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Abstract. In the conditional disclosure of secrets problem (Gertner et
al., J. Comput. Syst. Sci., 2000) Alice and Bob, who hold inputs x and y
respectively, wish to release a common secret s to Carol (who knows both
x and y) if and only if the input (x, y) satisfies some predefined predicate
f . Alice and Bob are allowed to send a single message to Carol which
may depend on their inputs and some joint randomness and the goal is
to minimize the communication complexity while providing information-
theoretic security.
Following Gay, Kerenidis, and Wee (Crypto 2015), we study the commu-
nication complexity of CDS protocols and derive the following positive
and negative results.

– (Closure) A CDS for f can be turned into a CDS for its comple-
ment f̄ with only a minor blow-up in complexity. More generally,
for a (possibly non-monotone) predicate h, we obtain a CDS for
h(f1, . . . , fm) whose cost is essentially linear in the formula size of h
and polynomial in the CDS complexity of fi.

– (Amplification) It is possible to reduce the privacy and correctness
error of a CDS from constant to 2−k with a multiplicative overhead
of O(k). Moreover, this overhead can be amortized over k-bit secrets.

– (Amortization) Every predicate f over n-bit inputs admits a CDS
for multi-bit secrets whose amortized communication complexity per
secret bit grows linearly with the input length n for sufficiently long
secrets. In contrast, the best known upper-bound for single-bit se-
crets is exponential in n.

– (Lower-bounds) There exists a (non-explicit) predicate f over n-
bit inputs for which any perfect (single-bit) CDS requires commu-
nication of at least Ω(n). This is an exponential improvement over
the previously known Ω(logn) lower-bound.

– (Separations) There exists an (explicit) predicate whose CDS com-
plexity is exponentially smaller than its randomized communication
complexity. This matches a lower-bound of Gay et. al., and, com-
bined with another result of theirs, yields an exponential separation
between the communication complexity of linear CDS and non-linear
CDS. This is the first provable gap between the communication com-
plexity of linear CDS (which captures most known protocols) and
non-linear CDS.



1 Introduction

Consider a pair of computationally-unbounded parties, Alice and Bob, each
holding an n-bit input, x and y respectively, to some public predicate f :
{0, 1}n × {0, 1}n → {0, 1}. Alice and Bob also hold a joint secret s ∈ {0, 1}
and have access to a joint source of randomness r

R← {0, 1}ρ. The parties wish to
disclose the secret s to a third party, Carol, if and only if the predicate f(x, y)
evaluates to 1. To this end, Alice (resp., Bob) should send to Carol a single
message a = a(x, s; r) (resp., b = b(y, s; r)). Based on the transcript (a, b) and
the inputs (x, y), Carol should be able to recover the secret s if and only if
f(x, y) = 1. (Note that Carol is assumed to know x and y.) That is, we require
two properties:

– Correctness: There exists a decoder algorithm Dec that recovers s from
(x, y, a, b) with high probability whenever (x, y) is a 1-input (i.e., f(x, y) =
1);

– Privacy : There exists a simulator Sim that, given a 0-input (x, y) (for which
the predicate evaluates to 0), samples the joint distribution of the transcript
(x, y, a, b) up to some small deviation error.

The main goal is to minimize the communication complexity of the protocol
which is taken to be the total bit-length of the messages a and b. (See Section 3
for formal definitions.)

This form of Conditional Disclosure of Secrets (CDS) was introduced by
Gertner, Ishai, Kushilevitz and Malkin [18] as a tool for adding data privacy to
information-theoretically private information retrieval (PIR) protocols [14] and
was later used in the computational setting as a light-weight alternative to zero-
knowledge proofs (cf. [2]). Apart from these applications, CDS plays a central
role in the design of secret sharing schemes for graph-based access structures
(cf. [10, 11, 37]) and in the context of attribute-based encryption [21, 35]. In fact,
CDS can be equivalently formulated under any of these frameworks as discussed
below.

Secret sharing for forbidden graphs. CDS can also be viewed as a special form
of secret sharing for graph-based access structures (cf. [10, 11, 37]). Specifically,
consider a secret-sharing scheme whose parties are the nodes of a bipartite graph
G = (X ∪ Y,E) and a pair of parties (x, y) ∈ X × Y should be able to recover
the secret s if and only if they are connected by an edge. (It is also required that
singletons are not authorized, but other than that we do not require any pri-
vacy/correctness condition for other subsets of parties). Then, we can represent
the secret-sharing problem as the problem of realizing a CDS for the predicate
fG(x, y) = 1 ⇔ (x, y) ∈ E and vice-versa by setting the share of the x-th node
(resp., y-th node) to be the message a(x, s; r) (resp., b(y, s; r)). The commu-
nication complexity of the CDS protocol therefore corresponds to the size of
shares.



Attribute-based encryption. CDS can be further viewed as a limited form of
private-key attribute-based encryption [21, 35] which offers one-time information-
theoretic security. In such an encryption scheme both the decryption key ax of
a receiver and the ciphertext by of a sender are associated with some public
attributes x and y, respectively. The receiver should be able to decrypt the
plaintext m from the ciphertext by using the key ax only if the attributes x
and y “match” according to some predefined policy, i.e., satisfy some predicate
f(x, y). Using CDS for f , we can derive such a one-time secure scheme by let-
ting the decryption key be Alice’s message, ax = a(x, s; r), for a random secret
s, and taking the ciphertext to be Bob’s message by = b(y, s; r) together with a
padded-version of the message m⊕s. (Here we can think of (r, s) as the sender’s
private-key.) In fact, it was shown by Attrapadung [8] and Wee [38] that even in
the computational setting of public-key (multi-user) attribute-based encryption
(ABE), linear CDS schemes (in which the computation of Alice and Bob can
be written as a linear function in the secret an the randomness) form a central
ingredient. As a result, the ciphertext size and secret key of the ABE directly
depend on the communication complexity of the underlying CDS.

The communication complexity of CDS. In light of the above, it is interest-
ing to understand the communication complexity of CDS. Unfortunately, not
much is known. Gertner et al. [18] showed that any predicate f that can be
computed by a s-size Boolean formula admits a perfect linear CDS (with zero
correctness/privacy error) with communication complexity of O(s). This re-
sult was extended by Ishai and Wee [26] to s-size (arithmetic) branching pro-
grams and by Applebaum and Raykov [7] to s-size (arithmetic) span programs
(though in the latter case correctness is imperfect). Beimel, Ishai, Kumaresan
and Kushilevitz [9] proved that the CDS complexity of the worst predicate
f : {0, 1}n × {0, 1}n → {0, 1} over n-bit inputs is at most O(2n/2). A simi-
lar upper-bound was later established by Gay, Kerenidis, and Wee [17] for the
case of linear CDS, where a matching (non-explicit) lower-bound follows from
the work of Mintz [31]. Very recently, Liu, Vaikuntanathan and Wee [29] im-

proved the worst-case complexity of (non-linear) CDS to 2O(
√
n logn). Gay et

al. [17] also initiated a systematic treatment of the communication complexity
of CDS and established the first lower-bounds on the communication complexity
of general CDS. Their main result relates the CDS communication of a predicate
f to its randomized communication complexity. Roughly speaking, it is shown
that a general CDS for f must communicate at least Ω(log((R(f))) bits, and a
linear CDS must communicate at least Ω(

√
R(f)), where R(f) denotes the num-

ber of bits communicated in a randomized protocol that need to be exchanged
between Alice and Bob in order to compute f with constant error probability.3

This yields (explicit) lower-bounds of Ω(log(n)) and Ω(
√
n), respectively, for

concrete n-bit predicates. Overall, for general CDS, there is an almost double-

3 More precisely, R(f) can be replaced with the communication complexity of one-
message protocol from Alice to Bob plus the communication complexity of one-
message protocol from Bob to Alice.



exponential gap between the best known (logarithmic) lower-bound and the best

known (2O(
√
n logn)) upper bound.

2 Our Results

Following Gay et al.[17], we conduct a systematic study of the complexity of
CDS. Unlike previous works, we focus on manipulations and transformations of
various forms of CDS. Our approach yields several positive and negative results
regarding the complexity of CDS, and answers several open problems posed in
previous works. We proceed with a statement of our results.

2.1 Closure properties

We begin by asking whether one can generally combine CDS for basic predicates
f1, . . . , fm into a CDS for a more complicated predicate h(f1, . . . , fm). Using
standard secret sharing techniques, one can derive such a transformation when
h is a monotone function (with overhead proportional to the monotone formula
size of h). However, these techniques fail to support non-monotone operations.
Our first observation asserts that linear CDS for f can be easily transformed
into a linear CDS for its complement f ≡ 1 − f . (A similar observation was
recently made by Ambrona, Barthe, and Schmidt [4] in the related context of
“linear predicate encodings”.4)

Theorem 1 (Linear CDS is closed under complement). Suppose that f
has a linear CDS with randomness complexity of ρ and communication complexity
of t, then f has a linear CDS scheme with randomness complexity of t + ρ + 1
and communication complexity of 2(ρ+ 1).

The theorem generalizes to arbitrary finite field F. (See Section 4.1.) Roughly
speaking, we rely on the following observation. It can be shown that, for a fixed
input (x, y), the parties jointly compute some linear operator Tx,y that has a
high rank whenever f(x, y) = 0, and low rank when f(x, y) = 1. We “reverse”
the CDS by essentially moving to the dual T ∗x,y of Tx,y whose rank is high
when f(x, y) = 1, and low when f(x, y) = 0. One still has to find a way to
distributively compute the mapping T ∗x,y. We solve this technicality by using a
private simultaneous message protocol (PSM) [15] that allows Alice and Bob
to securely release an image of T ∗x,y to Carol without leaking any additional
information.

Next, we show that a similar “reversing transformation” exists for general
(non-linear and imperfect) CDS protocols.

Theorem 2 (CDS is closed under complement). Suppose that f has a
CDS with randomness complexity of ρ and communication complexity of t and
privacy/correctness errors of 2−k. Then f ≡ 1 − f has a CDS scheme with
similar privacy/correctness errors and randomness/communication complexity
of O(k3ρ2t+ k3ρ3).

4 We thank the anonymous referee for bringing out this result to our attention.



Imitating the argument used for the case of linear CDS, we consider, for an
input (x, y) and secret s, the probability distribution Ds

x,y of the messages (a, b)
induced by the choice of the common random string. Observe that the distri-
butions D0

x,y and D1
x,y are statistically far when f(x) = 1 (due to correctness),

and are statistically close when f(x, y) = 0 (due to privacy). Therefore, to prove
Theorem 2 we should somehow reverse statistical distance, i.e., construct a CDS
whose corresponding distributions E0

x,y and E1
x,y are close when D0

x,y and D1
x,y

are far, and vice versa. A classical result of Sahai and Vadhan [34] (building on
Okamoto [32]) provides such a reversing transformation for efficiently-samplable
distributions (represented by their sampling circuits). As in the case of linear
CDS, this transformation cannot be used directly since the resulting distribu-
tions do not “decompose” into an x-part and a y-part. Nevertheless, we can
derive a decomposable version of the reversing transformation by employing a
suitable PSM protocol. (See Section 4.2 for details.)

Theorems 1 and 2 can be used to prove stronger closure properties for CDS.
Indeed, exploiting the ability to combine CDS’s under AND/OR operations,
we can further show that CDS is “closed” under (non-monotone) formulas, i.e.,
one can obtain a CDS for h(f1, . . . , fm) whose cost is essentially linear in the
formula size of h and polynomial in the CDS complexity of fi. (See Section 4.3
for details.)

2.2 Amplification

We move on to the study the robustness of CDS with respect to privacy and
correctness errors. Borrowing tools from Sahai and Vadhan [34], it can be shown
that CDS with constant correctness and privacy error of, say 1/3, can be boosted
into a CDS with an error of 2−k at the expense of increasing the communication
by a factor of O(k5). We show that in the context of CDS one can reduce the
overhead to O(k) and amortize it over long secrets.

Theorem 3 (Amplification). A CDS F for f which supports a single-bit se-
cret with privacy and correctness error of 1/3, can be transformed into a CDS
G for k-bit secrets with privacy and correctness error of 2−Ω(k) and communica-
tion/randomness complexity which are larger than those of F by a multiplicative
factor of O(k).

The proof relies on constant-rate ramp secret sharing schemes. (See Section 5.)

2.3 Amortizing CDS over long secrets

The above theorem suggests that there may be non-trivial savings when the
secrets are long. We show that this is indeed the case, partially resolving an
open question of Gay, Kerenidis, and Wee [17].

Theorem 4 (Amortization over long secrets). Let f : {0, 1}n × {0, 1}n →
{0, 1} be a predicate. Then, for sufficiently large m, there exists a perfect lin-
ear CDS which supports m-bit secrets with total communication complexity of
O(nm).



Recall that for a single-bit secret, the best known upper-bound for a general
predicate is O(2n/2) [9, 17]. In contrast, Theorem 4 yields an amortized com-
plexity of O(n) per each bit of the secret. The constant in the big-O notation
is not too large (can be taken to be 12). Unfortunately, amortization kicks only
when the value of m is huge (double exponential in n). Achieving non-trivial
savings for shorter secrets is left as an interesting open problem.

The proof of Theorem 4 is inspired by a recent result of Potechin [33] regard-
ing amortized space complexity.5 Our proof consists of two main steps.

We begin with a batch-CDS scheme in which Alice holds a single input x, Bob
holds a single input y, and both parties hold 222n

secrets, one for each predicate
in Fn = {f : {0, 1}n × {0, 1}n → {0, 1}}. The scheme releases the secret sf if
and only if f evaluates to 1 on (x, y). Using a recursive construction, it is not
hard to realize such a CDS with communication complexity of O(n|Fn|).

Next, we use batch-CDS to get a CDS for a (single) predicate f and a vector
s of m = |Fn| secrets, which is indexed by predicates p ∈ Fn. We secret-share
each bit sp into two parts αp, βp and collectively release all αp’s via batch-CDS
(where αp is associated with the predicate p). Finally, we collectively release all
βp’s via batch-CDS where βp is associated with the predicate hp that outputs
1 on (x, y) if and only if h and the target function f agree on (x, y). The key-
observation is that αp and βp are released if only if f and p evaluates to 1. As a
result we get perfect privacy and semi-correctness: For 1-inputs (x, y), exactly
half of the secrets sp are released (the ones for which p evaluates to 1). The latter
property can be upgraded to perfect correctness by adding redundancy to the
secrets (via a simple pre-encoding). See Section 6 for full details.

2.4 Linear lower-bound

We change gears and move from upper-bounds to lower-bounds. Specifically, we
derive the first linear lower-bound on the communication complexity of general
CDS.

Theorem 5 (Lower-bound). There exists a predicate f : {0, 1}n × {0, 1}n →
{0, 1} for which any perfect (single-bit) CDS requires communication of at least
0.99n.

Previously the best known lower-bound for general CDS (due to [17]) was log-
arithmic in n. As noted by [17], an “insecure” realization of CDS requires a
single bit, and so Theorem 5 provides a rare example of a provable linear gap
in communication complexity between secure and insecure implementation of a
natural task. (As argued in [17], even super-constant gaps are typically out of
reach.)

5 In fact, Theorem 4 can be derived from Potechin’s theorem by extending the connec-
tion between space-limited computation and CDS to the setting of multiple secrets.
Instead, we present a self-contained proof which directly manipulates CDS and does
not go through other computational models. This proof is arguably simpler, more
instructive and yields (slightly) better amortized complexity.



The proof of the lower-bound (given in Section 7) relies, again, on CDS
manipulations. Consider a generalized version of CDS where the parties wish to
release some Boolean function f(x, y, s) defined over x, y and the secret s. We
show that one can construct such a “generalized CDS” for a function f based
on a standard CDS for a related predicate g : {0, 1}n × {0, 1}n → {0, 1}. In
particular, we use a standard CDS to release the value of s only if the residual
function f(x, y, ·) depends on s (i.e., g(x, y) = f(x, y, 0) ⊕ f(x, y, 1)). This way
the output f(x, y, s) can be always computed, either trivially, based on x, y
alone, or based on the additional knowledge of s, which is leaked when its value
matters. Moreover, privacy is preserved since s is leaked only when its value
matters, which means that it can be derived anyway from f(x, y, s) and (x, y). We
conclude that a lower-bound on CDS follows from a lower-bound on generalized-
CDS. We then note that such a lower-bound essentially appears in the work
of Feige, Kilian and Naor [15]. Indeed, “generalized-CDS” can be equivalently
viewed as a weakened version of private simultaneous message protocols for which
the lower-bound of [15] applies.6

2.5 CDS vs. linear CDS vs. communication complexity

Let us denote by CDS(f) the minimal communication complexity of CDS for f
with a single bit of secret and constant privacy/correctness error (say 0.1). We
define linCDS(f) similarly with respect to linear CDS protocols.

We re-visit the connection between CDS-complexity and randomized com-
munication complexity, and show that the former can be exponentially smaller
than the latter. Since linear CDS complexity is at least polynomial in the com-
munication complexity (linCDS(f) ≥ Ω(

√
R(f))), as shown by [17], we also

conclude that general CDS can have exponentially-smaller communication than
linear CDS.

Theorem 6 (Separation). There exists an (explicit) partial function f for
which (1) CDS(f) ≤ O(logR(f)) and (2) CDS(f) ≤ O(log linCDS(f)).

The first part of the theorem matches the lower-bound CDS(f) ≥ Ω(logR(f))
established by [17].7 The second part provides the first separation between linear
CDS and general (non-linear) CDS, resolving an open question of [17].

The proof of Theorem 6 can be viewed as the communication complexity
analog of Aaronson’s [1] oracle separation between the complexity class SZK of
problems admitting statistical-zero knowledge proofs [19], and the class QMA of
problems admitting Quantum Merlin Arthur proofs. (See Section 8 for details.)

6 CDS, generalized CDS, and PSM, can be all captured under the frameowrk of partial
garbling studied by Ishai and Wee [26].

7 The original lower-bound, which is stated for perfect CDS and for total functions,
readily generalizes to partial functions and imperfect CDS. See Appendix A.



2.6 Discussion: The big picture

CDS vs. SZK. Our results highlight an important relation between conditional
disclosure of secrets to statistical-zero knowledge protocols. A CDS protocol re-
duces the computation of f(x, y), to an estimation of the statistical distance
between a pair of “2-decomposable” distributions D0 = (a(x, 0; r), b(y, 0; r)) and
D1 = (a(x, 1; r), b(y, 1; r)), similarly to the way that languages that admit a sta-
tistical zero-knowledge proofs are reduced to the analogous problem of estimating
the statistical distance between a pair of efficiently-samplable distributions [34].
This simple insight has turned to be extremely useful for importing techniques
from the domain of SZK to the CDS world.

CDS: The low-end of information-theoretic protocols. Determining the commu-
nication complexity of information-theoretic secure protocols is a fundamental
research problem. Despite much efforts, we have very little understanding of the
communication complexity of simple cryptographic tasks, and for most models,
there are exponentially-large gaps between the best known upper-bounds to the
best known lower-bounds. In an attempt to simplify the problem, one may try
to focus on the most basic settings with a minimal non-trivial number of play-
ers (namely, 3) and the simplest possible communication pattern (e.g., single
message protocols). Indeed, in this minimal communication model, conditional
disclosure of secrets captures the notion of secret-sharing, just like private simul-
taneous message protocols (PSM) capture the notion of secure computation, and
zero-information Arthur-Merlin games (ZAM) [20] capture the notion of (non-
interactive) zero-knowledge. Of all three variants, CDS is the simplest one: For
any given predicate f the CDS communication of f is essentially upper-bounded
by its ZAM complexity which is upper-bounded by its PSM complexity [7].
Hence, CDS should be the easiest model for obtaining upper-bounds (protocols)
whereas PSM should be the easiest model for proving lower-bounds.

Our results, however, demonstrate that the current techniques for proving
PSM lower-bounds [15] also apply to the CDS model. The situation is even
worse, since, by Theorem 4, the amortized communication complexity of CDS is
indeed linear (per bit). We therefore conclude that proving a super-linear lower-
bound in the PSM model requires a method that fails to lower-bound the amor-
tized communication of CDS. Put differently, lower-bounds techniques which do
not distinguish between PSM complexity and amortized CDS complexity cannot
prove super-linear lower-bounds. This “barrier” provides a partial explanation
for the lack of strong (super-linear) lower-bounds for PSM. It will be interest-
ing to further formalize this argument and present some syntactic criteria that
determines whether a lower-bound technique is subject to the CDS barrier.

3 Preliminaries

Through the paper, real numbers are assumed to be rounded up when being
typecast into integers (log n always becomes dlog ne, for instance). The statistical
distance between two discrete random variables,X and Y , denoted by ∆(X;Y ) is



defined by ∆(X;Y ) := 1
2

∑
z |Pr[X = z]− Pr[Y = z]|. We will also use statistical

distance for probability distributions, where for a probability distribution D the
value Pr[D = z] is defined to be D(z).

3.1 Conditional disclosure of secrets

We define the notion of Conditional Disclosure of Secrets [18].

Definition 1 (CDS). Let f : X×Y → {0, 1} be a predicate. Let F1 : X×S×R →
T1 and F2 : Y × S × R → T2 be deterministic encoding algorithms, where S is
the secret domain. Then, the pair (F1, F2) is a CDS scheme for f if the function
F (x, y, s, r) = (F1(x, s, r), F2(y, s, r)) that corresponds to the joint computation
of F1 and F2 on a common s and r, satisfies the following properties:

1. (δ-Correctness) There exists a deterministic algorithm Dec, called a decoder,
such that for every 1-input (x, y) of f and any secret s ∈ S we have that:

Pr
r

R←R
[Dec(x, y, F (x, y, s, r)) 6= s] ≤ δ

2. (ε-Privacy) There exists a simulator Sim such that for every 0-input (x, y)
of f and any secret s ∈ S: it holds that

∆
r

R←R
(Sim(x, y) ; F (x, y, s, r)) ≤ ε

The communication complexity of the CDS protocol is (log |T1| + log |T2|) and
its randomness complexity is log |R|. If δ and ε are zeros, such a CDS scheme
is called perfect.

By default, we let X = Y = {0, 1}n, S = {0, 1}s, R = {0, 1}ρ, T1 = {0, 1}t1 ,
and T2 = {0, 1}t2 for positive integers n, s, ρ, t1, and t2.

Linear CDS. We say that a CDS scheme (F1, F2) is linear over a finite field
F (or simply linear) if, for any fixed input (x, y), the functions F1(x, s, r) and
F2(y, s, r) are linear over F in the secret s and in the randomness r, where
the secret, randomness, and messages are all taken to be vectors over F , i.e.,
R = Fρ, S = Fs, T1 = Ft1 and T2 = Ft2 . (By default, we think of F as the
binary field, though our results hold over general fields.) Such a linear CDS can
be canonically represented by a sequence of matrices (Mx)x∈X and (My)y∈Y

where Mx ∈ Ft1×(1+ρ) and My ∈ Ft2×(1+ρ) and F1(x, s, r) = Mx ·
(
s
r

)
and

F2(x, s, r) = My ·
(
s
r

)
. It is not hard to show that any linear CDS with non-trivial

privacy and correctness errors (smaller than 1) is actually perfect. Moreover, the
linearity of the senders also implies that the decoding function is linear in the
messages (cf. [17]).8

8 One can further consider a seemingly weaker form of linearity in which only the
decoder is linear [17]. Indeed, our separation between linear CDS and standard CDS
applies to this setting as well.



Definition 2. We denote by CDS(f) the least communication complexity of a
CDS protocol for f with 1

10 -correctness and 1
10 -privacy. linCDS(f) is defined anal-

ogously for linear CDS protocols.

3.2 Private simultaneous message protocols

We will also need the following model of information-theoretic non-interactive
secure computation that was introduced by [15], and was later named as Private
Simultaneous Message (PSM) protocols by [23].

Definition 3 (PSM). Let f : X × Y → Z be a function. We say that a pair
of deterministic encoding algorithms F1 : X × R → T1 and F2 : Y × R → T2

are PSM for f if the function F (x, y, r) = (F1(x, r), F2(y, r)) that corresponds
to the joint computation of F1 and F2 on a common r, satisfies the following
properties:

1. (δ-Correctness) There exists a deterministic algorithm Dec, called decoder,
such that for every input (x, y) we have that:

Pr
r

R←R
[Dec(F (x, y, r)) 6= f(x, y)] ≤ δ.

2. (ε-Privacy) There exists a randomized algorithm (simulator) Sim such that
for any input (x, y) it holds that:

∆
r

R←R
(Sim(f(x, y));F (x, y, r)) ≤ ε.

The communication complexity of the PSM protocol is defined as the total en-
coding length (log |T1|+ log |T2|), and the randomness complexity of the protocol
is defined as the length log |R| of the common randomness. If δ and ε are ze-
ros, such a PSM scheme is called perfect. The scheme is balanced [6] if the
simulator maps the uniform distribution over Z to the uniform distribution over
T = T1×T2 and the decoder maps the uniform distribution over T to the uniform
distribution over Z.

3.3 Randomized encoding and CDS encoding

When talking about PSM protocols, we will use F (x, y, r) as abbreviation for
(F1(x, r), F2(y, r)), and analogously for CDS. When we do not need to explicitly
argue about the common randomness, we will suppress it as an argument to
F – that is, we will use F (x, y) to denote the random variable produced by
F (x, y, r) for uniformly random r. Moreover, observe that the correctness and
privacy conditions of both PSM and CDS are phrased as properties of the joint
mapping F . One can therefore consider a non-decomposable CDS/PSM F which
respects privacy and correctness, but (possibly) fails to decompose into an x-
part and a y-part (i.e., some of its outputs depend both on x and y). In this
case, we can ignore the partition of the input into x, y and parse them as a



single argument w = (x, y). Following [24, 6] we refer to this generalization of
PSM as randomized encoding of f , and to the generalized version of CDS as
a CDS-encoding of f . The notion of perfect and balanced PSM and perfect
and linear CDS carry naturally to this setting as well. These non-decomposable
variants can be trivially realized (for PSM set F (x, y) = f(x, y) and for CDS
take F (x, y, s) = f(x, y) ∧ s). Nevertheless, they offer a useful abstraction. In
particular, we will use these non-decomposable notions as a useful stepping stone
towards obtaining a decomposable realization.

4 Closure properties

In this section, we establish several closure properties of CDS. We begin with
closure under complement for linear CDS, then, extend the result to general
CDS, and finally, prove that general and linear CDS are closed under NC1

circuits (or equivalently under Boolean formulas).

4.1 Reversing Linear CDS

We begin by proving Theorem 1 (restated here for the convenience of the reader).

Theorem 7 (Linear CDS is closed under complement). Let f be a func-
tion that has a linear CDS scheme F with randomness complexity of ρ field
elements and communication complexity of t field elements. Then, the comple-
ment function f ≡ 1−f has a linear CDS scheme with randomness complexity of
(t+ρ+1) field elements and communication complexity of 2(ρ+1) field elements.

Proof. Let F1, F2 be a linear CDS scheme for f with randomness complexity ρ
and total communication complexity t = t1 + t2, where t1 is the output length
of F1 and t2 is the output length of t2. Due to linearity, we can assume that
F1(x, s, c) and F2(y, s, c) are computed by applying matrices Mx and My to the

vector

(
s
c

)
, respectively. We parse Mx = (vx|Tx) and My = (vy|Ty), i.e., vx

(resp., vy) denotes the first column of Mx (resp., My), and Tx (resp., Ty) denotes
the remaining columns. In the following we fix x, y to be some inputs and let

v =

(
vx
vy

)
, T =

(
Tx
Ty

)
, M = (v|T ).

One can observe that due to the linearity of CDS, it holds that f(x, y) = 0
if and only if v ∈ colspan(T ). Indeed, the joint distribution of the messages,

M

(
s
c

)
, is uniform over the subspace Us = colspan(T ) + sv. If v ∈ colspan(T )

the subspace Us collapses to colspan(T ) regardless of the value of s (and so we
get perfect privacy), whereas for v /∈ colspan(T ), different secrets s 6= s′ induce
disjoint subspaces Us and Us′ , and so the secret can be perfectly recovered.

Based on this observation, one can construct a non-decomposable CDS for
f (in which Alice and Bob are viewed as a single party) as follows. Compute a
random mask αTv (where α is a random vector), and output the masked secret



bit d = s+αTv together with the row vector γ = αTT . The decoding procedure
starts by finding a vector z such that v = Tz (such a vector always exists since
v ∈ colspan(T ) if f(x, y) = 0), and then outputs d−γz = s+αTv−(αTT )z = s.
Of course, the resulting scheme is not decomposable, however, we can fix this
problem by letting Alice and Bob compute a PSM of it. We proceed with a
formal description.

We construct CDS scheme G = (G1, G2) for f as follows: Alice and Bob get
shared randomness q = (u,w,α1,α2), where u ∈ F, w ∈ Fρ, and α1 ∈ Ft1 ,α2 ∈
Ft2 . Then they compute

G1(x, s, q) = (αT1 Tx +wT ,αT1 · vx + u+ s)

and
G2(y, s, q) = (αT2 Ty −wT ,αT2 · vy − u).

The decoder on input (m1, b1) from Alice and (m2, b2) from Bob does the fol-
lowing: it finds a vector z such that v = Tz and outputs b1 + b2− (m1 +m2) ·z.

We now prove that the pair (G1, G2) is a CDS for f starting with correctness.
Fix an input (x, y) for which f(x, y) = 0. Recall that in this case v ∈ colspan(T ),
and so the decoder can find z as required. It is not hard to verify that in this

case the decoding formula recovers the secret. Indeed, letting α =

(
α1

α2

)
, we

have

b1 + b2 − (m1 +m2) · z = s+αT · v − (αT · T ) · z = s+αT · v −αT · v = s.

We now turn to proving the perfect privacy of the protocol. Consider any
(x, y) such that f(x, y) = 1 and let M = (v|T ) be the joint linear mapping. To

prove privacy, it suffices to show that, for random α
R← Ft, the first entry of

the vector αTM is uniform conditioned on the other entries of the vector. To
see this, first observe that αTM is distributed uniformly subject to the linear
constraints αTM ·r = 0 induced by all vectors r in the Kernel of M . Therefore,
αTv is uniform conditioned on αTT if and only if all r’s in the Kernel of M
have 0 as their first entry. Indeed, if this is not the case, then v ∈ colspan(T ),
and so (x, y) cannot be 1-input of f .

Finally, observe that the protocol consumes (t+ ρ+ 1) field elements for the
joint randomness, and communicates a total number of 2ρ+2 field elements. ut

4.2 Reversing general CDS

We continue by proving Theorem 2 (restated below).

Theorem 8 (CDS is closed under complement). Suppose that f has a
CDS with randomness complexity of ρ and communication complexity of t and
privacy/correctness errors of 2−k. Then f ≡ 1 − f has a CDS scheme with
similar privacy/correctness errors and randomness/communication complexity
of O(k3ρ2t+ k3ρ3).



We begin with the following reversing transformation of Sahai and Vad-
han [34, Corollary 4.18].

Construction 9 (Statistical Distance Reversal). Let D0, D1 : Q → L be
a pair of functions where Q = {0, 1}ρ and L = {0, 1}t. For a parameter k, let
m = k3ρ2, and let H = {h : {0, 1}m ×Qm × Lm → S} be a family of 2-universal
hash functions where S = {0, 1}(ρ+1)m−2(m/k)−k. The functions C0 and C1 take

an input (b, r, b′, r′, h, u) ∈
(
{0, 1}m ×Qm

)2 ×H× U , and output the tuple

(Db(r), b, h, z)

where Db(r) =: (Db1(r1), . . . , Dbm(rm)), and

z =

{
h(b, r, Db′

(r′)) for C0

u for C1
.

In the following, we denote by D0 (resp., D1, C0, C1) the probability distri-
butions induced by applying the function D0 (resp., D1, C0, C1) to a uniformly
chosen input.

Fact 10 (Corollary 4.18 in [34]). In the set-up of Construction 9, the fol-
lowing holds for every parameter k.

1. If ∆(D0, D1) < 2−k then ∆(C0, C1) > 1− 2−k.
2. If ∆(D0, D1) > 1− 2−k, then ∆(C0, C1) < 2−k.

Fact 10 allows to transform a CDS F (x, y, s, r) = (F1(x, s; r), F2(y, s; r)) for
the function f , into a CDS encoding C for f . For inputs x, y and secret s, the CDS
encoding C samples a message from the distribution Csxy obtained by applying
Construction 9 to the distributions D0

xy = F (x, y, 0, r) and D1
xy = F (x, y, 1, r).

Unfortunately, the resulting CDS encoding is not decomposable since the
hash function is applied jointly to the x-th and y-th components of the distribu-
tions D0

xy and D1
xy. We fix the problem by using a PSM of h. Let us begin with

the following more general observation that shows that h can be safely replaced
with its randomized encoding.

Lemma 1. Under the set-up of Construction 9, for every h ∈ H let ĥ be a
perfect balanced randomized encoding of h with randomness space V and output
space Ŝ. The function E0 (resp., E1) is defined similarly to C0 (resp., C1) except

that the input is (b, r, b′, r′, h, v, ŝ) ∈
(
{0, 1}m×Qm

)2×H×V ×Ŝ and the output
is identical except for the z-part which is replaced by

ẑ =

{
ĥ(b, r, Db′

(r′); v) for E0

ŝ for E1
.

Then, the conclusion of Fact 10 holds for E0 and E1 as well. Namely, for every
parameter k,



1. if ∆(D0, D1) < 2−k then ∆(E0, E1) > 1− 2−k;
2. if ∆(D0, D1) > 1− 2−k, then ∆(E0, E1) < 2−k.

Proof. Fix D0 and D1. We prove that ∆(E0, E1) = ∆(C0, C1) and conclude
the lemma from Fact 10. Indeed, consider the randomized mapping T which
maps a tuple (a, b, h, z) to (a, b, h, Sim(z)) where Sim is the simulator of the

encoding ĥ. Then, by the perfect privacy and the balanced property, T takes
C0 to E0 and C1 to E1. Since statistical distance can only decrease when the
same probabilistic process is applied to two random variables, it follows that
∆(C0, C1) ≤ ∆(T (C0), T (C1)) = ∆(E0, E1). For the other direction, consider
the mapping T ′ which maps a tuple (a, b, h, ẑ) to (a, b, h,Dec(ẑ)) where Dec
is the decoder of the encoding. Then, by the perfect correctness and by the
balanced property, T takes E0 to C0 and E1 to C1. It follows that ∆(E0, E1) ≤
∆(T ′(E0), T ′(E1)) = ∆(C0, C1), and the lemma follows. ut

We can now prove Theorem 8.

Proof (Proof of Theorem 8). Let F = (F1, F2) be a CDS for the function f
with randomness complexity ρ, communication t and privacy/correctness error
of 2−k. For inputs x, y and secret σ, the CDS for f will be based on the functions
Eσ defined in Lemma 1 where D0(r) = F (x, y, 0; r) and D1(r) = F (x, y, 1; r).
In particular, we will instantiate Lemma 1 as follows.

Let

α = (b, r, Db
xy(r)), where Db

xy(r) := (F (x, y, b1; r1), . . . , F (x, y, bm; rm))

be the input to the hash function h. Let n0 = m(1 + ρ + t) denote the length
of α. Observe that each bit of α depends either on x or on y but not in both
(since F is a CDS). Let A ⊂ [n0] denote the set of entries which depend on x
and let B = [n0]\A be its complement. Let n1 = (ρ+1)m−2m/k−k denote the
output length of the hash function family H. We implement H = {h} by using
Toeplitz matrices. That is, each function is defined by a binary Toeplitz matrix
M ∈ Fn1×n0

2 (in which each descending diagonal from left to right is constant)
and a vector w ∈ Fn1

2 , and h(α) = Mα+w. Let us further view the hash function
h(α) as a two-argument function h(αA, αB) and let

ĥ(αA, αB ; v) = (MAαA + w + v,MBαB − v),

where v ∈ Fn1
2 and MA (resp. MB) is the restriction of M to the columns in A

(resp., columns in B). It is not hard to verify that ĥ is a perfect balanced PSM
for h. (Indeed decoding is performed by adding Alice’s output to Bob’s output,
and simulation is done by splitting an output β of h into two random shares
c1, c2 ∈ Fn1

2 which satisfy c1 + c2 = β.)
Consider the randomized mapping Eσxy obtained from Lemma 1 instantiated

with Ds(r) = Ds
xy(r) = F (x, y, s; r) and the above choices of ĥ. We claim that

Eσxy is a CDS for f with privacy and correctness error of 2−k. To see this first
observe that, by construction, the output of Eσxy can be decomposed into an



x-component E1(x, σ) and a y-component E2(y, σ). (All the randomness that is
used as part of the input to E is consumed as part of the joint randomness of
the CDS.)

To prove privacy, fix some 0-input (x, y) of f and note that f(x, y) = 1 and
therefore, by the correctness of the CDS F , it holds that ∆(D0

xy, D
1
xy) > 1−2−k.

We conclude, by Lemma 1, that ∆(E0
xy, E

1
xy) < 2−k and privacy holds. For

correctness, fix some 1-input (x, y) of f and note that f(x, y) = 0 and therefore,
by the privacy of the CDS F , it holds that ∆(D0

xy, D
1
xy) < 2−k. We conclude,

by Lemma 1, that ∆(E0
xy, E

1
xy) > 1 − 2−k and so correctness holds (by using

the optimal distinguisher as a decoder). Finally, since the description length of

h is n0 + 2n1 the randomness complexity of ĥ is n1 and the communication
complexity of ĥ is 2n1, the overall communication and randomness complexity
of the resulting CDS is O(k3ρ2t+ k3ρ3). ut

4.3 Closure under formulas

Closure under formulas can be easily deduced from Theorems 7 and 8.

Theorem 11. Let g be a boolean function over m binary inputs that can be
computed by a σ-size formula. Let f1, . . . , fm be m boolean functions over X ×Y
each having a CDS with t communication and randomness complexity, and 2−k

privacy and correctness errors. Then, the function h : X × Y → {0, 1} defined
by g(f1(x, y), . . . , fm(x, y)) has a CDS scheme with O(σk3t3) randomness and
communication complexity, and σ2−k privacy and correctness errors. Moreover,
in the case of linear CDS, the communication and randomness complexity are
only O(σt) and the resulting CDS is also linear.

Proof. Without loss of generality, assume that the formula g is composed of AND
and OR gates and all the negations are at the bottom (this can be achieved by
applying De Morgan’s laws) and are not counted towards the formula size. We
prove the theorem with an upper-bound of σ · Ck3t3 where C is the constant
hidden in the big-O notation in Theorem 8 (the upper-bound on the communi-
cation/ranodmness complexity of the complement of a CDS).

The proof is by induction on σ. For σ = 1, the formula g is either fi(x, y) or
f i(x, y) for some i ∈ [m], in which case the claim follows either from our assump-
tion on the CDS for fi or from Theorem 8. To prove the induction step, consider
a σ-size formula g(f1, . . . , fm) of the form g1(f1, . . . , fm)�g2(f1, . . . , fm) where �
is either AND or OR, g1 and g2 are formulas of size σ1 and σ2, respectively, and
σ = σ1+σ2+1. For the case of an AND gate, we additively secret share the secret
s into random s1 and s2 subject to s1 + s2 = s and use a CDS for g1 with secret
s1 and for g2 for the secret s2. For the case of OR gate, use a CDS for g1 with
secret s and for g2 for the secret s. By the induction hypothesis, the communica-
tion and randomness complexity are at most σ1 ·Ck3t3 +σ2 ·Ck3t3 +1 ≤ σCk3t3,
and the privacy/correctness error grow to σ12−k + σ22−k ≤ σ2−k, as required.

The extension to the linear case follows by plugging the upper-bound from
Theorem 7 to the basis of the induction, and by noting that the construction
preserves linearity. ut



5 Amplifying correctness and privacy of CDS

In this section we show how to simultaneously reduce the correctness and privacy
error of a CDS scheme F . Moreover, the transformation has only minor cost when
applied to long secrets.

Theorem 12. Let f : X × Y → {0, 1} be a predicate and let F be a CDS
for f which supports 1-bit secrets with correctness error δ0 = 0.1 and privacy
error ε0 = 0.1. Then, for every integer k there exists a CDS G for f with k-
bit secrets, privacy and correctness errors of 2−Ω(k). The communication (resp.,
randomness) of G larger than those of F by a multiplicative factor of O(k).

Proof. Let ε be some constant larger than ε0. Let E be a randomized mapping
that takes k-bit message s and O(k)-bit random string into an encoding c of
length m = Θ(k) with the following properties:

1. If one flips every bit of E(s) independently at random with probability δ0
then s can be recovered with probability 1− exp(−Ω(k)).

2. For any pair of secrets s and s′ and any set T ⊂ [m] of size at most εm,
the T -restricted encoding of s is distributed identically to the T -restricted
encoding of s′, i.e., (E(s)i)i∈T ≡ (E(s′)i)i∈T .

That is, E can be viewed as a ramp secret-sharing scheme with 1-bit shares which
supports robust reconstruction.9 Such a scheme can be based on any linear error-
correcting code with good dual distance [13]. In particular, by using a random
linear code, we can support ε0 = δ0 = 0.1 or any other constants which satisfy
the inequality 1−H2(δ0) > H2(ε0).

Given the CDS F = (F1, F2) we construct a new CDS G = (G1, G2) as
follows. Alice and Bob jointly map the secret s ∈ {0, 1}k to c = E(s; r0) (using
joint randomness r0). Then, for every i ∈ [m], Alice outputs F1(x, ci; ri) and Bob
outputs F2(y, ci; ri), where r1, . . . , rm are given as part of the shared randomness.

Let us analyze the correctness of the protocol. Fix some x, y for which
f(x, y) = 1. Consider the decoder which given (v1, . . . , vm) and x, y applies
the original decoder of F to each coordinate separately (with the same x, y),
and passes the result ĉ ∈ {0, 1}m to the decoding procedure of E, promised by
Property (1) above. By the correctness of F , each bit ĉi equals to ci with prob-
ability of at least 1 − δ0. Therefore, the decoder of E recovers c with all but
1− exp(−Ω(k)) probability.

Consider the simulator which simply applies G to the secret s′ = 0k. Fix x
and y and a secret s. To upper-bound the statistical distance between G(x, y, s′)
and G(x, y, s), we need the following standard “coupling fact” (cf. [30, Lemma 5]
for a similar statement).

9 In a ramp secret sharing there may be a gap between the privacy bound (the number
of parties for which privacy hold) and the reconstruction bound (the number of
parties which can reconstruct the secret) and one does not care if there are sets of
size in between these bounds whose joint shares reveal partial information about the
secret.



Fact 13. Any pair of distributions, (D0, D1) whose statistical distance is ε can
be coupled into a joint distribution (E0, E1, b) with the following properties:

1. The marginal distribution of E0 (resp., E1) is identical to D0 (resp., D1).
2. b is an indicator random variable which takes the value 1 with probability ε.
3. Conditioned on b = 0, the outcome of E0 equals to the outcome of E1.

Define the distributions D0 := F (x, y, 0) and D1 := F (x, y, 1), and let (E0, E1, b)
be the coupled version of D0, D1 derived from Fact 13. Let c = E(s) and c′ =
E(s′). Then,

G(x, y, s) = (E1
c1 , . . . , E

m
cm),

and

G(x, y, s′) = (E1
c′1
, . . . , Emc′m),

where for each i ∈ [m] the tuple (Ei0, E
i
1, b

i) is sampled jointly and independently
from all other tuples. Let T = {i ∈ [m] : bi 6= 0}. Then, it holds that

∆(G(x, y, s);G(x, y, s′)) ≤ ∆((T, (Eici)i∈T ); (T, (Eic′i)i∈T ))

≤ Pr[|T | > εm] ≤ exp(−Ω(k)),

where the first inequality follows from Fact 13, the second inequality follows from
the second property of E and the last inequality follows from a Chernoff bound
(recalling that ε− ε′ > 0 is a constant and m = Θ(k)). The theorem follows. ut

Remark 1 (Optimization). The polarization lemma of Sahai and Vadhan [34]
provides an amplification procedure which works for a wider range of parame-
ters. Specifically, their transformation can be applied as long as the initial cor-
rectness and privacy errors satisfy the relation δ2

0 > ε0. (Some evidence suggest
that this condition is, in fact, necessary for any amplification procedure [22].)
Unfortunately, the communication overhead in their reduction is polynomially
larger than ours and does not amortize over long secrets. It is not hard to com-
bine the two approaches and get the best of both worlds. In particular, given
a CDS with constant correctness and privacy errors which satisfy δ2

0 > ε0, use
the polarization lemma with constant security parameter k0 to reduce the errors
below the threshold needed for Theorem 12, and then use the theorem to effi-
ciently reduce the errors below 2−k. The resulting transformation has the same
asymptotic tradeoff between communication, error, and secret length, and can be
used for a wider range of parameters. (This, in particular, yields the statement
of Theorem 3 in the introduction in which δ0 and ε0 are taken to be 1/3).

Remark 2 (Preserving efficiency). Theorem 12 preserves efficiency (of the CDS
senders and decoder) as long as the encoding E, and its decoding algorithm
are efficient. This can be guaranteed by replacing the random linear codes (for
which decoding is not know to be efficient) with an Algebraic Geometric Codes
(as suggested in [13]; see also Claim 4.1 in [25] and [16, 12]). This modifica-
tion requires to start with smaller (yet constant) error probabilities δ0, ε0. As in



Remark 1, this limitation can be easily waived. First use the inefficient transfor-
mation (based on random binary codes) with constant amplification k0 = O(1)
to reduce the privacy/correctness error below the required threshold, and then
use the efficient amplification procedure (based on Algebraic Geometric Codes).

6 Amortizing the communication for long secrets

In this section we show that, for sufficiently long secrets, the amortized commu-
nication cost of CDS for n-bit predicates is O(n) bits per each bit of the secret.
As explained in the introduction, in order to prove this result we first amortize
CDS over many different predicates (applied to the same input (x, y)). We refer
to this version of CDS as batch-CDS, formally defined below.

Definition 4 (batch-CDS). Let F = (f1, . . . , fm) be an m-tuple of predicates
over the domain X ×Y. Let F1 : X ×Sm ×R → T1 and F2 : Y × Sm ×R → T2

be deterministic encoding algorithms, where S is the secret domain (by default
{0, 1}). Then, the pair (F1, F2) is a batch-CDS scheme for F if the function
F (x, y, s, r) = (F1(x, s, r), F2(y, s, r)), that corresponds to the joint computation
of F1 and F2 on a common s and r, satisfies the following properties:

1. (Perfect correctness)10 There exists a deterministic algorithm Dec, called a
decoder, such that for every every i ∈ [m], every 1-input (x, y) of fi and
every vector of secrets s ∈ Sm, we have that:

Pr
r

R←R
[Dec(i, x, y, F (x, y, s, r)) = si] = 1.

2. (Perfect privacy) There exists a simulator Sim such that for every input (x, y)
and every vector of secrets s ∈ Sm, the following distributions are identical

Sim(x, y, ŝ) and F (x, y, s, r),

where r
R← R and ŝ is an m-long vector whose i-th component equals to si

if fi(x, y) = 1, and ⊥ otherwise.

The communication complexity of the CDS protocol is (log |T1|+ log |T2|).

In the following, we let Fn denote the 222n

-tuple which contains all predicates
f : {0, 1}n×{0, 1}n → {0, 1} defined over pairs of n-bit inputs (sorted according
to some arbitrary order).

Lemma 2. Fn-batch CDS can be implemented with communication complexity
of 3|Fn|. Moreover the protocol is linear.

10 For simplicity, we consider only perfectly correct and perfectly private batch-CDS,
though the definition can be generalized to the imperfect case as well.



Proof. The proof is by induction on n. For n = 1, it is not hard to verify that any
predicate f : {0, 1} × {0, 1} → {0, 1} admits a CDS with a total communication
complexity of at most 2 bits. Indeed, there are 16 such predicates, out of which,
six are trivial in the sense that the value of f depends only in the inputs of one
of the parties (and so they admit a CDS with 1 bit of communication), and the
other ten predicates correspond, up to local renaming of the inputs, to AND,
OR, and XOR, which admit simple linear 2-bit CDS as follows. For AND, Alice
and Bob send s · x+ r and r · y; for OR, they send x · s and y · s; and, for XOR,
they send s+x·r1 +(1−x)r2 and y ·r2 +(1−y)r1 (where r and (r1, r2) are shared
random bits and addition/multiplication are over the binary field). It follows,
that F1-batch CDS can be implemented with total communication of at most
2|F1|. (In fact, this bound can be improved by exploiting the batch mode.)

Before proving the induction step. Let us make few observations. For (α, β) ∈
{0, 1}2, consider the mapping φα,β : Fn+1 → Fn which maps a function f ∈ Fn+1

to the function g ∈ Fn obtained by restricting f to xn+1 = α and yn+1 = β. The
mapping φα,β is onto, and is D-to-1 where D = |Fn+1|/|Fn|. We can therefore
define a mapping Tα,β(f) which maps f ∈ Fn+1 to (g, i) ∈ Fn× [D] such that f
is the i-th preimage of g under φα,β with respect to some fixed order on Fn+1.
By construction, for every fixed (α, β), the mapping Tα,β is one-to-one.

We can now prove the induction step; That is, we construct Fn+1-batch CDS
based on D copies of Fn-batch CDS. Given input x ∈ {0, 1}n+1 for Alice, y ∈
{0, 1}n+1 for Bob, and joint secrets (sf )f∈Fn+1

, the parties proceed as follows.

1. Alice and Bob use D copies of Fn-batch CDS with inputs x′ = (x1, . . . , xn)
and y′ = (y1, . . . , yn). In the i-th copy, for every predicate g ∈ Fn, a ran-
dom secret rg,i ∈ {0, 1} is being used. (The rg,i’s are taken from the joint
randomness of Alice and Bob.)

2. For every f ∈ Fn+1 and (α, β) ∈ {0, 1}2, Alice and Bob release the value
σf,α,β = sf + rg,i where (g, i) = Tα,β(f) iff the last bits of their inputs, xn+1

and yn+1, are equal to α and β, respectively. This step is implemented as
follows. For each f , Alice sends a pair of bits

cf,0 = σf,xn+1,0 + r′f,0, and cf,1 = σf,xn+1,1 + r′f,1,

and Bob sends r′f,yn+1
where r′f,0, r

′
f,1 are taken from the joint randomness.

The decoding procedure is simple. If the input (x, y) ∈ {0, 1}n+1×{0, 1}n+1 satis-
fies f ∈ Fn+1, the decoder does the following: (1) Computes (g, i) = Txn+1,yn+1

(f)
and retrieves the value of rg,i which is released by the batch-CDS since g(x′, y′) =
f(x, y) = 1; (2) Collects the values cf,xn+1 and r′f,yn+1

sent during the second

step, and recovers the value of sf by computing cf,xn+1 − r′f,yn+1
− rg,i.

In addition, it is not hard to verify that perfect privacy holds. Indeed, sup-
pose that (x, y) ∈ {0, 1}n+1 × {0, 1}n+1 does not satisfy f . Then, the only sf -
dependent value which is released is sf ⊕ rg,i where g is the restriction of f to
(xn+1, yn+1). However, since (x, y) fails to satisfy f , its prefix does not satisfy
g and therefore rg,i remains hidden from the receiver. Formally, we can per-
fectly simulate the view of the receiver as follows. First simulate the first step



using D calls to the simulator of Fn-batch CDS with random secrets rg,i. Then
simulate the second step by sampling, for each f , three values cf,0, cf,1 and r′

which are uniform if f(x, y) = 0, and, if f(x, y) = 1, satisfy the linear constraint
sf = cf,xn+1 − r′f,yn+1

− rg,i where (g, i) = Tα,β(f).
Finally the communication complexity equals to the complexity of D copies

of batch CDS for Fn (communicated in the first step) plus 3|Fn+1| bits (commu-
nicated at the second step). Therefore, by the induction hypothesis, the overall
communication, is 3|Fn+1| + 3Dn|Fn|. Recalling that D = |Fn+1|/|Fn|, we de-
rive an upper-bound of 3(n+ 1)|Fn+1|, as required. ut

We use Lemma 2 to amortize the complexity of CDS over long secrets.

Theorem 14. Let f : {0, 1}n × {0, 1}n → {0, 1} be a predicate. Then, for m =

|Fn|/2 = 222n

/2, there exists a perfect linear CDS which supports m-bit secrets
with total communication complexity of 12nm.

The case of longer secrets of length m > |Fn|/2 (as in Theorem 4) can be treated
by partitioning the secret to |Fn|/2-size blocks and applying the CDS for each
block separately. The overall communication complexity is upper-bounded by
13nm.

Proof. Given a vector S of m = |Fn|/2 secrets, we duplicate each secret twice
and index the secrets by predicates p ∈ Fn such that sp = sp̄ (i.e., a predicate
and its complement index the same secret). On inputs x, y, Alice and Bob make
two calls to Fn-batch CDS (with the same inputs x, y). In the first call the secret
associated with a predicate p ∈ Fn is a random values rp. In the second call,
for every predicate h ∈ Fn, we release the secret sp ⊕ rp where p is the unique
predicate for which p = f + h+ 1 (where addition is over the binary field).

Correctness. Suppose that f(x, y) = 1. Recall that each of the original
secrets Si appears in two copies (sp, sp̄) for some predicate p. Since one of these
copies is satisfied by (x, y), it suffices to show that, whenever p(x, y) = 1, the
secret sp can be recovered. Indeed, for such a predicate p, the value rp is released
by the first batch-CDS, and the value sp⊕rp is released by the second batch-CDS.
The latter follows by noting that the predicate h which satisfies p = f + h+ 1 is
also satisfied, since h(x, y) = p(x, y) + f(x, y) + 1 = 1. It follows that sp can be
recovered for every p which is satisfied by (x, y), as required.

Privacy. Suppose that f(x, y) = 0. We show that all the “virtual secrets”
sp remain perfectly hidden in this case. Indeed, for h and p which satisfy p =
f + h+ 1, it holds that, whenever f(x, y) = 0, either h(x, y) = 0 or p(x, y) = 0,
and therefore, for any p, either rp or sp ⊕ rp are released, but never both.

Finally, using Lemma 2, the total communication complexity of the protocol
is 2 · 3 · n · |Fn| = 12nm, as claimed. ut

7 A Linear Lower Bound on CDS

Here we show that the lower bound on the communication complexity of PSM
protocols proven in [15] can be extended to apply for CDS as well. We do this



by showing how to use CDS protocols to construct PSM protocols that are only
required to hide a certain small pre-specified set of input bits (as opposed to the
whole input). We define this notion of PSM below.

Definition 5 (b-bit PSM). Consider a function f : (W × X ) × Y → Z, with
log |W| ≥ b for some b > 0. We say that a pair of deterministic encoding al-
gorithms F1 : W × X × R → T1 and F2 : Y × R → T2 constitute a b-bit PSM
for f if the function F ((w, x), y, r) = (F1(w, x, r), F2(y, r)) satisfies the following
properties:

1. (δ-Correctness) There exists a deterministic algorithm Dec, called the de-
coder, such that for every input ((w, x), y) we have that:

Pr
r

R←R
[Dec(F ((w, x), y, r)) 6= f((w, x), y)] ≤ δ.

2. (b-bit ε-Privacy) There exists a randomized algorithm Sim such that for any
input ((w, x), y) it holds that:

∆
r

R←R
(Sim(f((w, x), y), x, y);F ((w, x), y, r)) ≤ ε.

The communication complexity of the protocol is defined as the total encoding
length (log |T1|+ log |T2|), and the randomness complexity of the protocol is de-
fined as log |R|.

By default, the above sets are to be taken to beW = {0, 1}b, X = Y = {0, 1}n,
Z = {0, 1}, R = {0, 1}ρ, T1 = {0, 1}t1 , and T2 = {0, 1}t2 for some positive
integers b, n, ρ, t1, and t2.

Lemma 3 (CDS to 1-bit PSM). If every Boolean function on X × Y has a
CDS protocol with communication complexity t, then every Boolean function on
({0, 1} × X )× Y has a 1-bit PSM protocol with communication complexity (t +
1 + log |X |+ log |Y|), with the same correctness and privacy guarantees.

Proof. Suppose we want to construct a 1-bit PSM protocol for a function f :
({0, 1} × X ) × Y → {0, 1}. Let (G1, G2,DecCDS) be a CDS protocol for the
function g(x, y) = f((0, x), y)⊕ f((1, x), y) with communication complexity t.

We use this to construct our 1-bit PSM protocol (F1, F2,Dec) for f . Let s
be a bit from the common randomness. F1 is now defined as F1((w, x), (s, r)) =
(G1(x, s, r), w ⊕ s, x), and F2 is defined as F2(y, (s, r)) = (G2(y, s, r), y).

Dec, on input ((g1, w ⊕ s, x), (g2, y)), works by first checking whether given
x and y, the value of f still depends on w. If not, it simply computes f using x
and y. If it does depend on w, this implies that f((0, x), y) 6= f((1, x), y), and
g(x, y) = 1, and so DecCDS(x, y, g1, g2) outputs s, which can be used to retrieve
w from (w⊕s), and now the whole input is known and f can be computed. This
argues correctness, and the error here is at most that in the CDS protocol. The
communication is also seen to be at most (t+ log |X |+ log |Y|+ 1).

Let SimCDS be the simulator for the CDS protocol for g. The simulator
Sim(f((w, x), y), x, y) works by first checking whether f((0, x), y) = f((1, x), y).



If it isn’t, then the value of w is determined by x, y, and the value of f and,
knowing w, Sim can compute F1 and F2 by itself, thus simulating them per-
fectly. If not, this implies that g(x, y) = 0. In this case, Sim first computes
(g∗1 , g

∗
2)← SimCDS(x, y), picks a random bit s∗, and outputs ((g∗1 , s

∗, x), (g∗2 , y)).
The simulation error is:

∆(Sim(f((w, x), y), x, y);F (x, y, c))

= ∆((SimCDS(x, y), s∗, x, y); (G(x, y, s), w ⊕ s, x, y))

= ∆((SimCDS(x, y), s∗); (G(x, y, s), w ⊕ s))

Note that here s∗ and (w ⊕ s) have the same marginal distribution, which
is the uniform distribution over {0, 1}. Also, SimCDS(x, y) is independent of s∗.
Writing out the expansion of ∆ in terms of differences in probabilities and using
Bayes’ Theorem along with the above observation gives us the following:

∆((SimCDS(x, y), s∗); (G(x, y, s), w ⊕ s))

=
1

2

∑
m∈T1×T2,b∈{0,1}

∣∣∣Pr[(SimCDS(x, y), s∗) = (m, b)]

− Pr[(G(x, y, s), w ⊕ s) = (m, b)]
∣∣∣

=
1

2

∑
m∈T1×T2,b∈{0,1}

∣∣∣Pr[s∗ = b] Pr[SimCDS(x, y) = m]

− Pr[w ⊕ s = b] Pr[G(x, y, b⊕ w) = m]
∣∣∣

=
1

2

∑
b∈{0,1}

1

2

∑
m∈T1×T2

∣∣∣Pr[SimCDS(x, y) = m]− Pr[G(x, y, b⊕ w) = m]
∣∣∣

=
1

2
[∆(SimCDS(x, y);G(x, y, 0)) + ∆(SimCDS(x, y);G(x, y, 1))]

By the ε-privacy of the CDS scheme (since the value of g(x, y) is 0), each
summand in the right-hand side above is at most ε. Hence the total simulation
error is at most ε. ut

In [15] it was shown that there exists a Boolean function on {0, 1}n×{0, 1}n
such that any perfect 1-bit PSM for it requires at least 2.99n bits of commu-
nication. Using Lemma 3 along with this lower bound, we have the following
theorem.

Theorem 15. There is a Boolean function on {0, 1}n × {0, 1}n such that any
perfect CDS protocol for it has communication complexity at least 0.99n.

We can generalise the above approach to construct b-bit PSM protocols for
larger values of b as follows.

Lemma 4 (CDS to b-bit PSM). If every Boolean function on X ×Y has a CDS
protocol with communication complexity t then, for any b > 0, every Boolean



function on ({0, 1}b × X ) × Y has a b-bit PSM protocol with communication

complexity (22b

(t + 1) + log |X | + log |Y|), with the same correctness guarantee

and with privacy that is degraded by a factor of 22b

.

Proof (Proof sketch). The idea behind the construction is that the function

fx,y(w) = f((w, x), y), where w is b bits long, can be one of only 22b

func-
tions – call this set of functions H = {hi}. For each of these hi’s, we define
a function gi(x, y) that indicates whether fx,y ≡ hi. Note that once the PSM
decoder knows x and y, the information that the value of f reveals to it about
w is exactly fx,y(w), which is the same as hi(w) if gi(x, y) = 1.

In our construction, first we have F1 reveal x and F2 reveal y. Now we wish
to, for each i, reveal hi(w) if and only if gi(x, y) = 1. To do this, for each i, we
choose a random bit si from the common randomness, reveal hi(w) ⊕ si, and
run the CDS protocol for gi with si as the secret.

The correctness is preserved because whenever the CDS for the “correct”
value of i is correct, our protocol is correct.

The simulator, given x, y and f((w, x), y), first outputs x and y. It then finds
the i′ such that gi′(x, y) = 1. For every other i, it publishes a random s∗i and the
output of the CDS simulator for the function gi with inputs x, y and secret 0. For
i′, it publishes (f((w, x), y)⊕ s∗i′) for a random s∗i′ and the messages of the CDS

protocol for gi′ with inputs x, y and secret s∗i′ . Privacy error goes from ε to 22b

ε
because of arguments similar to those in the proof of Lemma 3 being applied to
each invocation of the CDS protocol, all of which are mutually independent. ut

8 Separating CDS and Insecure Communication

Here we show an explicit function whose randomized communication complexity
is much higher than its CDS communication complexity. For simplicity, assume
that n below is a power of 2; the statements made here can be shown to be true
for a general n along the same lines.

Definition 6 (Communication Complexity). Consider a function f : X ×
Y → Z. A protocol between two parties (with shared randomness) who are given
inputs x ∈ X and y ∈ Y, respectively, is said to compute f if for every (x, y) ∈
X ×Y, the parties arrive at the correct value of f at the end of it with probability
at least 2/3.

The communication cost of a protocol is the most number of bits exchanged
by the parties over all possible inputs and all values of shared randomness. The
Randomized Communication Complexity of f , denoted R(f), is the least com-
munication cost of any protocol computing f .

Gay et al. [17] showed that if a function has a CDS protocol with commu-
nication complexity t then, roughly, logR(f) ≤ 2t. Moreover, this upper-bound
can be achieved by a one-way communication protocol (in which only one party
sends a message). We show that this bound is optimal (up to constant factors)



by exhibiting a function that has a CDS protocol with low communication, but
has high randomized communication complexity (even for fully interactive pro-
tocols).11 Towards this, we first introduce the following problem.

Definition 7 (The Collision Problem). The Collision Problem (Coln) is a
promise problem defined over a subset of {0, 1}n logn as follows. For an input
x ∈ {0, 1}n logn, divide x into n blocks of log n bits each. Each such x can now
be used to define a function fx : {0, 1}logn → {0, 1}logn, where fx(i) is the ith

block of x (when i is interpreted as an integer in [n]). Coln(x) is defined to be 1
if fx is a permutation, 0 if fx is 2-to-1, and is undefined otherwise.

We use the above problem in conjunction with Sherstov’s Pattern Matrix
method [36] for proving communication complexity lower bounds. We define the
following function that corresponds to what would be called a “pattern matrix”
of Coln.

Definition 8. The promise problem PColn : {0, 1}4n logn × [4]n logn → {0, 1} is
defined as follows. On an input (x, y), first divide x into n log n blocks of size
4 bits each. From the ith block, select the bit xi,yi that is specified by the ith

coordinate of y (which is an element of {1, 2, 3, 4}) to get the string xy of length
n log n. The output of the function is Coln(xy).

The pattern matrix method gives us a way to lower bound the randomized
communication complexity of a function constructed in this manner using lower
bounds on the approximate degree (denoted by deg and which we do not define
here) of the underlying function. We use known results to derive the following
Corollary 1.

Corollary 1. R(PColn) = R(PColn) ≥ Ω(n1/3)

Proof. It follows from [36] that R(PColn) ≥ Ω(deg(Coln)). Combined with the
fact that deg(Coln) ≥ Ω(n1/3) (which follows from [3, 27]), we derive the corol-
lary. ut

Next we show that PColn has a very efficient CDS protocol.

Lemma 5. There is a CDS protocol for PColn with 1
3 -completeness, perfect pri-

vacy, and communication complexity O(log n).

In order to prove this lemma, we will need the following simple lemma which
shows how to simulate messages generated by applying a PSM protocol to a set
of inputs that are distributed jointly. It says that these can be simulated by
sampling the corresponding distribution over the function outputs and running
the PSM simulator on these sampled outputs.

11 In fact, our separation holds even for quantum communication complexity – see [36]
for relevant definitions and explanations.



Lemma 6. Consider any function f : X ×Y → Z, and a PSM protocol (F1, F2)
for it with ε-privacy realized by a simulator Sim. For any integer k > 0 and any
joint distribution (X,Y ) over (X×Y)k, let Z be the distribution over Zk obtained
by sampling (x, y) = ((x1, y1), . . . , (xk, yk)) from (X,Y ) and then computing
(f(x1, y1), . . . , f(xk, yk)). Then,

∆ ((Sim(z1), . . . ,Sim(zk)) ; (F (x1, y1), . . . , F (xk, yk))) ≤ kε,

where (x, y) ← (X,Y ), z ← Z. In particular, if the PSM is perfect, the above
statistical distance is zero.

The proof (which is standard) appears in the full version [5]. We can now prove
Lemma 5.

Proof (Proof of Lemma 5). Given input (x, y) ∈ {0, 1}4n logn × [4]n logn and
secret bit s, the idea behind the CDS protocol is to convey through the messages
a uniformly random element from the range of fxy if s = 1, and a uniformly

random element from {0, 1}logn if s = 0. If PColn(x, y) = 0, fxy
is a permutation,

and hence the distributions in the two cases are identical. If PColn(x, y) = 1, fxy
’s

range covers only half the co-domain and so the two cases can be distinguished.

We now construct a CDS protocol (F1, F2) that functions as above. Let G =
(G1, G2) be the perfect PSM protocol for the finite function ind : {0, 1}4× [4]→
{0, 1} that takes (a, b) as input and outputs the bit in a that is pointed to by
b. Let DecPSM be a perfect decoder for G. The CDS protocol (F1, F2) works as
follows.

– First an index i ∈ [n] is sampled from the common randomness. (In the case
of s = 1, fxy

(i) is the information that will be output jointly by F1 and F2.)

– Note that the value fxy (i) consists of log n bits, each of which is encoded
by 4 bits in x and a value in [4] in y – let the relevant parts of x and y

be (x1
i , . . . , x

logn
i ) and (y1

i , . . . , y
logn
i ) respectively, where xji ∈ {0, 1}4 and

yji ∈ [4].

– If s = 1, for each j ∈ [log n], F1 outputs gj1 = G1(xji , rj), and F2 outputs

gj2 = G2(yji , rj), where rj is from the common randomness.

– If s = 0, for each j ∈ [log n], F1 outputs gj1 = G1(wj , rj), and F2 outputs

gj2 = G2(yji , rj), where each wj is chosen at random from {0, 1}4.

The CDS decoding procedure Dec works as follows.

– Input: (x, y, (g1
1 , . . . , g

logn
1 ), (g1

2 , . . . , g
logn
2 )).

– For each j ∈ [log n], compute zj ← DecPSM(gj1, g
j
2) to get the string z.

– If there exists an i such that fxy
(i) = z, output 1, else output 0.



If PColn(x, y) = 1, fxy
is 2-to-1. By the perfect correctness of the PSM protocol,

if s = 1, z = fxy
(i) for the i chosen by (F1, F2), and so Dec always outputs 1. If

s = 0, z is a random string in {0, 1}logn, and Dec outputs 0 exactly when z falls
outside the range of fxy ; this happens with probability 1/2 as fxy is 2-to-1, and
Dec outputs 1 otherwise.

This gives only 1
2 -correctness but this error is only one-sided, and so by

repeating the protocol once more and checking whether z lies in the range of fxy

both times, this error can be reduced, giving 1
4 -correctness. This repetition does

not degrade privacy which, as shown below, is perfect.

If PColn(x, y) = 0, fxy
is a permutation. The output of F1 and F2 is simulated

as follows using SimPSM, the simulator for the perfect PSM protocol used above.
Our simulator Sim, given (x, y) as input, first picks random bits z∗1 , . . . , z

∗
logn. It

then outputs (SimPSM(z∗1), . . . ,SimPSM(z∗logn)).
The simulation error is:

∆((SimPSM(z∗1), . . . ,SimPSM(z∗logn)); ((g1
1 , g

1
2), . . . , (glogn

1 , glogn
2 )))

where the (gj1, g
j
2)’s are the PSM messages in the protocol description.

First we consider the case s = 1. Recall that the (gj1, g
j
2)’s are computed by

first selecting i ∈ [n] at random and computing the PSM messages for ind(xji , y
j
i ),

which is the jth bit of fxy
(i). As the range of fxy

is uniform over {0, 1}logn, over

the randomness of i each ind(xji , y
j
i ) is a uniformly random bit independent of

all the other ind(xj
′

i , y
j′

i )’s. Thus, (ind(x1
i , y

1
i ), . . . , ind(xlogn

i , ylogn
i )) is distributed

the same as (z∗1 , . . . , z
∗
logn), and so by Lemma 6, the above simulation error is

zero as we are using a perfect PSM protocol.
Similarly, when s = 0, the (gj1, g

j
2)’s are computed by first selecting i ∈

[n] at random and computing the PSM messages for ind(wj , yji ) for uniformly

random w1, . . . , wj ∈ {0, 1}4. So again each ind(wj , yji ) is a uniformly random

bit independent of all the other ind(wj
′
, yj
′

i )’s, and by Lemma 6, the simulation
error is again zero.

The PSM for each bit of z is for a finite-sized function and its communication
complexity is some constant, so the total communication is Θ(log n). ut

Gay et al. [17] showed the following relationships between the randomized
communication complexity of a Boolean function and the complexity of general
and linear CDS protocols for it with single-bit secrets. While they originally
showed these for perfect protocols, we extend their proof to work for imperfect
ones in Appendix A.

Theorem 16 ([17]). For any (partial or total) Boolean function f ,

CDS(f) ≥ 1

2
logR(f) and linCDS(f) ≥ 1

10

√
R(f)

The following corollary of Lemma 5 and Corollary 1 shows that the above
bound on CDS in general is tight up to constant factors.



Corollary 2. There exists a partial Boolean function f such that:

CDS(f) ≤ O(logR(f))

Following from Corollary 2 and Theorem 16, the next corollary says that
there are functions for which general CDS protocols can do much better than
linear CDS protocols.

Corollary 3. There exists a partial Boolean function f such that:

CDS(f) ≤ O(log linCDS(f))

Remark 3. In fact, [17] showed that Theorem 16 holds even for “weakly-linear”
CDS protocols in which only the decoding process is assumed to be linear (and
the senders are allowed to be non-linear). Corollary 3 therefore generalizes to
this case as well.
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A Communication Complexity and Imperfect CDS
Protocols

In this section, we extend the relationships between CDS and randomised com-
munication complexity shown by Gay et al. [17] to include imperfect CDS pro-
tocols. We prove the following theorem. (The terms involved are defined in Sec-
tion 3 and Section 8.)

Theorem 17. For any (partial or total) Boolean function f ,

CDS(f) ≥ 1

2
logR(f)

linCDS(f) ≥ 1

10

√
R(f)

Recall that CDS(f) is the least communication complexity of any CDS pro-
tocol for f with {0, 1} as the secret domain that has 1

10 correctness and privacy.
And that linCDS(f) is the same, but for linear protocols. We will prove Theo-
rem 17 using the following more general lemma that we prove afterward.

Lemma 7. Consider any function f : X×Y → {0, 1}. Suppose f has a CDS pro-
tocol (F1, F2,Dec) with 1

10 -correctness and 1
10 -privacy, with domains as follows:

F1 : X ×{0, 1}×R → T1, F2 : X ×{0, 1}×R → T2, and Dec : X ×Y×T1×T2 →
{0, 1}. Let H be any superset of all possible functions {h : T1 × T2 → {0, 1}} that
Dec(x, y, ·, ·) could possibly be for any x ∈ X and y ∈ Y. Then,

R(f) ≤ 100 log |H| (log |T1|+ log |T2|)



Proof (Proof of Theorem 17). A lower bound for a CDS protocol for f with 1
10

correctness and privacy can be obtained by taking H to be the set of all possible
functions from T1 ×T2 → {0, 1}. There are 2|T1||T2| of these. We then have from
Lemma 7:

R(f) ≤ 100 |T1| |T2| (log |T1|+ log |T2|)
=⇒ logR(f) ≤ log 100 + (log |T1|+ log |T2|) + log(log |T1|+ log |T2|)

≤ 2(log |T1|+ log |T2|)

This is true for any such CDS protocol. Note that (log |T1| + log |T2|) is the
communication complexity of the CDS protocol in question. So this implies that
logR(f) ≤ 2CDS(f).

The lower bound on linCDS(f) is similarly obtained by taking H to be the
set of all linear functions over vectors spaces that may be contained in T1 × T2,
as linear CDS protocols always have linear reconstruction. In this case, T1 and
T2 would have to be of the form Ft1 and Ft2 for some t1, t2, and H would then
contain Ft1+t2 = |T1| |T2| functions. Lemma 7 now immediately gives us the
following:

R(f) ≤ 100(log |T1|+ log |T2|)2

=⇒
√
R(f) ≤ 10 · linCDS(f)

ut

Proof (Proof of Lemma 7). Given a CDS protocol (F1, F2,Dec) as in the hy-
pothesis, we construct a single message protocol (with shared randomness) for
parties A, who is given an x ∈ X , and B, who is given a y ∈ Y, to compute
f(x, y) as follows.

– For an integer N that shall be determined later, the shared randomness is
used to sample N random bits s1, . . . , sN , and also r1, . . . , rN ∈ R.

– For each i ∈ [N ], A computes and sends ai = F1(x, si, ri) to B.
– For each i ∈ [N ], B computes, in order, bi = F2(y, si, ri) and, for each h ∈ H,
shi = h(ai, bi).

– If there is an h ∈ H such that for more than 3/4 values of i ∈ [N ], shi = si,
then B decides that f(x, y) = 1, else 0.

If f(x, y) = 1, by the 1
10 -correctness of the CDS protocol, we know that there

exists an h∗ ∈ H, namely Dec(x, y, ·, ·), such that Pr[h∗(ai, bi) = si] ≥ 9/10. By
the Chernoff bound, the probability that the communication protocol is wrong
in this case can be bounded as follows:

Pr

[∣∣∣{i : sh
∗

i = si

}∣∣∣ ≤ 3

4
N

]
≤ e−N/80

If f(x, y) = 0, by the 1
10 -privacy of the CDS protocol and the triangle inequal-

ity, the statistical distance between the distributions F (x, y, 0) and F (x, y, 1) is



at most 2/10. This implies that for any function h, if si is chosen at random,
Pr[h(ai, bi) = si] ≤ 6/10. Using the union bound and the Chernoff bound, in
order, the probability that the communication protocol is wrong in this case can
be bounded as follows:

Pr

[
∃h ∈ H :

∣∣{i : shi = si
}∣∣ ≥ 3

4
N

]
≤ |H|Pr

[∣∣{i : shi = si
}∣∣ ≥ 3

4
N

]
≤ |H| e−N/80

So if N is chosen to be, say, (100 log |H|), the error probability in both cases
would be much less than 1/3, and this would be a valid communication protocol
computing f .

The total communcation involved isN log |T1| ≤ 100 log |H| (log |T1|+log |T2|),
as required. ut


