
Lower Bounds on Obfuscation from
All-or-Nothing Encryption Primitives

Sanjam Garg1,?, Mohammad Mahmoody2,??, and Ameer Mohammed2,? ? ?

1 UC Berkeley, sanjamg@berkeley.edu
2 University of Virginia, {mohammad,ameer}@virginia.edu

Abstract. Indistinguishability obfuscation (IO) enables many heretofore out-
of-reach applications in cryptography. However, currently all known construc-
tions of IO are based on multilinear maps which are poorly understood. Hence,
tremendous research effort has been put towards basing obfuscation on better-
understood computational assumptions. Recently, another path to IO has emerged
through functional encryption [Anath and Jain, CRYPTO 2015; Bitansky and
Vaikuntanathan, FOCS 2015] but such FE schemes currently are still based on
multi-linear maps. In this work, we study whether IO could be based on other
powerful encryption primitives.
Separations for IO. We show that (assuming that the polynomial hierarchy does
not collapse and one-way functions exist) IO cannot be constructed in a black-
box manner from powerful all-or-nothing encryption primitives, such as witness
encryption (WE), predicate encryption, and fully homomorphic encryption. What
unifies these primitives is that they are of the “all-or-nothing” form, meaning
either someone has the “right key” in which case they can decrypt the message
fully, or they are not supposed to learn anything.
Stronger Model for Separations. One might argue that fully black-box uses of
the considered encryption primitives limit their power too much because these
primitives can easily lead to non-black-box constructions if the primitive is used
in a self-feeding fashion — namely, code of the subroutines of the considered
primitive could easily be fed as input to the subroutines of the primitive itself.
In fact, several important results (e.g., the construction of IO from functional
encryption) follow this very recipe. In light of this, we prove our impossibility re-
sults with respect to a stronger model than the fully black-box framework of Im-
pagliazzo and Rudich (STOC’89) and Reingold, Trevisan, and Vadhan (TCC’04)
where the non-black-box technique of self-feeding is actually allowed.

1 Introduction

Program obfuscation provides an extremely powerful tool to make computer programs
“unintelligible” while preserving their functionality. Barak, Goldreich, Impagliazzo,
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Rudich, Sahai, Vadhan and Yang [11] formulated this notion in various forms and
proved that their strongest formulation, called virtual black-box (VBB) obfuscation,
is impossible for general polynomial size circuits. However, a recent result of Garg,
Gentry, Halevi, Raykova, Sahai and Waters [31] presented a candidate construction
for a weaker notion of obfuscation, called indistinguishability obfuscation (IO). Subse-
quent work showed that IO, together with one-way functions, enables numerous cryp-
tographic applications making IO a “cryptographic hub” [63].

Since the original work of [31] many constructions of IO were proposed [31,10,18]
[3,53,5,65,8,32]. However, all these constructions are based on computational hardness
assumptions on multilinear maps [30,27,37]. Going a step further, recent works of Lin
[48] and Lin and Vaikunthanatan [49] showed how to weaken the required degree of the
employed multilinear maps schemes to be a constant. Another line of work showed how
to base IO on compact functional encryption [1,13]. However, the current constructions
of compact functional encryption are in turn based on IO (or, multilinear maps). In
summary, all currently known paths to obfuscation start from multilinear maps, which
are poorly understood. In particular, many attacks on the known candidate multilinear
map constructions have been shown [30,23,46,25,26,54].

In light of this, it is paramount that we base IO on well-studied computational
assumptions. One of the assumptions that has been used in a successful way for re-
alizing sophisticated cryptographic primitives is the Learning with Errors (LWE) as-
sumption [61]. LWE is already known to imply attribute-based encryption [42] (or
even predicate encryption [43]), fully homomorphic encryption [36,20,19,38]3, multi-
key [24,55,17,60] and spooky homomorphic encryption [29]. One thing that all these
primitives share is that they are of an “all-or-nothing” nature. Namely, either someone
has the “right” key, in which case they can decrypt the message fully, or if they do not
posses a right key, then they are not supposed to learn anything about the plaintext.4 In
this work, our main question is:

Main Question: Can IO be based on any powerful ‘all-or-nothing’ encryption
primitive such as predicate encryption or fully homomorphic encryption?

We show that the answer to the above question is essentially “no.” However, before
stating our results in detail, we stress that we need to be very careful in evaluating im-
possibility results that relate to such powerful encryption primitives and the framework
they are proved in. For example, such a result if proved in the fully black-box frame-
work of [47,62] has limited value as we argue below.5 Note that the black-box frame-
work restricts to constructions that use the primitive and the adversary (in the security
reduction) as a black-box. The reason for being cautious about this framework is that
the constructions of powerful encryption primitive offer for a very natural non-black-
box use. In fact, the construction of IO from compact functional encryption [1,13,2] is

3 Realizing full-fledged fully-homomorphic encryption needs additional circular security as-
sumptions.

4 This is in contrast with functional encryption where different keys might leak different infor-
mation about the plaintext.

5 Such results could still have some value for demonstrating efficiency limitations but not for
showing infeasibility, as is the goal of this work.
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non-black-box in its use of functional encryption. This is not a coincidence (or, just one
example) and many applications of functional encryption (as well as other powerful en-
cryption schemes) and IO are non-black-box [36,63,14,33,34]. Note that the difference
between these powerful primitives and the likes of one-way functions, hash functions,
etc., is that these powerful primitives include subroutines that take arbitrary circuits as
inputs. Therefore, it is very easy to self-feed the primitive. In other words, it is easy to
plant gates of its own subroutines (or, subroutines of other cryptographic primitives)
inside such a circuit that is then fed to it as input. For example, the construction of
IO from FE plants FE’s encryption subroutine as a gate inside the circuit for which it
issues decryption keys. This makes FE a “special” primitive in that at least one of its
subroutines takes an arbitrary circuit as input and we could plant code of its subroutines
in this circuit. Consequently, the obtained construction would be non-black-box in the
underlying primitive. This special aspect is present in all of the primitives that we study
in this work. For example, one of the subroutines of predicate encryption takes a circuit
as input and this input circuit is used to test whether the plaintext is revealed during
the decryption or not. Along similar lines, evaluation subroutine of an FHE scheme is
allowed to take as input a circuit that is executed on an encrypted message.

The above “special” aspects of the encryption functionalities (i.e. that they take as
input general circuits or Turing machines and execute them) is the main reason that
many of the applications of these primitives are non-black-box constructions. There-
fore, any effort to prove a meaningful impossibility result, should aim for proving the
result with respect to a more general framework than that of [47,62]. In particular, this
more general framework should incorporate the aforementioned non-black-box tech-
niques as part of the framework itself.

The previous works of Brakerski, Katz, Segev, and Yerukhimovich [16] and the
more recent works of Asharov and Segev [6,7] are very relevant to our studies here. All
of these works also deal with proving limitations for primitives that in this work we call
special (i.e. those that take general circuits as input), and prove impossibility results
against constructions that use these special primitives while allowing some form of ora-
cle gates to be present in the input circuits. A crucial point, however, is that these works
still put some limitation on what oracle gates are allowed, and some of the subroutines
are excluded. The work of [16] proved that the primitive of Witness Indistinguishable
(WI) proofs for NPO statements where O is a random oracle does not imply key-
agreement protocols in a black-box way. However, the WI subroutines themselves are
not allowed inside input circuits. The more recent works of [6,7] showed that by using
IO over circuits that are allowed to have one-way functions gates one cannot obtain col-
lision resistant hash functions or (certain classes of) one-way permutations families (in
a black-box way). However, not all of the subroutines of the primitive itself are allowed
to be planted as gates inside the input circuits (e.g., the evaluation procedure of the IO).

In this work, we revisit the models used in [16,6,7] who allowed the use of one-way
function gates inside the given circuits and study a model where there is no limitation
on what type of oracle gates could be used in the circuits given as input to the special
subroutines, and in particular, the primitive’s own subroutines could be planted as gates
in the input circuits. We believe a model that captures the “gate plantation” technique
without putting any limitation on the types of gates used is worth to be studied directly
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and at an abstract level, due to actual positive results that exactly benefit from this “self-
feeding” non-black-box technique. For this goal, here we initiate a formal study of a
model that we call extended black-box, which captures the above-described non-black-
box technique that is commonplace in constructions that use primitives with subroutines
that take arbitrary circuits as input.

More formally, suppose P is a primitive that is special as described above, namely,
at least one of its subroutines might receive a circuit or a Turing machine C as input and
executes C internally in order to obtain the answer to one of its subroutines. Examples
of P are predicate encryption, fully homomorphic encryption, etc. An extended black-
box construction of another primitive Q (e.g., IO) from P will be allowed to plant the
subroutines of P inside the circuit C as gates with no further limitations. To be precise,
C will be allowed to have oracle gates that call P itself. Some of major examples of
non-black-box constructions that fall into this extended model are as follows.

– Gentry’s bootstrapping construction [35] plants FHE’s own decryption gates inside
a circuit that is given as input to the evaluation subroutine. This trick falls into
the extended black-box framework since planting gates inside evaluation circuits is
allowed.

– The bootstrapping of IO for NC1 (along with FHE) to obtain IO for P/poly [31].
This construction uses P that includes both IO for NC1 and FHE, and it plants the
FHE decryption gates inside the NC1 circuit that is obfuscated using IO for NC1.
Analogously, bootstrapping methods using one-way functions [4,22] also fall in our
framework.

– The construction of IO from functional encryption [1,13,2] plants the functional
encryption scheme’s encryption subroutine inside the circuits for which decryption
keys are issued. Again, such a non-black-box technique does fall into our extended
black-box framework. We note that the constructions of obfuscation based on con-
stant degree graded encodings [48] also fit in our framework.

The above examples show the power of the “fully” extended black-box model in cap-
turing one of the most commonly used non-black-box techniques in cryptography and
especially in the context of powerful encryption primitives.
What is not captured by extended black-box model? It is instructive to understand
the kinds of non-black-box techniques not captured by our extension to the black-box
model. This model does not capture non-black-box techniques that break the computa-
tion of a primitives sub-routines into smaller parts — namely, we do not include tech-
niques that involve partial computation of a sub-routine, save the intermediate state and
complete the computation later. In other words, the planted sub-routines gates must be
executed in one-shot. Therefore, in our model given just an oracle that implements a
one-way function it is not possible to obtain garbled circuits that evaluate circuits with
one-way function gates planted in them. For example, Beaver’s OT extension construc-
tion cannot be realized given just oracle access to a random function.

However, a slight workaround (though a bit cumbersome) can still be used to give
meaningful impossibility results that use garbled circuits (or, randomized encodings
more generally) in our model. Specifically, garbled circuits must now be modeled as
a special primitive that allows for inputs that can be arbitrary circuits with OWF gates
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planted in them. With this change the one-way function gate planted inside circuit fed
to the garbled circuit construction is treated as a individual unit. With this change we
can realize Beaver’s OT extension construction in our model.

In summary, intuitively, our model provides a way to capture “black-box” uses of
the known non-black-box techniques. While the full power of non-black-box techniques
in cryptography is yet to be understood, virtually every known use of non-black-box
techniques follows essentially the same principles, i.e. by plating subroutines of one
primitive as gates in a circuit that is fed as input to the same (or, another) primitive. Our
model captures any such non-black box use of the considered primitives.

Our Results. The main result of this paper is that several powerful encryption primi-
tives such as predicate encryption and fully-homomorphic encryption are incapable of
producing IO via an extended black-box construction as described above. A summery of
our results is presented in Figure 1. More specifically, we prove the following theorem.

Theorem 1 (Main Result). LetP be one of the following primitives: fully-homomorphic
encryption, attribute-based encryption, predicate encryption, multi-key fully homomor-
phic encryption, or spooky encryption. Then, assuming one-way functions exist and
NP 6⊆ coAM, there is no construction of IO from P in the extended black-box model
where one is allowed to plant P gates arbitrarily inside the circuits that are given to P
as input.

WE

HWE

IHWE 6=⇒
6=⇒

IO

=
⇒

PE

=⇒ =⇒

Spooky Encryption Attribute-Based FHE

=⇒ =⇒

Multi-Key FHE =⇒ FHE

Fig. 1: Summary of our separation results. IHWE de-
notes Instance Hiding WE and HWE denotes Homo-
morphic Witness Encryption.

All-or-nothing aspect. One
common aspect of all of the
primitives listed in Theorem
1 is that they have an all-or-
nothing nature. Namely, ei-
ther someone has the right
key to decrypt a message,
in which case they can re-
trieve all of the message,
or if they do not have the
right key then they are sup-
posed to learn nothing. In
contrast, in a functional en-
cryption scheme (a primitive
that does imply IO) one can
obtain a key kf for a function
f that allows them to com-
pute f(x) from a ciphertext
c containing the plaintext x.
So, they could legitimately
learn only a “partial” infor-
mation about x. Even though we do not yet have a general result that handles such
primitives uniformly in one shot, we still expect that other exotic encryption primitives
(that may be developed in the future) that are of the all-or-nothing flavor will also not
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be enough for realizing IO. Additionally, we expect that our techniques will be useful
in deriving impossibility results in such case.

What does our results say about LWE? Even though our separations of Theorem 1
covers most of the powerful LWE-based primitives known to date, it does not imply
whether or not we can actually base IO on LWE. In fact, our result only rules out
specific paths from LWE toward IO that would go through either of the primitives listed
in Theorem 1. Whether or not a direct construction from LWE to IO is possible still
remains as a major open problem in this area.

Key Role of Witness Encryption. Witness encryption and its variations play a key
role in the proof or our impossibility results. Specifically, we consider two (incompat-
ible) variants of WE — namely, instance hiding witness encryption and homomorphic
witness encryption. The first notion boosts the security of WE and hides the statement
while the second enhances the functionality of WE with some homomorphic proper-
ties. We obtain our separation results in two steps. First, we show that neither of these
two primitives extended black-box imply IO. Next, we show that these two primitives
extended black-box imply extended versions of all the all-or-nothing primitives listed
above. The final separations follow from a specific transitivity lemma that holds in the
extended black-box model.

Further Related Work. Now we describe previous work on the complexity of as-
sumptions behind IO and previous works on generalizing the black-box framework of
[47,62].

Previous lower bounds on complexity of IO. The work of Mahmoody et. al [52]
proved lower bounds on the assumptions that are needed for building IO in a fully
black-box way.6 They showed that, assuming NP 6= co-NP, one-way functions or
even collision resistant hash functions do not imply IO in a fully black-box way.7 Rely-
ing on the works of [21,58,50] (in the context of VBB obfuscation in idealized models)
Mahmoody et. al [52] also showed that building IO from trapdoor permutations or even
constant degree graded encoding oracles (constructively) implies that public-key en-
cryption could be based on one-way functions (in a non-black-box way). Therefore,
building IO from those primitives would be as hard as basing PKE on OWFs, which is
a long standing open question of its own. Relying on the recent beautiful work of Brak-
erski, Brzuska, and Fleischhacker [15] that ruled out the existence of statistically secure
approximately correct IO and a variant of Borel-Cantelli lemma, Mahmoody et. al [51]
showed how to extend the ‘hardness of constructing IO’ result of [52] into conditional
black-box separations.

Other Non-Black-Box Separations. Proving separations for non-black-box construc-
tions are usually extremely hard. However, there are a few works in this area that we
shall discuss here. The work of Baecher, Brzuska, and Fischlin [9] studied various gen-

6 A previous result of Asharov and Segev [6] proved lower bounds on the complexity of IO with
oracle gates, which is a stronger primitive. (In fact, how this primitive is stronger is tightly
related to how we define extensions of primitives. See Section 3 where we formalize the notion
of such stronger primitives in a general way.).

7 Note that since statistically secure IO exists if P = NP, therefore we need computational
assumptions for proving lower bounds for assumptions implying IO.
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eralizations of the black-box framework of [62] that also allow some forms of non-
black-box use of primitives. The work of Pass, Venkitasubramaniam and Tseng [59]
showed that under (new) believable assumptions one can rule out non-black-box con-
structions of certain cryptographic primitives (e.g., one-way permutations, collision-
resistant hash-functions, constant-round statistically hiding commitments) from one-
way functions, as long as the security reductions are black-box. Pass [57] showed that
the security of some well-known cryptographic protocols and assumptions (e.g., the
Schnorr identification scheme) cannot be based on any falsifiable assumptions [56] as
long at the security proof is black-box (even if the construction is non-black-box). The
work of Genry and Wichs [39] showed that black-box security reductions (together
with arbitrary non-black-box constructions) cannot be used to prove the security of any
SNARG construction based on any falsifiable cryptographic assumption. Finally, the
recent work of Dachman-Soled [28] showed that certain classes of constructions with
some limitations, but with specific non-black-box power given to them are not capable
of reducing public-key encryption to one way functions.

Organization. Due to limited space, in this draft we only prove the separation of IO
from witness encryption (in the extended black-box setting) and refer the reader to
the full version of the paper for other separations. In Section 2 we review the needed
preliminaries and also review some of the tools that are developed in previous work for
proving lower bounds on IO. In Section 3 we discuss the extended black-box model
and its relation to extended primitives in detail and give a formal definition of extended
black-box constructions from witness encryption. In Section 4 we give a full proof of the
extended black-box separation of IO from (even instance-revealing) witness encryption.

2 Preliminaries

Notation. We use “|” to concatenate strings and we use “,” for attaching strings in a way
that they could be retrieved. Namely, one can uniquely identify x and y from (x, y). For
example (00|11) = (0011), but (0, 011) 6= (001, 1). When writing the probabilities,
by putting an algorithm A in the subscript of the probability (e.g., PrA[·]) we mean the
probability is overA’s randomness. We will use n or κ to denote the security parameter.
We call an efficient algorithm V a verifier for an NP relation R if V(w, a) = 1 iff
(w, a) ∈ R. We call LR = LV = {a | ∃w, (a,w) ∈ R} the corresponding NP
language. By PPT we mean a probabilistic polynomial time algorithm. By an oracle
PPT/algorithm we mean a PPT that might make oracle calls.

2.1 Primitives

In this subsection we define the primitives that we deal with in this work and are defined
prior to our work. In the subsequent sections we will define variants of these primitives.

The definition of IO below has a subroutine for evaluating the obfuscated code. The
reason for defining the evaluation as a subroutine of its own is that when we want to
construct IO in oracle/idealized models, we allow the obfuscated circuit to call the or-
acle as well. Having an evaluator subroutine to run the obfuscated code allows to have
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such oracle calls in the framework of black-box constructions of [62] where each prim-
itiveQ is simply a class of acceptable functions that we (hope to) efficiently implement
given oracle access to functions that implement another primitive P (see Definition 7).

Definition 2 (Indistinguishability Obfuscation (IO)). An Indistinguishability Obfus-
cation (IO) scheme consists of two subroutines:

– Obfuscator iO is a PPT that takes as inputs a circuit C and a security parameter
1κ and outputs a “circuit” B.

– Evaluator Ev takes as input (B, x) and outputs y.

The completeness and soundness conditions assert that:

– Completeness: For every C, with probability 1 over the randomness of iO, we get
B ← iO(C, 1κ) such that: For all x it holds that Ev(B, x) = C(x).

– Security: for every poly-sized distinguisherD there exists a negligible function µ(·)
such that for every two circuits C0, C1 that are of the same size and compute the
same function, we have:

|Pr
iO
[D(iO(C0, 1

κ) = 1]− Pr
iO
[D(iO(C1, 1

κ) = 1]| ≤ µ(κ)

Definition 3 (Approximate IO). For function 0 < ε(n) ≤ 1, an ε-approximate IO
scheme is defined similarly to an IO scheme with a relaxed completeness condition:

– ε-approximate completeness. For every C and n we have:

Pr
x,iO

[B = iO(C, 1κ), Ev(B, x) = C(x)] ≥ 1− ε(κ)

Definition 4 (Witness Encryption (WE) indexed by verifier V). Let L be an NP
language with a corresponding efficient relation verifier V (that takes instance x and
witness w and either accepts or rejects). A witness encryption scheme for relation de-
fined by V consists of two PPT algorithms (Enc,DecV) defined as follows:

– Enc(a,m, 1κ) : given an instance a ∈ {0, 1}∗ and a message m ∈ {0, 1}∗, and
security parameter κ (and randomness as needed) it outputs c ∈ {0, 1}∗.

– DecV(w, c) : given ciphertext c and “witness” string w, it either outputs a message
m ∈ {0, 1}∗ or ⊥.

We also need the following completeness and security properties:

– Completeness: For any security parameter κ, any (a,w) such that V(a,w) = 1,
and any m it holds that

Pr
Enc,DecV

[DecV(w,Enc(a,m, 1
κ)) = m] = 1

– Security: For any PPT adversaryA, there exists a negligible function µ(.) such that
for all a /∈ LV (i.e., that there is no w for which V(a,w) = 1) and any m0 6= m1

of the same length |m0| = |m1| the following holds:

|Pr[A(Enc(a,m0, 1
κ)) = 1]− Pr[A(Enc(a,m1, 1

κ)) = 1]| ≤ µ(κ)
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When we talk about the witness encryption as a primitive (not an indexed family) we
refer to the special case of the ‘complete’ verifier V which is a circuit evaluation algo-
rithm and V(w, a) = 1 if a(w) = 1 where a is a circuit evaluated on witness w.

The family version of WE in Definition 4 allows the verifier V to be part of the
definition of the primitive. However, the standard notion of WE uses the “universal” V
which allows us to obtain WE for any other efficient relation verifier V.

The following variant of witness encryption strengthens the functionality.

Definition 5 (Instance-revealing Witness Encryption (IRWE)). A witness encryp-
tion scheme is said to be instance-revealing if it satisfies the properties of Definition 4
and, in addition, includes the following subroutine.

– Instance-Revealing Functionality: Rev(c) given ciphertext c outputs a ∈ {0, 1}s∪
{⊥}, and for every a,m, κ:

Pr
Enc,Rev

[Rev(Enc(a,m, 1κ)) = a] = 1.

2.2 Black-Box Constructions and Separations

Impagliazzo and Rudich [47] were the first to formally study the power of “black-box”
constructions that relativize to any oracle. Their notion was further explored in detail by
Reingold, Trevisan, and Vadhan [62]. The work of Baecher, Brzuska, and Fischlin [9]
further studied the black-box framework and studied variants of the definition of black-
box constructions. We first start by recalling the definition of cryptographic primitives,
and then will go over the notion of (fully) black-box constructions.

Definition 6 (Cryptographic Primitives [62]). A primitive P = (F ,R) is defined as
set of functions F and a relation R between functions. A (possibly inefficient) function
F ∈ {0, 1}∗ → {0, 1}∗ is a correct implementation of P if F ∈ F , and a (possibly
inefficient) adversary A breaks an implementation F ∈ F if (A,F ) ∈ R.

Definition 7 (black-box constructions [62]). A black-box construction of a primitive
Q from a primitive P consists of two PPT algorithms (Q,S):

1. Implementation: For any oracle P that implements P , QP implements Q.
2. Security reduction: for any oracle P implementing P and for any (computationally

unbounded) oracle adversary A breaking the security of QP , it holds that SP,A

breaks the security of P .

Definition 8 (Black-box constructions of IO). A fully-black-box construction of IO
from any primitive P could be defined by combining Definitions 7 and 2.

The issue of oracles gates. Note that in any such construction of Definition 8 the input
circuits to the obfuscation subroutine do not have any oracle gates in them, while the
obfuscation algorithm and the evaluation procedure are allowed to use the oracle im-
plementing P . In Section 3 we will see that one can also define an extended variant of
the IO primitive (as it was done in [6,7]) in which the input circuits have oracle gates.
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2.3 Black-Box Separations

In this section we recall lemmas that can be used for proving black-box impossibility
results (a.k.a. separations). The arguments described in this section are borrowed from
a collection of recent works [21,50,58,52,15,51] where a framework for proving lower
bounds for (assumptions behind) IO are laid out. However, the focus in those works
was to prove lower bounds for IO in the (standard) black-box model rather than the
extended model. We will indeed use those tools/lemmas by relating the extended black-
box model to the black-box model.
Idealized models/oracles and probability measures over them. An idealized model
I is a randomized oracle that supposedly implements a primitive (with high probabil-
ity over the choice of oracle); examples include the random oracle, random trapdoor
permutation oracle, generic group model, graded encoding model, etc. An I ← I can
(usually) be represented as a sequence (I1, I2, . . . ) of finite random variables, where In
is the description of the prefix of I that is defined for inputs whose length is parameter-
ized by (a function of) n. The measure over the actual infinite sample I ← I could be
defined through the given finite distributions Di over Ii.8

Definition 9 (Oracle-fixed constructions in idealized models [52]). We say a primi-
tive P has an oracle-fixed construction in idealized model I if there is an oracle-aided
algorithm P such that:

– Completeness: P I implements P correctly for every I ← I.
– Black-box security: LetA be an oracle-aided adversaryAI where the query com-

plexity of A is bounded by the specified complexity of the attacks for primitive P .
For example if P is polynomially secure (resp., quasi-polynomially secure), then A
only asks a polynomial (resp., quasi-polynomial) number of queries but is compu-
tationally unbounded otherwise. Then, for any such A, with measure one over the
choice of I $←I, it holds that A does not break P I .9

Definition 10 (Oracle-mixed constructions in idealized models [52]). An oracle-mixed
construction of a primitiveP in idealized model I is defined similarly to the oracle-fixed
definition, but with the difference that the correctness and soundness conditions of the
construction P I hold when the probabilities are taken over I ← I as well.

Lemma 11 (Composition lemma [52]). Suppose Q is a fully-black-box construction
of primitive Q from primitive P , and suppose P is an oracle-fixed construction for
primitive P relative to I (according to Definition 10). Then QP is an oracle-fixed im-
plementation of Q relative to the same idealized model I.

Definition 12 (Oracle-mixed constructions in idealized models [51]). We say a prim-
itive P has an oracle-mixed black-box construction in idealized model I if there is an
oracle-aided algorithm P such that:

8 Caratheodory’s extension theorem shows that such finite probability distributions could always
be extended consistently to a measure space over the full infinite space of I ← I. See Theorem
4.6 of [45] for a proof.

9 For breaking a primitive, the adversary needs to ‘win’ with ‘sufficient advantage’ (this depends
on what level of security is needed) over an infinite sequence of security parameters.
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– Oracle-Mixed Completeness: P I implements P correctly where the probabilities
are also over I ← I.10 For the important case of perfect completeness, this defini-
tion is the same as oracle-fixed completeness.

– Oracle-mixed black-box security: Let A be an oracle-aided algorithm in ideal-
ized model I whose query complexity is bounded by the specified complexity of the
attacks defined for primitive P . We say that the oracle-mixed black-box security
holds for P I if for any such A there is a negligible µ(n) such that the advantage of
A breaking P I over the security parameter n is at most µ(n) where this bound is
also over the randomness of I.

Using a variant of the Borel–Cantelli lemma, [51] proved that oracle-mixed attacks
with constant advantage leads to breaking oracle-fixed constructions.

Lemma 13 ([51]). If there is an algorithm A that oracle-mixed breaks a construction
P I of P in idealized model I with advantage ε(n) ≥ Ω(1) for an infinite sequence of
security parameters, then the same attackerA oracle-fixed breaks the same construction
P I over a (perhaps more sparse but still) infinite sequence of security parameters.

The following lemmas follows as a direct corollary to Lemmas 11 and 13.

Lemma 14 (Separation Using Idealized Models). Suppose I is an idealized model,
and the following conditions are satisfied:

– Proving oracle-fixed security of P . There is an oracle fixed black-box construc-
tion of P relative to I.

– Breaking oracle-mixed security of Q with Ω(1) advantage. For any construc-
tion QP of Q relative to I there is a computationally-unbounded query-efficient
attacker A (whose query complexity is bounded by the level of security demanded
by P) such that for an infinite sequence of security parameters n1 < n2 < . . . the
advantage of A in oracle-mixed breaking P I is at least ε(ni) ≥ Ω(1).

Then there is no fully black-box construction for Q from P .

2.4 Tools for Getting Black-Box Lower Bounds for IO

The specific techniques for proving separations for IO that is developed in [21,52,15,51]
aims at employing Lemma 14 by “compiling” out an idealized oracle I from an IO
construction. Since we know that statistically secure IO does not exist in the plain model
[41] this indicates that perhaps we can compose the two steps and get a query-efficient
attacker against IO in the idealized model I. The more accurate line of argument is
more subtle and needs to work with approximately correct IO and uses a recent result of
Brakerski, Brzuska, and Fleischhacker [15] who ruled out the existence of statistically
secure approximate IO.

To formalize the notion of “compiling out” an oracle in more than one step we need
to formalize the intuitive notion of sub oracles in the idealized/randomized context.
10 For example, an oracle-mixed construction of an ε-approximate IO only requires approximate

correctness while the probability of approximate correctness is computed also over the proba-
bility of the input as well as the oracle.
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Definition 15 (Sub-models). We call the idealized model/oracle O a sub-model of the
idealized oracle I with subroutines (I1, . . . , Ik), denoted by O v I, if there is a (pos-
sibly empty) S ⊆ {1, . . . , k} such that the idealized oracle O is sampled as follows:

– First sample I ← I where the subroutines are I = (I1, . . . , Ik).
– Then provide access to subroutine Ii if and only if i ∈ S (and hide the rest of the

subroutines from being called).

If S = ∅ then the oracle O will be empty and we will be back to the plain model.

Definition 16 (Simulatable Compiling Out Procedures for IO). Suppose O @ I.
We say that there is a simulatable compiler from IO in idealized model I into idealized
modelO with correctness error ε if the following holds. For every implementation PI =
(iOP , EvP) of δ-approximate IO in idealized model I there is a implementation PO =
(iOO, EvO) of (δ+ ε)-approximate IO in idealized modelO such that the only security
requirement for these two implementations is that they are related as follows:

Simulation: There is an efficient PPT simulator S and a negligible function µ(·)
such that for any C:

∆(S(iOI(C, 1κ)), iOO(C, 1κ)) ≤ µ(κ)

where ∆(., .) denotes the statistical distance between random variables.

It is easy to see that the existence of the simulator according to Definition 16 implies
that PO in idealized model O is “as secure as” PI in the idealized model I. Namely,
any oracle-mixed attacker against the implementation PO in model O with advantage
δ (over an infinite sequence of security parameters) could be turned in to an attacker
against PI in model I that breaks against PI with advantage δ − negl(κ) over an
infinite sequence of security parameters. Therefore one can compose the compiling out
procedures for a constant number of steps (but not more, because there is a polynomial
blow up in the parameters in each step).

By composing a constant number of compilers and relying on the recent result of
Brakerski, Brzuska, and Fleischhacker [15] one can get a general method of breaking
IO in idealized models. We first state the result of [15].

Theorem 17 ([15]). Suppose one-way functions exist, NP 6⊆ coAM, and δ, ε : N 7→
[0, 1] are such that 2ε(n)+3δ(n) < 1−1/poly(n), then there is no (ε, δ)-approximate
statistically-secure IO for all poly-size circuits.

The above theorem implies that if we get any implementation for IO in the plain
model that is 1/100-approximately correct, then there is a computationally unbounded
adversary that breaks the statistical security of IO with advantage at least 1/100 over an
infinite sequence of security parameters. Using this result, the following lemma shows
a way to obtain attacks against IO in idealized models.

Lemma 18 (Attacking IO Using Nested Oracle Compilers). Suppose ∅ = I0 v
I1 · · · v Ik = I for constant k = O(1) are a sequence of idealized models. Suppose
for every i ∈ [k] there is a simulatable compiler for IO in model Ii into model Ii−1
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with correctness error εi < 1/(100k). Then, assuming one-way functions exist, NP 6⊆
coAM, any implementation P of IO in the idealized model I could be oracle-mixed
broken by a polynomial-query adversary A with a constant advantage δ > 1/100 for
an infinite sequence of security parameters.

Proof. Starting with our initial ideal-model construction PI = PIk , we iteratively ap-
ply the simulatable compiler to get PIi−1

from PIi for i = {k, ..., 1}. Note that the final
correctness error that we get is εI0 < k/(100k) < 1/100, and thus by Theorem 17 there
exists a computationally unbounded attacker AI0 against PI0 with constant advantage
δ. Now, let Si be the PPT simulator whose existence is guaranteed by Definition 16 for
the compiler that transforms PIi into PIi−1

. We inductively construct an adversary AIi
against PIi from an adversary AIi−1

for PIi−1
starting with AI0 . The construction of

AIi simply takes its input obfuscation in the Ii ideal-model iOIi , runs Si(iOIi) and
feeds the result toAIi−1 to get its output. Note that, after constant number k, we still get
δ′ < δ − k negl(κ) a constant advantage over infinite sequence of security parameters
against PIk .

Finally, by putting Lemma 18 and 14 together we get a lemma for proving black-box
lower bounds for IO.

Lemma 19 (Lower Bounds for IO using Oracle Compilers). Suppose ∅ = I0 v
I1 · · · v Ik = I for constant k = O(1) are a sequence of idealized models. Suppose
for every i ∈ [k] there is a simulatable compiler for IO in model Ii into model Ii−1
with correctness error εi < 1/(100k). If primitive P can be oracle-fixed constructed in
the idealized model I, then there is no fully black-box construction of IO from P .

We will indeed use Lemma 19 to derive lower bounds for IO even in the extended
black-box model by relating such constructions to fully black-box constructions.

3 An Abstract Extension of the Black-Box Model

In what follows, we will gradually develop an extended framework of constructions
that includes the fully black-box framework of [62] and allows certain non-black-box
techniques by default. This model uses steps already taken in works of Brakerski, Katz,
Segev, and Yerukhimovich [16] and the more recent works of Asharov and Segev [6,7]
and takes them to the next level by allowing even non-black-box techniques involving
‘self-calls’ [1,13,2]. In a nutshell, this framework applies to ‘special’ primitives that
accept generic circuits as input and run them on other inputs; therefore one can plant
oracle gates to the same pritmivies inside those circuits. We will define such construc-
tions using the fully black-box framework by first extending these primitives and then
allowing the extensions to be used in a black-box way.

We will first give an informal discussion by going over examples of primitives that
could be used in an extended black-box way. We then discuss an abstract model that
allows formal definitions. We will finally give concrete and formal definitions for the
case of witness encryption which is the only primitive that we will formally separate
from IO in this draft. For the rest of the separations see the full version of the paper.
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Special Primitives Receiving Circuits as Input At a very high level, we call a primi-
tive ‘special’, if it takes circuits as input and run those circuits as part of the execution
of its subroutines, but at the same time, the exact definition depends on the execution of
the input circuit only as a ‘black-box’ while the exact representation of the input circuits
do not matter. In that case one can imagine an input circuit with oracle gates as well.
We will simply call such primitives special till we give formal definitions that define
those primitives as ‘families’ of primitives indexed by an external universal algorithm.

Here is a list of examples of special primitives.

– Zero-knowledge proofs of circuit satisfiability (ZK-Cir-SAT). A secure proto-
col for ZK-Cir-SAT is an interactive protocol between two parties, a prover and a
verifier, who take as input a circuit C. Whether or not the prover can convince the
verifier to accept the interaction depends on the existence of x such that C(x) = 1.
This definition of the functionality of ZK-Cir-SAT does not depend on the specific
implementation of C and only depends on executing C on x ‘as a black-box’.

– Fully homomorphic encryption (FHE). FHE is a semantically secure public-key
encryption where in addition we have an evaluation sub-routine Eval that takes as
input a circuit f and ciphertexts c1, . . . , ck containing plaintexts m1, . . . ,mk, and
it outputs a new ciphertext c = Eval(f, c1, . . . , ck) such that decrypting c leads
to f(m1, . . . ,mk). The correctness definition of the primitive FHE only uses the
input-output behavior of the circuit f , so FHE is a special primitive.

– Encrypted functionalities. Primitives such as attribute, predicate, and functional
encryption all involve running some generic computation at the decryption phase
before deciding what to output. There are two ways that this generic computation
could be fed as input to the system:
• Key policy [64,44]: Here the circuit C is given as input to the key generation

algorithm and then C(m) is computed over plaintext m during the decryption.
• Ciphertext policy [12]: Here the circuit C is the actual plaintext and the input
m to C is used when issuing the decryption keys.

Both of these approaches lead to special primitives. For example, for the case of
predicate encryption, suppose we use a predicate verification algorithm P that takes
(k, a), interprets k as a circuits and runs k(a) to accept or reject. Such P would give
us the key policy predicate encryption. Another P algorithm would interpret a as a
circuit and runs it on k, and this gives us the ciphertext policy predicate encryption.
In other words, one can think of the circuit C equivalent to P(k, ·) (with k hard
coded in it, and a left out as the input) being the “input” circuit KGen subroutine,
or alternatively one can think of P(·, a) (with a hardcoded in it, and k left out as
the input) to be the “input” circuit given to the Enc subroutine. In all cases, the
correctness and security definitions of these primitives only depend on the input-
output behavior of the given circuits.

– Witness encryption. The reason that witness encryption is a special primitive is
very similar to the reason described above for the case of encrypted functionalities.
Again we can think of V(·, a) as the circuit given to the Enc algorithm. In this case,
the definition of witness encryption (and it security) only depend on the input-
output behavior of these ‘input circuits’ rather their specific implementations.
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– Indistinguishability Obfuscation. An indistinguishability obfuscator takes as in-
put a circuit C and outputs B that can be used later on the compute the same func-
tion as C does. The security of IO ensures that for any two different equally-sized
and functionally equivalent circuits C0, C1, it is hard to distinguish between obfus-
cation of C0 and those of C1. Therefore, the correctness and security definitions of
IO depend solely on the input-output behavior (and the sizes) of the input circuits.

When a primitive is special, one can talk about “extensions” of the same primitive in
which the circuits that are given as input could have oracle gates (because the primitive
is special and so the definition of the primitive still extends to such inputs).

3.1 An Abstract Model for Extended Primitives and Constructions

We define special primitives as ‘restrictions’ of a (a family of) primitives indexed by
a subroutine W to the case that W is a universal circuit evaluator. We then define the
extended version to be the case that W accepts oracle-aided circuits. More formally we
start by defining primitives indexed by a class of functions.

Definition 20 (Indexed primitives). LetW be a set of (possibly inefficient) functions.
An W-indexed primitive P[W] is indeed a set of primitives {P[W ]}W∈W indexed by
W ∈ W where, for each W ∈ W , P[W ] = (F [W ],R[W ]) is a primitive according to
Definition 6.

For the special case ofW = {W} we get back the RTV definition for a primitive.
We will now define variations of of indexed primitives that restrict the family to a

smaller class W ′ and, for every W ∈ W ′, it might further restrict the set of correct
implementations to be a subset of F [W ]. We first define restricted forms of indexed
primitives then provide various restrictions that will be of interest to us.

Definition 21 (Restrictions of indexed primitives). ForP[W] = {(F [W ],R[W ])}W∈W
and P ′[W ′] = {(F ′[W ],R′[W ])}W∈W′ , we say P ′[W ′] is a restriction of P[W] if the
following two holds. (1)W ′ ⊆ W , and (2) for all W ∈ W ′, F ′[W ] ⊆ F [W ], and (3)
for all W ∈ W ′,R′[W ] = R′[W ].

Definition 22 (Efficient restrictions). We call a restriction P ′[W ′] of P[W] an effi-
cient restriction if W ′ = {w} where w is is a polynomial time algorithm (with no
oracle calls). In this case, we call P ′[w] simply a w-restriction of P[W].

We are particularly interested in indexed primitives when they are indexed by the
universal algorithm for circuit evaluation. This is the case for all the primitives of wit-
ness encryption, predicate encryption,11 fully homomorphic encryption, and IO. All
of the examples of the special primitives discussed in previous section fall into this
category. Finally, the formal notion of what we previously simply called a ‘special’
primitives is defined as follows.

11 Even in this case, we can imagine that we are running a circuit on another input and take the
first bit of it as the predicate.
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Definition 23 (The universal variant of indexed primitives). We call P ′[{w}] the
universal variant of P[W] if P ′[{w}] is an efficient restriction of P[W] for the specific
algorithm w(·) that interprets its input as a pair (x,C) where C is a circuit, and then
it simply outputs C(x).

For example, in the case of witness encryption, the relation between witness w and
attribute a is verified by running a as a circuit over w and outputting the first bit of this
computation. In order to define extensions of universal variants of indexed primitives
(i.e., special primitives for short) we need the following definition.

Definition 24 (w(·)-restrictions). For an oracle algorithm w(·) we call P ′[W ′] =
{(F ′[W ],R[W ])}W∈W′ the w(·)-restriction of P[W] = {(F [W ],R[W ])}W∈W , if
P ′[W ′] is constructed as follows. For all W ∈ W and F , we include W ∈ W ′ and
F ∈ F ′[W ], if it holds that W = wF and F ∈ F [W ].

Definition 25 (The extended variant of indexed primitives). We call P ′[W ′] the ex-
tended variant of P[W] if P ′[W ′] is an w(·)-restriction of P[W] for the specific w(·)

that interprets its input (x,C) as a pair where C(·)(x) is an oracle-aided circuit, and
then w(x,C) outputs C(·)(x) by forwarding all of C’s oracle queries to its own oracle.

Case of witness encryption. Here we show how to derive the definition of extended
witness encryption as a special case. First note that witness encryption’s decryption
is indexed by an algorithm V (w, a) that could be any predicate function. In fact, it
could be any function where we pick its first bit and interpret it as a predicate. So
WE is indeed indexed by V ∈ V which the set of all predicates. Then, the standard
definition of witness encryption for circuit satisfiability (which is the most powerful
WE among them all) is simply the universal variant of this indexed primitive WE[V],
and the following will be exactly the definition of the extended universal variant of
WE[V], which we simply call the extended WE.

In the full version of the paper we give similar definitions for other primitives of
predicate encryption, fully homomorphic encrypion, etc.

Definition 26 (Extended Witness Encryption). Let V(Enc,Dec)(w, a) be the ‘universal
circuit-evaluator’ Turing machine, which is simply an algorithm with oracle access to
(Enc,Dec) that interprets a as an circuit with possible (Enc,Dec) gates and runs a on
w and forwards any oracle calls made by a to its own orcle and forwards the answer
back to the corresponding gate inside a to continue the execusion. An extended witness
encryption scheme (defined by V) consists of two PPT algorithms (Enc,DecV) defined
as follows:

– Enc(a,m, 1κ) : is a randomized algorithm that given an instance a ∈ {0, 1}∗ and
a message m ∈ {0, 1}∗, and security parameter κ (and randomness as needed)
outputs c ∈ {0, 1}∗.

– DecV(w, c) : given ciphertext c and “witness” string w, it either outputs a message
m ∈ {0, 1}∗ or ⊥.

– Correctness and security are defined similarly to Definition 4. But the key point is
that here the relation V(Enc,Dec) is somehow recursively depending on the (Enc,Dec =
DecV ) on smaller input lengths (and so it is well defined).
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3.2 Extended Black-Box Constructions

We are finally ready to define our extended black-box framework. Here we assume that
for a primitive P we have already defined what its extension P̃ means.

Definition 27 (Extended Black-Box Constructions – General Case). Suppose Q is
a primitive and P̃ is an extended version of the primitive P . Any fully black-box con-
struction for Q from P̃ (i.e. an extended version of P) is called an extended black-box
construction of Q from P .

Examples. Below are some examples of non-black-box constructions in cryptography
that fall into the extended black-box framework of Definition 27.

– Gentry’s bootstrapping construction [35] plants FHE’s own decryption in a circuit
for the evaluation subroutine. This trick falls into the extended black-box frame-
work since planting gates inside evaluation circuits is allowed.

– The construction of IO from functional encryption by [1,13] uses the encryption or-
acle of the functional encryption scheme inside the functions for which decryption
keys are issued. Again, such non-black-box technique does fall into our extended
black-box framework.

Definition 28 (Formal Definition of Extended Black-Box Constructions from Wit-
ness Encryption). Let P be witness encryption and P̃ be extended witness encryption
(Definition 26). Then an extended black-box construction using P is a fully black-box
construction using P̃ .

The following transitivity lemma (which is a direct corollary to the transitivity of
fully black-box constructions) allows us to derive more impossibility results.

Lemma 29 (Composing extended black-box constructions). Suppose P, Q,R are
cryptographic primitives and Q,P are special primitive and Q̃ is the extended ver-
sion of Q. If there is an extended black-box construction of Q̃ from P and if there is
an extended black-box construction of R from Q, then there is an extended black-box
construction ofR from P .

Proof. Since there is an extended black-box construction of R from Q, by Definition
27 it means that there is an extension Q̃ of Q such that there is a fully black-box con-
struction of R from Q̃. On the other hand, again by Definition 27, for any extension of
Q, and in particular Q̃, there is a fully black-box construction of Q̃ from some exten-
sion P̃ of P . Therefore, since fully-black-box constructions are transitive under nested
compositions, there is a fully construction ofR from P̃ which (by Definition 27) means
that we have an extended black-box construction ofR from P .

Getting more separations. A corollary of Lemma 29 is that if one proves: (a) There is
no extended black-box construction ofR from P and (b) there is an extended black-box
construction of any extended version R̃ (of R) from Q, then these two together imply
that: there is no extended black-box construction of Q from P . We will use this trick
to derive our impossibility results from a core of two separations regarding variants
of witness encryption. For example, in the full version of the paper we will use this
lemma to derive separations between attribute based encryption and IO in the extended
black-box model.
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4 Separating IO from Instance Revealing Witness Encryption

In this section, we formally prove our first main separation theorem which states that
there is no black-box constructions of IO from WE (under believable assumptions). It
equivalently means that there will be no fully black-box construction of indistinguisha-
bility obfuscation from extended witness encryption scheme.

Theorem 30. Assume the existence of one-way functions and that NP 6⊆ coAM. Then
there exists no extended black-box construction of indistinguishability obfuscation (IO)
from witness encryption (WE).

In fact, we prove a stronger result by showing a separation of IO from a stronger
(extended) version of witness encryption, which we call extractable instance-revealing
witness encryption. Looking ahead, we require the extractability property to construct
(extended) attribute-based encryption (ABE) from this form of witness encryption. By
using Lemma 29, this would also imply a separation of IO from extended ABE.

Definition 31 (Extended Extractable Instance-Revealing Witness Encryption (ex-
EIRWE)). Let V be a universal circuit-evaluator Turing machine as defined in Defini-
tion 26. For any given security parameter κ, an extended extractable instance-revealing
witness encryption scheme for V consists of three PPT algorithmsP = (Enc,Rev,Dec)
defined as follows:

– Enc(a,m, 1κ) : given an instance a ∈ {0, 1}∗ and a message m ∈ {0, 1}∗, and
security parameter κ (and randomness as needed) it outputs c ∈ {0, 1}∗.

– Rev(c) : given ciphertext c outputs a ∈ {0, 1}∗ ∪ {⊥}.
– Dec(w, c) : given ciphertext c and “witness” string w, it outputs a message m′ ∈
{0, 1}∗.

An extended extractable instance-revealing witness encryption scheme satisfies the fol-
lowing completeness and security properties:

– Decryption Correctness: For any security parameter κ, any (w, a) such that VP (w, a) =
1, and any m it holds that

Pr
Enc,Dec

[Dec(w,Enc(a,m, 1κ)) = m] = 1

– Instance-Revealing Correctness: For any security parameter κ and any (a,m) it
holds that:

Pr
Enc,Rev

[Rev(Enc(a,m, 1κ)) = a] = 1

Furthermore, for any c for which there is no a,m, κ such that Enc(a,m, 1κ) = c it
holds that Rev(c) = ⊥.

– Extractability: For any PPT adversary A and polynomial p1(.), there exists a PPT
(black-box) straight-line extractor E and a polynomial function p2(.) such that
the following holds. For any security parameter κ, for all a of the same and any
m0 6= m1 of the same length |m0| = |m1|, if:

Pr
[
A(1κ, c) = b | b $←− {0, 1}, c← Enc(a,mb, 1

κ)
]
≥ 1

2
+ p1(κ)
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Then:
Pr[EA(a) = w ∧ VP (w, a) = 1] ≥ p2(κ)

Given the above definition of ex-EIRWE, we prove the following theorem, which
states that there is no fully black-box construction IO from extended EIRWE.

Theorem 32. Assume the existence of one-way functions and that NP 6⊆ coAM. Then
there exists no extended black-box construction of indistinguishability obfuscation from
extractable instance-revealing witness encryption for any PPT verification algorithm V.

Since extended EIRWE implies witness encryption as defined in Definition 4, The-
orem 30 trivially follows from Theorem 32, and thus for the remainder of this section
we will focus on proving Theorem 32.

4.1 Overview of Proof Techniques

To prove Theorem 32, we will apply Lemma 19 for the idealized extended IRWE model
Θ (formally defined in Section 4.2) to prove that there is no black-box construction of
IO from any primitiveP that can be oracle-fixed constructed (see Definition 10) fromΘ.
In particular, we will do so for P that is the extended EIRWE primitive. Our task is thus
twofold: (1) to prove that P can be oracle-fixed constructed from Θ and (2) to show
a simulatable compilation procedure that compiles out Θ from any IO construction.
The first task is proven in Section 4.3 and the second task is proven in Section 4.4. By
Lemma 19, this would imply the separation result of IO from P and prove Theorem 32.

Our oracle, which is more formally defined in Section 4.2, resembles an idealized
version of a witness encryption scheme, which makes the construction of extended
EIRWE straightforward. As a result, the main challenge lies in showing a simulatable
compilation procedure for IO that satisfies Definition 16 in this idealized model.

4.2 The Ideal Model

In this section, we define the distribution of our ideal randomized extended oracle.

Definition 33 (Random Instance-revealing Witness Encryption Oracle). Let V be a
universal circuit-evaluator Turing machine (as defined in Definition 26) that takes as in-
put (w, x) where x = (a,m) ∈ {0, 1}n and outputs b ∈ {0, 1}. We define the following
random instance-revealing witness encryption (rIRWE) oracle Θ = (Enc,Rev,DecV)
as follows. We specify the sub-oracle Θn whose inputs are parameterized by n, and the
actual oracle will be Θ = {Θn}n∈N.

– Enc: {0, 1}n 7→ {0, 1}2n is a random injective function.
– Rev: {0, 1}2n 7→ {0, 1}∗∪⊥ is a function that, given an input c ∈ {0, 1}2n, would

output the corresponding attribute a for which Enc(a,m) = c. If there is no such
attribute then it outputs ⊥ instead.

– DecV : {0, 1}s 7→ {0, 1}n ∪ {⊥}: Given (w, c) ∈ {0, 1}s, Dec(w, c) allows us to
decrypt the ciphertext c and get x = (a,m) as long as the predicate test is satisfied
on (w, a). More formally, do as follow:

19



1. If @ x such that Enc(x) = c, output ⊥. Otherwise, continue to the next step.
2. Find x such that Enc(x) = c.
3. If VΘ(w, a) = 0 output ⊥. Otherwise, output x = (a,m).

We define a query-answer pair resulting from query q to subroutine T ∈ {Enc,Dec,Rev}
with some answer β as (q 7→ β)T . The oracle Θ provides the subroutines for all in-
puts lengths but, for simplicity, and when n is clear from the context, we use Θ =
(Enc,Rev,DecV) to refer to Θn for a fixed n.

Remark 34. We note that since V is a universal circuit-evaluator, the number of queries
that it will ask (when we recursively unwrap all internal queries to Dec) is at most a
polynomial. This is due to the fact that the sizes of the queries that V asks will be strictly
less than the size of the inputs to V. In that respect, we say that V has the property of
being extended poly-query.

4.3 Witness Encryption exists relative toΘ

In this section, we show how to construct a semantically-secure extended extractable
IRWE for universal circuit-evaluator V relative to Θ = (Enc,Rev,DecV). More for-
mally, we will prove the following lemma.

Lemma 35. There exists a correct and subexponentially-secure oracle-fixed implemen-
tation (Definition 10) of extended extractable instance-revealing witness encryption in
the ideal Θ oracle model.

We will in fact show how to construct a primitive (in the Θ oracle model) that is
simpler to prove the existence of and for which we argue that it is sufficient to get
the desired primitive of EIRWE. We give the definition of that primitive followed by a
construction.

Definition 36 (Extended Extractable One-way Witness Encryption (ex-EOWE)).
Let V be a universal circuit-evaluator Turing machine (as defined in Definition 26)
that takes an instance a and witness w and outputs a bit b ∈ {0, 1}. For any given
security parameter κ, an extended extractable one-way witness encryption scheme for
V consists of the following PPT algorithms P = (Enc,Rev,DecV) defined as follows:

– Enc(a,m, 1κ) : given an instance a ∈ {0, 1}∗, message m ∈ {0, 1}∗, and security
parameter κ (and randomness as needed) it outputs c ∈ {0, 1}∗.

– Rev(c) : given ciphertext c returns the underlying attribute a ∈ {0, 1}∗.
– DecV(w, c) : given ciphertext c and “witness” string w, it outputs a message m′ ∈
{0, 1}∗.

An extended extractable one-way witness encryption scheme satisfies the same cor-
rectness properties as Definition 31 but the extractability property is replaced with the
following:
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– Extractable Inversion: For any PPT adversaryA and polynomial p1(.), there exists
a PPT (black-box) straight-line extractor E and a polynomial function p2(.) such
that the following holds. For any security parameter κ, k = poly(κ), and for all a,
if:

Pr
[
A(1κ, c) = m | m $←− {0, 1}k, c← Enc(a,m, 1κ)

]
≥ p1(κ)

Then:
Pr[EA(a) = w ∧ VP (w, a) = 1] ≥ p2(κ)

Construction 37 (Extended Extractable One-way Witness Encryption) For any se-
curity parameter κ and oracle Θ sampled according to Definition 33, we will imple-
ment an extended EOWE scheme P for the universal circuit-evaluator V using Θ =
(Enc,DecV) as follows:

– WEnc(a,m, 1κ) : Given security parameter 1κ, a ∈ {0, 1}∗, and message m ∈
{0, 1}n/2 where n = 2max(|a|, κ), output Enc(x) where x = (a,m).

– WDec(w, c) : Given witness w and ciphertext c, let x′ = DecV(w, c). If x′ 6= ⊥,
parse as x′ = (a′,m′) and output m′. Otherwise, output ⊥.

Remark 38 (From one-wayness to Indistinguishability.). We note that the primitive ex-
EOWE, which has one-way security, can be used to build an ex-EIRWE, which is
indistinguishability-based, through a simple application of the Goldreich-Levin tho-
erem [40]. Namely, to encrypt a one-bit message b under some attribute a, we would
output the ciphertext c = (Enc(a, r1), r2, 〈r1, r2〉 ⊕ b) where r1, r2 are randomly sam-
pled and 〈r1, r2〉 is the hardcore bit. To decrypt a ciphertext c = (y1, r2, y3) we would
run r1 = Dec(w, y1), find the hardcore bit p = 〈r1, r2〉 then output b = p ⊕ y3. We
obtain the desired indistinguishability security since, by the hardcore-bit security of the
original scheme, we have (Enc(a, r1), r2, 〈r1, r2〉⊕ 0) ≈ (Enc(a, r1), r2, 〈r1, r2〉⊕ 1)
for any fixed a.

Lemma 39. Construction 37 is a correct and subexponentially-secure oracle-fixed im-
plementation (Definition 10) of extended extractable one-way witness encryption in the
ideal Θ oracle model.

Proof. To prove the security of this construction, we will show that if there exists an
adversaryA against scheme P (in theΘ oracle model) that can invert an encryption of a
random message with non-negligible advantage then there exists a (fixed) deterministic
straight-line (non-rewinding) extractor E with access to Θ = (Enc,Rev,DecV) that
can find the witness for the underlying instance of the challenge ciphertext.

Suppose A is an adversary in the inversion game with success probability ε. Then
the extractor E would works as follows: given a as input and acting as the challenger

for adversary A, it chooses m $←− {0, 1}k uniformly at random then runs AΘ(1κ, c∗)
where c∗ ← WEnc(a,m, 1κ) is the challenge. Queries issued by A are handled by E
as follows:

– To answer any query Enc(x) asked by A, it forwards the query to the oracle Θ and
returns some answer c.
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– To answer any query Rev(c) asked by A, it forwards the query to the oracle Θ and
returns some answer a.

– To answer any query DecV(w, c) asked by A, the extractor first issues a query
Rev(c) to get some answer a. If a 6= ⊥, it would execute VΘ(w, a), forwarding
queries asked by V to Θ similar to how it does for A. Finally, it forwards the query
Dec(w, c) to Θ to get some answer x. If a = ⊥, it returns ⊥ to A otherwise it
returns x.

While handling the queries made by A, if a decryption query DecV(w, c
∗) for the chal-

lenge ciphertext is issued by A, the extractor will pass this query to Θ, and if the result
of the decryption is x 6= ⊥ then the extractor will halt execution and output w as the
witness for instance x. Otherwise, if after completing the execution ofA, no such query
was asked then the extractor outputs ⊥. We prove the following lemma.

Lemma 40. For any PPT adversary A, instances a, if there exists a non-negligible
function ε(.) such that:

Pr
[
AΘ(1κ, c) = m | m $←− {0, 1}k, c←WEnc(a,m, 1κ)

]
≥ ε(κ) (1)

Then there exists a PPT straight-line extractor E such that:

Pr
[
EΘ,A(a) = w ∧ VΘ(w, a) = 1

]
≥ ε(κ)− negl(κ) (2)

Proof. LetA be an adversary satisfying Equation (1) above and let AdvWin be the event
that A succeeds in the inversion game. Furthermore, let ExtWin be the event that the
extractor succeeds in extracting a witness (as in Equation (2) above). Observe that:

Pr
Θ,m

[ExtWin] ≥ Pr
Θ,m

[ExtWin ∧ AdvWin]

= 1− Pr
Θ,m

[ExtWin ∨ AdvWin]

= 1− Pr
Θ,m

[ExtWin ∧ AdvWin]− Pr
Θ,m

[AdvWin]

Since Pr[AdvWin] ≥ ε for some non-negligible function ε, it suffices to show that
Pr[ExtWin ∧ AdvWin] is negligible. Note that, by our construction of extractor E, this
event is equivalent to saying that the adversary succeeds in the inversion game but never
asks a query of the form DecV(w, c

∗) for which the answer is x 6= ⊥ and so the extractor
fails to recover the witness. For simplicity of notation define Win := ExtWin∧AdvWin.

We will show that, with overwhelming probability over the choice of oracle Θ, the
probability of Win happening is negligible. That is, we will prove the following claim:

Claim. For any negligible function δ, PrΘ
[
Prm[Win] ≥

√
δ
]
≤ negl(κ)

Proof. Define Bad to be the event that A asks (directly or indirectly) a query of the
form DecV(w, c

′) for some c′ 6= c∗ for which it has not asked Enc(x) = c previously.
We have that:

Pr
Θ,m

[Win] ≤ Pr
Θ,m

[Win ∧ Bad] + Pr
Θ,m

[Bad]
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The probability of Bad over the randomness of Θ is at most 1/2n as it is the event that
A hits an image of a sparse random injective function without asking the function on
the preimage beforehand. Thus, PrΘ,m[Bad] ≤ 1/2n.

It remains to show that PrΘ,m[Win ∧ Bad] is also negligible. We list all possible
queries that A could ask and argue that these queries do not help A in any way without
also forcing the extractor to win as well. Specifically, we show that for any such A
that satisfies the event (Win ∧ Bad), there exists another adversary Â that depends
on A and also satisfies the same event but does not ask any decryption queries (only
encryption queries). This would then reduce to the standard case of inverting a random
injective function, which is known to be hard. We define the adversary Â as follows.
Upon executing A, it handles the queries issued by A as follows:

– If A asks a query of the form Enc(x) then Â forwards the query to Θ to get the
answer.

– If A asks a query of the form Rev(c) then since Bad does not happen, it must be
the case that c = Enc(a,m) is an encryption that was previously asked by A and
therefore Â returns a as the answer.

– If A asks a query of the form Dec(w, c∗) then w must be a string for which
V(w, a∗) = 0 or otherwise the extractor wins, which contradicts that ExtWin hap-
pens. If that is the case, since w is not a witness, Â would return ⊥ to A after
running VΘ(w, a∗) and answering its queries appropriately.

– If A asks a query of the form Dec(w, c′) for some c′ 6= c∗ then, since Bad does not
happen, it must be the case that A has asked a (direct or indirect) visible encryption
query Enc(x′) = c′. Therefore, Â would have observed this encryption query and
can therefore run VΘ(w, a′) and return the appropriate answer (x or ⊥) depending
on the answer of V.

Given that Â perfectly emulates A’s view, the only possibility that A could win the
inversion game is by asking Enc(x∗) = c∗ and hitting the challenge ciphertext, which
is a negligible probability over the randomness of the oracle. By a standard averaging
argument, we find that since PrΘ,m[Win ∧ Bad] ≤ δ(κ) for some negligible δ then
PrΘ[Prm[Win ∧ Bad] ≤

√
δ] ≥ 1−

√
δ, which yields the result.

To conclude the proof of Lemma 40, we can see that the probability that the ex-
tractor wins is given by Pr[ExtWin] ≥ 1 − Pr[ExtWin ∧ AdvWin] − Pr[AdvWin] ≥
ε(κ)− negl(κ) where ε is the non-negligible advantage of the adversary A.

It is clear that Construction 37 is a correct implementation. Furthermore, by Lemma
40, it satisfies the extractability property. Thus, this concludes the proof of Lemma 39.

Proof (of Lemma 35). The existence of extractable instance-revealing witness encryp-
tion in the Θ oracle model follows from Lemma 39 and Remark 38.

4.4 Compiling outΘ from IO

In this section, we show a simulatable compiler for compiling out Θ. We adapt the ap-
proach outlined in Section 4.1 to the extended ideal IRWE oracleΘ = (Enc,Rev,DecV)
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while making use of Lemma 18, which allows us to compile out Θ in two phases: we
first compile out part of Θ to get an approximately-correct obfuscator ÔR in the ran-
dom oracle model (that produces an obfuscation B̂R in the RO-model), and then use
the previous result of [21] to compile out the random oracle R and get an obfuscator O′

in the plain-model. Since we are applying this lemma only a constant number of times
(in fact, just twice), security should still be preserved. Specifically, we will prove the
following claim:

Lemma 41. Let R v Θ be a random oracle where “v” denotes a sub-model relation-
ship (see Definition 15). Then the following holds:

– For any IO in the Θ ideal model, there exists a simulatable compiler with correct-
ness error ε < 1/200 for it that outputs a new obfuscator in the random oracle R
model.

– [21] For any IO in the random oracle R model, there exists a simulatable compiler
with correctness error ε < 1/200 for it that outputs a new obfuscator in the plain
model.

Proof. The second part of Lemma 41 follows directly by [21], and thus we focus on
proving the first part of the claim. Before we start describing the compilation process,
we present the following definition of canonical executions that is a property of algo-
rithms in this ideal model and dependent on the oracle being removed.

Definition 42 (Canonical executions). Web define an oracle algorithm AΘ relative to
rIRWE to be in canonical form if before asking any DecV(w, c) query, A would first
get a ← Rev(c) then run VΘ(w, a) on its own, making sure to answer any queries
of V using Θ. Furthermore, after asking a query DecV(w, c) for which the returned
answer is some message m 6= ⊥, it would ask Enc(x) where x = (a,m). Note that
any oracle algorithm A can be easily modified into a canonical form by increasing its
query complexity by at most a polynomial factor (since V is an extended poly-query
algorithm).

Definition 43 (Query Types). For any (not necessarily canonical) oracle algorithm A
with access to a rIRWE oracle Θ, we call the queries that are asked by A to Θ as direct
queries and those queries that are asked by VΘ due to a call to Dec as indirect queries.
Furthermore, we say that a query is visible to A if this query was issued by A and thus
it knows the answer that is returned by Θ. Conversely, we say a query is hidden from
A if it is an indirect query that was not explicitly issued by A (for example, A would
have asked a DecV query which prompted VΘ to ask its own queries and the answers
returned to V will not be visible to A). Note that, once we canonicalize A, all indirect
queries will be made visible since, by Definition 42, A will run VΘ before asking DecV
queries and the query-answer pairs generated by V will be revealed to A.

We now proceed to present the construction of the random-oracle model obfuscator
that, given an obfuscator in the Θ model, would compile out and emulate queries to
Dec and Rev while forwarding any Enc queries to R. Throughout this process, we
assume that the obfuscators and the obfuscated circuits are all canonicalized according
to Definition 42.
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Algorithm 1: EmulateCall
Input: Query-answer set Q, query q
Oracle: Random Oracle R
Output: ρq a query-answer pair containing the answer of query q
Begin:
if q is a query of type Enc(x) then

Set ρq = (x 7→ R(x))Enc

end
if q is a query of the form Rev(c) then

if ∃ (x 7→ c)Enc ∈ Q where x = (a,m) then
Set ρq = (c 7→ a)Rev

else
Set ρq = (c 7→ ⊥)Rev

end
end
if q is a query of the form DecV(w, c) then

if ∃ (x 7→ c)Enc ∈ Q then
Initialize QV = ∅ and emulate b← VΘ(w, x)
for each query qV asked by V do

ρV ← EmulateCallR(Q ∪QV, qV)
QV = QV ∪ ρV

end
if b = 1 then

Set ρq = ((w, c) 7→ x)Dec

else
Set ρq = ((w, c) 7→ ⊥)Dec

end
else

Set ρq = ((w, c) 7→ ⊥)Dec

end
end
Return ρq

The new obfuscator ÔR in the random oracle model Let R = {Rn}n∈N be the
(injective) random oracle where Rn : {0, 1}n → {0, 1}2n. Given a δ-approximate ob-
fuscatorO = (iO,Ev) in the rIRWE oracle model, we construct an (δ+ε)-approximate
obfuscator Ô = (îO, Êv) in the random oracle model.

Subroutine îO
R
(C):

1. Emulation phase: Emulate iOΘ(C). Let TO be the transcript of this phase and
initialize QO := Q(TO) = ∅. For every query q asked by iOΘ(C), call ρq ←
EmulateCallR(QO, q) and add ρq to QO.
Note that, since iO is a canonical algorithm, there are no hidden queries resulting
from queries asked by V (via Dec queries) since we will always run VΘ before
asking/emulating a Dec query.
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2. Learning phase: Set QB = ∅ to be the set of query-answer pairs learned during
this phase. Set m = 2`O/ε where `O ≤ |iO| represents the number of queries

asked by iO. Choose t $←− [m] uniformly at random then for i = {1, ..., t}:
– Choose zi

$←− {0, 1}|C| uniformly at random
– Run EvΘ(B, zi). For every query q asked by EvΘ(B, zi), call and retrieve
ρq ← EmulateCallR(QO ∪QB , q) then add ρq to QB .

Similar to Step 1, since Ev is a canonical algorithm and Enc is a injective function,
with overwhelming probability, there will be no hidden queries as a result of asking
any Dec queries.

3. The output of the RO model obfuscation algorithm îO
R
(C) will be B̂ = (B,QB).

Subroutine Êv
R
(B̂, z): To evaluate B̂ = (B,QB) on a new random input z we sim-

ply emulate EvΘ(B, z). For every query q asked by EvΘ(B, z), run and set ρq =
EmulateCallR(QB , q) then add ρq to QB .

The running time of îO. We note that the running time of the new obfuscator îO
remains polynomial time since we are emulating the original obfuscation once followed
by a polynomial number m of learning iterations. Furthermore, while we are indeed
working with an extended oracle where the PPT V can have oracle gates to subroutines
of Θ, we emphasize that since V, which we are executing during EmulateCall, is a
universal circuit evaluator, its effective running time remains to be a strict polynomial
in the size of V and so the issue of exponential or infinite recursive calls is non-existent.
Proving Approximate Correctness. Consider two separate experiments (real and ideal)
that construct the random oracle model obfuscator exactly as described above but differ

when evaluating B̂. Specifically, in the real experiment, Êv
R
(B̂, z) emulatesEvΘ(B, z)

on a random input z and answers any queries by running QB , whereas in the ideal ex-

periment, we execute Êv
R
(B̂, z) and answer the queries of EvΘ(B, z) using the actual

oracle Θ instead. In essence, in the real experiment, we can think of the execution as
EvΘ̂(B, z) where Θ̂ is the oracle simulated by using QB and oracle R. We will com-
pare the real experiment with the ideal experiment and show that the statistical distance
between these two executions is at most ε. In order to achieve this, we will identify the
events that differentiate between the executions EvΘ(B, z) and EvΘ̂(B, z).

Let q be a new query that is being asked by EvΘ̂(B, z) and handled by calling
EmulateCallR(QB , q). The following are the cases that should be handled:

1. If q is a query of type Enc(x), then the answer to q will be distributed the same in
both experiments.

2. If q is a query of type Dec(w, c) or Rev(c) whose answer is determined by QB
in the real experiment then it is also determined by QO ∪ QB ⊇ QB in the ideal
experiment and the answers are distributed the same.

3. If q is of type Dec(w, c) or Rev(c) that is not determined by QO ∪ QB in the
ideal experiment then this means that we are attempting to decrypt a ciphertext for
which we have not encrypted before and we will therefore answer it with ⊥ with
overwhelming probability. In that case, q will also not be determined by QB in the
real experiment and we will answer it with ⊥.
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4. Bad Event 1: Suppose q is of type Dec(w, c) that is not determined by QB in
the real experiment and yet is determined by QO ∪ QB in the ideal experiment
to be some answer x 6= ⊥. This implies that the query-answer pair (x 7→ c)Enc

is in QO \ QB . That is, we are for the first time decrypting a ciphertext that was
encrypted in Step 1 because we failed to learn the underlying x for ciphertext c
during the learning phase of Step 2. In that case, in the real experiment, the answer
would be ⊥ since we do not know the corresponding message x whereas in the
ideal experiment it would use the correct answer from QO ∪ QB and output x.
However, we will show that this event is unlikely due to the learning procedure.

5. Bad Event 2: Suppose q is of type Rev(c) that is not determined by QB in the real
experiment and yet is determined byQO∪QB in the ideal experiment. This implies
that the query-answer pair ((a,m) 7→ c)Enc is in QO \ QB . That is, we are for
the first time attempting to reveal the attribute of a ciphertext that was encrypted in
Step 1 because we failed to learn the answer of this reveal query during the learning
phase of Step 2. In that case, in the real experiment, the answer would be ⊥ since
we do not know the corresponding attribute a whereas in the ideal experiment it
would use the correct answer from QO ∪QB and output a. However, we will show
that this event is unlikely due to the learning procedure.

For input x, letE(x) be the event that Case 4 or 5 happen. Assuming that eventE(x)
does not happen, both experiments will proceed identically the same and the output
distributions of EvΘ(B, x) and EvΘ̂(B, x) will be statistically close. More formally,
the probability of correctness for îO is:

Pr
x
[EvΘ̂(B, x) 6= C(x)] = Pr

x
[EvΘ̂(B, x) 6= C(x) ∧ ¬E(x)]

+ Pr
x
[EvΘ̂(B, x) 6= C(x) ∧ E(x)]

≤ Pr
x
[EvΘ̂(B, x) 6= C(x) ∧ ¬E(x)] + Pr

x
[E(x)]

By the approximate functionality of iO, we have that:

Pr
x
[iOΘ(C)(x) 6= C(x)] = Pr

x
[EvΘ(B, x) 6= C(x)] ≤ δ(n)

Therefore,

Pr
x
[EvΘ̂(B, x) 6= C(x) ∧ ¬E(x)] = Pr

x
[EvΘ(B, x) 6= C(x) ∧ ¬E(x)] ≤ δ

We are thus left to show that Pr[E(x)] ≤ ε. Since both experiments proceed the same
up until E happens, the probability of E happening is the same in both worlds and we
will thus choose to bound this bad event in the ideal world.

Claim. Prx[E(x)] ≤ ε.

Proof. For all i ∈ [t], let Q′Bi
= QBi ∩ QO be the set of query-answer pairs gener-

ated by the i’th evaluation EvΘ(B, zi) during the learning phase (Step 2) and are also
generated during the obfuscation emulation phase (Step 1). In particular, Q′Bi

would
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contain the query-answer pairs ((a,m) 7→ c)Enc for encryptions that were generated
by the obfuscation and later discovered during the learning phase. Note that, since the
maximum number of learning iterations m > `O and Q′Bi

⊆ Q′Bi+1
, the number of

learning iterations that would increase the size of the set of learned obfuscation queries
is at most 2`O since there are at most `O obfuscation ciphertexts that can be fully dis-
covered during the learning phase and at most `O obfuscation ciphertexts that can be
partially discovered (just finding out the underlying attribute a) via Rev queries during
the learning phase.

We say t $←− [m] is bad if it is the case thatQ′Bt
6= Q′Bt+1

(i.e. t is an index of a learn-
ing iteration that increases the size of the learned obfuscation queries). This would im-
ply that after t learning iterations in the ideal world, the final evaluation Q′

B̂
:= Q′Bt+1

would contain a new unlearned query-answer pair that was in QO. Thus, given that
m = 2`O/ε, the probability (over the selection of t) that t is bad is at most 2`O/m < ε.

Proving Security. To show that the resulting obfuscator is secure, it suffices to show
that the compilation process represented as the new obfuscator’s construction is simu-
latable. We show a simulator S (with access to Θ) that works as follows: given an ob-
fuscated circuit B in the Θ ideal model, it runs the learning procedure as shown in Step
2 of the new obfuscator îO to learn the heavy queries QB then outputs B̂ = (B,QB).
Note that this distribution is statistically close to the output of the real execution of îO
and, therefore, security follows.
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