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Abstract. We give a new class of security definitions for authentication
in the quantum setting. These definitions capture and strengthen existing
definitions of security against quantum adversaries for both classical mes-
sage authentication codes (MACs) as well as full quantum state authenti-
cation schemes. The main feature of our definitions is that they precisely
characterize the effective behavior of any adversary when the authentica-
tion protocol accepts, including correlations with the key. Our definitions
readily yield a host of desirable properties and interesting consequences;
for example, our security definition for full quantum state authentication
implies that the entire secret key can be re-used if the authentication pro-
tocol succeeds.
Next, we present several protocols satisfying our security definitions. We
show that the classical Wegman-Carter authentication scheme with 3- uni-
versal hashing is secure against superposition attacks, as well as adver-
saries with quantum side information. We then present conceptually sim-
ple constructions of full quantum state authentication.
Finally, we prove a lifting theorem which shows that, as long as a pro-
tocol can securely authenticate the maximally entangled state, it can se-
curely authenticate any state, even those that are entangled with the ad-
versary. Thus, this shows that protocols satisfying a fairly weak form of
authentication security automatically satisfy a stronger notion of security
(in particular, the definition of Dupuis, et al (2012)).

1 Introduction

Authenticating messages is a fundamental operation in classical cryptography.
A sender Alice wishes to send a message m over an insecure channel to a re-
ceiver Bob, with the guarantee that the message was not tampered with in tran-
sit. To accomplish this, Alice appends a “signature” σ to m using a shared secret
key k and sends the message/signature pair (m, σ) to Bob. Bob receives some

? sumeghag@cs.princeton.edu
?? hyuen@cs.berkeley.edu

? ? ? mzhandry@princeton.edu



potentially altered pair (m′, σ′), and then verifies that σ′ is a valid signature of
m′ under key k. If verification passes, Bob accepts m′, and if verification fails,
Bob ignores the message and discards it. A secure authentication protocol guar-
antees the following: even if the adversary has arbitrarily tampered with the
communication channel, as long as the adversary does not know the secret key
k, then either Bob rejects with high probability, or the message he receives is
m. Such a (symmetric key) authentication protocol is usually referred to as a
Message Authentication Code (MAC). As long as k is only used to authenticate
a single message, information-theoretic security can be achieved: no adversary
– even a computationally unbounded one – can modify the message without
detection [WC81].

Just as authentication is a fundamental operation in classical cryptography,
it will continue to be an important tool in the coming age of quantum com-
puters. In this work, we investigate authentication in the quantum setting, and
consider quantum attacks on both classical authentication protocols, as well as
full-fledged quantum protocols for authenticating quantum data. What kinds
of security guarantees can we hope for in the quantum setting? Various no-
tions of security for authentication schemes against quantum attacks have been
considered in the literature. However, as we will discuss below, these existing
definitions do not fully capture security properties we would expect of a secure
authentication scheme.

The contribution of our paper is three-fold: first, we present new security
definitions for authentication in a quantum setting that strengthen previous
definitions and address their limitations. Second, we prove interesting conse-
quences of our stronger security definition for quantum authentication, such as
information-theoretic key recycling and an easy protocol for quantum key dis-
tribution. Finally, we prove that several natural authentication protocols satisfy
our security definitions.

1.1 Quantum Attacks on Classical Protocols.

A recent series of works [BDF+11,DFNS13,BZ13a,BZ13b,Zha12,KLLNP16] have
studied quantum superposition attacks on classical cryptosystems. In the set-
ting of MACs, an adversary in such an attack is able to trick the sender into
signing a superposition of messages.3 That is, the sender computes the map

3 One motivation for studying superposition attacks comes from the “Frozen Smart-
Card” example [GHS15]: real-world classical authentication systems are frequently
implemented on small electronic devices such as RFID tags or a smart-cards. A de-
termined and sophisticated attacker in possession of such a smart-card could try to
perform a quantum “side-channel attack” on it: he places the device in a very low
temperature environment, and attempts to query the device in quantum superposi-
tion. One would like to guarantee that even then the attacker is unable to, say, extract
the secret key.
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|m〉 7→ |m, σm〉 in superposition, where σm is the signature on m. The adversary
chooses some message superposition ∑m αm|m〉, and the sender then applies
the map, giving the adversary ∑m αm|m, σm〉. At this point, it is unclear what
the security definition should actually be. The usual classical security notion
asks that an adversary, after seeing a signed message, cannot produce a differ-
ent message with a valid signature. The natural way to translate this into our
setting is to require that the adversary, after seeing a signed superposition, can-
not produce a different forged quantum state with valid signature. For classical
authentication schemes, this goal is unfortunately impossible. The adversary
can tamper with the signed state by measuring the entire state in the standard
basis, obtaining the pair (m, σm) with probability |αm|2. Then (m, σm) will pass
verification, but will be very different from the signed state the adversary re-
ceived. If the adversary can change the message state, what sort of guarantees
can we hope for?

Boneh and Zhandry [BZ13a] give the first definition of security for classical
authentication against superposition attacks. They argue that, at a minimum,
the adversary given a single signed superposition should only be able to pro-
duce a single signed message; he should not be able to simultaneously produce
two valid signed messages (m, σm) and (m′, σm′) for m 6= m′. Note that in the
classical setting, this requirement is equivalent to the traditional MAC security
definition, so it appears to be a reasonable requirement for any quantum secu-
rity notion. More generally, given q signed states, the Boneh-Zhandry definition
says that the adversary should not be able to produce q+ 1 distinct valid signed
messages.

However, the Boneh-Zhandry definition has some unsatisfying properties.
For example, consider the case where the sender only signs messages that start
with the email address of some intended recipient, say, bob@gmail.com. Sup-
pose the adversary tricks the sender into a signing a superposition of messages
that all begin with bob@gmail.com, but then manipulates the signed superpo-
sition into a different superposition that includes valid signed messages that
do not start with bob@gmail.com. Clearly, this is an undesirable outcome. Un-
fortunately, the Boneh-Zhandry definition does not rule out such attacks — it
only disallows an adversary from producing q + 1 valid signed messages when
given q signed superpositions. The situation illustrated here, however, is that
the adversary is given one signed superposition, and now wants to produce one
valid signed message that was not part of the original superposition.

Along similar lines, suppose an adversary tricks the sender into signing
a uniform superposition on messages, and then produces a classical signed
message (m, σ). From the sender’s perspective, each message has weight 1

|M| ,
whereM is the message space. The sender cannot prevent the adversary from
measuring the message state to produce (m, σ) for a random m. However, it
is reasonable to insist as a security requirement that the adversary cannot bias
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the output of this measurement to obtain, say, (m∗, σm∗) with probability much
higher than 1

|M| . Again, Boneh and Zhandry’s definition does not preclude such
a biasing, since the adversary only ever obtains a single signed message. Thus,
the Boneh-Zhandry definition does not capture natural non-malleability prop-
erties one would hope for from an authentication scheme in the quantum set-
ting.

Boneh and Zhandry’s definition suffers from these weaknesses because it
only considers what types of outputs the adversary can produce, ignoring the
relationships between the output and the original signed state. In the classical
setting, the two approaches are actually equivalent, but in the quantum setting
this is not the case.

1.2 Quantum Authentication of Quantum Data.

We turn to the setting of schemes for authenticating quantum states. Barnum et
al. [BCG+02] was the first to study this, and they present a definition of non-
interactive quantum authentication where, conditioned on the protocol suc-
ceeding, the sender has effectively teleported a quantum state to the receiver
(provided that the probability of success is not too small). They then give a
scheme (called the purity testing scheme) which attains this definition. Interest-
ingly, they also show that quantum state authentication also implies quantum
state encryption.4 Subsequent works [BCG+06,ABE10,DNS12,BW16] presented
some stronger security definitions that we will discuss momentarily.

Roughly speaking, a (private-key) quantum authentication scheme is a pair
of keyed quantum operations (Authk,Verk), where k is a secret key shared by
the sender and receiver, where Authk is a map that takes in a quantum mes-
sage state ρ, and outputs an authenticated state σ. The map Verk is a verifica-
tion operation that takes in a (possibly) tampered state σ̃ and outputs a state ρ̃,
along with a flag ACC or REJ indicating whether the verification succeeded or
failed. These maps are such that for all input states ρ and all keys k, we have
Verk(Authk(ρ)) = ρ⊗ |ACC〉〈ACC|.

Informally, Barnum, et al. define a secure authentication scheme to be such
that, for all adversariesO, either the receiver rejects the state Verk(O(Authk(ρ)))
with high probability, or it is close to the original state ρ. However it has the
shortcoming that it does not consider the possibility that the adversary is en-
tangled with the original message ρ, and thus may act on the entanglement to
tamper with the state in an undetectable manner. Thus, the security definition
of [BCG+02] is not composable.

In many situations we would like to use authentication not as a stand along
task, but as a primitive in a larger protocol – indeed, quantum authentication

4 By contrast, in the classical setting, message authentication does not imply message
encryption.
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has been used as a primitive in schemes for delegated quantum computation,
e.g., [ABE10,BGS13]. Here, the “adversary” (which may be other components
of the protocol) may generate the inputs to the authentication scheme, and thus
be entangled with the message that is supposed to be authenticated. If an au-
thentication scheme satisfied a composable security definition, then we may
use the security of the authentication primitive in a black box manner to argue
the proper functioning of the larger protocol.

Correlations between final state and the key -
Recently, several works [HLM16,DNS12,BW16] have proposed composable se-
curity definitions for quantum authentication – that is, they handle adversaries
with quantum side information. However, their security definitions do not ex-
plicitly consider correlations between the key and the final state of the protocol.

Suppose Alice sends Bob the authenticated state σk = Authk(ρ) using key k.
Bob receives a (possibly tampered) state σ̃k, and proceeds to verify the authenti-
cation. Let τk denote Bob’s state conditioned on successful verification. Roughly
speaking, the security definitions of [BCG+02,DNS12,BW16] refers to the aver-
age state Ek τk; in particular, it states that Ek τk is close to the original state ρ.
This statement does not by itself imply that τk is close to the original state ρ

with high probability over k. In other words, the state of the key is traced out in
their security definitions.

Later, we will show how taking into account the correlations between the
key and the final state of the protocol yields interesting consequences – such as
the ability to reuse the key upon successful verification.

2 Our contributions

In this work, we address the above limitations by giving new security no-
tions for authentication in the quantum setting. More generally, we present an
abstract framework of security for both classical and quantum authentication
schemes that not only captures existing security definitions (such as the Boneh-
Zhandry definition for classical protocols or the Barnum, et al. definition of
quantum state authentication), but also is more demanding in that it strongly
characterizes the (effective) behavior of an adversary. In particular, the adversary
may have access to quantum side information with the message state that is be-
ing authenticated. The characterization of the adversary’s admissable actions
is what allows us to easily deduce many desirable security properties (such as
unforgeability, key reuse, and more). Furthermore, we will show that various
natural authentication protocols satisfy our security definitions.

Our abstract security framework follows the simulation paradigm in classi-
cal cryptography. In our framework, one first defines a class A of ideal adver-
saries. Intuitively, ideal adversaries are those that cannot be avoided in a real ex-
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ecution of an ideal authentication protocol, such as those that discard messages,
or ones that carry out actions explicitly allowed by the protocol. For example, in
the case of classical protocols, one can define the class of ideal adversaries to be
ones that “behave classically” on the message state – that is, they’re restricted
to measurements in the computational basis. In the case of quantum authenti-
cation, an ideal adversary can only act on the side information, but otherwise
acts as the identity on the authenticated message.

An authentication protocol P satisfies our security definition with respect to
the class A if the behavior of any adversary (not necessarily ideal) in the pro-
tocol P can be approximately simulated by an ideal adversary in A . We take
the most general notion of simulation possible: the joint state of the secret key,
the message state after the receiver’s verification procedure, and the quantum
side information held by the adversary conditioned on successful verification must
be indistinguishable from the same joint state arising from the actions of some
ideal adversary from the class A . Since our notion of simulation is so general,
this implies that our security definitions satisfy security under sequential com-
position; that is, the authentication protocols that realize our security definition
can be securely composed with arbitary cryptographic protocols in a sequential
fashion.

We now discuss how security for both classical authentication schemes and
fully quantum authentication protocols can be defined in this framework.

2.1 A new security definition for classical authentication

The Boneh-Zhandry definition focuses on what classical signed messages an
adversary can produce, treating the superposition access to the sender as a tool
to mount stronger attacks. Here, we instead think of a classical protocol giving
rise to a weak form of authentication of quantum messages, where a superpo-
sition is authenticated by classically signing each message in the superposition.
That is, a state ∑m αm|m〉 is authenticated as the state ∑m αm|m, σm〉. The state
is similarly verified in superposition by running the classical verification algo-
rithm in superposition.

More generally, we think of the protocol acting on message states that may
be entangled with an adversary. For example, the sender could sign theM part
of the state ∑m αm|m〉M ⊗ |ϕm〉Z , where the adversary has control of the |ϕm〉Z

states. The signed state then would become ∑m αm|m, σm〉MT ⊗ |ϕm〉Z . Signing
mixed states can also be expressed in this way, simply by purifying the mixture.
By thinking of the protocol in this way, we are able to give security definitions
that actually consider the relationship between the sender’s signed state and
the final state the adversary produces.

Clearly, such a classical scheme cannot fully protect the quantum state. An
adversary could, for example measure (m, σm), or any subset of bits of the state,
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and keep the result of such a measurement in his own private space. This would
not be detected by the classical verification procedure, but the final message
would have been changed.

Our security definition for classical protocols says that, roughly, an arbitrary
adversary can be simulated by an ideal adversary that can only do the follow-
ing: perform some (partial) measurement of the message in the computational
basis, and controlled on the outcome of the partial measurement, perform some
quantum operation on his own private qubits. We also extend the definition to
handle side information the adversary may have about the message state; for
example, the adversary may possess the purification of the message state. Thus,
our definition is essentially the best one could hope for, since it disallows the
adversary from doing anything other than operations that are trivially possible
on any classical protocol.

Our definition readily implies the Boneh-Zhandry security definition for
one-time MACs, and does not suffer from the weakness of their definition5. Fi-
nally, we show that the classical Wegman-Carter MAC that uses three-universal
hashing is sufficient for achieving this strong security definition. This improves
on Boneh-Zhandry in two ways, as they show that four-wise independence
gives their weaker security notion.

2.2 Definitions for Quantum Authentication

We next turn to quantum protocols for authenticating quantum messages. For
general quantum protocols, the adversary can always do the following. He can
always act non-trivially on his own private workspace – the verification proce-
dure can never detect this. Otherwise, he can forward the authenticated state as
is, without recording any information about the state, or he can send junk to the
receiver. Our strongest definition of security – which we call total authentication
– says that this is essentially all an adversary can do in a secure quantum au-
thentication protocol. In other words, a real adversary in a total authentication
protocol can be approximated by an ideal adversary that behaves trivially on
the authenticated state.

As mentioned above, prior works have put forth composable security def-
initions for quantum authentication [DNS12,BW16], who consider quantum
side information held by the adversary. Our definition builds upon these defi-
nitions: not only do we we consider side information about the plaintext state,
we also allow the receiver’s view to include the authentication key as well as
whatever information the adversary may learn about the key. The ideal adver-
sary must approximate the real adversary, even considering the entire key. In

5 One limitation of our definition is that we consider the signature registers as being
initialized by the signer. Boneh and Zhandry, in contrast, allow the registers to be
initialized by the adversary, with the signature being XORed into the registers
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contrast, existing definitions trace out the key — either partially or entirely —
and therefore do not directly consider arbitrary information the adversary may
learn about the key. Our security definition of total authentication thus rules
out the possibility of the adversary learning significant information about the
key. This fact has interesting consequences:

1. Key reuse. For example, our definition immediately implies that, upon suc-
cessful verification by the receiver, the key can actually be completely recy-
cled to authenticate a new message. This is because, upon successful veri-
fication, the key is essentially independent of the adversary and can there-
fore be used again in the same protocol. This is in contrast to the classical
setting: in general keys cannot be recycled without computational assump-
tions. Furthermore, no prior definition for authentication of quantum data
directly implies key re-usability, and no prior protocol for quantum mes-
sages gets full key re-usability upon successful verification.
Previous works have explored partial key reuse in various quantum pro-
tocols [OH05,DPS05,HLM16]. However, to our knowledge, our work is the
first to establish that the entire key can be recycled upon successful verifica-
tion.6

2. A simple quantum key distribution protocol. Our definition also gives a
conceptually simple quantum key distribution (QKD) protocol7. Alice pre-
pares a maximally entangled state, chooses a random key k, and authenti-
cates half the state with the key. She then sends the authenticated half to
Bob, keeping the unauthenticated half to herself. When Bob receives the
state, he sends a “received” message back to Alice, who then sends the key
k to Bob. Bob verifies the state using the key. Even though the adversary
eventually sees the authentication key k, he does not know the key when
he intercepts the quantum state, and must therefore interact with the state
without the key. If Bob’s verification passes, it implies, roughly, that the
adversary could not have tampered with the state (by the security of total
authentication); in particular, the adversary could not have learned any in-
formation about the maximally entangled state. Therefore, Alice and Bob
measure their halves of the maximally entangled state and obtain a shared
key that is unknown to the eavesdropper. If Bob’s verification rejects, the
two try again. Though this is not a practical QKD scheme (because any
tampering by the adversary would cause Alice and Bob to abort), it is con-
ceptually very simple and illustrates the power of our definitions.

6 The work of Dåmgard et al. [DPS05] argue that the key can be recycled entirely when
authenticating classical messages, but their protocol does not appear to extend to han-
dling quantum messages.

7 The observation that quantum authentication implies a form of QKD is due to Charlie
Bennett and also observed by Gottesman [Got02].
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A protocol satisfying total authentication. We exhibit a protocol meeting our strong
security notion. We present an authentication scheme based on unitary designs,
which are efficiently sampleable distributions over unitary matrices that behave
much like the uniform distribution over unitaries when only considering low
degree moments.

Total authentication with key leakage. We also give a definition of total authen-
tication with key leakage. This is a notion of security where the real adversary
can be simulated by an ideal trivial adversary that only acts on its own private
workspace, but in a manner that may depend on the key. This is a slightly weaker
notion of security than total authentication, but it still implies simple QKD and
some amount of key reuse. We note that the work of [HLM16] essentially shows
that the Barnum et al. protocol satisfies total authentication with (minor) key
leakage. We also give a simple protocol that achieves this, based on the classical
Wegman-Carter authentication scheme.

A lifting theorem. Finally, we prove an intriguing equivalence between a very
weak form of authentication security and a stronger notion. Specifically, this
weak form of authentication security only guarantees that an authentication
scheme is able to authenticate a single state: a Bell state. Furthermore, this Bell
state is unentangled with the adversary, and the security guarantee holds with
the key traced out (i.e. correlations with the key are not kept track of).

We prove a lifting theorem that “lifts” this weak security to a much stronger
one that shows the same authentication scheme, when augmented with a Pauli
randomization step, is actually secure when authenticating arbitrary messages,
which might be entangled with the adversary! This stronger security notion
still traces out the key, so it does not achieve total authentication. Nonetheless,
we find it conceptually very interesting that such a lifting theorem holds.

We believe that our work contributes to broadening our understanding of
what security definitions are possible for various primitives in the quantum world.
In classical cryptography an eavesdropper can be correlated with the secret key
simply by copying the ciphertext; thus it does not make sense for a security def-
inition to keep track of the correlations between an adversary’s private memory
and the key. Our results demonstrate that it is meaningful to do so in the quan-
tum setting. This is the motivation behind the name “total authentication”: pro-
tocols satisfying total authentication are achieving the “best possible” security
within the framework used for the definition.

2.3 Subsequent Work

Subsequent to the initial posting of our work, there have been several very in-
teresting developments in quantum authentication. Portman [Por17] uses the
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Abstract Cryptography (AC) framework to model quantum authentication with
key recycling. He shows that the Barnum et al. [BCG+02] is secure in this set-
ting, thus demonstrating that the Barnum et al protocol satisfies complete key
recycling. Moreover, he shows that authentication based on unitary 2-designs
is secure with key recycling; our analysis requires 8-designs to demonstrate key
recycling. Alagic and Majenz [AM16] independently show that total authenti-
cation can be achieved with unitary 2-designs. Fehr and Salvail [FS16] examine
quantum authentication of classical messages and demonstrate a scheme that
admits key recycling as well.

Outline. In the next section we cover some preliminaries and notation. In Sec-
tion 4 we formally present the fundamental security definitions used in our
paper. In Sections 5.1 and 5.2 we present several properties satisfied by our def-
initions. In Section 6, we analyze the security of the Wegman-Carter MAC with
3-universal hashing within our security framework. In Section 7 we present and
analyze the Auth-QFT-Auth scheme. In Section 8 we present and analyze the
unitary design scheme. In Section 9 we prove the lifting theorem.

3 Preliminaries

3.1 Notation

Quantum information. We assume basic familiarity with quantum computing
concepts, such as states, measurements, and unitary operations. We will use
calligraphic letters to denote Hilbert spaces, such as H, M, T , K, and so on.
We write S(H) to denote the set of unit vectors in H. For two Hilbert spaces
H andM, we write L(H,M) to denote the set of matrices that map H toM.
We abbreviate L(H,H) as simply L(H). The following are important subsets of
L(H) that we’ll use throughout this paper.

– D(H) denotes the set of density matrices on H; that is, positive semidefinite
operators onH with unit trace.

– D≤(H) denotes the set of subnormalized density matrices on H; that is, pos-
itive semidefinite operators onH with trace at most one.

– U(H) denotes the set of unitary matrices acting on H. For an integer N,
we will also write U(N) to denote the set of all N × N complex unitary
matrices.

Another important class of operators are isometries: these are like unitaries, ex-
cept that they can append ancilla qubits. We say that a map V ∈ L(H,M)
is an isometry if for all vectors |ψ〉 ∈ H, ‖V|ψ〉‖ = ‖|ψ〉‖. Note that this re-
quires dim(M) ≥ dim(H). We will let J(H,M) denote the set of isometries in
L(H,M).
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We use I to denote the identity matrix. For a Hilbert space H, we let |H|
denote the dimension ofH.

We will typically decorate states and unitaries with superscripts to denote
which spaces they act on. For example, let Y and Z be two Hilbert spaces. Let
U ∈ U(Y) and let V ∈ U(Y ⊗Z). Then when we write the product UYVYZ we
mean the operator (UY ⊗ IZ )VYZ ; we will often omit mention of the identity
unitary when it is clear from context.

Another convention is the implicit partial trace. For example, let ρKM ∈
D(K ⊗M). Then ρM = TrK(ρKM). Additionally, given a pure state |ρ〉, we
will let ρ denote the rank one density matrix |ρ〉〈ρ|.

Superoperators. In this paper we will consider superoperators, which are linear
maps that act on a vector space of linear maps. For Hilbert spacesH andM, let
T(H,M) denote the set of all linear maps that take elements of L(H) to L(M).
While superoperators can be very general, we will focus on superoperatorsO ∈
T(H,M) that are completely positive and trace non-increasing, which have the
following characterization: there exists an alphabet Σ and set of matrices (not
necessarily Hermitian) {Aa}a∈Σ ⊂ L(H,M) such that

1. O(X) = ∑a∈Σ AaXA†
a for all X ∈ L(H), and

2. ∑a∈Σ A†
a Aa � IH.

For the rest of this paper, when we speak of superoperators, we will always
mean completely positive, trace non-increasing superoperators. Although the
definition of superoperators is rather abstract, they capture general quantum
operations on arbitrary quantum states, including post-selection, as demon-
strated by Stinespring’s dilation theorem8:

Theorem 1 (Stinespring’s dilation theorem). A map O ∈ T(H,M) is a com-
pletely positive, trace non-increasing superoperator if and only if there exists auxiliary
Hilbert spaces Z ,Z ′, an isometry V ∈ J(H⊗Z ,M⊗Z ′), and a projector Π acting
onM⊗Z ′ such that for all density matrices ρ ∈ D(H), we have

O(ρ) = TrZ ′(ΠVρV†Π).

Matrix norms and distance measures. We will make use of several matrix norms
and distance measures in this paper.

Given a (not necessarily unit) vector |ψ〉 ∈ H, we use ‖|ψ〉‖2 to denote the
Euclidean norm of |ψ〉.

8 A seasoned veteran of quantum information may notice that this departs slightly from
the convention in quantum information theory where physically realizable quantum
operations are CPTP maps. Here the difference is that we consider maps that can
possibly decrease the trace of an operator, which corresponds to post-selection.
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The most important matrix norm is the trace norm of a linear operator X,
defined to be ‖X‖1 = Tr(

√
X†X). Correspondingly, the trace distance between

density matrices ρ, σ is defined to be ‖ρ− σ‖1. The operational significance of
the trace distance is that ‖ρ − σ‖1 is proportional to the maximum bias with
which one can distinguish between ρ and σ using any quantum operation.

The next norm we will make use of is the Frobenius norm of a linear operator
X, which is defined to be ‖X‖2 =

√
Tr(X†X). A useful property of the Frobe-

nius norm is that ‖X‖2 =
√

∑ij |Xij|2, where the sum is over all the matrix
entries of X (with respect to any basis).

The operator norm (also known as the spectral norm) of an operator X ∈ L(H)
is defined to be ‖X‖∞ = sup|v〉∈S(H) ‖X|v〉‖2, where the supremum is over all
unit vectors inH.

Fact 2 Let |ψ〉, |θ〉 ∈ S(H). Then

‖ψ− θ‖1 ≤ 2‖|ψ〉 − |θ〉‖2

where recall that ψ = |ψ〉〈ψ| and θ = |θ〉〈θ|.

Proof. It is well known that ‖ψ− θ‖1 ≤ 2
√

1− |〈ψ|θ〉|2 (see, e.g., [NC10]). But
now notice that 1− x2 ≤ 2(1− x) for all x. Therefore the trace distance is at
most 2

√
2(1− |〈ψ|θ〉|) ≤ 2‖|ψ〉 − |θ〉‖2.

3.2 Basic definitions for authentication

Spaces. We let K denote the key space, M denote the message space, Y de-
note the authenticated space, and F denote the flag space. The flag space F
is a two-dimensional Hilbert space spanned by orthogonal states |ACC〉 and
|REJ〉. The space Z is the private space of the adversary. We will let S denote
the registers held by the sender and receiver that, during the execution of the
authentication protocol, are not communicated nor acted upon by the sender,
receiver, or adversary.

Authentication scheme. An authentication scheme is a pair of keyed superoper-
ators Auth,Ver where

– Authk for k ∈ K is a superoperator mapping D(M) to D(Y).
– Verk for k ∈ K is a superoperator mapping D(Y) to D(M⊗F ).

satisfying the correctness requirements that for any quantum state ρ ∈ D(M),
for all keys k ∈ K, Verk(Authk(ρ)) = ρ⊗ |ACC〉〈ACC|.9

We will also use Auth and Ver to denote the operators

Auth(·) = ∑
k
|k〉〈k| ⊗ Authk(·) Ver(·) = ∑

k
|k〉〈k| ⊗ Verk(·).

9 One can also discuss schemes where the correctness requirements hold approximately
(e.g., the state Verk(Authk(ρ)) is within trace distance δ of ρ ⊗ |ACC〉〈ACC|); using
this correctness condition does not significantly affect the discussion in this paper.
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Some simplifying assumptions. This definition of authentication scheme is more
general than we need in this paper. Throughout this work, we shall work with
a simplified model of authentication schemes: first, we will assume that Authk
behaves as an isometry takingM to Y (i.e. it isn’t probabilistic). Let Vk denote
the subspace of the Hilbert space Y that is the image of Authk, let ΠVk denote
the projector onto the space Vk, and let Auth−1

k denote the inverse isometry that
maps Vk toM. In this case, a canonical way to define the Verk superoperator is
as follows:

ρ 7→
(
Auth−1

k ◦ΠVk

)
(ρ)⊗ |ACC〉〈ACC|F + Tr((I−ΠVk ) ρ)

IM
|M| ⊗ |REJ〉〈REJ|F

(1)

Here, Auth−1
k ◦ ΠVk denotes the operation that first applies the projection

ΠVk to the state, followed by the inverse isometry Auth−1
k . The state IM

|M| is the
maximally mixed state on the message space. In other words, the verification
procedure first checks that the received state (which resides in Y) is supported
on the subspace of valid signed states Vk. If so, then it inverts the authentication
isometry to obtain an unsigned message state, and sets the F register to |ACC〉.
Otherwise, it replaces the state with a uniformly random message state, and
sets the F register to |REJ〉.

However in this paper we are mostly concerned with the output of the
Verk procedure in the accepting case. For technical convenience then, through-
out this paper we will treat Verk as the following superoperator mapping D(Y)
to D(M):

Verk(ρ) =
(
Auth−1

k ◦ΠVk

)
(ρ).

In other words, it only outputs the |ACC〉 part of (1), and does not output a
ACC or REJ flag. Furthermore, notice that this superoperator is not trace pre-
serving; the trace of Verk(ρ) is equal to the probability that ρ was accepted by
the verification procedure defined in (1). Thus one can view Verk as a “filter”
that only accepts states that were properly authenticated.

We stress, however, that these simplifying assumptions are not crucial to
our results – it is mostly for notational convenience that we treat Verk as a filter.

Classical Authentication. In a classical authentication protocol, the authentica-
tion operator Authk is specified by a classical (reversible) function Authk :M 7→
Y acting on the computational basis, run in superposition on the input state.
The verification operator behaves the same as described above: Verk projects
onto the subspace of Y spanned by classical strings Authk(m) for all m ∈ M,
and then applies the inverse map Auth−1

k .

Message authentication codes. A message authentication code (or MAC) is a spe-
cial type of classical authentication scheme (Auth,Ver) where for a message m,
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Authk(m) = (m, σ(k, m)), where we call σ(k, m) the message tag. We treat Verk
as an operator that projects out messages that do not have valid tags, and for
messages with valid tags, Verk will strip the tags away:

Verk = ∑
m
|m〉〈m, σ(k, m)|.

Adversaries. We model adversaries in the following way: the adversary pre-
pares the initial message state |ρ〉MSZ , where we can assume that the adversary
possesses the purification of ρMS . After the state is authenticated with a secret
key k, the adversary gets to attack the YZ spaces with an arbitrary completely
positive trace non-increasing superoperatorO. After this attack, the state is un-
authenticated with the same key k.

We don’t require the superoperator O to be trace preserving; this is to al-
low adversaries to discard certain measurement outcomes (or, alternatively, post-
select on measurement outcomes, without renormalizing). While this may seem
to give the adversary far too much power, in our security definitions we take
into account the probability of the event that the adversary post-selects on. If
this probability is too small (which implies that the success probability of the
protocol is too small), the security guarantees are meaningless, which is nec-
essary. Allowing for superoperators to be trace non-preserving will help make
our definitions clean to state.

A remark about the sender and receiver’s private register S . The reader may wonder
why we do not allow the sender, receiver, nor adversary to act upon the S
register during the execution of the authentication protocol. The register S is
supposed to model entanglement the sender and receiver may keep during the
protocol. The important aspect of it is that the adversary does not have access
to this side information.

If, when analyzing the authentication scheme in the context of a larger pro-
tocol in which the sender/receiver do act upon the register S , we can assume
that during the authentication phase, the sender and receiver do not touch S ,
but wait until the authentication protocol is over. Thus we can analyze the be-
havior of the authentication protocol without this action.

4 Security Framework for Quantum Authentication

We present our security definitions using the real/ideal paradigm. Let (Auth,Ver)
be an authentication protocol, with key spaceK, message spaceM, and authen-
ticated space Y .

Definition 1. Let (Auth,Ver) be an authentication scheme. Let A ⊆ T(YZ ,YZ)
denote a set of ideal adversaries. The scheme (Auth,Ver) ε-reduces to A -adversaries
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iff the following holds: for all initial message states |ρ〉MSZ , for all adversaries O ∈
T(YZ ,YZ), there exists an ideal adversary I ∈ A such that the following (not nec-
essarily normalized) states are ε-close in trace distance:

– (Real experiment) Ek |k〉〈k| ⊗ [Verk ◦ O ◦ Authk] (ρ
MSZ )

– (Ideal experiment) Ek |k〉〈k| ⊗ [Verk ◦ I ◦ Authk] (ρ
MSZ )

where Authk acts onM, Verk acts on Y , and both act as the identity on SZ .

Intuitively, our security definition states that for an authentication scheme
(Auth,Ver) that is A -secure, for all initial message states ρMSZ , an arbitrary ad-
versary that acts on an authenticated state Authk(ρ

MSZ ) is reduced to an “ideal
adversary” in A ; behaving differently will cause the verification procedure to
abort. In other words, “all the adversary can do” is behave like some adversary
in the class A . We allow the real adversary to prepare the message state ρMSZ

and hence, allow the ideal adversary to depend on it.

A comment about normalization. It is important that the states of the real experi-
ment and ideal experiment are not requiried to have unit trace. This is because
their trace corresponds to the probability that the verification procedure ac-
cepts. If the probability of acceptance is smaller than ε, then the security guaran-
tee is vacuous. Intuitively, this corresponds to situations such as the adversary
successfully guessing the secret key k, so we cannot expect any security guar-
antee in that setting. However, if the probability of acceptance is significantly
larger than ε, then we can condition on acceptance, and still obtain a meaning-
ful security guarantee: the distance between the (renormalized) real experiment
and ideal experiments is small.

We now specialize the above definition to some important classes of ideal
adversaries that we will consider in this paper. Note that for two classes of ideal
adversaries A and A ′, if A ⊂ A ′, then an authentication scheme reducing
to A -adversaries implies reducing to A ′-adversaries. Hence reducing to A -
adversaries is a stronger security guarantee.

4.1 Basis-dependent authentication

We first define a notion of security of authentication schemes that reduce to a
basis-respecting adversary.

Definition 2 (Basis-respecting adversaries). Let B = {|ψ〉} denote an orthonor-
mal basis for Y . Then an adversary I ∈ T(YZ ,YZ) is B-respecting iff it can be
written as

I(σ) = TrZ ′(ΠVσV†Π)
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for all σ ∈ D(YZ), where Π is a projector acting on ZZ ′, and V ∈ J(YZ ,YZZ ′) is
an isometry that can be written as

V = ∑
ψ∈B
|ψ〉〈ψ|Y ⊗Vψ

where for each ψ, Vψ ∈ J(Z ,ZZ ′) is some isometry.

Without the second condition on V, by Stinespring’s Dilation Theorem every
superoperator can be written as I(σ) = TrZ ′(ΠVσV†Π) for some choice of
isometry V and projector Π. However, the second condition forces V to respect
the basis B. Intuitively, a basis-respecting adversary first performs some (par-
tial) measurement on the Y register in the B basis, and based on the measure-
ment outcome, performs some further isometry on the side information in Z .
When B is simply the computational basis, then the adversary treats the Y reg-
ister as classical.

Definition 3 (Security relative to a basis). Let B be a basis for Y . An authenti-
cation scheme (Auth,Ver) ε-authenticates relative to basis B iff it ε-reduces to the
class of B-respecting adversaries.

Intuitively, our new definition captures the “best possible” security defini-
tion for classical authentication protocols. With a classical protocol, the adver-
sary can perform arbitrary measurements on the authenticated space without
detection by the verification algorithm. Because measurements are now unde-
tectable, the adversary can also perform σ-dependent operations to the auxil-
iary registers, where σ is the classical authenticated message observed in the
authenticated registers. For example, he can copy σ into the auxiliary space. He
can also now choose to abort or not depending on σ. However, he should not
be able to turn σ into σ′ 6= σ.

In Section 5.1, we establish consequences of our definition of basis-dependent
security, including the property of unforgeability: the adversary cannot pro-
duce two valid signed messages with non-negligible probability, when given
access to only one superposition. Thus, our definition subsumes the Boneh-
Zhandry security definition for one-time MACs.

In Section 6 we show that the classical Wegman-Carter MAC where the mes-
sage m is appended with h(m), where h(·) is drawn from a three-wise indepen-
dent hash family, is a scheme that authenticates relative to the computational
basis.

Theorem 3. The Wegman-Carter MAC with three-universal hashing is O(
√
|M|/|T |)-

authenticating relative to the computational basis, where T is the range of the hash
family.
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4.2 Total authentication

In this section we formally define our notion of total authentication. First, we
define oblivious adversaries.

Definition 4 (Oblivious adversary). An adversary I ∈ T(YZ ,YZ) is oblivious
iff there exists a superoperator O ∈ T(Z ,Z) such that

I(σ) = (IY ⊗O)(σ)

for all σ ∈ D(YZ).

In other words, an oblivious adversary does not act at all on the authenti-
cated message, and only acts on the auxiliary side information that it possesses
about the state.

Definition 5 (Total authentication). An authentication scheme (Auth,Ver) ε-totally
authenticates iff it ε-reduces to the class of oblivious adversaries.

[DNS12]’s security definition is similar, except it traces out the key register.
Therefore, it does not keep track of potential correlations between the adversary
and the key. [DNS12] considers what happens in the reject case, while total au-
thentication only makes requirements when the verifier accepts. A subsequent
work by Alagic et al. [AM16] indeed showed that total authentication implies
[DNS12] with a slight modification of decryption outputting ⊥ whenever it re-
jects. We will argue shortly that our definition of total authentication is strictly
stronger than the definition of [DNS12]; that is, there are protocols which satisfy
the security definition of [DNS12], but do not satisfy total authentication.

In Section 5.2 we establish a few properties of this definition. The first is
that a totally authenticating scheme yields encryption of the quantum state.
Barnum, et al. showed that quantum state authentication implies quantum state
encryption [BCG+02]. However, they did not take into account quantum side
information. We show that our definition very easily implies encryption even
when the adversary may be entangled with the message state.

Then, we show how our notion of total authentication gives rise to a con-
ceptually simple version of quantum key distribution (QKD). [HLM16] have
already observed that the universal composability of the Barnum et al. protocol
implies that it can be used to perform QKD as well. Thus while our applica-
tion of quantum authentication to QKD is not novel, we use this as another
opportunity to showcase the strength of our definition. We also show how our
definition easily implies full key reuse.

In Section 8 we present a scheme, called the unitary design scheme, that achieves
total authentication, and to our knowledge this is the first scheme that achieves
such security.
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Theorem 4. The unitary design scheme is 2−s/2-totally authenticating, where s is the
number of extra |0〉 qubits.

As a consequence, this yields an authentication scheme where the key can be
recycled fully, conditioned on successful verification by the receiver. In contrast,
the protocol of Barnum et al. is not known to possess this property; [HLM16]
showed that most of the key can be securely recycled.

4.3 Total authentication with key leakage

Finally, we introduce a slight weakening of the definition of total authentication
above: we consider schemes that achieve total authentication of quantum data,
but incur some key leakage. We model this in the following way: let K′ be such
that |K′| ≤ |K|. Define a key leakage function ` : K 7→ K′. If |K′| is strictly smaller
than |K|, then `(k) must necessarily lose information about the key k ∈ K, but
it will also leak some information about it.

In a total authentication scheme with key leakage, an arbitrary adversary is
reduced to an oblivious adversary (i.e., is forced to only act on the side infor-
mation), but the manner in which it acts on the side information may depend on
`(k).

Definition 6. Let (Auth,Ver) be an authentication scheme. Let K′ be some domain
such that |K′| ≤ |K| and let ` : K → K′ be a key leakage function. Let A ⊆
T(YZ ,YZ) denote a set of ideal adversaries. The scheme (Auth,Ver) ε-reduces to A -
adversaries with key leakage ` iff the following holds: for all initial message states
|ρ〉MSZ , for all adversaries O ∈ T(YZ ,YZ), there exists a collection of ideal ad-
versaries {Ih} ⊂ A , indexed by h ∈ K′, such that the following (not necessarily
normalized) states are ε-close in trace distance:

– (Real experiment) Ek |k〉〈k| ⊗ [Verk ◦ O ◦ Authk] (ρ
MSZ )

– (Ideal experiment) Ek |k〉〈k| ⊗
[
Verk ◦ I`(k) ◦ Authk

]
(ρMSZ ).

Definition 7 (Total authentication with key leakage). Let K′ be some domain
such that |K′| ≤ |K| and let ` : K → K′ be a key leakage function. An authentication
scheme (Auth,Ver) ε-totally authenticates with key leakage ` iff it ε-reduces to the
class of oblivious adversaries with key leakage `.

This definition may seem somewhat strange: how is an ideal adversary able
to learn bits `(k) of the key k, if it doesn’t act on the authenticated part of the
state at all? Of course, any adversary that learns something about the key must
have acted on the authenticated state, but the point is that, conditioned on suc-
cessful verification, the adversary “effectively” behaved like an oblivious ad-
versary that had access to `(k).
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In Section 7 we present a very simple scheme that achieves total authentica-
tion with some key leakage: to authenticate an arbitrary quantum state ρ, first
apply the classical Wegman-Carter authentication scheme on it using key k.
Then, apply H⊗n to all the qubits in the authenticated state (i.e. apply the quan-
tum Fourier transform over Z2). Finally, apply the classical Wegman-Carter
scheme again using a fresh key h. Thus, we are authenticating the state ρ in
complementary bases. We call this the “Auth-QFT-Auth” scheme.

We will show that this in fact achieves total authentication (and hence en-
cryption of the state), but at the cost of leaking the “outer key” h:

Theorem 5 (Security of the Auth-QFT-Auth scheme). The Auth-QFT-Auth scheme
is δ-totally authenticating with outer key leakage, where δ = O(

√
|M|5/2/|Y|).

While this scheme leaks some bits of the outer key, it preserves the secrecy
of the state ρ and the “inner key” k. Furthermore, it is much more “lightweight”
than the full unitary design scheme that achieves total authentication without
key leakage. It also illustrates that applying a simple classical authentication
scheme in complementary bases is already enough to reduce a full quantum
adversary to performing only trivial attacks. Finally, the analysis of this scheme
crucially relies on the basis dependent security definition above.

We note that Hayden, Leung, and Mayers show that the authentication
scheme of [BCG+02] satisfies total authentication with key leakage [HLM16],
but it is unclear whether it satisfies the strongest definition of total authentica-
tion without key leakage.

4.4 A remark about efficiency

Recently, Broadbent and Wainewright [BW16] study the efficiency of simulat-
ing ideal adversaries in the security proofs of two authentication schemes, the
Clifford scheme and the trap code scheme. Specifically, they show that if the
adversary in the authentication protocol is a quantum computer that runs in
time T, then the ideal adversary which simulates it also runs in time O(T). This
efficiency-preservation is important for notions of composable security.

We note that the constructions of the ideal adversary in our analysis of the
Wegman-Carter scheme, the Auth-QFT-Auth scheme, and the unitary design
scheme are also efficiency preserving, and hence if the arbitrary adversary runs
in polynomial time, then the simulating adversary also runs in polynomial
time.

4.5 Comparison with security definition in [DNS12]

Similarly to our definition, the security definition of message authentication [DNS12]
implies that essentially all the adversary can do is act on its own private workspace.
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However, it traces out the key register, and thus it does not keep track of cor-
relations between the adversary and the secret key. It is a natural question to
ask whether the security definition of [DNS12] implies our definition of total
authentication. Here we show that it cannot, because there are protocols that
satisfy the [DNS12] definition, but not ours.10 [AM16] gives a formal proof of
the fact that any protocol satisfying total authentication satisfies [DNS12] defi-
nition (with a slight modification).

Consider a protocol (Auth,Ver) that satisfies the [DNS12] definition. Let k
denote the secret key used in the protocol. Now consider the following modi-
fied protocol (Auth′,Ver′): to authenticate a message state ρ, it produces Authk(ρ),
but then appends an independently random bit b, where (k, b) is the secret key
register of (Auth′,Ver′). To verify, the receiver just applies the Verk operation,
and ignores the last bit. This new protocol still satisfies the [DNS12] definition,
because the extra bit b is independent of the (Auth,Ver) process, and thus final
state of the protocol can be simulated by an ideal adversary that generates its
own b bit – as long as we’re tracing out the key. However, this protocol does
not satisfy total authentication. This is because an adversary can simply copy
the bit b into its private workspace; but this cannot be simulated by an ideal
adversary that is unentangled with the (k, b) register.

Furthermore, any authentication scheme satisfying [DNS12]’s security def-
inition also satisfies ”total authentication with key leakage” for some key leak-
age function ` and any authentication scheme satisfying ”total authentication
with key leakage” satisfies the key-averaged security definition (with slight
modification of decryption outputting ⊥ in reject case). Hence, these two se-
curity definitions are equivalent (up to some error).

5 Properties of security definitions

5.1 Properties of basis-dependent authentication

Unforgeability Our security definition of authentication schemes relative to a
basis implies the standard, classical security definition of authentication schemes
called EUF-CMA. Namely, this says that the adversary, after having received
the authenticated message state, cannot produce two distinct authenticated message-
tag pairs with non-negligible probability. This property is called unforgeabil-
ity. Thus this shows that our security definition recovers the Boneh-Zhandry
(quantum) security definition for one-time MACs.

For detailed discussion and proof, refer to the full version of the paper [GYZ16]11.

10 See Section 9 for a formal statement of the [DNS12] definition.
11 https://arxiv.org/abs/1607.07759
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5.2 Properties of total authentication

Encryption Analogous to the Barnum et al.’s [BCG+02] result that authenti-
cation implies encryption, we show that authentication when considering side
information must encrypt the state, even to an adversary that may be entan-
gled with the state. This result is compatible with Barnum et al.’s: we start from
a stronger property that considers side information, and end with a stronger
form of encryption that also considers side information. For proof, refer to the
full version [GYZ16].

Quantum Key Distribution As mentioned in introduction, and noticed by pre-
vious works, a total authentication scheme gives a simple method to perform
quantum key distribution. For details of the protocol, refer to the full version
[GYZ16].

Key Reuse It is easy to see that our definition of total authentication implies
that, conditioned on successful verification of an authentication scheme (satis-
fying total authentication), the key can be reused by the sender and receiver for
some other purpose. This is because conditioned on acceptance, the final state
of the adversary is within ε/α trace distance of being independent of the key,
where α is the probability of acceptance in the authentication protocol.

6 Quantum MACs from 3-universal hashing

In the classical setting, secure one-time MACs can be constructed via univer-
sal hashing. Let {hk}k be a strongly (2-)universal hash family. Then it is well
known that the classical authentication protocol Authk(m) = (m, hk(m)) is se-
cure against classical adversaries [WC81]. Here, we show that the same authen-
tication protocol is also quantum-secure, provided that the hash family {hk}k
satisfies the following: for all distinct m1, m2, m3, the distribution of (hk(m1),
hk(m2), hk(m3)) for a randomly chosen k ∈ K is uniform in T 3. Such a family is
called a 3-universal hash family. We will overload notation and use k(·) to denote
the function hk(·).

We note that Boneh and Zhandry showed that, when authenticating clas-
sical messages in the one-time setting, pairwise independence is sufficient to
ensure that a quantum adversary cannot forge a new signed message, as long
as the length of the tag is longer than the message! When the tag is shorter than
the message, they showed that pairwise independence is insecure, and 3-wise
independence is necessary.

Our analysis of the 3-wise independent Wegman-Carter MAC requires that,
in order to obtain security against quantum side information, the message tag
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needs to be longer than the message. Thus it is conceivable that pairwise inde-
pendence is sufficient for the same guarantee; we leave this as an open question.

Theorem 6. Let K = {k} be a 3-universal hash family. Let Authk(m) = (m, k(m))
and Verk be the corresponding verification function. Then the authentication scheme
(Auth,Ver) is O(

√
|M|/|T |)-authenticating relative to the computational basis.

We first state what the implications for key length are. Suppose we wish
to guarantee that the Wegman-Carter MAC is ε-authenticating relative to the
computational basis, then |M|/|T | ≤ O(ε2), which implies that log |T | ≥
log |M|+ 2 log 1

ε +O(1). To ensure three-wise independence, it is sufficient for
the key to have length 3 log |M|+ 6 log 1

ε + O(1).
For proof of the above theorem, refer to the full version [GYZ16]12.

7 Total authentication (with key leakage) from complementary
classical authentication

In Section 6, we saw how the classical Wegman-Carter message authentication
scheme is still secure even when used on a superposition of messages, and even
if the adversary has access to quantum side information about the messages.
Here, we will show that using the Wegman-Carter scheme as a primitive, we
obtain total quantum state authentication, which implies encryption of the quan-
tum state.

The quantum state authentication scheme is simple: the sender authenti-
cates the message state using the Wegman-Carter MAC in the computational
basis, and then authenticates again in the Fourier basis (using a new key). The
verification procedure is the reverse of this: the receiver first checks the outer
authentication, performs the inverse Fourier transform, and then checks the
inner authentication. We call this the “Auth-QFT-Auth” scheme. This is pleas-
ingly analogous to the quantum one-time pad (QOTP), which encrypts quan-
tum data using the classical one-time pad in complementary bases. However,
the QOTP does not have authentication properties. Our analysis requires the
3-wise independence property of the Wegman-Carter MAC.

There is one slight caveat: we show that Auth-QFT-Auth achieves total au-
thentication with key leakage. That is, we argue that conditioned on the receiver
verification succeeding, the effect of an arbitrary adversary is to have ignored
the authenticated state, and only acted on the adversary’s side information, in a
manner that may depend on the key used for the second authentication (what
we call the “outer key”). In other words, we sacrifice the secrecy of the outer
key, but in exchange we get complete quantum state encryption.

12 https://arxiv.org/abs/1607.07759
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7.1 The Auth-QFT-Auth scheme

Let |ρ〉MZ = ∑m αm|m〉M ⊗ |ϕm〉Z be the initial message state, where Z is held
by the adversary.

It will be advantageous to rewrite this state in terms of the Schmidt decom-
position:

|ρ〉MZ = ∑
z

√
λz

(
∑
m

αzm|m〉M
)
⊗ |ϕz〉Z

where for z 6= z′, we have 〈ϕz|ϕz′〉 = 0, and the λz’s are nonnegative numbers
summing to 1. Furthermore, the dimension of the span of {|ϕz〉}z is at most
|M|.

The authentication scheme is the composed operation Auth2(H⊗N(Auth1(ρ))),
where Auth1 is the inner authentication scheme that uses key k, H⊗N is the
quantum Fourier transform over Z2, and Auth2 is the outer authentication that
uses key h. The keys k and h are independent.

The inner authentication scheme Auth1 mapsM to Y1 = MT1. We define
N = |Y1|. H is the single-qubit Hadamard unitary, and the Fourier transform
H⊗N acts on Y1. The outer authentication scheme Auth2 maps Y1 to Y2 =
MT1T2. The keys k and h live in the registers K andH, respectively. The evolu-
tion of the initial message state is as follows:

1. Inner authentication. When the inner authentication key (henceforth called
the inner key) is k, the state becomes

∑
z

√
λz

(
∑
m

αzm|m, k(m)〉Y1

)
⊗ |ϕz〉Z

2. Fourier transform over Z2: Let {|x〉} be a basis for Y1. Then:

1√
N

∑
z

√
λz

(
∑
m,x

αzm(−1)(m,k(m))·x|x〉Y1

)
⊗ |ϕz〉Z .

3. Outer authentication. The outer key is denoted by h. The final authenti-
cated state is then

|σkh〉YT2Z =
1√
N

∑
z

√
λz

(
∑
m,x

αzm(−1)(m,k(m))·x|x, h(x)〉Y1T2

)
⊗ |ϕz〉Z

where T2 is the space of the tag h(x).

Let
σKHY1T2Z = E

kh
|kh〉〈kh|KH ⊗ |σkh〉〈σkh|Y1T2Z .
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The adversary is then given the Y1T2 registers of σ, and performs a general
unitary attack V that acts on Y1T2Z :

σ̃KHY1T2Z = VσV†.

Let τ̃KHMZ = Ver1 ◦ QFT−1 ◦ Ver2(σ̃). Let the inner authentication scheme
be the 3-wise independent hashing QMAC with tag length log T, and mes-
sage length log M. Let the outer authentication scheme be a QMAC that ε-
authenticates with respect to the computational basis.

The Auth-QFT-Auth scheme can potentially leak some bits of the outer key
h, but we will show that this is the only thing that is leaked; otherwise, it is
performs total authentication (and hence encryption).

Theorem 7 (Security of the Auth-QFT-Auth scheme). The Auth-QFT-Auth scheme
is δ-totally authenticating with outer key leakage, where δ = ε + O(

√
|M|3/2/|T1|).

Firstly, we consider the key requirements. The outer authentication scheme
need not be a Wegman-Carter MAC, but let’s assume that it is. In order to
achieve δ-total authentication, the inner MAC must be such that |M|3/2/|T1| ≤
O(δ2), or in other words, log |T1| ≥ 3

2 log |M|+ 2 log 1
δ +O(1). The key needed

for the inner MAC must be at least 9
2 log |M| + 6 log 1

δ + O(1). The “message
length” that is given to the outer MAC is log |M| + log |T1| ≥ 5

2 log |M| +
2 log 1

δ + O(1), and thus log |T2| ≥ 5
2 log |M|+ 4 log 1

δ + O(1). The key length
for the outer MAC needs to be at least 15

2 log |M|+ 12 log 1
δ +O(1), so the total

key needed is 12 log |M|+ 18 log 1
δ + O(1).

While the inner key can be recycled (upon successful verification), the outer
key unfortunately cannot be.

Proof Sketch: We will omit mention of the sender/receiver’s private space S ,
and discuss how our proof generalizes to the case of non-empty S later. We will
let M = |M|, T = |T1|, and N = MT = |Y1|. We will assume that M3/2 ≤ T;
otherwise the theorem statement is vacuous.

Suppose the outer authentication scheme was ε-secure. By definition, there
exists an ideal computational basis adversary I such that ‖Ver2(σ̃)−Ver2(I(σ))‖1 ≤
ε, where Ver2 denotes the verification procedure for the outer authentication
scheme. There exists a computational basis-respecting linear map Λ ∈ L(Y2Z)
such that

I : σ 7→ ΛσΛ†.

Since Λ is computational basis-respecting, we have for all (x, s, z):

Λ|x, s〉Y1T2 ⊗ |ϕz〉Z = |x, s〉Y1T2 ⊗ |φxsz〉Z .

for some collection of (not necessarily normalized) states {|φxsz〉}.
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Therefore the effect of the adversary on the authenticated state (after ver-
ification) is to be close to I(σ) = Ek,h |kh〉〈kh| ⊗ |τkh〉〈τkh| where for fixed in-
ner/outer keys k, h

|τkh〉 =
1√
(N)

∑
z

√
λz ∑

m,x
αzm(−1)(m,k(m))·x|x〉 ⊗ |φxhxz〉.

Thus, the final state that Bob has, after performing full (i.e. inner and outer)
verification, is ε-close to

E
k,h
|kh〉〈kh| ⊗ |µkh〉〈µkh|

where

|µkh〉 = ∑
z

√
λz ∑

m

(
1
N ∑

x,m′
αzm′(−1)(m+m′ ,k(m)+k(m′))·x

)
|m〉 ⊗ |φxhxz〉.

Then security of Auth-QFT-Auth is established if we show that for every h,

E
k
‖|µkh〉 − |νh〉‖2

is small, where

|νh〉MZ = ∑
z

√
λz ∑

m
αzm|m〉M ⊗ |ηhz〉Z

with |ηhz〉Z = 1
N ∑x |φxhxz〉Z . Assuming this, the next Lemma will show that

there is an ideal oblivious, but outer key-dependent, adversary whose actions
lead to the global state Ekh |kh〉〈kh| ⊗ |νh〉〈νh|.

Lemma 1 (Constructing the ideal oblivious adversary). For all h there exists an
ideal oblivious adversary Ih acting on Z only such that

|νh〉〈νh|MZ = Ih(|ρ〉〈ρ|MZ ).

We now construct an ideal adversary Ih, derived from the computational
basis adversary I . By definition of I , there exists a computational basis-respecting
isometry V ∈ J(Y2Z ,Y2ZY ′2Z2) where Y ′2 is an auxiliary register isomorphic
to Y2, and Z2 is an auxiliary qubit register, such that

I : σYZ 7→ TrY ′Z2

(
ΠVσYZV†Π

)
.

Here Π = P ⊗ |0〉〈0|Z2 for some projector P acting on Z . Furthermore, V is
computational basis respecting:

ΠV|x, s〉Y2 ⊗ |ϕz〉Z = |x, s〉Y2 ⊗ |φxsz〉Z ⊗ |0 · · · 0〉Y
′
2Z2

where the |φxsz〉Z were defined above.
Now we construct the ideal general adversary Ih as follows:
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1. First, the adversary creates the entangled state |Φh〉AA
′
= 1√

N ∑x |x, h(x)〉A|x, h(x)〉A
′

in new registers A⊗A′, which are isomorphic to Y2 ⊗ Y2, and {|x〉} is a
basis for Y1.

2. It then applies the unitary V to half of |Φh〉AA
′

that resides in A, and the Z
part of the input state |ρ〉.

3. The adversary measuresAA′ZZ2 using the projective measurement {Q, I−
Q}, where Q = |Φh〉〈Φh|AA

′ ⊗Π. The adversary discards the outcome cor-
responding to I−Q, and leaves the state unnormalized:

1
N ∑

z,x,m

√
λzαzm|m〉M |φxsz〉Z |Φ〉AA

′
|0 · · · 0〉Y

′
2Z2

4. The adversary discards the AA′Y ′2Z2 registers:

1
N ∑

z,x,m

√
λzαzm|m〉M ⊗ |φxsz〉Z

This is precisely the state |νh〉, and the Ih only interacts with Z and auxiliary
registers in the adversary’s control, so it is an ideal general adversary.

We bound Ek ‖|µkh〉 − |νh〉‖2 by O(M3/2/T). Refer to the full version [GYZ16]
for the proof. Using Fact 2 and Jensen’s inequality, Ekh ‖|µkh〉〈µkh| − |νh〉〈νh|‖ ≤
O(
√

M3/2/T).
Thus, the final state of Bob is ε + O(

√
M3/2/T)-close to

E
kh
|kh〉〈kh| ⊗ |νh〉〈νh| = E

kh
|kh〉〈kh| ⊗ Ih(|ρ〉〈ρ|)

where Ih are the ideal adversaries given by Lemma 1.
To conclude the theorem, we now observe that when S is non-empty, we

can use the same analysis as above where we bundle together S and Z as a
joint adversary register, and the ideal adversary given by Lemma 1 will act as
the identity on the S register. This establishes that (Auth,Ver) is a total authen-
tication scheme with outer key leakage.

8 Total authentication from approximate unitary designs

We now present a scheme that satisfies the strongest security definition, that of
total authentication (without any key leakage). In particular, this implies com-
plete reuse of the entire key. This property of complete reuse of the key was
not known before; it is not known whether the entire key can be reused in the
authentication scheme of Barnum, et al [BCG+02].

This scheme is based on unitary designs, which are in some sense the quan-
tum analogue of t-wise independent hash functions: a t-unitary design (also
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simply called a t-design) is a distribution D over unitary matrices such that de-
gree t polynomials cannot distinguish between a unitary drawn from D and a
fully random unitary. For a precise definition of unitary designs and efficient
constructions, please see, e.g., [BHH12].

8.1 The unitary design scheme

We call this scheme the unitary design scheme. Let s be a security parameter. The
input state is |ρ〉MZ , where the Z register is held by the adversary.

1. The sender Alice first appends s |0〉 qubits in an auxiliary T register.
2. Using her secret key k, Alice samples a random unitary Uk drawn from an

(approximate) unitary t-design that acts jointly onM⊗T . We will set the
parameter t = 8.

3. Alice applies Uk to theM⊗T register, and sendsM⊗T across the quan-
tum channel to Bob.

4. Bob receives some state, and applies the inverse unitary U†
k to it. He mea-

sures the last s qubits and accepts if they all measure to be 0. Otherwise he
rejects.

Theorem 8. The unitary design scheme is efficiently computable, and is 2−s/2-totally
authenticating.

This scheme is inspired by the Clifford code authentication scheme, first pro-
posed by Aharonov, et al. [ABE10], and further analyzed in [DNS12,BW16].
Our protocol is exactly the same, except the ensemble of unitaries, instead of
being an approximate 8-design, is the Clifford group, which is a well-studied
set of unitaries that are central to quantum error-correction, simulation, and
more. It was also recently shown that the Clifford group is a 3-unitary de-
sign [Web15,Zhu15]13. [DNS12,BW16] show that the Clifford authentication scheme
is secure even against entangled adversaries; however, as mentioned before,
their security guarantee does not take into account the key.

Our unitary design scheme is also very similar to the non-malleable quantum
encryption scheme proposed by Ambainis, Bouda, and Winter [ABW09], wherein
a unitary 2-design is used to encrypt a quantum state. However, non-malleable
quantum encryption does not imply authentication.

We now remark upon the key requirements of the unitary design scheme.
Constructions of approximate unitary 8-designs acting on n qubits involve choos-
ing a random quantum circuit of size Θ(n2), and thus the randomness required
is Θ(n2) [BHH12]. This asymptotically matches the randomness requirements
required of the Clifford scheme described above, but is much larger than the
randomness requirements of the purity-testing-based protocol of [HLM16], which
uses Θ(n) bits of key to authenticate an n-qubit quantum state.

13 However, it is not an 8-design
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Notation and useful lemmas. We set up some notation. We let M denote the
message space, T to denote the space of the dummy zero qubits. We let Y =
M⊗T . We let M = |M|, |T | = 2s, and N = M2s = |Y|.

Let E be an adversary acting on Y ⊗ Z . By the Stinespring representation
theorem, there exists a unitary V acting on a possibly larger space Y ⊗Z ⊗Z ′,
followed by a projection P that acts on ZZ ′, followed by a partial trace over Z ′.
However without loss of generality we shall simply treat this additional space
Z ′ as part of Z , and ignore the partial trace operation. Thus, the adversary’s
action is to perform some unitary V on Y ⊗ Z , followed by a projection on P
on Z .

To analyze the behavior of this scheme, we will first analyze the case when
the randomizing unitary U is drawn from the Haar measure over the unitary
group U(Y), rather from a t-design. We will show that this scheme is totally
authenticating. Then, we will show that actually using a O(1)-unitary design
will suffice.

Formally, we first prove the following lemma to get total authentication
when unitary U is drawn from the Haar measure over the unitary group U(Y).

Lemma 2. Let N = dim(Y). For all δ > 0, for all initial message states |ρ〉MZ have
that

Pr
U

(
‖ΓV |ρ〉 −ΛU |ρ〉‖2

2 ≥ 2−s + δ
)
≤ exp(−C′Nδ2)

where ΓV = TrY (V)/ dim(Y), C′ is a universal constant, and U is a Haar-random
unitary.

Here, ΓV would be the ideal adversary corresponding to the real adversary V.
The crucial hammer we will need is a version of Levy’s Lemma:

Definition 8. A function f : U(d)→ R is η-Lipschitz if

sup
U1,U2∈U(d)

| f (U1)− f (U2)|
‖U1 −U2‖2

≤ η.

Lemma 3 (Levy’s Lemma [MS09]). Let f : U(d) → R be an η-Lipschitz function
on the unitary group of dimension d with mean E f . Then

Pr
(∣∣ f −E f

∣∣ ≥ δ
)
≤ 4 exp

(
−Cdδ2

η2

)
where C = 2/9π3 and the probability is over U drawn from the Haar measure on
U(d).

We define f (U) = ‖ΓV |ρ〉 −ΛU |ρ〉‖2
2, and bound the average and Lipshcitz

constant of f to use Levy’s Lemma to prove Lemma 2. For proof details, refer
to the full version [GYZ16].
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We then appeal to a general derandomization result of Low [Low09] who
proved that, if one establishes a measure of concentration result for a low de-
gree polynomial f that’s evaluated on a Haar-random unitary, then it still sat-
isfies (nearly) the same measure of concentration when f is evaluated on a uni-
tary drawn from an approximate t-design.

For detailed proof of unitary 8-designs being totally authenticating, refer to
the full version [GYZ16].

9 A lifting theorem for authentication

We will prove a lifting theorem which shows that a weak form of authentica-
tion security that doesn’t take into account quantum side information actually
implies stronger security against quantum side information. The initial weak
form of security is very weak indeed: as long as the authentication scheme can
securely authenticate a single state (namely, one half of the maximally entangled
state), in a key-averaged manner, then we can actually obtain an authentication
scheme that can authenticate all states — even those that are entangled with the
adversary.

Specifically, we show that this weak authentication security implies the se-
curity definition of [DNS12], which we reproduce here:

Definition 9 ([DNS12] security definition). An authentication scheme (Auth,Ver)
is ε-secure according to the [DNS12] definition iff for all initial message states |ρ〉MSZ ,
for all adversaries O ∈ T(YZ ,YZ), there exists an oblivious adversary I such that
the following are ε-close in trace distance:

– (Real experiment) Ek [Verk ◦ O ◦ Authk] (ρ
MSZ )

– (Ideal experiment) I(ρMSZ )
where Authk acts onM, Verk acts on Y , and both act as the identity on SZ .

Unlike total authentication, the key is averaged over in this security defini-
tion.

There is a minor caveat: we do not prove this implication for all authenti-
cation schemes. Instead, we prove it for authentication schemes composed with
a Pauli randomization step. If (Auth,Ver) is an authentication scheme, we call
this composed scheme Pauli+ (Auth,Ver), and it behaves as follows:

The secret key for Pauli+ (Auth,Ver) consists of the key k for (Auth,Ver), as
well as a new, independent key k′. The procedure to authenticate a message reg-
isterM behaves as follows: first, the key k′ is used to choose a random unitary
from the Pauli group that acts on the spaceM.14 We call this the Pauli random-
14 For simplicitly let us think ofM as (C2)⊗n (i.e., n qubits). Then the Pauli group con-

sists of all operators of the form XpZq, where p, q ∈ {0, 1}n. Here, the operator Xp is
defined to be the tensor product of X

pj

j , where Xj is the X Pauli operator acting on the
j’th qubit. Zq is defined similarly.

29



ization step. Next, the key k is used to apply Authk to the registerM to produce
a state in the Y register. This is the authenticated state, which is then subject to
attack by the adversary.

To un-authenticate, the Verk procedure is applied. Note that this is not a
unitary operation, but includes the projection on the receiver’s acceptance (see
the Preliminaries for a discussion of this). Finally, the Pauli randomization is
undone using the key k′.

Theorem 9 (Lifting weak authentication to total authentication). Let (Auth,Ver)
be an authentication scheme, and suppose the composed scheme Pauli + (Auth,Ver)
satisfies the following security guarantee: for all adversaries O ∈ T(YZ ,YZ), for all
adversary ancilla qubits |θ〉ZZ

′
, there exists an oblivious adversary I acting on Z only

such that the following are ε-close in trace distance:

– (Real experiment) Ek,k′
[
Pauli†k′ ◦ Verk ◦ O ◦ Authk ◦ Paulik′

]
(|Φ〉〈Φ|MB⊗|θ〉〈θ|ZZ ′)

– (Ideal experiment) |Φ〉〈Φ|MB ⊗ I(|θ〉〈θ|ZZ ′)

where B is a Hilbert space isomorphic toM, and |Φ〉MB is the maximally entangled
state.

Then, the composed scheme Pauli+(Auth,Ver) is a ε-secure according to the [DNS12]
definition.

For proof of the above theorem, refer to the full version [GYZ16]15.

10 Open problems

We close with some open problems:

1. We showed that the Auth-QFT-Auth scheme achieves total authentication
(with outer key leakage) when the inner authentication scheme is instanti-
ated with the Wegman-Carter scheme using threewise-independent hash-
ing. Can one show that Auth-QFT-Auth achieves total authentication when
both inner and outer authentication schemes are arbitrary authentication
schemes secure relative to the computational basis?

2. Under what circumstances can the key be reused in any of the protocols
presented in this paper, when the receiver rejects the state? For example,
we conjecture that in the unitary design protocol, much of the key can be
reused.

3. Our security definitions are specific to “one-time” authentication schemes
(although the key reuse properties allow multiple uses). Are there natural
“many-time” versions of our security definitions?

4. Does total authentication satisfy Universally Composable security (as defined
in [BHL+05,Unr10])?

15 https://arxiv.org/abs/1607.07759
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BDF+11. Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian
Schaffner, and Mark Zhandry. Random Oracles in a Quantum World. In
Proceedings of ASIACRYPT, 2011.

Bee97. Carlo WJ Beenakker. Random-matrix theory of quantum transport. Reviews
of modern physics, 69(3):731, 1997.

BGS13. Anne Broadbent, Gus Gutoski, and Douglas Stebila. Quantum one-time pro-
grams. In Advances in Cryptology–CRYPTO 2013, pages 344–360. Springer,
2013.

BHH12. Fernando GSL Brandao, Aram W Harrow, and Michal Horodecki. Local ran-
dom quantum circuits are approximate polynomial-designs. arXiv preprint
arXiv:1208.0692, 2012.

BHL+05. Michael Ben-Or, Michał Horodecki, Debbie W Leung, Dominic Mayers, and
Jonathan Oppenheim. The universal composable security of quantum key
distribution. In Theory of Cryptography Conference, pages 386–406. Springer,
2005.

BW16. Anne Broadbent and Evelyn Wainewright. Efficient simulation for quantum
message authentication. arXiv preprint arXiv:1607.03075, 2016.

BZ13a. Dan Boneh and Mark Zhandry. Quantum-secure message authentica-
tion codes. In Advances in Cryptology–EUROCRYPT 2013, pages 592–608.
Springer, 2013.

BZ13b. Dan Boneh and Mark Zhandry. Secure signatures and chosen ciphertext
security in a quantum computing world. In Advances in Cryptology–CRYPTO
2013, pages 361–379. Springer, 2013.
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DPS05. Ivan Damgård, Thomas Brochmann Pedersen, and Louis Salvail. A quantum
cipher with near optimal key-recycling. In Proceedings of the 25th Annual
International Conference on Advances in Cryptology, CRYPTO’05, pages 494–
510, Berlin, Heidelberg, 2005. Springer-Verlag.

FS16. Serge Fehr and Louis Salvail. Quantum authentication and encryption with
key recycling. arXiv preprint arXiv:1610.05614, 2016.

GHS15. Tommaso Gagliardoni, Andreas Hülsing, and Christian Schaffner. Seman-
tic security and indistinguishability in the quantum world. arXiv preprint
arXiv:1504.05255, 2015.

Got02. Daniel Gottesman. Uncloneable encryption. arXiv preprint quant-ph/0210062,
2002.

GYZ16. Sumegha Garg, Henry Yuen, and Mark Zhandry. New security notions
and feasibility results for authentication of quantum data. arXiv preprint
arXiv:1607.07759, 2016.

HLM16. Patrick Hayden, Debbie W Leung, and Dominic Mayers. The universal
composable security of quantum message authentication with key recyling.
arXiv preprint arXiv:1610.09434, 2016.
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