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Abstract. Cryptographic reductions typically aim to be tight by trans-
forming an adversary A into an algorithm that uses essentially the same
resources as A. In this work we initiate the study of memory efficiency in
reductions. We argue that the amount of working memory used (relative
to the initial adversary) is a relevant parameter in reductions, and that
reductions that are inefficient with memory will sometimes yield less
meaningful security guarantees. We then point to several common tech-
niques in reductions that are memory-inefficient and give a toolbox for
reducing memory usage. We review common cryptographic assumptions
and their sensitivity to memory usage. Finally, we prove an impossibility
result showing that reductions between some assumptions must unavoid-
ably be either memory- or time-inefficient. This last result follows from a
connection to data streaming algorithms for which unconditional memory
lower bounds are known.
Keywords. memory, tightness, provable security, black box reduction

1 Introduction

Cryptographic reductions support the security of a cryptographic scheme S by
showing that any attack against S can be transformed into an algorithm for
solving a problem P. The tightness of a reduction is in general some measure
of how closely the reduction relates the resources of attacks against S to the
resources of the algorithm for P. A tighter reduction gives a better algorithm
for P, ruling out a larger class of attacks against S. Typically one considers
resources like runtime, success probability, and sometimes the number of queries
(to oracles defined in P) of the resultant algorithm when evaluating the tightness
of a reduction.

This work revisits how we measure the resources of the algorithm produced by
a reduction. We observe that memory usage is an often important but overlooked
metric in evaluating cryptographic reductions. Consider typical “tight” reductions
from the literature, which start with an attack against a scheme S that uses
(say) time tS to achieve success probability εS , and transform the attack into an
algorithm for problem P running in time tP ≈ tS and succeeding with probability
εP ≈ εS . We observe that reductions tight in this sense are sometimes highly
memory-loose: If the attack against S used mS bits of working memory, the



reduction may produce an algorithm using mP � mS bits of memory to solve P.
Depending on P, this changes the conclusions we can draw about the security of
the scheme.

In this paper we investigate memory-efficiency in cryptographic reductions in
various settings. We show that some standard decisions in security definitions
have a bearing on memory efficiency of possible reductions. We give several simple
techniques for improving memory efficiency of certain classes of reductions, and
finally turn to a connection between streaming algorithms and memory/time-
efficient reductions.

Tightness, memory-tightness, and security. Reductions between a problem
P and a cryptographic scheme S that approximately preserve runtime and success
probability are usually called tight (c.f. [8,17,6]). Tight reductions are preferred
because they provide stronger assurance for the security of S. Specifically, let us
call an algorithm running in time t and succeeding with probability ε a (t, ε)-
algorithm (for a given problem, or to attack a given scheme). Suppose that a
reduction converts a (tS , εS)-adversary against scheme S into a (tP , εP )-algorithm
for P where (tP , εP ) are functions of the first two. If it is believed that no (tP , εP )
algorithm should exist for P, then one concludes that no (tS , εS) adversary can
exist against S.

If a reduction is not tight, then in order to conclude that scheme S is secure
against (tS , εS)-adversaries one must adjust the parameters of the instance of P
on which S is built, leading to a less efficient construction. In some extreme cases,
obtaining a reasonable security level for a scheme with a non-tight reduction
leads to an impractical construction. Addressing this issue has become an active
area of research in the last two decades (e.g. [8,5,6,12,11,4,18]).

In this work we keep track of the amount of memory used in reductions. To
see when memory usage becomes relevant, let a (t,m, ε)-algorithm use t time
steps, m bits of memory, and succeed with probability ε. A tight reduction from
S to P transforms (tS ,mS , εS)-adversaries into (tP ,mP , εP )-algorithms, where
“tight” guarantees tS ≈ tP and εS ≈ εP , but permits mP � mS , up to the
worst-case mP ≈ tP .

Now, suppose concretely that we want S to be secure against (2256, 2128, O(1))-
adversaries, based on very conservative estimates of the resources available to
a powerful government. Consider two possible “tight” reductions: One that
is additionally “memory-tight” and transforms a (2256, 2128, O(1))-adversary A
against S into a (2256, 2128, O(1))-algorithm Bmt for P, and one that is “memory-
loose” and instead only yields a (2256, 2256, O(1))-algorithm Bnmt for P.

The crucial point is that some problems P can be solved faster when larger
amounts of memory are used. In our example above, it may be that P is impossible
to solve with 2256 time and 2128 memory for some specific security parameter λ.
But with both time and memory up to 2256 bits, the best algorithm may be
able to solve instances of P with security parameter λ, and with even larger
parameters up to some λ′ > λ. The memory-looseness of the reduction now
bites, because to achieve the original security goal for S we must use the larger
parameter λ′ for P, resulting in a slower instantiation of the scheme. When P is a
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Fig. 1. Time/memory trade-off plots for collision-resistance (CR2, left), triple collision-
resistance (CR3, middle) and LPN with dimension 1024 and error rate 1/4 (right). All
plots are log-log and the axes on the right plot are not to scale.

problem involving a symmetric primitive where the “security parameter” cannot
be changed the issue is more difficult to address.

We now address two points in turn: If P is easier to solve when large memory
is available, what does this mean for memory-tight reductions? And when are
reductions “memory-loose”?
Memory-sensitive problems and memory-tightness. Many, but not all,
problems P relevant to cryptography can be solved more quickly with large
memory than with small. In the public-key realm these include factoring, discrete-
logarithm in prime fields, Learning Parities with Noise (LPN), Learning With
Errors (LWE), approximate Shortest Vector Problem, and Short Integer Solution
(SIS). In symmetric-key cryptography such problems include key-recovery against
multiple-encryption, finding multi-collisions in hash functions, and computation
of memory-hard functions. We refer to problems like these as memory-sensitive.
(We refer to Section 6 for more discussion.)

On the other hand, problems P exist where the best known algorithm also uses
small memory: Discrete-logarithm in elliptic curve groups over prime-fields [16],
finding (single) collisions in hash functions [23], finding a preimage in hash func-
tions (exhaustive search), and key recovery against block-ciphers (also exhaustive
search).

Let us consider some specific examples to illustrate the impact of a memory-
loose reduction to a non-memory-sensitive versus a memory-sensitive problem.
Let CRk be the problem of finding a k-way collision in a hash function H with
λ output bits, that is, finding k distinct domain points x1, . . . , xk such that
H(x1) = H(x2) = · · · = H(xk) for some fixed k ≥ 2.

First suppose we reduce the security of a scheme S to CR2, which is standard
collision-resistance. The problem CR2 is not memory-sensitive, and the best
known attack is a (2λ/2, O(1), O(1))-algorithm. In the left plot of Figure 1 we
visualize the “feasible” region for CR2, where the shaded region is unsolvable.
Now we consider two possible reductions. One is a memory-tight reduction which
maps an adversary A (with some time and memory complexity, with possibly
much less memory than time) to an algorithm Bmt for CR2 with the same time



and memory. The other reduction is memory-loose (but time-tight) and maps
A to an adversary Bnmt that uses time and memory approximately equal to the
time of A. We plot the effect of these reductions in the left part of the figure.
A tight reduction leaves the point essentially unchanged, while a memory-loose
reduction moves the point horizontally to the right. Both reductions will produce
a Bnmt in the region not known to be solvable, thus giving a meaningful security
statement about A that amounts to ruling out the shaded region of adversaries.
We do note that there is a possible quantitative difference in the guarantees
of the reductions, since it is only harder to produce an algorithm with smaller
memory, but this benefit is difficult to measure.

Now suppose instead that we reduce the security of a scheme S to CR3. The
best known attack against CR3 is a (2(1−α)λ, 2αλ, O(1))-algorithm due to Joux
and Lucks [20], for any α ≤ 1/3. We visualize this time-memory trade-off in the
middle plot of Figure 1, and again any adversary with time and memory in the
shaded region would be a cryptanalytic advance. We again consider a memory-
tight versus a memory-loose reduction. The memory-tight reduction preserves the
point for the adversary A in the plot and thus rules out (tS ,mS , O(1)) adversaries
for any tS ,mS in the shaded region. A memory-loose (but time-tight) reduction
mapping A to Bnmt for CR3 that blows up memory usage up to time usage
will move the point horizontally to the right. We can see that there are drastic
consequences when the original adversary A lies in the triangular region with time
> 2λ/3 and memory < λ/3, because the reduction produces an adversary Bnmt
using resources for which CR3 is known to be broken. In summary, the reduction
only rules out adversaries A below the horizontal line with time = 2λ/3.

Finally we consider an example instantiation of parameters for the learning
parities with noise (LPN) problem, which is memory-sensitive, where a memory-
loose reduction would diminish security guarantees. In Section 6 we recall this
problem and the best attacks, and in the right plot of Figure 1 the shaded region
represents the infeasible region for the problem in dimension 1024 and error rate
1/4. (For simplicity, all hidden constants are ignored in the plot.) In this problem
the effect of memory-looseness is more stark. Despite using a large dimension,
a memory-loose reduction can only rule out attacks running in time < 285. A
memory-tight reduction, however, gives a much stronger guarantee for adversaries
with memory less than 285.

Memory-loose reductions. Reductions are often memory-loose, and small
decisions in definitions can lead to memory usage being artificially high. We start
with an illustrative example.

Suppose we have a tight security reduction (in the traditional sense) in the
random oracle model [7] between a problem P and some cryptographic scheme S.
More concretely, suppose a reduction transforms a (tS ,mS , εS)-adversary AS
in the random-oracle model into a (tP ,mP , εP )-algorithm AP for P. A typical
reduction has AP simulate a security game for AS , including the random oracle,
usually via a table that stores responses to queries issued by AS . Naively removing
the table from storage usually is not an option for various reasons: For example,
if AS queries the oracle on the same input twice, then it expects to see the same



output twice, or perhaps the reduction needs to “program” the random oracle
with responses that must be remembered.

Storing a table for the random oracle may dramatically increase memory
usage of the algorithm AP . If adversary AS makes qH queries to the random
oracle, then AP will store Ω(qH) bits of memory, plus the internal memory mS

of AS during the simulation, which gives

mP = mS +Ω(qH).

In the worst case, AS could run in constant memory and make one random
oracle query per time unit, meaning that AP requires as much memory as its
running time. Thus the reduction may be “tight” in the traditional sense with
tP ≈ tS , εP ≈ εS , but also have

mP = mS + tS . (1)

Thus AP may use an enormous amount of memory mP even if AS satisfied
mS = O(1).

This example is only the start. Memory-looseness is sometimes, but not always,
easily fixed, and seems to occur because it was not measured in reductions. Below
we will furnish examples of other reductions that are (sometimes implicitly)
memory-loose. We will also discuss some decisions in definitions and modeling
that dramatically effect memory usage but are not usually stressed.

1.1 Our results

Even though there exists an extensive literature on tightness of cryptographic
security reductions (e.g. [8,5,12,11]), memory has, to the best of our knowledge,
not been considered in the context of security reductions. In this paper we
first identify the problems related to non-memory-tight security reductions. To
overcome the problems, we initiate a systematic study on how to make known
security reductions memory-tight. Concretely, we provide several techniques to
obtain memory-efficient reductions and give examples where they can be applied.
Our techniques can be used to make many security reductions memory-tight,
but not all of them. Furthermore, we show that this is inherent, i.e., that there
exist natural cryptographic problems that do not have a fully tight security
reduction. Finally, we examine various memory-sensitive problems such as the
learning parity with noise (LPN) problem, the factoring problem, and the discrete
logarithm problem over finite fields.
The Random Oracle technique. Recall that a classical simulation of the
random oracle using the lazy sampling technique requires the reduction to store
O(qH) values. The idea is to replace the responses H(x) to a random oracle query
x by PRF(k, x), where PRF is a pseudo-random function and k is its key. The
limitation of this technique is that it can only be applied to very restricted cases
of a programmable random oracle.
The Rewinding Technique. The idea of the rewinding technique is to use
the adversary as a “memory device.” Concretely, whenever the reduction would



like to access values previously output by the adversary that it did not store
in its memory, it simply rewinds the adversary which is executed with the
same random coins and with the same input. This way the reduction’s running
time doubles, but (unlike previous applications of the rewinding technique in
cryptography, e.g., [22]) the overall success probability does not decrease. The
rewinding technique can be applied multiple times providing a trade-off between
memory efficiency and running time of the reduction. To exemplify the techniques,
we show a memory-tight security reduction to the RSA full-domain hash signature
scheme in the appendix.
A Lower Bound. Some reductions appear (to us at least) to inherently require
increased memory. We take a first step towards formalizing this intuition by
proving a lower bound on the memory usage of a class of black-box reductions in
two scenarios.

First, we revisit a reduction implicitly used to justify the standard unforge-
ability notion for digital signatures, which reduces a game with several chances to
produce a valid forgery to the standard game with only one chance. One can take
this as a possible indication that signatures with memory-tight reductions in the
more permissive model may be preferred. Second, we prove a similar lower bound
on the the memory usage of a class of reductions between a “multi-challenge”
variant of collision resistance and standard collision resistance.

Interestingly, our lower bound follows from a result on streaming algorithms,
which are designed to use small space while working with sequential access to a
large stream of data.
Open problems. This work initiates the study of memory-tight reductions in
cryptography. We give a number of techniques to obtain such reductions, but many
open problems remain. There are likely other reductions in the literature that we
have not covered, and to which our techniques do not apply. It is even unclear
how one should consider basic definitions, like unforgeability for signatures, since
the generic reductions from more complicated (but more realistic) definitions
may be tight but not memory-tight.

One reduction we did consider, but could not improve, is the IND-CCA
security proof for Hash ElGamal in the random oracle model [1] under the
gap Diffie-Hellman assumption. This reduction (and some others that use “gap”
assumptions) use their random oracle table in a way that our techniques cannot
address. We conjecture that a memory-tight reduction does not exist in this case,
and leave it as an open problem to (dis)prove our conjecture.

2 Complexity Measures

We denote random sampling from a finite set A according to the uniform distribu-
tion with a← A. By Ber(α) we denote the Bernoulli distribution for parameter
α, i.e., the distribution of a random variable that takes value 1 with probability
α and value 0 with probability 1− α; by P` the set of primes of bit size ` and by
log the logarithm with base 2.



2.1 Computational Model

Computational model. All algorithms in this paper are taken to be RAMs.
These programs have access to memory with words of size λ, along with a constant
number of registers that each hold one word. In this paper λ will always be the
security parameter of a construction or a problem under consideration.

We define probabilistic algorithms to be RAMs with a special instruction
that fills a distinguished register with random bits (independent of other calls
to the special instruction). We note that this instruction does not allow for
rewinding of the random bits, so if the algorithm wants to access previously used
random bits then it must store them. Running an algorithm A means executing
a RAM machine with input written in its memory (starting at address 0). If A is
randomized, we write y ← A(I) to denote the random variable y that is obtained
by running A on input I (which may consist of a tuple I = (I1, . . . , In)). If A is
deterministic, we write← instead of←. We sometimes give an algorithm A access
to stateful oracles O1,O2, . . . ,On. Each Oi is defined by a RAM Mi. We also
define an associated string stO called the oracle state that is stored in a protected
region of the memory of A that can only be read by the oracles. Initially stO is
defined to be empty. An algorithm A calls an oracle Oi via a special instruction,
which runs the corresponding RAM on input from a fixed region of memory of A
along with the oracle state stO. The RAM Mi uses its own protected working
memory, and finally its output is written into a fixed region of memory for A,
the updated state is written to stO, and control is transferred back to A.
Games. Most of our security definitions and proofs use code-based games [9]. A
game G consists of a RAM defining an Init oracle, zero or more stateful oracles
O1, . . . ,On, and a Fin RAM oracle. An adversary A is said to play game G if its
first instruction calls Init (handing over its own input) and its last instruction
calls Fin, and in between these calls it only invokes O1, . . . ,On and performs local
computation. We further require that A outputs whatever Fin outputs.

Executing game G with A is formally just running A with input λ, the security
parameter. Keeping with convention, we denote the random variable induced by
executing G with A as GA (where the sample space is the randomness of A and
the associated oracles). By GA ⇒ out we denote the event that G executed with
A outputs out. In our games we sometimes denote a “Stop” command that takes
an argument. When Stop is invoked, its argument is considered the output of the
game (and the execution of the adversary is halted). If a game description omits
the Fin procedure, it means that when A calls Fin on some input x, Fin simply
invokes Stop with argument x. By default, integer variables are initialized to 0,
set variables to ∅, strings to the empty string and arrays to the empty array.

2.2 Complexity Measures

This work is concerned with measuring the resource consumption of an adversary
in a way that allows for meaningful conclusions about security. Success proba-
bilities and time are widely used in the cryptographic literature with general



agreement on the details, which we recall first. Memory consumption of reductions
is however new, so we next discuss the possible options in measuring memory
and the implications.
Success Probability. We define the success probability of A playing game G
as Succ(GA) := Pr[GA ⇒ 1].
Runtime. Let A be an algorithm (RAM) with no oracles. The runtime of A,
denoted Time(A), is the worst-case number of computation steps of A over all
inputs of bit-length λ and all possible random choices. Now let G be a game
and A be an adversary that plays game G. The runtime of executing G with A is
usually taken to be the number of computation steps of A plus the number of
computation steps of each RAM used to respond to oracle queries: We denote this
as TotalTime(GA) or TotalTime(A). One may prefer not to include the time
used by the oracles, and in this case we denote LocalTime(GA) or LocalTime(A)
to be the number of steps of A only.
Memory. We define the memory consumption of a RAM program A without
oracles, denoted Mem(A), to be size (in words of length λ) of the code of A plus
the worst-case number of registers used in memory at any step in computation,
over all inputs of bit-length λ and all random choices. Now let G be a game and
A be an adversary that plays game G. The memory required to execute game G
with A includes the memory needed to input and output to A, as well as input
and output to each oracle, along with the working memory and state of each
oracle. We denote this as TotalMem(GA) or TotalMem(A). Alternatively, one
may measure only the code and memory consumed by A, but not its oracles. We
denote this measure by LocalMem(A).

One advantage of the LocalMem measure is that it can avoid small details
of security definitions drastically changing the meaning of memory-tightness in
reductions.

Sometimes it will be convenient to measure the memory consumption in bits,
in which case we use Mem2(A), LocalMem2(A), and TotalMem2(A).

2.3 Case Study I: Unforgeability of Digital Signatures

Let (Gen,Sign,Ver) be a digital signature scheme (see Section 5 for the ex-
act syntax of signatures, which is standard). On the left side of Figure 2 we
recall the game UFCMA that defines the standard notion of (existential) un-
forgeability under chosen-message attacks. The advantage of an adversary A is
defined by Adv(UFCMAA) = Succ(UFCMAA), and a signature scheme where
Adv(UFCMAA) is “small” for some class of adversaries is usually defined to be
“secure”. In order for the definition to be meaningful, the game UFCMA checks
that the signature σ∗ on m∗ is valid, and also that m∗ was not queried to the
signing oracle. In our version of the definition, the signing oracle maintains a
set S of messages that were queried, and the game uses S to check if m∗ was
queried.

The UFCMA game is an example where we prefer LocalMem to TotalMem.
Any adversary A playing UFCMA will always have TotalMem(A) = Ω(qS), where



Game UFCMA

Procedure Init
00 S ← ∅
01 (pk, sk)← Gen
02 Return pk

Procedure ProcSign(m)
03 S ← S ∪ {m};σ ← Sign(sk,m)
04 Return σ

Procedure Fin(m∗, σ∗)
05 If Ver(pk,m∗, σ∗) = 1 ∧m∗ /∈ S
06 Stop with 1
07 Stop with 0

Game mUFCMA

Procedure Init
00 S ← ∅; win← 0
01 (pk, sk)← Gen
02 Return pk

Procedure ProcSign(m)
03 S ← S ∪ {m};σ ← Sign(sk,m)
04 Return σ

Procedure ProcVer(m∗, σ∗)
05 If Ver(pk,m∗, σ∗) = 1 ∧m∗ /∈ S
06 win← 1

Procedure Fin
07 Stop with win

Fig. 2. Games UFCMA,mUFCMA.

qS is the number of signature queries it issues, while it may have LocalMem(A)
much smaller. Restricting the number of signing queries qS is an option but
weakens the definition.

An alternative style of definition for unforgeability is to limit the class of
adversaries A considered to those that are “well behaved” in that they never
submit an m∗ that was previously queried. The game no longer needs to track
which messages were queried to the signing oracle in order to be meaningful. This
definition is equivalent up to a small increase in (local) running time, but it is
not clear if the same is true for memory. To convert any adversary to be well
behaved, natural approaches mimic our version of the game, storing a set S and
checking the final forgery locally before submitting.

We contend that there is good reason to prefer our definition over the version
that only quantifies over well-behaved adversaries. In principle, it is possible
that a signature construction is secure against a class of well-behaved adversaries
(say, running in a bounded amount of time and memory) but not against general
adversaries running with the same time/memory. Counter-intuitively, such a
general adversary might produce a forgery without knowing itself if the forgery
is fresh and thus wins the game. Since we cannot rule this out, we prefer our
stronger definition.
Stronger unforgeability. Games in many crypto-definitions are chosen to
be simple and compact but also general. The game UFCMA only allows a single
attempt at a forgery in order to shorten proofs, but the definition also tightly
implies (up to a small increase in runtime) a version of unforgeability where
the attacker gets many attempts, which more closely models usages where an
attacker will have many chances to produce a forgery.

It is less clear how UFCMA relates to more general definitions when memory
tightness is taken into account. To make this more concrete, consider the game
mUFCMA (for “many UFCMA”) on the right side of Figure 2. In this game the
adversary has an additional verification oracle. If it ever submits a fresh forgery



to this oracle, it wins the game. It is easy to give a tight, but non-memory-tight,
reduction converting any (t,m, ε)-adversary playing mUFCMA into a (t′,m′, ε)-
adversary playing UFCMA for t′ ≈ t but m′ � m. Other trade-offs are also
possible but achieving tightness in all three parameters seems difficult.

For the reasons described in the introduction, a memory-tight reduction from
winning mUFCMA to winning UFCMA is desirable. In Section 4, we show that
a certain class of black-box reductions for these problems in fact cannot be
simultaneously tight in runtime, memory, and success probability. We conclude
that signatures with dedicated memory-tight proofs against adversaries in the
mUFCMA may provide stronger security assurance, especially when security is
reduced to a memory-sensitive problem like RSA.

We remark that the common reduction from multi-challenge to single-challenge
IND-CPA/IND-CCA security for public-key encryption is memory tight (but not
tight in terms of the success probability).

2.4 Case Study II: Collision-Resistance Definitions

Collision-resistance, and multi-collision-resistance of hash functions, is used for
security reductions in many contexts. Let H be a keyed hash function (with κ-bit
keys), with standard syntax. On the left side of Figure 3 we recall the game CRt
used to define t-collision resistance. The game provides no extra oracles, and A
wins if it can find t domain points that are mapped to the same point by H.

As we will see in later sections, it is sometimes feasible to fix typical memory-
tight reductions to CRt. We however now consider using collision-resistance (for
t = 2) for domain extension of pseudorandom functions. Let F : {0, 1}κ×{0, 1}δ →
{0, 1}ρ be a keyed function with input-length δ which should have random looking
input/output behavior to some class of adversaries (see Section 3.1 for a formal
definition of PRFs). We can define a new keyed function F∗ that takes arbitrary-
length inputs by

F∗ : {0, 1}2κ × {0, 1}∗ → {0, 1}ρ,
F∗((k, kh), x) = F(k, H(kh, x)).

The proof that F∗ is a PRF is an easy hybrid argument. One first bounds the
probability that an adversary submits two inputs that collide in H. Once this prob-
ability is known to be small, the memory-tight reduction to the pseudorandomness
of F is immediate.

Naive attempts at the reduction to collision-resistance are however not
memory-tight. One can run the adversary attacking F∗ and record its queries,
checking for any collisions, but this increases memory usage.

To model what such a proof is trying to do, we formulate a new game for
t-collision resistance called mCRt in the right side of Figure 3. In the game, the
adversary has an oracle ProcInput that takes a message and adds it to a set S.
At the end of the game, the adversary wins if S contains any t inputs that are
mapped to the same point. The game implements this check using counters stored
in a dictionary.



Game CRt

Procedure Init
08 k ← {0, 1}κ
09 Return k

Procedure Fin(m1, . . . ,mt)
10 If |{m1, . . . ,mt}| < t
11 Stop with 0
12 If ∀i : H(k,m1) = H(k,mi)
13 Stop with 1
14 Stop with 0

Game mCRt

Procedure Init
15 k ← {0, 1}κ; S ← ∅
16 Return k

Procedure ProcInput(m)
17 S ← S ∪ {m}

Procedure Fin
18 Initialize dictionary D
19 For m ∈ S:
20 Increment D[H(k,m)]
21 If D[H(k,m)] ≥ t
22 Stop with 1
23 Stop with 0

Fig. 3. Games CRt,mCRt.

Returning to the proof for F∗, one can easily construct an adversary to play
mCR2 using any PRF adversary. The resulting reduction will be memory-tight.
Thus it would be desirable to have a memory-tight reduction from mCR2 to CR2
to complete the proof. This however seems difficult or even impossible, and in
Section 4 we show that a class of black-box reductions cannot be memory-tight.
As discussed in the introduction, t-collision-resistance is not memory sensitive for
t = 2, and thus the meaning of a memory-tight reduction is somewhat diminished
(i.e. it does not justify more aggressive parameter settings). For t > 2 the effect
of memory-tightness is more significant.

3 Techniques to Obtain Memory Efficiency

In this section we describe four techniques to obtain memory-efficient reductions.
In Section 5 we show how to apply those techniques to memory-tightly prove the
security of the RSA Full Domain Hash signature scheme [7]. Using this example
we also point to technical challenges that may arise when applying multiple
techniques in the same proof.

3.1 Pseudorandom Functions
First, we formally define pseudorandom functions. They are the main tool used
in this section to make reductions memory efficient.

Definition 1. Let κ, δ and ρ be integers. Further let F : {0, 1}κ × {0, 1}δ →
{0, 1}ρ be a deterministic algorithm and let A be an adversary that is given access
to an oracle and outputs a single bit. The PRF advantage of A is defined as
Adv(PRFA) := |Succ(RealA) − Succ(RandomA)| , where Real and Random are
the games depicted in Figure 4.

If the range of F is just a single bit {0, 1}, we define the α-PRF advantage
with bias 0 ≤ α ≤ 1 of A as Adv(PRFA

α) := |Succ(RealA)− Succ(RandomA
α)| ,

where Real and Randomα are the games in Figure 4.



Game Real

Procedure Init
00 k ← {0, 1}κ

Procedure OF(x)
01 Return F(k, x)

Game Random

Procedure Init

Procedure OF(x)
01 If R[x] undefined:
02 R[x]← {0, 1}ρ
03 Return R[x]

Game Randomα

Procedure Init

Procedure OF(x)
01 If R[x] undefined:
02 R[x]← Ber(α)
03 Return R[x]

Fig. 4. Games defining PRF and α-PRF advantage.

Note that a 2−ρ-PRF can be easily constructed from a standard PRF with
range {0, 1}ρ by mapping 1ρ to 1 and all other values to 0. A 1/q-PRF for
arbitrary q can be constructed in a similar way from a standard PRF with
sufficiently large image size ρ.

3.2 Generating (pseudo)random coins

Our first technique is the simplest, where we observe random coins used by
adversaries can be replaced with pseudorandom coins, and that this substitution
will save memory in certain reductions.

Consider a security game G and an adversary A. Both are probabilistic pro-
cesses and therefore require randomness. When considering memory efficiency
details on storing random coins could come to dominate memory usage. Specifi-
cally, some reductions run an adversary multiple times with the same random
tape, which must be stored in between runs. One possibility to do this is by
sampling all randomness required in game GA (including the randomness used by
A) in advance. More formally let L ≤ 2λ be an upper bound on the amount of
executions of the instruction filling an register with random bits in GA. Then the
sampling of random coins can be replaced filling and storing L registers (memory
units) with random bits at the beginning of Init and in the rest of the game
replacing the ith call to the instruction with a procedure Coins returning the
contents of the ith register. This is formalized in game G0 of Figure 5.

The game can be simulated in a memory-efficient way by replacing the
random bits used by G and A with pseudorandom bits generated by a PRF
F : {0, 1}κ × {0, 1}δ → {0, 1}λ, as described in Game G1 of Figure 5. In this
variant the game sets up the counter i in the usual way. Then a PRF key k is
sampled from a key space {0, 1}κ and calls to Coins are simulated by returning
the pseudorandom bits F(k, i). We now compare the two ways of executing the
game in terms of success probability, running time, and memory consumption.
Success Probability. By a simple reduction to the security of the PRF, there
exists an adversary B with LocalTime(B) = LocalTime(A), LocalMem(B) =
LocalMem(A) + 1 such that∣∣Succ(GA

0 )]− Succ(GA
1 )
∣∣ ≤ Adv(PRFB)



G0: Standard Coin Generation

Procedure Init
00 r ← ({0, 1}λ)L

Procedure Coins
01 i← i+ 1
02 Return ri

G1: Memory-Efficient Coin Generation

Procedure Init
00 k ← {0, 1}κ

Procedure Coins
01 i← i+ 1
02 Return F(k, i)

Fig. 5. Generating (pseudo)random coins in a memory-efficient way. By ri we denote
the ith block of λ bits of the string r.

(see Definition 1). Observe that B perfectly simulates the Coins oracle as follows.
For A’s ith query to Coins, it queries OF of the PRF games on i and relays its
response back to A. To do this, it needs to store a counter of logL bits. All other
procedures are simulated as specified in G1.
Running Time. Game G1 needs to evaluate the PRF (via algorithm F) L times,
hence we have TotalTime(GA

1 ) ≤ TotalTime(GA
0 ) + L ·Time(F).

Memory. Both games have to store a counter i of size logL ≤ λ bits, which
equals one memory unit. But while game G0 needs memory for storing L strings,
the memory-efficient game G1 only needs additional memory Mem(F). Note that
the PRF key is included in the memory of F. So overall, we have

TotalMem(GA
0 ) = LocalMem(A) + 1 + L ,

TotalMem(GA
1 ) = LocalMem(A) + 1 + Mem(F) .

Note that when applying this (and the following) techniques in a larger
environment, special care has to be taken to keep the entire game consistent
with the components changed by the technique. In particular, all intermediate
reductions in a sequence of games have to be memory efficient to yield an overall
memory-efficient reduction.

3.3 Random Oracles

Suppose a security game G is defined in the random oracle model, that is one of
the game’s procedures models a random oracle

H : {0, 1}δ → {0, 1}λ .

The standard way of implementing this is via a technique called lazy sampling [9],
meaning that when an adversary A queries H on some value x, the game has
to check if H(x) is already defined, and if not, it samples H(x) from some
distribution and stores the value in a list, see G0 in Figure 6. This means that in
the worst case, it needs to store as many strings as the number of adversarial
queries.

However, there are several settings where the random oracle can be imple-
mented by a PRF F : {0, 1}κ×{0, 1}δ → {0, 1}λ as described in G1 of Figure 6, thus



making G more memory-efficient. Among these settings are the non-programmable
random oracle model and certain random oracles, where only values obtained or
computed during the Init procedure are used to program them.

G0: Standard Random Oracle

Procedure Init

Procedure RO(xi)
01 If H[xi] undefined:
02 H[xi]← {0, 1}λ
03 Return H[xi]

G1: Memory-Efficient Random Oracle

Procedure Init
00 k ← {0, 1}κ

Procedure RO(xi)
01 Return F(k, xi)

Fig. 6. The Random Oracle technique to simulate RO in a memory-efficient way. Here
xi denotes the ith query to RO. Note that the queries x1, . . . , xq are not necessarily
distinct.

In the following paragraph we analyze how success probability, running time
and memory consumption change if we apply this technique.
Success Probability. There exists an adversary B with LocalTime(A) =
LocalTime(B) and LocalMem(A) = LocalMem(B) such that∣∣Succ(GA

0 )− Succ(GA
1 )
∣∣ ≤ Adv(PRFB) .

B perfectly simulates the RO by relaying all of A’s queries to OF of the PRF
games and forwarding the responses back to A. All other procedures are simulated
as specified in G1. When B is run with respect to game Random of Definition 1 it
provides A with a perfect simulation of G0, if it is run with respect to game Real
with a perfect simulation of game G1.
Running Time. Let qH be the number of random oracle queries posed by the
adversary. Then game G1 needs to evaluate the PRF qH times, hence we have
TotalTime(GA

1 ) ≤ TotalTime(GA
0 ) + qH ·Time(F).

Memory. Game G0 needs to store an array H of size at least qH · λ bits (= qH
memory units), while the memory-efficient game only needs memory to execute
the PRF via algorithm F. So overall, we have

TotalMem(GA
0 ) ≥ LocalMem(A) + qH ,

TotalMem(GA
1 ) = LocalMem(A) + Mem(F) .

3.4 Random Oracle Index Guessing Technique

This technique is used when random oracle queries are answered in two different
ways, e.g. in a reduction where challenge values, like a discrete logarithm challenge
X = gx, are embedded in the programmable random oracle. Usually this is done
by guessing some index i∗ between 1 and qH in the beginning, where qH is the



number of random oracle queries posed by the adversary. During the simulation,
the challenge value is then embedded in the reduction’s response to the i∗th

random oracle query.
To do this, the game needs to keep a list of all queries and responses. Indepen-

dently of the way the game answers all the other queries except for the i∗th one,
simply keeping a counter is not sufficient, since an adversary posing the same
query all the time would then receive two different responses and the random
oracle thus wouldn’t be well defined anymore. An example of such a game using
the index guessing technique is game G0 of Figure 7, where two deterministic
procedures P0 and P1 are used to program H depending on i∗.

To make games of this kind memory-efficient, one can use a 1/qH -PRF (see
Definition 1) F : {0, 1}κ×{0, 1}δ → {0, 1}, associating to each value of the domain
of the random oracle a bit 0 with probability 1−1/qH or 1 with probability 1/qH
and then programming the random oracle accordingly as described in game G1
of Figure 7. This method of using a biased bit goes back to Coron [14].

G0: Standard Index Guessing

Procedure Init
00 i∗ ← {1, . . . , qH}

Procedure RO(xi)
01 If H[xi] undefined:
02 If i = i∗: H[xi]← P0(xi)
03 Else: H[xi]← P1(xi)
04 Return H[xi]

G1: Memory-Efficient Index Guessing

Procedure Init
00 k ← {0, 1}κ

Procedure RO(xi)
01 If F(k, xi) = 0: Return P0(xi)
02 Else: Return P1(xi)

Fig. 7. The random oracle index guessing technique. By xi we denote the ith query to
RO. F is a 1/qH -PRF. Note that the queries to RO are not necessarily distinct.

We now compare the two games in terms of success probability, running time
and memory efficiency.

Success Probability. Let A be an adversary that is executed in G0. We define
an intermediate game G′0, as depicted in Figure 8, in which the index guessing is
replaced by tossing a biased coin for each query.

G′0
Procedure RO(xi)
01 If c[xi] undefined: c[xi]← Ber(1/qH)
02 If c[xi] = 0: Return P0(xi)
03 Else: Return P1(xi)

Fig. 8. Intermediate game for the transition to memory-efficient index guessing.



These games are identical if c[xi∗ ] = 0 and c[xi] = 1 for all i 6= i∗. Hence,

Succ((G′0)A) ≥ (1− 1/qH)qH−1 · Succ(GA
0 ) ≥ e−1 · Succ(GA

0 ) .

Now it is easy to construct an adversary B against F with LocalTime(B) =
LocalTime(A) and LocalMem(B) = LocalMem(A) that provides A with a
perfect simulation of G0′ when interacting with game Randomα of Figure 4 or
respectively with a perfect simulation of G1 when interacting with Real. Hence∣∣Succ((G′0)A)− Succ(GA

1 )
∣∣ ≤ Adv(PRFB

1/qH ). So overall, we have

Succ(GA
1 ) ≥ e−1 · Succ(GA

0 )−Adv(PRFB
1/qH ) .

Running Time. Game G1 needs to evaluate the 1/qH-PRF qH times, hence we
have TotalTime(GA

1 ) = TotalTime(GA
0 ) + qH ·Time(F).

Memory. The standard game needs to store an array of size at least qH · λ
bits and the integer i∗, while the memory-efficient game only needs additional
memory Mem(F). So overall, we have

TotalMem(GA
0 ) ≥ LocalMem(A) + qH + 1 ,

TotalMem(GA
1 ) = LocalMem(A) + Mem(F) .

Note that for simplicity we ignored the memory consumption and running time
for procedures P0 and P1.

3.5 Single Rewinding Technique

This technique can be used for games containing a procedure Query, which can be
called by an adversary A up to q times on inputs x1, . . . , xq. When A terminates,
it queries Fin on a value x∗. Procedure Fin then checks whether there exists
i ∈ {1, . . . , q} such that R(xi, x∗) = 1, where R is an efficiently computable
relation specific to the game. If so, it invokes Stop with 1. If no such i exists
it invokes Stop with 0. Note that we do not specify how queries to Query are
answered since it is not relevant here. To be able to check whether there exists
an i such that R(xi, x∗) = 1, the game usually stores the values x1, . . . , xq as
described in G0 in Figure 9.

However it is possible to make the game memory efficient as described in G1
of Figure 9. In this variant the game no longer stores all the xi’s. Instead, it only
stores the adversarial input x∗ to Fin and then rewinds A to the start, i.e., it
runs it a second time providing it with the exact same input and random coins,
and responding to queries to Query with the same values as in the first run. This
means that from the adversary’s view, the second run is an exact replication of
the first one. Whenever A calls Query on a value xi, the game checks whether
R(x∗, xi) = 1 and —if so— invokes Stop with 1. Note that it is necessary to store
the random coins given to A as well as random coins potentially used to answer
queries to Query to be able to rewind. This can be done memory-efficiently with
the technique of Section 3.2.



Standard Game GA
0

Procedure Query(xi)
00 Xi ← xi
01 . . .

Procedure Fin(x∗)
02 For i = 1 to q
03 If R(x∗, Xi) = 1: Stop with 1
04 Stop with 0

Memory-efficient Game GA
1

Procedure Query(xi)
00 During rewinding:
01 If R(X∗, xi) = 1: Stop with 1
02 . . .

Procedure Fin(x∗)
03 X∗ ← x∗

04 Rewind A to start
05 Stop with 0

Fig. 9. The single rewinding technique.

Success Probability. Since after rewinding, G1 provides A with the exact
same input as in the first execution, all values xi are the same in both executions
of A, so

Succ(GA
0 ) = Succ(GA

1 ) .

Running Time. G0 runs A once, while G1 runs A twice. Both games invoke the
relation algorithm R a total number of q times, so overall we obtain

TotalTime(GA
1 ) ≤ 2 ·TotalTime(GA

0 ) .

Memory. GA
0 stores all values x1, . . . , xq, x

∗ while GA
1 only stores x∗ and one of

the xi, 1 ≤ i ≤ q at a time. Assuming each of the values x1, . . . , xq, x
∗ takes one

memory unit, we obtain

TotalMem(GA
0 ) = LocalMem(A) + Mem(R) + q + 1 ,

TotalMem(GA
1 ) = LocalMem(A) + Mem(R) + 2 .

We remark that the single rewinding technique can be extended to a multiple-
rewinding technique, in which the reduction runs the adversary m times (on the
same random coins and with the same input). For example, in Theorem 4 we
consider a reduction between t-multi-collision-resistance and t-collision-resistance
that rewinds the adversary several times.

4 Streaming Algorithms and Memory-Efficiency

In this section we prove two lower bounds on the memory usage of black-box
reductions between certain problems. The first shows that any reduction from
mUFCMA to UFCMA must either use more memory, run the adversary many
times, or obey some tradeoff between the two options. The second gives a similar
result for mCRt to CRt reductions. We start by recalling results from the data-
stream model of computation which will provide the principle tools for our lower
bounds.

In this section we also deal with bit-memory (Mem2) which measures the
number of bits used, rather than Mem which measures the number of λ-bit
words used.



4.1 The Data Stream Model

The data stream model is typically used to reason about algorithmic challenges
where a very large input can only be accessed in discrete pieces in a given
order, possibly over multiple passes. For instance, data from a high-rate network
connection may often be too large to store and thus only accessed in sequence.
Streaming formalization. We adopt the following notation for a streaming
problem: An input is a vector y ∈ Un of dimension n over some finite universe U .
We say that the number of elements in the stream is n. An algorithm B accesses
y via a stateful oracle Oy that works as follows: On the first call it saves an initial
state i ← 0 and returns y[0]. On future calls, Oy sets i ← (i+ 1 mod n), and
returns y[i]. The oracle models accessing a stream of data, one entry at a time.
When the counter i is set to 0 (either at the start or by wrapping modulo n),
the algorithm B is said to be initiating a pass on the data. The number of passes
during a computation BOy is thus defined as p = dq/ne, where q is the number
of queries issued by B to its oracle.
A streaming lower bound. Below we will use a well-known result lower
bounding the trade-off between the number of passes and memory required to
determining the most frequent element in a stream. We will also use a lower
bound on a related problem that can be proven by the same techniques.

For a vector y ∈ Un, define F∞(y) as

F∞(y) = max
s∈U
|{i : y[i] = s}|.

That is, F∞(y) is the number of appearances of the most frequent value in y.
Our results will use the following modified version of F∞, denoted F∞,t that only
checks if the most frequent value appears t times or not:

F∞,t(y) =
{

1 if F∞(y) ≥ t
0 otherwise

We also define the function G(y) as follows. It divides its input into two
equal-length halves y = y1‖y2, each in Un/2. We let

G(y1‖y2) =
{

1 if ∃j ∀i : y2[j] 6= y1[i]
0 otherwise

.

In words, G outputs 1 whenever y2 contains an entry that is not in y1.

Theorem 1 (Corollary of [21,24]). Let t be a constant and B be a randomized
algorithm such that for all y ∈ Un,

Pr[BOy(|U |, n) = F∞,t(y))] ≥ c,

where 1/2 < c ≤ 1 is a constant. Then LocalMem2(B) = Ω(min{n/p, |U |/p}),
where p is the number of passes B makes in the worst case. The same statement
holds if F∞,t is replaced with G.



This theorem is actually a simple corollary of a celebrated result on the
communication complexity of the disjointness problem, which has several other
applications. See also the lecture notes by Roughgarden [25] that give an accessible
theorem statement and discussion after Theorem 4.11 of that document.

The standard version of this theorem only states that computing F∞ requires
the stated space, so we sketch how to obtain our easy corollary. The full proof
is omitted from this version due to the page limit. The proof for F∞ works by
showing that any p-pass streaming algorithm with local memory m can be used
to construct a p-round two-party protocol to compute whether sets S1, S2 held
by the parties are disjoint. One then proves a communication lower bound on
any protocol to test for disjointness.

A simple modification of this argument shows that computing G also gives
such a protocol: It easily allows two parties to compute if S1 \ S2 is empty,
which is equivalent to computing if S1 and S2 are disjoint. Thus one can reduce
disjointness to this problem by having the first party take the compliment of its
set.

The modification for F∞,t is slightly more subtle. The essential idea is that
one party can copy its set t− 1 times when feeding it to the streaming algorithm.
Then if the parties’ sets are not disjoint, we will have F∞,t equal to 1 and 0
otherwise. Since t is a constant this affects the lower bound by only a constant
factor.

4.2 mUFCMA-to-UFCMA Lower Bound

Black-box reductions for mUFCMA to UFCMA. Let R be an algorithm
playing the UFCMA game. Recall that R receives input pk and has access to
an oracle ProcSign, and stops the game by querying Fin(m∗, σ∗). Below for an
adversary A playing mUFCMA, we write RA to mean that R has additionally
“oracle access to A”, which means an oracle NxtQA that returns the “next query”
of A after accepting a response to the previous query from R. When A halts (i.e.
NxtQA returns a query to Fin), the oracle resets itself to start again with the
same random tape and input pk.

Definition 2. A restricted black-box reduction from mUFCMA to UFCMA for
signature scheme (Gen,Sign,Ver) is an oracle algorithm R, playing UFCMA, that
respects the following restrictions for any A:

1. RA starts by forwarding its initial input (consisting of the security parameter
and public key) to NxtQA.

2. When the oracle NxtQA emits a query for ProcSign(m), R forwards m to its
own signing oracle ProcSign and returns the result to NxtQA, possibly after
some computation.

3. When NxtQA emits a query for ProcVer(m∗, σ∗), R performs some computa-
tion then returns an empty response to NxtQA.

4. When R queries Fin(m∗, σ∗), the value (m∗, σ∗) will be amongst the values
that NxtQA returned as a query to ProcVer.



Finally we say that R is advantage-preserving if there exists an absolute constant
1/2 < c ≤ 1 such that for all adversaries A and all random tapes r for A,

Succ(UFCMARA
| r) ≥ c · Succ(mUFCMAA | r), (2)

where Succ(· | r) is exactly Succ(·) conditioned on the tape of A being fixed to r.

These restrictions force R to behave in a combinatorial manner that is amenable
to a connection to streaming lower bounds. The final condition, requiring R to
preserve the advantage of A for all random tapes, is especially restrictive. At the
end of the section we discuss directions for considering more general R.

Theorem 2. Let (Gen,Sign,Ver) be any signature scheme with message length
δ = λ. Let R be a restricted black-box reduction from mUFCMA to UFCMA that is
advantage-preserving, and let p be the number of times R runs A. Then for any3

q = q(λ) there exists an adversary A∗ making q signing queries, and using memory
LocalMem2(A∗) = O(LocalMem2(Ver)), such that LocalMem2(RA∗) =

Ω(min{ q

p+ 1 ,
2λ

p+ 1})−O(log q)−max{LocalMem2(Gen),LocalMem2(Ver)}.

Proof. Let R be a restricted black-box reduction for (Gen,Sign,Ver) that is
advantage-preserving for some c ≥ 1/2. We proceed fixing an adversary A∗ and
using RA∗ to construct a streaming algorithm B, making p + 1 passes on its
stream, such that

Pr[BOy(2δ, n) = G(y)] ≥ c (3)
for all n and all y ∈ ({0, 1}λ)n. We will apply the streaming lower bound on
computing G (Theorem 1) to B, and then relate the memory used by B to that
of RA∗ to obtain the theorem.

We start by fixing the adversary A∗. It takes as input the security parameter
λ and public key pk. Then A∗ selects q random messages m1, . . . ,mq, and queries
them to ProcSign, and ignores the outputs. Next A∗ selects q more random
messages m′1, . . . ,m′q, and for each m′j it forges a signature σ′j by brute force and
queries (m′j , σ′j) to ProcVer. After the verification queries, it halts.

We record two facts about A∗. Let y ∈ ({0, 1}λ)2q the vector consisting of all of
its queried messages, in order (the first q to ProcSign, and the second q to ProcVer
along with signatures). First, if G(y) = 0, then Succ(mUFCMAA∗ | y) = 0
because A∗ will not issue any queries with a fresh forgery. If however G(y) = 1,
then Succ(mUFCMAA∗ | y) = 1 because A∗ will issue at least one fresh forgery
to the verification oracle.

Algorithm BOy will run RA∗ , which expects input pk, oracles for ProcSign,
Fin (for the UFCMA game) and oracle NxtQA∗ for an adversary. BOy works as
follows, on input (2λ, n := 2q):

– B starts by initializing a logn-bit counter i← 0, running (pk, sk)← Gen(λ),
and running R on input pk.

3 We assume that q is linear-space constructible.



– B responds the oracle query ProcSign(m) from R by returning Sign(sk,m).
– When R queries NxtQA∗ , B ignores the input and responds as follows:
• If i < n/2, then B queries Oy, which returns y1[i], and has NxtQA∗ return

ProcSign(y1[i]) as the next query.
• If i ≥ n/2, it queries Oy to get y2[j] (where j = i − n/2). Then B

computes a valid signature σj by brute force, and increments i modulo n.
It then has NxtQA∗ return ProcVer(y2[j], σ) as the next query.

– When R queries Fin(m∗, σ∗), B performs another pass on its stream and checks
if m∗ appears anywhere in y1. If it does, then it outputs 0 and otherwise it
outputs 1.

We now verify (3). If G(y) = 0 then BOy will output 0 with probability 1.
This is because our restrictions on R, which restricts it to outputting a value m∗
that was queried by A∗ to ProcVer. On the other hand, if G(y) = 1 then BOy

will output 1 with probability at least c. This is because A∗ will have success
probability 1 when such a y is fixed, so by (2) RA∗ has success probability at
least c, and B outputs 1 whenever R succeeds in the simulated mUFCMA game.

It is clear that B makes p+ 1 passes on its stream, where p is the number of
times RA∗ runs A∗. Applying Theorem 1 to B we have

LocalMem2(B) = Ω(min{n/(p+ 1), 2λ/(p+ 1)}).

On the other hand, by the construction of B we have that LocalMem2(B)

= O(LocalMem2(RA∗)) + max{LocalMem2(Gen),LocalMem2(Ver)})

Combining the two bounds on LocalMem2(B), and noting that q = Θ(n), gives
the theorem. ut

4.3 mCRt-to-CRt Lower Bound

Black-box reductions for mCRt to CRt. Similar to the case with signatures,
we formalize a class of reductions from mCRt to CRt for a hash function H. Let R
be an oracle algorithm RA that play the CRt game (with the only oracle being Fin),
and additionally has access to an oracle NxtQA that returns the next query or
some adversary playing the game mCRt. The only oracles in mCRt are ProcInput
and Fin, so NxtQA either returns a domain point m or halts A. As before, the
oracle resets itself after the last query by A, with the same input and random
tape.

Definition 3. A restricted black-box reduction from mCRt to CRt for a hash
function H is an oracle algorithm R, playing CRt, that respects the following
restrictions for any A:

1. RA starts by forwarding its initial input (consisting of the security parameter
and hashing key) to NxtQA.

2. When R queries Fin(m1, . . . ,mt), the values m1, . . . ,mt will be amongst the
values that NxtQA returned as a query to ProcInput.



Finally we say that R is advantage-preserving if there exists an absolute constant
1/2 < c ≤ 1 such that for all adversaries A and all random tapes r for A,

Succ(mCRRA

t | r) ≥ c · Succ(CRA
t | r), (4)

where Succ(· | r) is exactly Succ(·) conditioned on the tape of A being fixed to r.

Theorem 3. Let H be the function (with empty hash key) that truncates the last
λ bits of its input. Let R be a restricted black-box reduction from mCRt to CRt
that is advantage-preserving and let p be the number of times R runs A. Then for
any4 q = q(λ) ≤ 2λ there exists an adversary A∗ making q signing queries, and
using memory LocalMem2(A∗) = O(λ), such that

LocalMem2(RA∗) =Ω(min{q/p, 2λ/p}) .

Proof. We proceed similarly to the proof of Theorem 2, but we now construct a
streaming algorithm BOy for F∞,t instead of G. Let R be a restricted black-box
reduction for H that is advantage-preserving for some c ≥ 1/2. We will fix an
adversary A∗ and use RA∗ to construct a streaming algorithm B, making p passes
on its stream, such that

Pr[BOy(2δ, n) = F∞,t(y)] ≥ c (5)

for all n and all y ∈ ({0, 1}λ)n.
The adversary A∗ works as follows: On input λ (and empty hash key), it

chooses q random messages m1, . . . ,mq and queries mi‖i to its ProcInput oracle,
where i is encoded in λ bits. It then queries Fin and halts.

Let y ∈ ({0, 1}λ)q be the vector consisting of all of messages queried to
ProcInput. If F∞,t(y) = 0, then Succ(mCRA∗

t |y) = 0 because there will be no t-
collision in the queries of A∗. If however F∞,t(y) = 1, then Succ(mUFCMAA∗ |y) =
1 because A∗ there will be a t-collision, as the hash function H is defined to
truncate the final λ bits of its inputs, which consist of the counter value.

The streaming algorithm BOy(2λ, q) works as follows. It initializes a counter i
to 0 and runs R. When R requests an input from NxtQA∗ , BOy queries its oracle
for y[i] and returns y[i]‖i to R. When R halts by calling Fin(m1, . . . ,mt), BOy

simply checks if the messages are all of the form y‖i for a fixed y and different
values of i. If so, it outputs 1 and otherwise it outputs 0.

It is easy to verify that B satisfies (5) and that it makes p passes on its input
stream. Therefore by Theorem 1 we have

LocalMem2(B) = Ω(min{q/p, 2λ/p}) .

By construction we also have

LocalMem2(B) = O(LocalMem2(RA∗)) .

Combining these inequalities gives the theorem. ut
4 We again assume that q is linear-space constructible.



Adversary B
00 k ← InitCRt
01 FOR ` = 1 to p:
02 sample distinct i1, . . . , im from {1, . . . , q}
03 run A on input k
04 FOR j = 1 to m:
05 xj ← H(k,A(ij))
06 run A on input k
07 FOR i = 1 to q:
08 FOR j = 1 to m:
09 IF xj = H(k,A(i)) ∧ ij 6= i:
10 cj ← cj + 1
11 IF cj = t:
12 run A on input k
13 store all of A’s t outputs y1 . . . yt such that H(yα) = xj
14 Stop with y1 . . . yt

Fig. 10. Adversary B in the CRt game. By A(j) we denote the j-th out of q inputs of A
to ProcInput.

Sharpness of the bounds. We observe that when one is not concerned with
memory-tightness then it is trivial to reduce t-multi-collision-resistance to t-
collision-resistance, by simply storing all inputs to ProcInput and checking for
collisions. This will however be non-tight if the mCRt adversary uses small memory
but produces a large number of domain points (i.e. q is large). Memory tightness
can be achieved via rewinding O(q) times, but this increases the runtime of the
reduction.

Theorem 4. Let H : {0, 1}κ×{0, 1}λ → {0, 1}λ be a hash function and let t be a
fixed natural number. Then for all adversaries A in the mCRt game with parameter
λ making q queries to ProcInput and for all natural numbers 1 ≤ c, p,m ≤ q < 2λ
such that c · p ·m = q there exists an adversary B in the CRt game such that

Succ(CRB
t ) ≥ 1

2c · Succ(mCRA
t ) ,

LocalTime(B) ≤ (2p+ 1) · LocalTime(A) + (mp(q + 1) + q) ·Time(H)
LocalMem(B) = LocalMem(A) + Mem(H) + 3m+ t+ 3 .

If we choose c = 1 and m = q/p, this theorem proves that the lower bound from
Theorem 3 is sharp.

Proof. By assumption m = q/cp. Let A be an adversary in the mCRt game. For
simplicity we assume that A is deterministic, otherwise we can apply the PRF
coin fixing technique from Section 3.2.

Consider adversary B as defined in Figure 10. First, B stores the hash values
of m out of the q inputs of A to ProcInput. Note that A only needs to be run once
to perform these operations in line 05, as the indices i1 to im can be sorted. Then
it rewinds A to the start and checks for collisions of the stored hash values with
all of the hash values of A’s inputs to ProcInput. Assume that at least t of A’s



inputs have the same hash value. Then in each execution of the loop starting in
line 01 B succeeds in finding the colliding messages if it stored the corresponding
hash value. The probability of this event is bounded from below by m/q = 1/cp.
The loop is repeated p times with freshly sampled i1, . . . , im. Thus

Pr[CRB
t ⇒ 1 | mCRA

t ⇒ 1] ≥ 1− (1− 1/cp)p ≥ 1− e−1/c ≥ 1/2c .

This implies Succ(CRBt ) ≥ 1/2c·Succ(mCRAt ). When B finds a collision, it rewinds
A one last time to obtain the preimages of the t colliding values.

So overall, B runs A at most 2p+ 1 times and the hash algorithm H at most
p(m + mn) + q times. It needs to store 2m + 3 counters of size log q ≤ λ (i.e.
2m+ 3 memory units), m values from H’s range {0, 1}ρ (i.e. m memory units)
and the t elements from {0, 1}δ that collide under H (i.e. t memory units) and
provide memory for A and H. ut

Limitations, extensions, and open problems. Our notion of black-box
reductions assumes that the reduction will only run the adversary A from begin-
ning to end, each time with the same random tape. It would be interesting to
generalize the reduction to allow for partial rewinding of A, and also for saving
“snapshots” of the state of A that allow for rewinding.

Our restrictions on black-box reductions confine them to essentially work like
combinatorial streaming algorithms. It seems likely that these restrictions can
be greatly relaxed by using a different notion of black-box reduction and using
pathological (unbounded) signature schemes and hash functions to enforce the
combinatorial behavior of the reduction with high probability. We pursued our
version of the results for simplicity.

5 Memory-tight reduction for RSA Full Domain Hash
Signatures

This section gives an example of a memory-tight reduction obtained via the
techniques of Section 3. We first recall the syntax of signature schemes and
recall the RSA assumption. Then we show how the RSA Full Domain Hash
signature scheme can be shown secure in the random oracle model using coin
replacement, random oracle replacement, single rewinding, and the random oracle
index guessing technique. For subtle reasons we implement all techniques using a
single PRF to obtain a memory tight reduction.
Signature schemes. A signature scheme consists of algorithms Gen,Sign,Ver
such that: algorithm Gen generates a verification key pk and a signing key sk; on
input of a signing key sk and a message m algorithm Sign generates a signature σ
or the failure indicator ⊥; on input of a verification key pk, a message m, and
a candidate signature σ, deterministic algorithm Ver outputs 0 or 1 to indicate
rejection and acceptance, respectively. A signature scheme is correct if for all
sk, pk,m, if Sign(sk,m) outputs a signature then Ver accepts it. Recall that the
standard security notion of existential unforgeability against chosen message
attacks is defined in Section 2.3 via the game of Figure 2.



Game RSAλ

Procedure Init
00 (N, e, d)← GenRSAλ
01 x← ZN
02 y ← xe mod N
03 Return (N, e, y)

Procedure Fin(x∗)
04 If x = x∗:
05 Stop with 1
06 Stop with 0

Fig. 11. The RSAλ game relative to algorithm GenRSAλ.

Gen
00 (N, e, d)← GenRSAλ
01 pk ← (N, e), sk ← (N, d)
02 Pick RO H : {0, 1}λ → ZN
03 Return (pk, sk)

Sign(sk,m)
04 (N, d)← sk
05 σ ← H(m)d mod N
06 Return σ

Ver(pk,m, σ)
07 (N, e)← pk
08 If σe = H(m) mod N :
09 Return 1
10 Return 0

Fig. 12. The RSA-FDH signature scheme for parameter λ.

RSA assumption. Let GenRSAλ be an algorithm that returns (N = pq, e, d),
where p and q are distinct primes of bit size λ/2 and e, d are such that e =
d−1 mod Φ(N).

Definition 4 (RSA Assumption). Game RSAλ defining the hardness of RSA
relative to GenRSAλ is depicted in Figure 11.

RSA-FDH. The RSA Full Domain Hash (RSA-FDH) signature scheme [7] is
defined in Figure 12. Its security can be reduced to the RSA assumption in the
random oracle model (see [8,14]). In the usual proof the reduction interacting
with an adversary against RSA-FDH’s existential unforgeability making up to qH
hash queries and up to qs signing queries simulates the random oracle using lazy
sampling and therefore has to store up to (qH+qs) messages making the reduction
highly non-memory-tight. However, the proof can be made memory-efficient by
using the coin replacement technique of Section 3.2, the random oracle technique
of Section 3.3, the random oracle index guessing technique of Section 3.4, and
the single rewinding technique of Section 3.5.

Theorem 5. Let F : {0, 1}λ × {0, 1}λ → {0, 1}2λ+1 be a PRF. Then for every
adversary A in the UFCMA game for RSA-FDH with parameter λ that poses
qH queries to the Hash, qs queries to the ProcSign oracle, and samples at most
L ≤ 2λ memory units of randomness, in the random oracle model there exist an
adversary B1 against the RSAλ game, an adversary B2 against the PRF game
such that

Succ(UFCMAA) ≤ e qs Succ(RSAB2
λ ) + e qs Adv(PRFB1) .



Further it holds that

LocalMem(B1) = LocalMem(A) + Mem(GenRSAλ) + 6 ,

LocalMem(B2) = LocalMem(A) + Mem(F) + 6 ,

LocalTime(B1) ≈ 2LocalTime(A) + Time(RSAλ) ,

LocalTime(B2) ≈ LocalTime(A) + (qH + qs + L) ·Time(F) .

Note that in the proof of Theorem 5 it is necessary to apply the random coins
technique and the random oracle technique in the same step. Otherwise one
obtains an intermediate reduction that is not memory-tight: the reduction either
has to simulate the random oracle by lazy sampling (in case the random coins
technique is applied first) or, since rewinding is impossible, it has to store the
messages asked to the signing oracle (if the random oracle technique is applied
first).

Proof. Consider the sequence of games of Figure 13. For computations in ZN
we omit writing modN if it is clear from the context. We assume without loss
of generality that any message procedures ProcSign or Fin are queried on was
before already queried to Hash.

Game G0 is the standard UFCMA game as in Figure 2 instantiated with the
RSA-FDH algorithms and with the randomness for adversary A provided via
procedure Coins, so

Succ(UFCMAA) = Succ(GA
0 ) . (6)

In G1, instead of returning H(m), the Hash procedure returns H(m)e and the
ProcSign procedure computes signatures as (H(m)e)d = H(m) accordingly. This
doesn’t change the distribution of the hash values and the signatures, so

Succ(GA
0 ) = Succ(GA

1 ) . (7)

Game G2 introduces a couple of aborting conditions. With probability 1/qs abort
condition B[m∗] = 0 of line 17 does not occur. Furthermore, for each message
mi the probability that abort condition B[mi] = 1 of line 12 does not occur is
given by 1− 1/qs. Adversary A makes at most qs queries to ProcSign. Hence,

Succ(GA
2 ) ≥ 1/qs(1− 1/qs)qs · Succ(GA

1 ) ≥ 1/(eqs) · Succ(GA
1 ) . (8)

In Game G3 randomness is replaced by PRF F, whose range we split into
F = F0||F1||F2 ∈ {0, 1}λ × {0, 1}λ × {0, 1}. Sampling of random coins is replaced
in Game G3 by evaluating F0 on counter j, sampling the values H[mi] and B[mi]
is replaced by evaluating F1 and F2 on mi, respectively. For simplicity we assume
that F2 is a pseudorandom function that outputs elements in ZN ≈ {0, 1}λ and
that F2 is a α-biased pseudorandom function with α := 1/qs. (This is formally
not correct but we do not want to distract from the main points of our proof,
which is about memory-tightness.) We proceed by constructing an adversary B1
against the PRF game such that



G0 / G1

Procedure Init
00 (N, e, d)← GenRSAλ
01
02
03 r ← ({0, 1}λ)L
04 Return (N, e)

Procedure Hash(mi)
05 If H[mi] undefined:
06 H[mi]← ZN
07
08
09 Return H[mi] (G0)
10 Return H[mi]e (G1)

Procedure ProcSign(mi)
11 M ←M ∪ {mi}
12
13 Return Hash(mi)d (G0)
14 Return Hash(mi) (G1)

Procedure Coins
15 j ← j + 1
16 Return rj

Procedure Fin(m∗, σ∗)
17
18
19 If m∗ ∈M :
20 Stop with 0
21 If (σ∗)e = Hash(m∗):
22 Stop with 1
23 Stop with 0

G2

Procedure Init
00 (N, e, d)← GenRSAλ
01 x← ZN
02 y ← xe

03 r ← ({0, 1}λ)L
04 Return (N, e)

Procedure Hash(mi)
05 If H[mi] undefined:
06 H[mi]← ZN
07 B[mi]← Ber(1/qs)
08 If B[mi] = 1:
09 Return H[mi]ey
10 Else: Return H[mi]e

Procedure ProcSign(mi)
11 M ←M ∪ {mi}
12 If B[mi] = 1:
13 Abort
14 Return Hash(mi)

Procedure Coins
15 j ← j + 1
16 Return rj

Procedure Fin(m∗, σ∗)
17 If B[m∗] = 0:
18 Stop with 0
19 If m∗ ∈M :
20 Stop with 0
21 If (σ∗)e = Hash(m∗):
22 Stop with 1
23 Stop with 0

G3

Procedure Init
00 (N, e, d)← GenRSAλ
01 x← ZN
02 y ← xe

03 k ← {0, 1}κ(N)

04 Return (N, e)

Procedure Hash(mi)
05
06
07
08 If F2(k,mi) = 1:
09 Return F1(k,mi)ey
10 Return F1(k,mi)e

Procedure ProcSign(mi)
11 M ←M ∪ {mi}
12 If F2(k,mi) = 1:
13 Abort
14 Return Hash(mi)

Procedure Coins
15 j ← j + 1
16 Return F0(k, j)

Procedure Fin(m∗, σ∗)
17 If F2(k,mi) = 0:
18 Stop with 0
19 If m∗ ∈M :
20 Stop with 0
21 If (σ∗)e = Hash(m∗):
22 Stop with 1
23 Stop with 0

Fig. 13. Games G0 to G3 for the proof of Theorem 5.

Adv(PRFB1) ≥ |Succ(GA
2 )− Succ(GA

3 )| , (9)
LocalTime(B1) ≈ 2LocalTime(A) + Time(RSAλ) , (10)
LocalMem(B1) = LocalMem(A) + Mem(GenRSAλ) + 6 . (11)

The definition of B1 is in Figure 14. Adversary B1 sets up the values (N, e, d)
using GenRSA, samples x ← ZN , sets y ← xe and runs A on input (N, e). It
simulates the procedures Hash, ProcSign and Coins by invoking its PRF oracle OF.
When A calls Fin on message-signature pair (m∗, σ∗) adversary B1 rewinds A to
line 03, answering all of its queries in the same way. Note that this is possible,
since all replies to queries on Hash, ProcSign and Coins are derived using OF.
During the rewinding B1 raises a flag coll if A queries procedure ProcSign on
m∗. Hence the event {coll = 1} is equivalent to condition m∗ ∈ M of line 19
of games G2 and G3. When A calls Fin a second time on (m∗, σ∗), adversary



B1

Procedure Init
00 (N, e, d)← GenRSAλ (1)
01 x← ZN (1)
02 y ← xe (1)
03 Invoke A on (N, e)

Procedure Coins
04 j ← j + 1
05 Return OF0(j))

Procedure Hash(mi)
06 If OF2(mi) = 1:
07 Return (OF1(mi))e · y
08 Return (OF1(mi))e

Procedure ProcSign(mi)
09 If mi = m∗: (2)
10 coll← 1 (2)
11 If OF2(mi) = 1:
12 Abort
13 Return Hash(mi)

Procedure Fin(m∗, σ∗)
14 Store m∗, rewind A (1)
15 If OF2(mi) = 0: (2)
16 Stop with 0 (2)
17 If coll = 1: (2)
18 Stop with 0 (2)
19 If (σ∗)e = Hash(m∗): (2)
20 Stop with 1 (2)
21 Stop with 0 (2)

Fig. 14. Adversary B1 against the PRF game for the proof of Theorem 5 in Section 5.
B1 rewinds A once on the same inputs. Lines marked with (i) are only executed during
the i-th invocation.

Adversary B2

Procedure Init
00 (N, e, y)← InitRSA
01 k ← {0, 1}κ(N)

02 Invoke A on (N, e)

Procedure Coins
03 j ← j + 1
04 Return F1(k, j)

Procedure Hash(mi)
05 If F2(k,mi) = 1:
06 Return F1(k,mi)ey
07 Return F1(k,mi)e

Procedure ProcSign(mi)
08 If F2(k,mi) = 1:
09 Abort
10 Return Hash(mi)

Procedure Fin(m∗, σ∗)
11 If F2(k,m∗) = 0:
12 Abort
13 If (σ∗)e = Hash(m∗):
14 x∗ ← σ∗/F1(k,m∗)
15 Call FinRSA(x∗)

Fig. 15. Adversary B2 against the RSAλ game for the proof of Theorem 5 in Section 5.

B1 stops with 0 or 1 according to the message-signature pair. If B1 interacts
with PRF-game Random it provides A with a perfect simulation of game G2, if
it interacts with Real with a perfect simulation of game G3. Hence Equation (9)
follows. We now analyze B1’s running time and memory consumption. B1 runs
GenRSAλ once and A twice and performs some minor bookkeeping. It furthermore
has to store the code of A and GenRSAλ as well as at any point in time 6λ bits
which equals 6 memory units (i.e., the three integers (N, e, y) of size 3λ, up to
two messages of length λ each and a counter of size log2(L) ≤ λ.

We conclude the proof by giving an adversary B2 against the RSAλ game
such that

Succ(RSAB2
λ ) ≥ Succ(GA

3 ), (12)
LocalTime(B2) ≈ LocalTime(A) + (qH + qs + L)Time(F) (13)
LocalMem(B2) = LocalMem(A) + Mem(GenRSAλ) + 6 . (14)

Then the claim of the theorem follows from Equations (7) to (9) and Section 5.
The definition of B2 is in Figure 15. It queries InitRSA to receive an RSA challenge
(N, e, y) and samples a PRF key k. Then it invokes A on input (N, e) providing
it with a perfect simulation of the procedures Hash, ProcSign and Coins. When A
invokes procedure Fin on message-signature pair (m∗, σ∗), adversary B2 checks
whether F2(k,m∗) = 0 and —if so— aborts. Note that by definition of proce-
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dure Hash adversary B2 not aborting implies that Hash(m∗) = (F1(k,m∗))ey.
Hence if B2 does not abort and if the signature is valid, i.e. (σ∗)e = Hash(m∗)
holds, then B2’s answer x∗ = σ/F1(k,m∗) to the RSA challenge is valid. Since A
succeeding in game G3 implies both aforementioned conditions Section 5 follows.
We conclude the proof by analyzing B2’s running time and memory consumption.
B2 runs A once and F up to (qH + qs + L) times and performs some minor
bookkeeping. Furthermore it has to store the code of A and F as well as at any
point in time 6λ bits which equals 6 additional memory units (i.e., a counter of
bit-size log2(L) ≤ λ, a PRF key of bit-size κ ≤ λ, a message of bit-size λ and
three integers of size λ). ut

6 Memory-Sensitive Problems

In this section we discuss the memory sensitivity of two cryptographic problems,
multi-collision-resistance and learning parities with noise. In the full version
of this paper [3], we will also analyze the memory sensitivity of the discrete
logarithm problem in prime fields and of the factoring problem.

To quantify the memory sensitivity of a problem P we plot time/memory
trade-offs as in the Figure 1. The horizontal axis is memory consumption and
the vertical axis is running time, both on a log scale. A point (x, y) is either
labeled with “solvable” or “unsolvable”, where solvable means that there exists
an algorithm with running time at most 2x and memory consumption at most
2y that solves the problem. We refer to the boundary between the solvable and
unsolvable regions as the transition line.

A time/memory trade-off plot of a non-memory-sensitive problem typically
has an (approximately) horizontal transition line, and as discused in Section 1,
a non-memory-tight reduction has less impact. The steeper the slope of the
transition line, the more memory-sensitive the problem is. We refer for the
introduction for an example with concrete numbers for.
k-Way Collision Resistance. The k-way collision problem CRk is to find a
k-collision in a hash function with λ output bits. The following table provides an



overview over known algorithms to solve CRk with constant success probability
for k ∈ {2, 3}.

Algorithm A Mem(CRA
t ) Time(CRA

t )

Birthday (k = 2) O(1) 2λ/2

Joux-Lucks [20] (k = 3) 2α 2λ(1−α) (α ≤ 1/3)

From the table we derive the time/memory graph of CRk in Figure 16. CR3 is
memory sensitive, whereas CR2 is not (as it has a horizontal transition line).
Learning Parity with Noise. Another example of a memory sensitive problem
is the well-known Learning Parity with Noise (LPN) problem. Let λ ∈ N be the
dimension and τ ∈ [0, 1/2) be a constant that defines the error probability. The
problem LPNλ,τ is to compute a random secret s← Fλ2 , given “noisy” random
inner products with s, i.e. samples (ai, νi) where ai ← Fλ2 , and νi = 〈ai, s〉+ ei
for ei ← Ber(τ).

Memory usage and running time of the best known algorithms for LPNλ,τ

with constant success probability are given in the following table.

Algorithm A LocalMem(LPNA
λ,τ ) LocalTime(LPNA

λ,τ )

BKW [10] 2λ/log(λ/τ) 2λ/log(λ/τ)

Gauss [15] O(1) 2λ log(1/1−τ)

Figure 16 provides the corresponding time/memory graph. Note that the recent
work [15] also considers a hybrid algorithm between Well-Pooled Gauss and BKW,
but the interval where the hybrid algorithm actually has better performance is
so small that we decided to ignore it.

We note that the situation with the Learning with Errors (LWE), the Shortest
Integer Solution (SIS), and the approximate SVP problem is similar to that of
the LPN problem [13,2,19].
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