. The simulator is allowed to return a special symbol
same?, signalling that (it believes) the adversary did not modify the value x
contained in the original encoding.

Below, we formalize non-malleability in the case where the set of allowed
adversaries consists of all e�cient s-bounded algorithms, for some parameter
s ∈ N (cf. De�nition 2). However, since we are particularly interested in decoding

11 The adversary is often referred to as the �tampering function�; however, for our
purposes, it is more convenient to think of the tampering function as an algorithm.
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algorithms that are d-bounded for some value d ≤ s, the standard notion of
non-malleability is impossible to achieve, as in such a case the algorithm A can
simply decode the tampered codeword and leak some information on the encoded
message via tampering (see also the discussion in Section 3.2). To overcome
this obstacle, we will give the simulator S some extra-power, in that S will
additionally be allowed to obtain some limited amount of information on x in
order to simulate the view of A. To capture this, we introduce an oracle O`,xleak

that can be queried in order to retrieve up-to ` bits of information about x.

De�nition 4 (Leakage oracle). A leakage oracle O`,xleak is a stateful oracle that
maintains a counter ctr that is initially set to 0. The oracle is parametrized by
a string x ∈ {0, 1}k and a value ` ∈ N. When O`,xleak is invoked on a polynomial-
time computable leakage function L, the value L(x) is computed, its length is
added to ctr, and if ctr ≤ `, then L(x) is returned; otherwise, ⊥ is returned.

Since our main construction is in the random oracle model (a.k.a. ROM), we
will de�ne space-bounded non-malleability explicitly for this setting. Recall that
in the ROM a hash function H(·) is modelled as an external oracle implement-
ing a random function, which can be queried by all algorithms (including the
adversary); in the simulation, the simulator S simulates the random oracle. We
introduce the notion of a tampering oracle, which essentially corresponds to re-
peated (adaptive) tampering with a target n-bit codeword, using at most s bits
of total space. Below, we consider that the total space of length s is split into two
parts: (i) Persistent space of length p, that also stores the codeword of length
n, and that is never erased by the oracle; and (ii) Transient (or non-persistent)
space, of length s−p, that is erased by the oracle after every tampering. Looking
ahead, in our tampering application (cf. Section 7), the persistent space corre-
sponds to the user's hard-drive (storing arbitrary data), while the transient space
corresponds to the transient memory available on the device.

De�nition 5 (Space-bounded tampering oracle). A space-bounded tam-
pering oracle OΠ,x,ω,s,pcnm is a stateful oracle parameterized by a (k, n)-code Π =
(InitH,EncodeH,DecodeH), a string x ∈ {0, 1}k, public parameters ω ∈ {0, 1}∗,
and values s, p ∈ N (with s ≥ p ≥ n). The oracle has an initial state st := (c, σ),
where c← EncodeHω (x), and σ := σ0||σ1 := 0p−n||0s−p. Hence, upon input a de-
terministic algorithm A ∈ Asspace, the output of the oracle is de�ned as follows.

Oracle OΠ,x,ω,s,pcnm (A):
Parse st = (c, σ0, σ1)
Let (c̃, σ̃0, σ̃1) := AH(c;σ0||σ1)
Return x̃ := DecodeHω (c̃)
Update st := (c̃, σ̃0, 0

s−p).

Notice that in the de�nition above we put space restrictions only on the
tampering algorithm A. The oracle itself is space unbounded. In particular, this
means that even if the decoding algorithm requires more space than s, the oracle
is well de�ned. Moreover, this allows us to assume that the auxiliary persistent
space σ̃0 is never erased/overwritten by the oracle.
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Furthermore, each algorithm A takes as input a codeword c̃ which is the result
of the previous tampering attempt. In the literature, this setting is sometimes
called persistent continuous tampering [33]. However, a closer look into our set-
ting reveals that the model is actually quite di�erent. Note that, the auxiliary
persistent space σ0 (that is the persistent space left after storing the codeword)
can be used to copy parts of the original encoding, that thus can be mauled
multiple times. (In fact, as we show in Section 3.2, if p = 2n, the above oracle
actually allows for non-persistent tampering as considered in [33,25].)

In the de�nition of non-malleability we will require that the output of the
above tampering oracle can be simulated given only ` bits of leakage on the input
x. We formalize this through a simulation oracle, which we de�ne below.

De�nition 6 (Simulation oracle). A simulation oracle OS2,`,x,s,ω
sim is an oracle

parametrized by a stateful PPT algorithm S2, values `, s ∈ N, some string x ∈
{0, 1}k, and public parameters ω ∈ {0, 1}∗. Upon input a deterministic algorithm
A ∈ Asspace, the output of the oracle is de�ned as follows.

Oracle OS2,`,x,s,ω
sim (A):

Let x̃← S
O`,xleak(·)
2 (1λ, ω,A)

If x̃ = same?, set x̃ = x
Return x̃.

We are now ready to de�ne our main notion.

De�nition 7 (Space-bounded continuous non-malleability). Let H be
a hash function modelled as a random oracle, and let Π = (InitH,EncodeH,
DecodeH) be a (k, n)-code. For parameters `, s, p, θ, d ∈ N, with s ≥ p ≥ n,
we say that Π is an `-leaky (s, p)-space-bounded θ-continuously non-malleable
code with d-bounded decoding ((`, s, p, θ, d)-SP-NMC for short) in the ROM, if
it satis�es the following conditions.

� Space-bounded decoding: The decoding algorithm DecodeH is d-bounded.
� Non-malleability: For all PPT distinguishers D, there exists a PPT sim-
ulator S = (S1,S2) such that for all values x ∈ {0, 1}k there is a negligible
function ν : N→ [0, 1] satisfying∣∣Pr [DH(·),OΠ,x,ω,s,pcnm (·)(ω) = 1 : ω ← InitH(1λ)

]
− Pr

[
DS1(·),O

S2,`,x,s,ω
sim (·)(ω) = 1 : ω ← InitS1(1λ)

] ∣∣ ≤ ν(λ),
where D asks at most θ queries to Ocnm. The probability is taken over the
choice of the random oracle H, the sampling of the initial state for the oracle
Ocnm, and the random coin tosses of D and S = (S1,S2).

Intuitively, in the above de�nition algorithm S1 takes care of simulating ran-
dom oracle queries, whereas S2 takes care of simulating the answer to tampering
queries. Typically, S1 and S2 are allowed to share a state, but we do not explic-
itly write this for simplifying notation. For readers familiar with the notion of
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non-malleable codes in the common reference string model (see, e.g., [35,25]), we
note that the simulator is not required to program the public parameters (but
is instead allowed to program the random oracle).12

Remark 1. Note that we consider the space-bounded adversary A as determinis-
tic; this is without loss of generality, as the distinguisher D can always hard-wire
the �best randomness� directly into A. Also, A does not explicitly take the public
parameters ω as input; this is also without loss of generality, as D can always
hard-wire ω in the description of A.

3.2 Achievable Parameters

We now make a few remarks on our de�nition of space-bounded non-malleability,
and further investigate for which range of the parameters s (total space available
for tampering), p (persistent space available for tampering), θ (number of adap-
tive tampering queries), d (space required for decoding), and ` (leakage bound),
our notion is achievable. Let Π = (InitH,EncodeH,DecodeH) be a (k, n)-code in
the ROM.13 First, note that leaky space-bounded non-malleability is trivial to
achieve whenever ` = k (or ` = k− ε, for ε ∈ O(log λ)); this is because, for such
values of the leakage bound, the simulator can simply obtain the input message
x ∈ {0, 1}k, in which case the security guarantee becomes useless. Second, the
larger the values of s and θ, the larger is the class of tampering attacks and the
number of tampering attempts that the underlying code can tolerate. So, the
challenge is to construct coding schemes tolerating a large space bound in the
presence of �many� tampering attempts, using �small� leakage.

12 However, we stress that in the proof of our code construction (cf. Section 6), we do
not need adaptive random oracle programming.

13 The discussion below applies also to codes not relying on random oracles.

d e+ d

n
n+ k

2n

s =
p

s

p unde�ned

` > 0

` = 0

impossible

Fig. 1: Possible values for the parameters s, p ∈ N in the de�nition of leaky
space-bounded non-malleability, for �xed values of k, n, d (assuming d < 2n); in
the picture, �impossible� means for θ ≥ k and for non-trivial values of `, and e
is the space bound for the encoding algorithm.
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An important feature that will be useful for characterizing the range of
achievable parameters in our de�nition is the so-called self-destruct capabil-
ity, which determines the behavior of the decoding algorithm after an invalid
codeword is ever processed. In particular, a code with the self-destruct capa-
bility is such that the decoding algorithm always outputs ⊥ after the �rst ⊥
is ever returned (i.e., after the �rst invalid codeword is ever decoded). Such
a feature, which was already essential in previous works studying continuously
non-malleable codes [25,12,11], can be engineered by enabling the decoding func-
tion to overwrite the entire memory content with a �xed string, say the all-zero
string if a codeword is decoded to ⊥.

Depending on the self-destruct capability being available or not, we have the
following natural observations:

� If Π is not allowed to self-destruct, it is impossible to achieve space-bounded
non-malleability, for non-trivial values of `, whenever θ ≥ n (for any s ≥
p ≥ n, and any d ∈ N). This can be seen by considering the deterministic
algorithm Aiauxi (for some i ∈ [n]) that overwrites the �rst i − 1 bits of the
input codeword with the values auxi := (c[1], . . . , c[i − 1]), and additionally
sets the i-th bit to 0 (leaving the other bits unchanged). Using such an
algorithm, a PPT distinguisher D can guess the bit c[i] of the target codeword
to be either 0 (in case the tampering oracle returned the input message x)
or 1 (in case the tampering oracle returned a value di�erent from x, namely
⊥). Hence, D returns 1 if and only if DecodeHω (c) = x.
The same attack was already formally analyzed in [12] (generalizing a pre-
vious attack by Gennaro et al. [31]); it su�ces to note here that the above
attack can be mounted using s = n bits of space (which are needed for
processing the input encoding), and requires θ = n tampering attempts.

� Even if Π is allowed to self-destruct, whenever s ≥ d and p ≥ n + θ − 1,
leaky space-bounded non-malleability requires ` ≥ θ. This can be seen by
considering the following attack. An s-bounded algorithm A1

c0,c1 , with hard-
wired two valid encodings c0, c1 ∈ {0, 1}n of two distinct messages x0, x1 ∈
{0, 1}k does the following: (i) Decodes c obtaining x (which requires d ≤ s
bits of space); (ii) Stores the �rst θ − 1 bits of x in the persistent storage
σ̃0; (iii) If the θ-th bit of x is one, it replaces c with c̃ = c1, else it replaces c
with c̃ = c0. During the next tampering query, D can specify an algorithm
A2
c0,c1 that overwrites the target encoding with either c0 or c1 depending on

the �rst14 bit of σ̃0 being zero or one, and so on until the �rst θ − 1 bits of
x are leaked. So in total, it is able to leak at least θ bits of x (including the
θ-th bit of x leaked by A1).

� The previous attack clearly implies that it is impossible to achieve leaky
space-bounded non-malleability, for non-trivial values of `, whenever s ≥ d,
θ = k, and p ≥ n + k − ε, for ε ∈ O(log λ). A simple variant of the above
attack, where essentially D aims at leaking the target encoding c instead of

14 Recall that the tampering oracle of De�nition 5 initializes the persistent space σ0

used by the current tampering algorithm, with the corresponding �nal state σ̃0

returned by the previous tampering algorithm.
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the input x, yields a similar impossibility result whenever s ≥ p, d ∈ N,
θ = n, and p ≥ 2n− ε, for ε ∈ O(log λ).

The above discussion is summarized in the following theorem (see also Fig. 1
for a pictorial representation).

Theorem 1. Let `, s, p, θ, d, k, n ∈ N be functions of the security parameter λ ∈
N. The following holds:

(i) No (k, n)-code Π without the self-destruct capability can be an (`, s, p, θ, d)-
SP-NMC for d ∈ N, s ≥ p ≥ n and ` = n− µ, where µ ∈ ω(log λ).

(ii) For any 1 ≤ θ < k, if Π is a (k, n)-code (with or without the self-destruct
capability) that is an (`, s, p, θ, d)-SP-NMC for d ∈ N, s ≥ d and p ≥ n+θ−1,
then ` ≥ θ.

(iii) No (k, n)-code Π (even with the self-destruct capability) can be an (`, s, p, θ,
d)-SP-NMC for d ∈ N, ` = n−µ, with µ ∈ ω(log λ), where, for ε ∈ O(log λ),

s ≥ d θ ≥ k p ≥ n+ k − ε
or s ≥ p θ ≥ n p ≥ 2n− ε.

Remark 2. We emphasize that our coding scheme (cf. Section 6) does not rely on
any self-destruct mechanism, and achieves θ ≈ k/ log λ for non-trivial values of
the leakage parameter. This leaves open the question to construct a code relying
on the self-destruct capability, that achieves security for any θ ∈ poly(λ) and for
non-trivial leakage, with parameters s, p, d consistent with the above theorem.
We leave this as an interesting direction for future research.

4 Building Blocks

4.1 Random Oracles

All our results are in the random oracle model (ROM). Therefore we �rst discuss
some basic conventions and de�nitions related to random oracles. First, recall
that in the ROM, at setup, a hash function H is sampled uniformly at random,
and all algorithms, including the adversary, are given oracle access to H (unless
stated otherwise). For instance, we let Π = (InitH,EncodeH,DecodeH) be a
coding scheme in the ROM. Second, without loss of generality, we will always
consider a random oracle H with a type H : {0, 1}∗ → {0, 1}nH .

We emphasize that unlike many other proofs in the ROM, we will not need
the full programmability of random oracles. In fact, looking ahead, in the security
proof of our code construction from Section 6, we can just assume that the ran-
dom oracle is non-adaptively programmable as de�ned in [6]. 15 The basic idea is
that the simulator/reduction samples a partially de�ned �random-looking func-
tion� at the beginning of the security game, and uses that function as the random

15 In [6], the authors show that such random oracles are equivalent to non-program-
mable ones, as de�ned in [30].
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oracle H. In particular, by �xing a function ahead of time, the reduction �xes
all future responses to random oracle calls�this is in contrast to programmable
random oracles, which allow the simulator to choose random values adaptively in
the game, and also to program the output of the oracle in a convenient manner.

For any string x, and any random oracle H, we use the notation Hx to denote
the specialized random oracle that accepts only inputs with pre�x equal to x.
We additionally make the following conventions:

� Query Tables. Random oracle queries are stored in query tables. Let QH
be such a table. QH is initialized as QH := ∅. Hence, when H is queried on
a value u, a new tuple (I(u), u,H(u)) is appended to the table QH where
I : {0, 1}∗ → {0, 1}O(log λ) is an injective function that maps each input u to
a unique identi�er, represented in bits. Clearly, for any tuple (i, u,H(u)) we
have that I−1(i) = u.

� Input Field. Let QH = ((i1, u1, v1), · · · , (iq, uq, vq)) be a query table. The
input �eld IPQH of QH is de�ned as the tuple IPQH = (u1, . . . , uq).

4.2 Merkle Commitments

A Merkle commitment is a special type of commitment scheme16 exploiting
so-called hash trees [36]. Intuitively, a Merkle commitment allows a sender to
commit to a vector of N elements z := (z1, . . . , zN ) using N − 1 invocations of
a hash function. At a later point, the sender can open any of the values zi, by
providing a succinct certi�cate of size logarithmic in N .

De�nition 8 (Merkle commitment). A (k, ncm, N, nop, νmt)-Merkle commit-

ment scheme (or MC scheme) in the ROM is a tuple of algorithms (MGenH,
MCommitH,MOpenH,MVerH) described as follows.

� MGenH(1λ): On input the security parameter, the randomized algorithm out-
puts public parameters ωcm ∈ {0, 1}∗.

� MCommitHωcm
(z): On input the public parameters and an N -tuple z = (z1, . . . ,

zN ), where zi ∈ {0, 1}k, this algorithm outputs a commitment ψ ∈ {0, 1}ncm .
� MOpenHωcm

(z, i): On input the public parameters, a vector z = (z1, . . . , zN )
∈ {0, 1}kN , and i ∈ [N ], this algorithm outputs an opening (zi, φ) ∈ {0, 1}nop .

� MVerHωcm
(i, ψ, (z, φ)): On input the public parameters, an index i ∈ [N ], and

a commitment/opening pair (ψ, (z, φ)), this algorithm outputs a decision bit.

We require the following properties to hold.

Correctness: For all z = (z1, . . . , zN ) ∈ {0, 1}kN , and all i ∈ [N ], we have that

Pr

MVerHωcm
(i, ψ, (zi, φ)) = 1 :

ωcm ← MGenH(1λ);

ψ ← MCommitHωcm
(z)

(zi, φ)← MOpenHωcm
(z, i)

 = 1

16 Commitment schemes typically also have hiding, which ensures that the commitment
does not reveal any information about the committed string. Looking ahead, we will
commit to a public string and hence hiding is not needed in our case.
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Binding: For all z = (z1, . . . , zN ) ∈ {0, 1}kN , for all i ∈ [N ], and all PPT
adversaries A, we have Pr[Gbind

A,z,i(λ) = 1] ≤ νmt, where the game Gbind
A,z,i(λ)

is de�ned as follows:
Game Gbind

A,z,i:

1. Sample ωcm ← MGenH(1λ).
2. Let (ψ, (z′, φ′))← AHωcm

(z, i).

3. Let (zi, φi) := MOpenHωcm
(z, i).

4. Output 1 if and only if all of the following conditions are satis�ed:
(a) MVerHωcm

(i, ψ, (z′, φ′)) = 1.

(b) MVerHωcm
(i, ψ, (zi, φi)) = 1.

(c) z′ 6= zi.

The standard hash-tree construction due to Merkle [36] gives us a (k, k,N,
O(k log(N)),negl(k))-Merkle Commitment.

4.3 Graph Pebbling and Labeling

Throughout this paper G = (V,E) is considered to be a directed acyclic graph
(DAG), where V is the set of vertices and E is the set of edges of the graph
G. Without loss of generality we assume that the vertices of G are ordered
lexicographically and are represented by integers in [N ], where N = |V |. Vertices
with no incoming edges are called input vertices or sources, and vertices with no
outgoing edges are called output vertices or sinks. We denote Γ−(v), the set of
all predecessors of the vertex v. Formally, Γ−(v) = {w ∈ V : (w, v) ∈ E}.

In this section we brie�y explain the concept of graph labeling and its con-
nection to the abstract game called graph pebbling which has been introduced
in [17]. For more details we refer to previous literature in, e.g., [17,40,4,18]. We
follow conventions from [40] and will use results from the same. Sometimes for
completeness we will use texts verbatim from the same paper.

Labeling of a graph. Let H : {0, 1}∗ → {0, 1}nH be a random oracle. The H-
labeling of a graph G is a function which assigns a label to each vertex in
the graph; more precisely, it is a function label : V → {0, 1}nH which maps
each vertex v ∈ V to a bit string label(v) := H(qv), where we denote by{
v(1), . . . , v(d)

}
= Γ−(v) and let

qv :=

{
v if v is an input vertex,

v || label(v(1)) || . . . || label(v(d)) otherwise.

An algorithm AH labels a subset of vertices W ⊆ V if it computes label(W ).
Speci�cally, AH labels the graph G if it computes label(V ).

Additionally, for m ≤ |V |, we de�ne the H-labeling of the graph G with
m faults17 as a function label : V → {0, 1}nH such that, for some subset of

17 One can also de�ne an analogy of faults in the pebbling game by adding a second
kind of pebbles. These pebbles are called red pebbles in [18] and wild cards in [4].
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vertices M ⊂ V of size m, it holds label(v) = H(qv) for every v ∈ V \M , and
label(v) 6= H(qv) for every v ∈M . Sometimes we refer to labeling with faults as
partial labeling. The following lemma appeared in form of a discussion in [40].
It is based on an observation previously made in [18].

Lemma 1 ([40, Section 5.2]). Let AH be an (s, t)-bounded algorithm which
computes the labeling of a DAG G with m ∈ N faults. Then there exists an
(s + m · nH, t)-bounded algorithm ÃH that computes the labeling of G without
faults but gets m correct labels to start with (they are initially stored in the
memory of ÃH and sometimes called initial labels).

Intuitively the above lemma follows because the algorithm ÃH can overwrite the
additional space it has, once the initial labels stored there are not needed.

Pebbling game. The pebbling of a DAG G = (V,E) is de�ned as a single-
player game. The game is described by a sequence of pebbling con�gurations
P = (P0, . . . , PT ), where Pi ⊆ V is the set of pebbled vertices after the i-th
move. In our model, the initial con�guration P0 does not need to be empty.
The rules of the pebbling game are the following. During one move (translation
from Pi to Pi+1), the player can place one pebble on a vertex v if v is an input
vertex or if all predecessors of v already have a pebble. After placing one pebble,
the player can remove pebbles from arbitrary many vertices.18 We say that the
sequence P pebbles a set of vertices W ⊆ V if W ⊆

⋃
i∈[0,T ]Pi.

The time complexity of the pebbling game P is de�ned as the number of
moves t(P) := T . The space complexity of P is de�ned as the maximal number
of pebbles needed at any pebbling step; formally, s(P) := maxi∈[0,T ]{|Pi|}.

Ex-post-facto pebbling. Let AH be an algorithm that computes the (partial) H-
labeling of a DAG G. The ex-post-facto pebbling bases on the transcript of the
graph labeling. It processes all oracle queries made by AH during the graph
labeling (one at a time and in the order they were made). Informally, every
oracle query of the form qv, for some v ∈ V , results in placing a pebble on the
vertex v in the ex-post-facto pebbling game. This provides us a link between
labeling and pebbling of the graph G. The formal de�nition follows.

Let H : {0, 1}∗ → {0, 1}nH be a random oracle and QH a table of all random
oracle calls made by AH during the graph labeling. Then we de�ne the ex-post-
facto pebbling P of the graph G as follows:

� The initial con�guration P0 contains every vertex v ∈ V such that label(v)
has been used for some oracle query (e.g. some query of the form H(· · · ‖
label(v)‖ · · · )) at some point in the transcript but the query qv is not listed
in the part of the transcript preceding such query.

� Assume that the current con�guration is Pi, for some i ≥ 0. Then �nd the
next unprocessed oracle query which is of the form qv, for some vertex v,
and de�ne Pi+1 as follows:

18 Similar to [40] in our model we assume that removing pebbles is for free as it does
not involve any oracle query
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1. Place a pebble on the vertex v.
2. Remove all unnecessary pebbles. A pebble on a vertex v is called unnec-

essary if label(v) is not used for any future oracle query, or if the query
qv is listed in the succeeding part of the transcript before label(v) is used
in an argument of some other query later. Intuitively, either label(v) is
never used again, or AH anyway queries qv before it is used again.

The lemma below appeared in several variations in the literature (see, for
example, [17,4,40]), depending on the de�nition of graph pebbling.

Lemma 2 (Labeling Lemma). Let G be a DAG. Consider an (s, t)-bounded
adversary AH which computes the H-labeling of the graph G. Also assume that
AH does not guess any correct output of H without querying it. Then the ex-post
facto pebbling strategy P described above pebbles the graph G, and the complexity
of P is s(P) ≤ s

nH
and t(P) ≤ t.

Proof. By de�nition of ex-post-facto pebbling, it is straightforward to observe
that if AH computes the H-labeling of the graph G, then the ex-post-facto peb-
bling P pebbles the graph. Since we assume that the adversary does not guess
the correct label, the only way AH can learn the label of the vertex v is by query-
ing the random oracle. The bound on t(P) is immediate. Again, by de�nition
of the ex-post-facto pebbling, there is no unnecessary pebble at any time. Thus,
the number of required pebbles is equal to the maximum number of labels that
AH needs to store at once. Hence, the space bound follows directly from the
fact that each label consists of nH bits and that the algorithm AH is s-space
bounded.

Localized expander graphs. A (µ, α, β)-bipartite expander, for 0 < α < β < 1,
is a DAG with µ sources and µ sinks such that any αµ sinks are connected
to at least βµ sources. We can de�ne a DAG G′µ,kG,α,β by stacking kG (∈ N)
bipartite expanders. Informally, stacking means that sinks of the i-th bipartite
expander are sources of the i+1-st bipartite expander. It is easy to see that such
a graph has µ(kG + 1) nodes which are partitioned into kG + 1 sets (which we
call layers) of size µ. A Stack of Localized Expander Graphs (SoLEG) is a DAG
Gµ,kG,α,β obtained by applying the transformation called localization (see [7,40]
for a de�nition) on each layer of the graph G′µ,kG,α,β .

We restate two lemmas about pebbling complexity of SoLEG from [40]. The
latter appeared in [40] in form of a discussion.

Lemma 3 ([40, Theorem 4]). Let Gµ,kG,α,β be a SoLEG where γ := β−2α >
0. Let P = (P0, . . . , Pt(P)) be a pebbling strategy that pebbles at least αµ output
vertices of the graph Gµ,kG,α,β which were not initially pebbled, where the initial
pebbling con�guration is such that |P0| ≤ γµ, and the space complexity of P is
bounded by s(P) ≤ γµ. Then the time complexity of P has the following lower
bound: t(P) ≥ 2kGαµ.

Lemma 4 ([40, Section 5.2]). Let Gµ,kG,α,β be a SoLEG and H : {0, 1}∗ →
{0, 1}nH be a random oracle. There exists a polynomial time algorithm AH that
computes the H-labeling of the graph Gµ,kG,α,β in µnH-space.
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5 Non-Interactive Proofs of Space

5.1 NIPoS De�nition

A proof of space (PoS) [4,18] is a (possibly interactive) protocol between a prover
and a veri�er, in which the prover attempts to convince the veri�er that it used
a considerable amount of memory or disk space in a way that can be easily
checked by the veri�er. Here, �easily� means with a small amount of space and
computation; a PoS with these characteristics is sometimes called a proof of
transient space [40]. A non-interactive PoS (NIPoS) is simply a PoS where the
proof consists of a single message, sent by the prover to the veri�er; to each
proof, it is possible to associate an identity.

Intuitively, a NIPoS should meet two properties known as completeness and
soundness. Completeness says that a prover using a su�cient amount of space
will always be accepted by the veri�er. Soundness, on the other hand, ensures
that if the prover invests too little space, it has a hard time to convince the
veri�er. A formal de�nition follows below.

De�nition 9 (Non-interactive proof of space). For parameters sP, sV, s, t,
k, n ∈ N, with sV ≤ s < sP, and νpos ∈ (0, 1), an (sP, sV, s, t, k, n, νpos)-non-
interactive proof of space scheme (NIPoS for short) in the ROM consists of a
tuple of PPT algorithms (SetupH,PH,VH) with the following syntax.

� SetupH(1λ): This is a randomized polynomial-time (in λ) algorithm with
no space restriction. It takes as input the security parameter and it outputs
public parameters ωpos ∈ {0, 1}∗.

� PHωpos
(id): This is a probabilistic polynomial-time (in λ) algorithm that is sP-

bounded. It takes as input an identity id ∈ {0, 1}k and hard-wired public
parameters ωpos, and it returns a proof of space π ∈ {0, 1}n.

� VHωpos
(id , π): This algorithm is sV-bounded and deterministic. It takes as input

an identity id , hard-wired public parameters ωpos, and a candidate proof of
space π, and it returns a decision bit.

We require the following properties to hold.

Completeness: For all id ∈ {0, 1}k, we have that

Pr
[
VHωpos

(id , π) = 1 : ωpos ← SetupH(1λ);π ← PHωpos
(id)

]
= 1,

where the probability is taken over the randomness of algorithms Setup and
P, and over the choice of the random oracle.

Extractability: There exists a polynomial-time deterministic algorithm K (the
knowledge extractor) such that for any probabilistic polynomial-time algo-
rithm B, and for any id ∈ {0, 1}k, we have

Pr[Gext
B,id(λ) = 1] ≤ νpos,

where the experiment Gext
B,id(λ) is de�ned as follows:
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Game Gext
B,id(λ):

1. Sample ωpos ← SetupH(1λ) and π ← PHωpos
(id).

2. Let A← BH(ωpos, id , π) and {id i}i∈[q] := K(ωpos,QH(B)).
3. Let (ĩd , π̃) := AH(id , π).
4. Output 1 if and only if VHωpos

(ĩd , π̃) = 1 and ĩd 6∈ {id i}i∈[q]∪{id}

where A is an (s, t)-bounded deterministic algorithm, q ∈ poly(λ), the set QH(B)
contains the sequence of queries of B to H and the corresponding answers, and
where the probability is taken over the coin tosses of Setup,B,P, and over the
choice of the random oracle.

Roughly, the extractability property requires that no space-bounded adver-
sary is able to modify an honestly computed proof π for identity id into an
accepting proof π̃ for an identity ĩd 6= id . Moreover, this holds true even if A
is chosen adaptively (possibly depending on the public parameters, the identity
id , and a corresponding valid proof π) by a PPT algorithm B with unbounded
space. Since, however, B can compute o�ine an arbitrary polynomial number of
valid proofs (id i, πi), what the de�nition requires is that no (B,A) is able to yield
a valid pair (ĩd , π̃) for an ĩd di�erent than id that the knowledge extractor K
cannot predict by just looking at B's random oracle queries. It is easy to see that
such an extractability requirement constitutes a stronger form of soundness, as
de�ned, e.g., in [4,40].

5.2 NIPoS Construction

We now give a NIPoS construction that is essentially a non-interactive variant
of the PoS constructions of [40] that is in turn based on [4]. In particular, we
show that it satis�es the stronger form of soundness which we call extractabil-
ity. In addition, we formalize the security analysis given in [40] with concrete
parameters that may be of independent interest.

The construction is built from the following ingredients:

� A random oracle H : {0, 1}∗ → {0, 1}nH .
� A graph Gµ,kG,α,β from the family of SoLEG (cf. Section 4.3), where α, β
are constants in (0, 1) such that 2α < β. By de�nition of such a graph, the
number of nodes is given by N = µ(kG + 1). The in-degree d depends on
γ = β − 2α, and it is hence constant.19

Without loss of generality we assume that the vertices of Gµ,kG,α,β are or-
dered lexicographically and are represented by integers in [N ]. For simplicity
we also assume that N is a power of 2, and that log(N) divides nH.

� A (nH, ncm, N, nop, νmt)-Merkle commitment scheme (MGenH,MCommitH,

MOpenH,MVerH) (cf. Section 4.2).

19 As recommended in [40] we will typically work with 0.7 ≤ γ ≤ 0.9 to get loosely
40 < d < 200.
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NIPoS Construction

SetupH(1λ): On input the security parameter λ, generate the public parameters ωcm ←
MGenH(1λ) for the Merkle commitment. Consider the graph Gµ,kG,α,β ; recall that
the number of nodes of Gµ,kG,α,β is given by N = µ(kG + 1) and the in-degree is
d ∈ O(1). Output ωpos = (Gµ,kG,α,β , ωcm).

PHωpos
(id): On input an identity id ∈ {0, 1}k, and the public parameters ωpos =
(Gµ,kG,α,β , ωcm), proceed as follows.
1. Generate a Hid -labeling of Gµ,kG,α,β . Denote the labeling by z = (z1, . . . , zN ),

where each zi ∈ {0, 1}nH .
2. Generate a commitment of z, i.e. ψ ← MCommitHωcm

(z) where ψ ∈ {0, 1}ncm .
3. Compute ρ := H(id , ψ). Using ρ as the randomness, pick τ vertices v =

(v1, v2, . . . , vτ ) by setting v := ρ for τ = nH/ log(N), where each vi ∈ [N ].
4. For each vertex vi ∈ v:

(a) Compute the opening (zvi , φi) := MOpenHωcm
(z, vi), for (zvi , φi) ∈ {0, 1}nop .

(b) Let Γ−(vi) = (u
(1)
1 , . . . , u

(i)
d ) where each u

(i)
j ∈ [N ]. Compute the opening

corresponding to each u
(i)
j ∈ Γ

−(vi), i.e. (zu(i)
j

, φ
(j)
j ) := MOpenHωcm

(z, u
(i)
j ).

(c) De�ne πi :=
(
(zvi , φi), (zu(i)

1

, φ
(i)
1 ), · · · , (z

u
(i)
d

, φ
(i)
d )
)
∈ {0, 1}nop(d+1).

5. Output π := (ψ, (π1, . . . , πτ )) ∈ {0, 1}n as a proof of space for id .
VHωpos

(id , π): On input the public parameters ωpos = (Gµ,kG,α,β , ωcm), an identity

id ∈ {0, 1}k, and a candidate proof of space π ∈ {0, 1}n, it �rst parses π as
(ψ, (π1, · · · , πτ )), and computes ρ := H(id , ψ). Using ρ as the randomness, pick
τ vertices v = (v1, v2, . . . , vτ ) by setting v := ρ for τ = nH/ log(N), where each
vi ∈ [N ] (exactly as the prover did). Hence, it proceeds as follows for each i ∈ [τ ]:

1. Parse πi := ((wi, φi), (w
(i)
1 , φ

(i)
1 ), . . . , (w

(i)
d , φ

(i)
d )) and then:

(a) Check that wi = H(id , vi, w(i)
1 , . . . w

(i)
d ).

(b) Check that MVerHωcm
(vi, ψ, (wi, φi)) = 1.

(c) Let Γ−(vi) := (u
(i)
1 , . . . , u

(i)
d ); for each j ∈ [d] check that MVerHωcm

(u
(i)
j , ψ,

(w
(i)
j , φ

(i)
j )) = 1.

2. If the above checks succeed for all i ∈ [τ ], then output 1, else output 0.

Fig. 2: Our NIPoS construction.

Our construction is formally described in Fig. 2. Let us here just brie�y
explain the main ideas. The setup algorithm chooses a graph Gµ,kG,α,β from
the family of SoLEG. Given an identity id , the prover �rst computes the Hid -
labeling of the graph Gµ,kG,α,β and commits to the resulting string using the
Merkle commitment scheme. Then τ vertices of the graph are randomly chosen.
For each challenged vertex v, the prover computes and outputs the opening for
this vertex as well as opening for all its predecessors. The veri�er gets as input
the identity, a commitment, and τ(d+ 1) openings, where d is the degree of the
graph. It �rstly veri�es the consistency of all the openings with respect to the
commitment. Secondly, it checks the local correctness of the Hid -labeling.

The completeness of our scheme relies on the correctness of the underlying
commitment scheme. The extractability will follow from the pebbling complexity
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of the graph Gµ,kG,α,β and the binding property of the commitment scheme. In
particular, we prove the following statement:

Theorem 2. Let H : {0, 1}∗ → {0, 1}nH be a random oracle, Gµ,kG,α,β be a

SoLEG with N = µ(kG + 1) nodes and d in-degree, and (MGenH,MCommitH,
MOpenH,MVerH) be a (nH, ncm, N, nop, νmt)-Merkle commitment. Let s, t ∈ N
be such that, for some δ ∈ [0, β − 2α), we have t < 2kGαµ and s ≤ δµnH. Then,
the NIPoS scheme described in Fig. 2 is a (sP, sV, s, t, k, n, νpos)-NIPoS for any
k ∈ N, as long as:

sP ≥ k + nH(µ+ log(N) + 1) + n

s ≥ sV ≥ k + n+ nH

n = ncm + nop(d+ 1)(nH/log(N))

νpos ≤ exp

(
−nHµ(γ − δ)
N log(N)

)
+
nH(d+ 1)νmt

log(N)
+
|QH(A)|
2nH

,

where QH(A) are the random oracle queries asked by A and γ = β − 2α.

The formal proof appears in the full version. We provide some intuitions here.
The adversary wins the game only if all the checked vertices have a correct Hĩd -
label. By the binding property of the underlying Merkle commitment scheme
this means that the adversary A has to compute a partial Hĩd -labeling of the

graph Gµ,kG,α,β . Since ĩd is not extractable from the query table of QH(B) of
the adversary B and it is not equal to id , the adversary A does not get any Hĩd

label �for free� and hence, it has to compute the labeling on its own. By Lemma
3, however, the labeling of the graph Gµ,kG,α,β requires either a lot of space
or a lot of time neither of which the (s, t)-bounded adversary A has. Instead
of computing all the labels correctly via random oracle calls, the adversary A
can assign labels of some vertices to an arbitrary value which does not need to
be computed and stored. However, if such partial labeling consists of too many
faults, the probability that at least one of the faulty vertices will be checked
is high. Consequently, a winning adversary can not save a lot of recourses by
computing only a partial labeling of the graph.

Using the parameters from Theorem 2 we obtain the following corollary.

Corollary 1. Let λ ∈ N be a security parameter. Let H : {0, 1}∗ → {0, 1}nH be a
random oracle, Gµ,kG,α,β be a SoLEG with N = µ(kG+1) nodes and d = O(1) in-

degree, and (MGenH,MCommitH,MOpenH,MVerH) be a (nH, ncm, N, nop, νmt)-
Merkle commitment such that:

nH = λ2 γ = β − 2α ∈ (0, 1) kG = λ− 1 µ = λ3

ncm = λ2 nop = O(λ2 log(λ)) νmt ∈ negl(λ).
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Then, for any δ ∈ (0, γ), the scheme described in Fig. 2 is a (sP, sV, s, t, k, n,
νpos)-NIPoS, for t ∈ poly(λ) and

k = O(λ4) sP = O(λ5) sV = O(λ4)

n = O(λ4) O(λ4) ≤s ≤ δ · λ5 νpos ≤ exp

(
−(γ − δ)λ
log(λ)

)
+ negl(λ) ∈ negl(λ)

6 Our Coding Scheme

6.1 Code Construction

Let (SetupH,PH,VH) be a NIPoS in the ROM where H : {0, 1}∗ → {0, 1}nH

denotes the random oracle for some nH ∈ poly(λ). We de�ne a (k, n)-coding
scheme Π = (InitH,EncodeH,DecodeH) as follows.

InitH(1λ): Given as input a security parameter λ, it generates the public param-
eters for the NIPoS as ωpos ← SetupH(1λ), and outputs ω := ωpos.

EncodeHω (x): Given as input the public parameters ω = ωpos and a message
x ∈ {0, 1}k, it runs the prover to generate the proof of space π ← PHωpos

(x)
using the message x as identity. Then it outputs c := (x, π) ∈ {0, 1}n as a
codeword.

DecodeHω (c): Given a codeword c, it �rst parses c as (x, π). Then it runs the
veri�er b := VHωpos

(x, π). If b = 1 it outputs x, otherwise it outputs ⊥.

Theorem 3. Let λ be a security parameter. Suppose that (SetupH,PH,VH) is a
(sP, sV, s, kpos, npos,negl(λ))-NIPoS. Then, for any p ∈ N such that kpos+npos ≤
p ≤ s and θ ∈ poly(λ), the (k, n)-code Π = (InitH,EncodeH,DecodeH) de�ned
above is an (`, s, p, θ, sV)-SP-NMC in the ROM, where

k = kpos n = kpos + npos ` = θ ·O(log λ).

Recall that, in our de�nition of non-malleability, the parameter s represents
the space available for tampering, which is split into two components: p bits of
persistent space, which includes the n bits necessary for storing the codeword
and which is never erased, and s− p bits of transient space that is erased after
each tampering query.

Also, note that the above statement shows a clear tradeo� between the pa-
rameter θ (controlling the number of allowed tampering queries) and the leakage
bound `. Indeed, the larger θ, the more leakage we need, until the security guar-
antee becomes empty; this tradeo� is consistent with Theorem 1 (see also Fig. 1),
as we know that leaky space-bounded non-malleability, for non-trivial values of
`, is impossible for p ≈ n+ k, whenever θ ≥ k.

6.2 Proof of Security

The correctness of the coding scheme is guaranteed by the perfect completeness
of the NIPoS. Moreover, since the decoding algorithm simply runs the veri�er of
the NIPoS, it is straightforward to observe that decoding is sV bounded.
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Auxiliary algorithms. We start by introducing two auxiliary algorithms that will
be useful in the proof. Recall that, by extractability of the NIPoS, there exists a
deterministic polynomial-time algorithm K such that, given the public parame-
ters ωpos and a table of RO queries QH, returns a set of identities {id i}i∈[q], for
some q ∈ poly(λ). We de�ne the following algorithms that use K as a subroutine.

Algorithm Find(ωpos, id ,QH): Given a value id ∈ {0, 1}kpos , it �rst runs K to
obtain {id i}i∈[q] := K(ωpos,QH). If there exists an index i ∈ [q] such that
id = id i, then it returns the string str := bit(i)||01,20 where the function
bit(·) returns the binary representation of its input. Otherwise, the algorithm
returns the �ag 1`. Clearly, ` = dlog(q)e+ 2.

Algorithm Reconstruct(ωpos, str,QH): On receiving an `-bit string str and a RO
query table QH, it works as follows depending on the value of str:
� If str = 0`, output the symbol same?.
� If str = 1`, output the symbol ⊥.
� If str = a||01, set i := bit−1(a). Hence, run algorithm K to get the set
{id i}i∈[q] := K(ωpos,QH); in case i ∈ [q], output the value x := id i,
otherwise output ⊥.

� Else, output ⊥.

Constructing the simulator. We now describe the simulator SD = (SD1 ,S
D
2 ), de-

pending on a PPT distinguisher D.21 A formal description of the simulator is
given in Fig. 3; we provide some intuitions below.

Informally, algorithm S1 simulates the random oracle H by sampling a ran-
dom key χ ← {0, 1}nkey for a pseudorandom function (PRF) PRFχ : {0, 1}∗ →
{0, 1}nH ; hence, it de�nes H(u) := PRFχ(u) for any u ∈ {0, 1}∗.22 S2 receives
the description of the RO (i.e., the PRF key χ) from S1, and for each tampering
query Ai from D it asks a leakage query Li to its leakage oracle. The leakage
query hard-codes the description of the simulated RO, the table QH(D) consist-
ing of all RO queries asked by D (until this point), and the code of all tampering
algorithms A1, · · · ,Ai. Thus, Li �rst encodes the target message x to generate a
codeword c, applies the composed function Ai◦Ai−1◦· · ·◦A1 on c to generate the
tampered codeword c̃i, and decodes c̃i obtaining a value x̃i. Finally, the leakage
function signals whether x̃i is equal to the original message x, to ⊥, or to some of
the identities the extractor K would output given the list of D's RO queries (as
de�ned in algorithm Find). Upon receiving the output from the leakage oracle,
S2 runs Reconstruct and outputs whatever this algorithm returns.

Some intuitions. Firstly, note that in the real experiment the random oracle is
a truly random function, whereas in the simulation random oracle queries are

20 Looking ahead, in the simulation we use the strings 0` and 1` as �ags; therefore,
appending 01 to str ensures that str is never misinterpreted as those �ags.

21 In the rest of the proof we drop the superscript D, and just let S = (S1, S2).
22 Such a PRF can be instantiated using any PRF with �xed domain, and then ap-

plying the standard Merkle-Damgård transformation to extend the input domain to
arbitrary-length strings.
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Simulator S = (S1, S2)

1. Let PRFχ : {0, 1}∗ → {0, 1}nH be a PRF. The simulator S1 samples a uniform
random key χ ← {0, 1}nkey and de�nes H := PRFχ. The query table QH(D) that
stores RO queries from D is initially empty.

2. For i ∈ [θ] the simulator does the following:
(a) S1 simulates the random oracle queries made by D, before Ai is chosen, and

updates the table QH(D) accordingly.
(b) On receiving the adversary Ai, the simulator S2 queries its leakage oracle O`,xleak

with L : {0, 1}k → {0, 1}` (where ` = O(log(λ))) described as follows:
Description of L:
� L is hard-coded with the description of H (i.e., with PRFχ), the

table QH(D), the code of (A1,A2, . . . ,Ai), and the code of the
knowledge extractor K of the NIPoS.

� Produce the codeword c← EncodeHω (x) and initialize the auxiliary
space σ := 0s−n.

� Let Ãi := Ai ◦ Ai−1 ◦ · · · ◦ A1. Run Ãi to get (c̃, σ̃) := Ãi(c;σ).
� Compute x̃ := DecodeHω (c̃). If x̃ = ⊥, output the �ag 1`, else, if
x̃ = x, output the �ag 0`; otherwise run strx̃ := Find(ω, x̃,QH(D))
and output strx̃.

� All other oracle queries that are not asked by D (e.g., queries made
by Aj , or while running Encode etc.) are simulated internally.

(c) On receiving an `-bit string str from L, simulator S2 runs x̃← Reconstruct(ω,
strx̃,QH(D)) and outputs x̃.

Fig. 3: Description of the simulator S = (S1,S2)

answered using a PRF. However, using the security of the PRF, we can move
to a mental experiment that is exactly the same as the simulated game, but
replaces the PRF with a truly random function.

Secondly, a closer look at the algorithms Find and Reconstruct reveals that
the only case in which the simulation strategy goes wrong is when the tampered
codeword c̃i is valid, but the leakage corresponding to the output of Find provokes
a ⊥ by Reconstruct for some i ∈ [θ]. We denote this event as Fail. We prove that
Fail occurs exactly when the adversary D violates the extractibility property of
the underlying NIPoS, which happens only with negligible probability.

To simplify the notation in the proof, let us write

Dcnm := DH(·),OΠ,x,ω,s,pcnm (·), Dsim′
:= DH(·),OS2,`,x,s,ω

sim (·), Dsim := DS1(·),O
S2,`,x,s,ω
sim (·)

to denote the interaction in the real, resp. mental, resp. simulated experiment.

Formal analysis. Consider an adversary D which makes θ queries to Ocnm. By
De�nition 7, we need to prove that the simulator SD = (SD1 ,S

D
2 ) de�ned in Fig. 3

is such that, for all values x ∈ {0, 1}k, there is a negligible function ν : N→ [0, 1]
satisfying∣∣Pr [Dcnm(ω) = 1: ω ← InitH(1λ)

]
− Pr

[
Dsim(ω) = 1: ω ← InitS1(1λ)

] ∣∣ ≤ ν(λ).
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A straightforward reduction to the pseudorandomness of the PRF yields:∣∣∣Pr [Dsim(ω) = 1: ω ← InitS1(1λ)]− Pr[Dsim′
(ω) = 1: ω ← InitH(1λ)

]∣∣∣ ≤ ν′(λ),
where ν′ : N→ [0, 1] is a negligible function.

Let us now �x some arbitrary x ∈ {0, 1}k. For every i ∈ [θ], we recursively
de�ne the event NotExtri as:

NotExtri := ¬NotExtri−1 ∧ DecodeHω (c̃) 6∈ {⊥, x}
∧ Find(ω,DecodeHω (c̃),QH(D)) = 1`,

where NotExtr0 is an empty event that never happens and (c̃, σ̃) := Ãi(c, σ)

for Ãi := Ai ◦Ai−1 ◦ · · · ◦A1. In other words, the event NotExtri happens when
Ai is the �rst adversary that tampers to a valid codeword of a message x̃ 6= x
which is not extraxtable from QH(D). In addition, we de�ne the event

Fail :=
∨
i∈[θ]

NotExtri.

Now, we can bound the probability that D succeeds as follows:∣∣∣Pr [Dcnm(ω) = 1]− Pr
[
Dsim′

(ω) = 1
]∣∣∣ (1)

≤
∣∣∣Pr [Dcnm(ω) = 1 | ¬Fail]− Pr

[
Dsim′

(ω) = 1 | ¬Fail
] ∣∣∣ · Pr[¬Fail]

+
∣∣∣Pr [Dcnm(ω) = 1 | Fail]− Pr

[
Dsim′

(ω) = 1 | Fail
] ∣∣∣ · Pr[Fail]

≤
∣∣∣Pr [Dcnm(ω) = 1 | ¬Fail]− Pr

[
Dsim′

(ω) = 1 | ¬Fail
]∣∣∣+ Pr[Fail],

where in the above equations the probability is taken also on the sampling of
ω ← InitH(1λ). We complete the proof by showing the following two claims.

Claim. Event Fail happens with negligible probability.

Proof. Assume that for some x ∈ {0, 1}k adversary D provokes the event Fail
with non-negligible probability. This implies that there is at least one index
j ∈ [θ] such that event NotExtrj happens with non-negligible probability. We
construct an e�cient algorithm B running in game Gext

B,x(λ), that attempts to
break the extractability of the NIPoS:

Algorithm BHD :

1. Receive as input ωpos ← SetupH(1λ), x ∈ {0, 1}kpos , and π ← PHωpos
(x).

2. Assign (c, σ) := (x||π, 0s−n), QH(D) := ∅, and de�ne A := Id, where
Id : {0, 1}s → {0, 1}s is the identity function.

3. For i ∈ [θ] proceed as follows:
(a) Answer random oracle queries made by D, before Ai is chosen,

by querying H in game Gext
B,x(λ) and forwarding the answers to

D; in addition, store these queries in the table QH(D).
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(b) On receiving Ai, set A := A ◦ Ai and run (c̃, σ̃) := Ai(c;σ).
(c) Compute x̃ := DecodeHω (c̃) and run strx̃ := Find(ω, x̃,QH(D)). If

strx̃ = 1` and x̃ 6= ⊥, then output A and stop. Otherwise send x̃
to D and let (c, σ) := (c̃, σ̃0||0s−p), where σ̃0||σ̃1 := σ̃.

We observe that B perfectly simulates the view of Dsim′
. So, if there exists at

least one j ∈ [θ] for which NotExtrj happens, B wins the game Gext
B,x(λ).

Therefore we have that Pr[Gext
D,x(λ) = 1] ≥ Pr[∃j ∈ [θ] : NotExtrj ] which,

combined with the extractability of NIPoS, completes the proof.

Claim.
∣∣∣Pr [Dcnm(1λ) = 1 | ¬Fail

]
− Pr

[
Dsim′

(1λ) = 1 | ¬Fail
]∣∣∣ = 0

Proof. By inspection of the simulator's description it follows that, conditioning
on event Fail not happening, the simulation oracle using S2 yields a view that
is identical to the one obtained when interacting with the tampering oracle. The
claim follows.

Combining the above two claims together with Eq. (1), we obtain that∣∣∣Pr [Dcnm(ω) = 1 : ω ← InitH(1λ)
]
− Pr

[
Dsim′

(ω) = 1 : ω ← InitS1(1λ)
]∣∣∣

is negligible, as desired.

It remains to argue about the size of leakage. To this end, it su�ces to note
that the simulator S2 receives O(log(λ)) bits of leakage for every i ∈ [θ]. Thus,
the total amount of leakage is θ ·O(log(λ)), exactly as stated in the theorem.

6.3 Concrete Instantiation and Parameters

Instantiating Theorem 3 with our concrete NIPoS from Corollary 1, and using
bounds from Theorem 1, we obtain the following corollaries. The �rst corollary
provides an upper bound on the number of tolerated tampering queries at the
price of a high (but still non-trivial) leakage parameter.

Corollary 2. For any γ, δ, ε ∈ (0, 1), there exists an explicit construction of a
(k, n)-code in the ROM that is a (γ · k, s, p, θ, Θ(λ4))-SP-NMC, where

k = Θ(λ4) n = Θ(λ4) Θ(λ4) ≤ p ≤ s = δλ5 θ = Θ(λ4−ε).

The second corollary yields a smaller number of tolerated tampering queries
with optimal (logarithmic) leakage parameter.

Corollary 3. For any δ ∈ (0, 1), there exists an explicit construction of a (k, n)-
code in the ROM that is an (O(log λ), s, p, θ, O(λ4))-SP-NMC, where

k = O(λ4) n = O(λ4) O(λ4) ≤ p ≤ s = δλ5 θ = O(1).
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7 Trading Leakage for Tamper-Proof Security

We revise the standard application of non-malleable codes to obtain protection
against memory tampering attacks. The main idea, put forward in [21], is very
simple. Let F be an arbitrary functionality, initialized with �secret key� κ; instead
of storing κ, we store an encoding c of κ, computed via a non-malleable code.
Hence, whenever we have to run F , we decode c obtaining a value κ̃ which we
use to evaluate the functionality on any chosen input. It is not too hard to show
that this idea yields security against tampering attacks against the secret key,
for the same class of adversaries supported by the non-malleable code.

This methodology, also known as �tamper simulatability�, has been explored
in several variants [35,25,13,26]. Here, we propose yet another variant where the
above compiler is instantiated using a leaky space-bounded continuously non-
malleable code; this yields security in a model where it is possible to �trade�
security against space-bounded memory tampering, with some bits of leakage
on the secret key, an idea already explored in a related line of research [28].

7.1 Leaky Tamper Simulatability

Let F : {0, 1}k × {0, 1}kin → {0, 1}kout be a randomized functionality, taking as
input a secret value κ ∈ {0, 1}k and a string m ∈ {0, 1}kin , and producing a
value y ← F(κ,m) ∈ {0, 1}kout . For simplicity, we consider the case of state-
less functionalities where the value κ is never updated during the computation;
an extension to the case of stateful functionalities is immediate, along the lines
of previous work [21,35,25]. We note, however, that since updating the value κ
requires execution of the encoding algorithm (which uses a lot of space), consid-
ering only stateless functionalities is natural in our model.

Given a non-malleable code Π, the hardened functionality corresponding to
F is de�ned below. For consistency with the rest of the paper, we state the
de�nition in the ROM.

De�nition 10 (Hardened functionality).Considera functionality F : {0, 1}k
× {0, 1}kin → {0, 1}kout , and let Π = (InitH,EncodeH,DecodeH) be a (k, n)-code
in the ROM. For parameters s, p ∈ N, with s ≥ p ≥ n, the (s, p)-memory hard-
ened functionality F̂(Π, s, p) corresponding to F consists of algorithms (SetupH,
RunH) with the following syntax.

� SetupH(1λ, s, κ): Upon input the security parameter λ ∈ N, sample ω ←
InitH(1λ), let c← EncodeHω (κ), and setM := c||0p−n||0s−p. Output (ω,M).

� RunHω (M,m): Parse M := c||σ0||σ1 and let κ̃ = DecodeHω (c). If κ̃ = ⊥, set
ỹ = ⊥; else, run ỹ ← F(κ̃,m). UpdateM := c||σ0||0s−p and output (ỹ,M).

It follows by correctness of the encoding scheme that, for all inputs, F̂(Π, s, p)
computes exactly the same functionality as F . Notice that the hardened func-
tionality corresponding to F has p bits of persistent storage (i.e., n bits for
storing the secret encoding and p − n bits for auxiliary data); the remaining
s− p bits represent transient storage that is needed for decoding the codeword
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and running the original functionality with the obtained key (this memory is
erased after each evaluation).

In case there is not enough transient space to decode or to run the original
functionality, an external memory must be used. Thus, we get a natural trade-o�
between the amount of auxiliary data that can be stored on the device and the
class of functionalities that can be executed without using an external memory.

Tampering experiment. To de�ne security, we consider an s-bounded adversary
that tampers with the memory content of the hardened functionality. This is
done via the experiment described below, which is executed by a PPT algorithm
D, and is parametrized by an (s, p)-memory hardened functionality F̂(Π, s, p),
a key κ ∈ {0, 1}k, a parameter θ ∈ N, and security parameter λ ∈ N.

Experiment TamperInteract(D, F̂(Π, s, p), κ, θ, λ):

1. Run (ω,M)← SetupH(1λ, s, κ) and give ω to D.

2. D can run the following commands (in an arbitrary order):

� 〈Tamper,A ∈ Asspace〉: Parse M := c||σ0||σ1. Let (c̃, σ̃0, σ̃1) =
A(c;σ0||σ1), and update M := c̃||σ̃0||σ̃1. This command can be
run for at most θ times.

� 〈Execute,m ∈ {0, 1}kin〉: Execute (ỹ,M) ← RunHω (M,m), and
return ỹ. This command can be executed an arbitrary polynomial
number of times.

� 〈RO, u ∈ {0, 1}∗〉: Return v = H(u). This command can be exe-
cuted an arbitrary polynomial number of times.

3. D outputs a bit as a function of its view.

Leaky simulation. Intuitively, a non-malleable code is `-leaky tamper simulatable
if the above tampering experiment can be simulated with black-box access to the
original functionality F , plus ` bits of leakage on the secret key. This is formalized
in the experiment described below, which is executed by a PPT algorithm D and
is parametrized by a functionality F , a PPT simulator S, a value ` ∈ N, an initial
key κ ∈ {0, 1}k, a parameter θ ∈ N, and security parameter λ ∈ N.

Experiment BBLeak(D,F ,S, `, κ, θ, λ):
1. The simulator S, which is given black-box access to F(κ, ·) and oracle

access to O`,κleak(·), emulates the entire view of D. In particular:

� It takes care of simulating the public parameters and answering
(polynomially many) random oracle queries;

� It needs to answer (at most θ) tampering queries and (polyno-
mially many) execute queries.

2. D outputs a bit as a function of its view.23

23 Typically, the simulator is restricted to run the black-box functionality on the very
same inputs on which the distinguisher speci�es its execute queries.
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De�nition 11 (Leaky tamper simulatability). Let `, s, p, θ, k, n ∈ N be
functions of the security parameter λ ∈ N, with s ≥ p ≥ n. A (k, n)-code Π
is `-leaky (s, p)-space θ-tamper simulatable in the ROM, if for all PPT distin-
guishers D there exists a PPT simulator S such that for all functionalities F ,
and for all κ ∈ {0, 1}k, there is a negligible function ν : N→ [0, 1] for which∣∣∣Pr [TamperInteract(D, F̂(Π, s, p), κ, θ, λ) = 1

]
− Pr [BBLeak(D,F ,S, `, κ, θ, λ) = 1]

∣∣∣ ≤ ν(λ).
7.2 Analysis

In the following theorem, the proof of which appears in the full version, we show
the correspondence between leaky non-malleable and leaky tamper simulatable
codes.

Theorem 4. Let Π be an `-leaky (s, p)-space-bounded θ-continuously non-mal-
leable code in the ROM. Then, Π is also `-leaky (s, p)-space θ-tamper simulatable
in the ROM.

Informally, Theorem 4 states that every functionality F that is resistant to
` bits of leakage on the secret key can be protected against memory tampering
by an `-leaky non-malleable code.
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