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Abstract. Sampling integers with Gaussian distribution is a fundamen-
tal problem that arises in almost every application of lattice cryptogra-
phy, and it can be both time consuming and challenging to implement.
Most previous work has focused on the optimization and implementa-
tion of integer Gaussian sampling in the context of specific applications,
with fixed sets of parameters. We present new algorithms for discrete
Gaussian sampling that are both generic (application independent), effi-
cient, and more easily implemented in constant time without incurring a
substantial slow-down, making them more resilient to side-channel (e.g.,
timing) attacks. As an additional contribution, we present new analytical
techniques that can be used to simplify the precision/security evaluation
of floating point cryptographic algorithms, and an experimental compar-
ison of our algorithms with previous algorithms from the literature.

1 Introduction

Lattice-based cryptography has gained much popularity in recent years, not only
within the cryptographic community, but also in the area of computer security
in both research and industry, for at least two reasons: first, many classical
cryptographic primitives can be realized very efficiently using lattices, provid-
ing strong security guarantees, including conjectured security against quantum
computers [14, 4, 40]. Second, lattices allow to build advanced schemes that go
beyond classical public key encryption, like fully homomorphic encryption [9,
21, 16, 8], identity based encryption [2, 1], attribute based encryption [6, 7], some
forms of multilinear maps [20, 26] and even some forms of program obfuscation
[10]. Discrete Gaussian distributions (i.e., normal Gaussian distributions on the
real line, but restricted to take integer values), play a fundamental role in lattice
cryptography: Gaussian sampling is at the core of security proofs (from worst-
case lattice problems) supporting both the conjectured hardness of the Learning
With Errors (LWE) problem [42, 43, 27, 37], and the tightest reductions for the
Short Integer Solution (SIS) problem [31, 30], which provide a theoretical foun-
dation to the field. The use of Gaussian distributions is especially important
in the context of the most advanced cryptographic applications of lattices that
make use of preimage sampling [22, 38, 29], as the use of other distributions can
easily leak information about secret keys and open cryptographic primitives to
devastating attacks [35]. Even in the technically simpler context of LWE noise



generation, where Gaussian distributions can be safely replaced by more easily
samplable (e.g., uniform) distributions (see e.g. [12, 30]), this requires a notice-
able increase in the noise level, resulting in substantial performance degradation,
and still points to discrete Gaussian distributions as the most desirable choice
to achieve good performance/security trade-offs. In summary, despite continued
theoretical efforts and practical attempts to replace Gaussian distributions with
more implementation friendly ones, and a few isolated examples where discrete
Gaussians can be avoided altogether with almost no penalty [4], the cryptography
research community has been converging to accept discrete Gaussian sampling
as one of the fundamental building blocks of lattice cryptography.

Gaussian sampling aside, lattice cryptography can be very attractive from
an implementation standpoint, requiring only simple arithmetic operations on
small integer numbers (easily fitting a computer word on commodity micro-
processors), and offering ample opportunities for parallelization at the register
and processor level, both in hardware and in software implementations. In this
respect, discrete Gaussian sampling can often be the main hurdle in implementa-
tion/optimization efforts, and a serious bottleneck to achieve good performance
in practice. As many primitives find their way into practical implementations
[3, 15] and lattice cryptography is considered for possible standardization as a
post-quantum security solution [36], the practical aspects of discrete Gaussian
sampling (including efficiency, time-memory trade-offs, side-channel resistance,
etc.) have started to attract the attention of the research community, e.g., see
[11, 44, 14, 13, 34, 18, 46, 17]. However, most of these works address the problem
of Gaussian sampling in the context of a specific application, and for specific
values of the parameters and settings that come to define the discrete Gaussian
sampling problem: the standard deviation of the Gaussian distribution, the cen-
ter (mean) of the Gaussian, how these values depend on the targeted security
level, and whether the values are fixed once and for all, or during key generation
time, or even on a sample-by-sample basis. So, while implementation efforts have
clearly demonstrated that (if properly specialized and optimized) discrete Gaus-
sian sampling can be used in practice, it is unclear to what extent optimized
solutions can be ported from one application to another, and even when this is
possible, achieving good performance still seems to require a disproportionate
amount of effort. Finally, achieving security against side-channel (e.g., timing)
attacks has been recognized as an important problem [23, 39, 45], but developing
constant-time implementations of Gaussian sampling without incurring major
performance penalties is still a largely unsolved problem.

Our Contribution. We develop of a new discrete Gaussian sampling algorithm
over the integers with a unique set of desirable properties that make it very
attractive in cryptographic applications. The new algorithm

– can be used to sample efficiently from discrete Gaussian distributions with
arbitrary and varying parameters (standard deviation and center), enabling
its use in a wide range of applications.



– provides a time-memory trade-off, the first of its kind for sampling with
varying parameters, allowing to fine-tune the performance on different plat-
forms.

– can be split into an offline and online phase, where the offline phase can be
carried out even before knowing the parameters of the requested distribution.
Moreover, both phases can be implemented in constant time with only minor
performance degradation, providing resilience against timing side-channel
attacks.

– can be parallelized and optimized, both in hardware and software, in a largely
application-independent manner.

We demonstrate the efficiency of the new algorithm both through a rigorous
theoretical analysis, and practical experimentation with a prototype implemen-
tation. Our experimental results show that our new algorithms achieve generality
and flexibility without sacrificing performance, matching, or even beating the on-
line phase of previous (specialized) algorithms. See next paragraph and Sect. 6.6
for details.

A recurring problem in the analysis of Gaussian sampling (or other probabilis-
tic algorithms involving the use of real numbers at some level), is to accurately
account for how the use of floating point approximations affects performance
and security. This is often a critical issue in practice, as using standard (53 bit)
double precision floating point numbers offers major efficiency advantages over
the use of arbitrary precision arithmetic libraries, but can have serious security
implications when targeting 80 bit or 100 bit security levels. As an additional
contribution, we develop new analytical tools for the accuracy/security analy-
sis of floating point algorithms, and exemplify their use in the analysis of our
new Gaussian sampling algorithm. More specifically, we propose a new notion
of closeness between probability distributions (which we call the “max-log” dis-
tance), that combines the simplicity and ease of use of statistical distance (most
commonly used in cryptography), with the effectiveness of Rényi and KL diver-
gences recently used in cryptography to obtain sharp security estimates [40, 5,
41]. The new measure is closely related to the standard notion of relative er-
ror and the Rényi divergence of order ∞, but it is easier to define1 and it is
also a metric, i.e., it enjoys the (symmetric and triangle inequality) properties
that make the statistical distance a convenient tool for the analysis of complex
algorithms. Using this new metric, we show that our new algorithms can be im-
plemented using standard (extended) double precision floating point arithmetic,
and still provide a more than adequate (100 bits or higher) level of security.

Finally, we also evaluate different algorithms for discrete Gaussian sampling
experimentally in a common setting. While previous surveys [19] and experi-
mental studies [11, 24] exist, they either do not provide a fair comparison or
are incomplete. Somewhat surprisingly, an algorithm [25] that has gone mostly
unnoticed in the cryptographic community so far, emerged as very competitive

1 The distance between two discrete distributions P and Q (with the same support
S), is simply the maximum (over x ∈ S) of |logP(x)− logQ(x)|.



solution in our study, within the class of variable-time algorithms that can be
used when timing attacks are not a concern.

Techniques. The main idea behind our algorithm is to reduce the general discrete
Gaussian sampling problem (for arbitrary standard deviation s and center c),
to the generation (and recombination) of a relatively small number of samples
coming from a Gaussian distribution for a fixed and rather small value of s.
Reducing the general problem to discrete Gaussian sampling for a fixed small
value of s has several advantages:

– Gaussian sampling for fixed parameters can be performed more efficiently
than general Gaussian sampling because the probability tables or tree traver-
sal data structures required by the basic sampler can be precomputed. More-
over, as the standard deviation s of the basic sampler is small, these tables
or data structures only require a very modest amount of memory.

– Since the parameters of the basic sampler are fixed and do not depend on
the application input, the basic samples can be generated offline. The on-
line (recombination) phase of the algorithm is very fast, as it only needs to
combine a small number of basic samples.

– The online (recombination) phase of the algorithm is easily implemented in
constant time, as the number of operations it performs only depends on the
application parameters, and not on the actual input values or randomness.
The offline phase can also be made constant time with only a minor perfor-
mance penalty, observing that basic samples are always generated and used
in batches. So, instead of requiring the generation of each basic sample to
take a fixed amount of time, one can look at the time to generate a batch of
samples in the aggregate. Since the basic samples are totally independent,
their aggregate generation time is very sharply concentrated around the ex-
pectation, and can be made constant (except with negligible probability)
simply by adding a small time penalty to the generation of the whole batch.

– The parameters of the basic sampler are fixed once and for all, and do not
depend on the parameters of online phase and final application. This opens
up the possibility of a hybrid hardware/software implementation, where the
basic sampler is optimized and implemented once and for all, perhaps in
hardware, and making efficient use of parallelism. The fast recombination
phase is quickly executed in software by combining the samples generated
by the hardware module, based on the application parameters.

The method we use to combine the basic samples extends and generalizes
techniques that have been used in the implementation of Gaussian samplers
before. The work most closely related to ours is [40], which generates Gaussian
samples with a relatively large standard deviation s by first computing two
samples x1, x2 with smaller standard deviation ≈

√
s, and then computing kx1 +

x2, for k ≈
√
s. We improve on this basic idea in several dimensions:

– First, we use the idea recursively, obtaining x1 and x2 also by combining
multiple samples with even smaller standard deviation. While recursion is



a rather natural and simple idea, and it was already mentioned in [40], the
realization that the performance benefits of using basic samples with even
smaller standard deviation more than compensate the overhead associated
to computing several samples is new.

– Second, we employ a convolution theorem from [30] to combine the samples
(at each level of the recursion). This allows for greater flexibility in the
choice of parameters, for example the number of samples to combine at each
level or the choice of coefficients. This can be important in the context of
side-channel attacks as demonstrated in [39].

– Finally, we generalize the algorithm to sample according to Gaussian distri-
butions with arbitrary center as follows. Assume the center c has k binary
fractional digits, i.e., c ∈ Z/2k. Then, we can use a first integer Gaussian
sample (scaled by a factor 2−k) to randomly round c to a center in Z/2k−1.
Then, we use a second sample (scaled by 2−(k−1)) to round the new center
to a coarser set Z/2k−2, and so on for k times, until we obtain a sample in
Z as desired. Since the final output is obtained by combining a number of
Gaussian samples together, the result still follows a discrete Gaussian distri-
bution. Moreover, since the scaling factors grow geometrically, the standard
deviation of the final output is (up to a small constant factor) the same as
the one of the original samples.

The algorithms presented in this paper include several additional improve-
ments and optimizations, as described below. Using different values for the stan-
dard deviation of the basic sampler, and expressing the center of the Gaussian c
to a base other than 2, allows various time-memory trade-offs that can be used
to fine-tune the performance of the algorithm to different platforms. The exact
value of the standard deviation of the final output distribution can be finely
adjusted by adding some noise to the initial center and invoking the convolution
theorem of [38]. Finally, when the center of the Gaussian c is a high precision
floating point number, the number of iterations (and basic samples required) can
be greatly reduced by first rounding it to a coarser grid using a simple biased
coin flip, and using our max-log metric to get sharper estimates on the number
of precision bits required.

Outline. We begin by introducing some notation in Sect. 2, and a general frame-
work for the analysis of approximate samplers in Sect. 3. In Sect. 4 we introduce
our new “max-log” metric, which we will use to simplify the analysis for com-
plex sampling algorithms. Our new sampling algorithms are presented in Sect. 5.
Section 6 concludes the paper with a description of our experimental results.

2 Preliminaries

Notation. We denote the integers by Z and the reals by R. Roman and Greek
letters can denote elements from either set, while bold letters denote vectors over
them. Occasionally, we construct vectors on the fly using the notation (·)i∈S for



some set S (or in short (·)i if the set S is clear from context), where · is a function
of i. We denote the logarithm with base 2 by log and the one with base e by ln.

Calligraphic letters are reserved for probability distributions and x ← P
means that x is sampled from the distribution P. For any x in the support of P
we denote its probability under P by P(x). All distributions in this work are dis-
crete. The statistical distance between two distributions P and Q over the same
support S is defined as∆sd(P,Q) = 1

2

∑
x∈S |P(x)−Q(x)| and the KL-divergence

as δkl(P,Q) =
∑
x∈S P(x) ln P(x)

Q(x) . Note that the former is a metric, while the

latter is not. Pinsker’s inequality bounds ∆sd in terms of δkl by ∆sd(P,Q) ≤√
δkl(P,Q)/2. A probability ensemble Pθ is a family of distributions indexed

by a parameter θ (which is possibly a vector). We extend any measure δ be-
tween distributions to probability ensembles as δ(Pθ,Qθ) = maxθ δ(Pθ,Qθ). For
notational simplicity, we do not make a distinction between random variables,
probability distributions, and probabilistic algorithms generating them. An algo-
rithm A with oracle access to a sampler for distribution ensemble Pθ is denoted
by AP , which means that it adaptively sends queries θi to the sampler, which
returns a sample from Pθi . If A uses only one sample from Pθ, then we write
A(Pθ).

In this work we will occasionally encounter expressions of the form ε+O(ε2)
for some small ε. In all of these cases, the constant c hidden in the asymptotic
notation is much smaller than 1/ε (say cε ≤ 2−30). So, the higher order term
O(ε2) has virtually no impact, neither in practice nor asymptotically, on our

applications. We define ε̂ = ε + O(ε2) and write a ' b for a = b̂, and similarly

a . b for a ≤ b̂. This allows us to drop the O(ε2) term and avoid tracing irrelevant
terms through our calculations without losing rigor, e.g. ln(1 + ε) = ε + O(ε2)
can be written as ln(1 + ε) ' ε.

For c ∈ [0, 1) and k ∈ Z we define rounding operators dcek = d2kce/2k and
bcck = b2kcc/2k, which round c (up or down, respectively) to a number with k
fractional bits. We also define a randomized rounding operator bcek = bcck +
Bα/2k (where Bα is a Bernoulli random variable of parameter α = 2kc mod 1)
which rounds c to either dcek (with probability α) or bcck (with probability
1− α).

Approximations of Real Numbers. A p-bit floating point (FP) approximation x̄
of a real x stores the p most significant bits of x together with a binary exponent.
This guarantees that the relative error is bounded by δre(x, x̄) = |x − x̄|/|x| ≤
2−p. We extend the notion of relative error to any two distributions P and Q

δre(P,Q) = max
x∈S

δre(P(x),Q(x)) = max
x∈S

|P(x)−Q(x)|
P(x)

,

where S is the support of P. It is straightforward to verify that ∆sd(P,Q) ≤
1
2δre(P,Q). The relative error can also be used to bound the KL-divergence:



Lemma 1 (Strengthening [40, Lemma 2]). For any two distributions P and
Q with µ = δre(P,Q) < 1,

δkl(P,Q) ≤ µ2

2(1− µ)2
.

In particular, if µ ≤ 1/4, then δkl(P,Q) ≤ (8/9)µ2 < µ2.

Proof. Recall that δkl(P,Q) =
∑
i P(i) ln(P(i)/Q(i)). For any p, q > 0, let

x = (p − q)/p = 1 − (q/p) < 1, so that ln(p/q) = − ln(1 − x) = x + e(x)
with error function e(x) = −x − ln(1 − x). Notice that e(0) = 0, e′(0) = 0
and e′′(x) = 1/(1 − x)2 ≤ 1/(1 − µ)2 for all x ≤ µ. It follows that e(x) ≤
x2/(2(1− µ)2) ≤ µ2/(2(1− µ)2) for all |x| ≤ µ, and

δkl(P,Q) =
∑
i

P(i) ln

(
P(i)

Q(i)

)
≤
∑
i

P(i) ·
(
P(i)−Q(i)

P(i)
+ e

)
= 1− 1 + e = e

where e = µ2/(2(1− µ)2). ut

This is a slight improvement over [40, Lemma 2], which shows that if µ ≤ 1/4,
then δkl(P,Q) ≤ 2µ2. So, Lemma 1 improves the bound by a constant factor
9/4. In fact, for µ ≈ 0, Lemma 1 shows that the bound can be further improved
to δkl(P,Q) . 1

2µ
2.

Discrete Gaussians. Let ρ(x) = exp(−πx2) be the Gaussian function with total
mass

∫
x
ρ(x) = 1. We extend it to countable sets A by ρ(A) =

∑
x∈A ρ(x).

We write ρc,s(x) = ρ((x − c)/s) for the Gaussian function centered around c
and scaled by a factor s. The discrete Gaussian distribution over the integers,
denoted DZ,c,s, is the distribution that samples y ← DZ,c,s with probability
ρc,s(y)/ρc,s(Z) for any y ∈ Z. Sampling from DZ,c,s is computationally equivalent
to sampling from Dc+Z,s, the centered discrete Gaussian over the coset c + Z.
For any ε > 0, the smoothing parameter [31] of the integers ηε(Z) is the smallest
s > 0 such that ρ(sZ) ≤ 1 + ε. A special case of [31, Lemma 3.3] shows that the
smoothing parameter satisfies

ηε(Z) ≤
√

ln(2 + 2/ε)/π.

So, ηε(Z) < 6 is a relatively small constant even for very small values of ε < 2−160.
Another useful bound, which easily follows from Poisson summation formula [31,
Lemma 2.8], is δre(s, ρc,s(Z)) ≤ δre(s, ρs(Z)) = ρ(sZ) − 1. Therefore, for any
s ≥ ηε(Z), and c ∈ R, we have

δre(s, ρc,s(Z)) ≤ ε,

i.e., the total measure of ρc,s(Z) approximates s. We will use the smoothing
parameter to invoke the following tail bound and discrete convolution theorems.



Lemma 2 ([22, Lemma 4.2 (ePrint)]). For any ε > 0, any s > ηε(Z), and
any t > 0,

Prx←DZ,c,s [|x− c| ≥ t · s] ≤ 2e−πt
2

· 1 + ε

1− ε
.

Theorem 1 ([30, Theorem 3]). Let Λ be an n-dimensional lattice, z ∈ Zm
a nonzero integer vector, s ∈ Rm with si ≥

√
2‖z‖∞ηε(Z) for all i ≤ m and

ci+Λ arbitrary cosets. Let yi be independent samples from Dci+Λ,si , respectively.
Then the distribution of y =

∑
ziyi is close to DY,s, where Y =

∑
i zici +

gcd(z)Λ and s =
√∑

i z
2
i s

2
i . In particular, if D̃Y,s is the distribution of y, then

δre(DY,s, D̃Y,s) ≤ 1+ε
1−ε − 1 ' 2ε.

The theorem is stated in its full generality, but in this work we will only use
it for the one dimensional lattice Z and for the case that ci = 0 and gcd(z) = 1.

Theorem 2 ([38, Theorem 1]). Let S1,S2 > 0 be positive definite matri-
ces, with S = S1 + S2 and S−1

3 = S−1
1 + S−1

2 > 0. Let Λ1, Λ2 be lattices
such that

√
S1 ≥ ηε(Λ1) and

√
S3 ≥ ηε(Λ2) for some positive ε ≤ 1/2, and let

c1, c2 ∈ Rn be arbitrary. Then the distribution of x1 ← x2 + Dc1−x2+Λ1,
√
S1

,

where x2 ← Dc2+Λ2,
√
S2

, is close to Dc1+Λ1,
√
S1

. In particular, if D̃c1+Λ1,
√
S1

is

the distribution of x1, then δre(Dc1+Λ1,
√
S1
, D̃c1+Λ1,

√
S1

) ≤
(

1+ε
1−ε

)2

− 1 ' 4ε.

Again, we stated the theorem in its full generality, but we will only need
it for one dimensional lattices. Accordingly, S1, S2, and S3 will simply be (the
square of) real noise parameters s1, s2, s3.

3 The Security of Approximate Samplers

Many security reductions for lattice-based cryptographic primitives assume that
the primitive has access to samplers for an ideal distribution, which may be too
difficult or costly to sample from, and is routinely replaced by an approxima-
tion in any concrete implementation. Naturally, if the approximation is good
enough, then security with respect to the ideal distribution implies that the
actual implementation (using the approximate distribution) is also secure. But
evaluating how the quality of approximation directly affects the concrete secu-
rity level achieved by the primitive can be a rather technical task. Traditionally,
the quality of the approximation has been measured in terms of the statistical
distance δ = ∆sd, which satisfies the following useful properties:

1. Probability preservation: for any event E over the random variable X we
have PrX←P [E] ≥ PrX←Q[E]− δ(P,Q). This property allows to bound the
probability of an event occurring under P in terms of the probability of the
same event occurring under Q and the quantity δ(P,Q). It is easy to see
that this property is equivalent to the bound ∆sd(P,Q) ≤ δ(P,Q). So the
statistical distance δ = ∆sd satisfies this property by definition.



2. Sub-additivity for joint distributions: if (Xi)i and (Yi)i are two lists of dis-
crete random variables over the support

∏
i Si, then

δ((Xi)i, (Yi)i) ≤
∑
i

max
a

δ([Xi | X<i = a], [Yi | Y<i = a]),

where X<i = (X1, . . . , Xi−1) (and similarly for Y<i), and the maximum is
taken over a ∈

∏
j<i Sj .

3. Data processing inequality: δ(f(P), f(Q)) ≤ δ(P,Q) for any two distribu-
tions P and Q and (possibly randomized) algorithm f(·), i.e., the measure
does not increase under function application.

We call any measure that satisfies these three properties a useful measure. Before
using such a measure to prove security, we need to define the class of generic
cryptographic schemes it applies to.

Definition 1 (Standard cryptographic scheme). We consider an arbitrary
cryptographic scheme S, consisting of one or more algorithms with oracle access
to a probability distribution ensemble Pθ, and whose security against an adver-
sary A (also consisting of one or more algorithms) is described in terms of a
game GPS,A defining the event that A succeeded in breaking the scheme S. The
success probability of A against S (when using samples from Pθ) is defined as
εPA = Pr{GPS,A}. The cost of an attack A against S is defined as tA/ε

P
A, and the

bit-security of S is the minimum (over all adversaries A) of log(tA/ε
P
A).

For simplicity, we assume that the running time tA of the game GPS,A does not
depend on the distributions Pθ, and that the number of calls to Pθ performed
during any run of the game GPS,A is bounded from above by tA.

Proving security of cryptosystems using approximate samplers using proper-
ties 1 to 3 is folklore, but for completeness we give a proof in the full version [32].
The proof captures the intuition that security with respect to an ideal distribu-
tion implies security with respect to any sufficiently good approximation, and
it also gives a way to establish concrete security bounds. In order to (almost)
preserve κ bits of security, one needs δ(Pθ,Qθ) < 2−κ, e.g., as obtained, using
δ = ∆sd and estimating the ideal probabilities Q(x) with κ-bit (fixed point or
floating point) approximations. Additionally, this allows us to view DZ,c,s as a
ts-bounded distribution without losing security. Notice that for a security pa-
rameter κ we can set t to about

√
κ ln 2/π ≈ η2−κ(Z), which by Lemma 2 implies

a statistical distance of less than 2−κ if s ≥ ηε(Z). So in the rest of this work
we will identify the unbounded Gaussian distribution DZ,c,s with its truncation
with support Z ∩ [c± ts] whenever appropriate.

While using ∆sd is asymptotically efficient, it has been observed that in prac-
tice it can lead to unnecessarily large memory cost and slow computations. The
work of [40] showed that we can improve the security analysis of approximate
distributions. Assume we have a measure δ that satisfies the following strength-
ening of the probability preservation property:



1.* Pythagorean probability preservation with parameter λ ∈ R, which states
that for any joint distributions (Pi)i and (Qi)i over support

∏
i Si, if

δ(Pi | ai,Qi | ai) ≤ λ

for all i and ai ∈
∏
j<i Sj , then

∆sd((Pi)i, (Qi)i) ≤ ‖(max
ai

δ(Pi | ai,Qi | ai))i‖2.

We call a measure that satisfies this property λ-pythagorean. A pythagorean
measure additionally satisfying sub-additivity for joint distributions and the data
processing inequality (i.e. properties 2 and 3) will be called λ-efficient. Using a
pythagorean δ, we can improve the folklore security proof as follows.

Lemma 3. Let SP be a standard cryptographic scheme as in Definition 1 with
black-box access to a probability distribution ensemble Pθ. If SP is κ-bit secure
and δ(Pθ,Qθ) ≤ 2−κ/2 for some 2−κ/2-efficient measure δ, then SQ is (κ−3)-bit
secure.

Proof. Towards a contradiction, assume for some adversary A we have tA
εPA
≥

2κ, but tA
εQA

< 2κ−3. Consider the hypothetical game [GQS,A]n (resp. [GPS,A]n)

consisting of n independent copies of GQS,A (resp. GPS,A). Denote the probability

of the event that A wins at least one of the n games by εQAn (resp. εPAn). We begin
by showing that we can bound εPAn from below in terms of εQAn using probability
preservation and data processing inequality of ∆SD:

εPAn ≥ εQAn −∆SD([GPS,A]n, [GQS,A]n) ≥ εQAn −∆SD((θi,Pθi)i, (θ̃i,Qθ̃i)i)

where (θi)i (resp. (θ̃i)i) is the sequence of queries made during the game [GPS,A]n

(resp. [GQS,A]n).
Now we note that at any point during the game, conditioned on the event

Xi that (θj ,Pθj )j<i and (θ̃j ,Qθ̃j )j<i take some specific (and identical) value,

the adversary behaves identically in the two games up to the point it makes the
ith query. In particular, the conditional distributions (θi | Xi) and (θ̃i | Xi) are
identical and δ((θi | Xi), (θ̃i | Xi)) = 0. It follows by sub-additivity (for joint
distributions) that

δ((θi,Pθi | Xi), (θ̃i,Qθ̃i | Xi)) ≤ δ((θi | Xi), (θ̃i | Xi)) + δ(Pθ,Qθ)

≤ 0 + 2−κ/2 = 2−κ/2.

This ensures that we can apply pythagorean probability preservation (Prop-
erty 1*) to obtain

εPAn ≥ εQAn −
√
tAn · δ(Pθ,Qθ) ≥ εQAn −

√
tAn · 2−κ/2 ≥ εQAn −

√
n · tA

2κ
. (1)



Now we set n = 1/εQA so that εQAn = 1− (1− εQA)n > 1− exp(−1). Substituting
into (1) and using tA

εQA
< 2κ−3 we get

εPAn > 1− exp(−1)−
√

tA

2κεQA
> 1− exp(−1)− 2−3/2 ≈ 0.279.

Finally, to achieve a contradiction, we derive a simple upper bound. By union
bound εPAn ≤ nεPA. Since SP is κ-bit secure, εPA ≤ tA/2κ, which shows that

εPAn ≤
ntA
2κ

=
tA

2κεQA
< 2−3 = 0.125

which is smaller than the lower bound. ut

This shows that δ(Pθ,Qθ) ∼ 2−κ/2 is sufficient to maintain κ bits of se-
curity. This type of analysis was first used in [40] for the special case of fixed
distributions (i.e. θ is fixed and cannot be chosen by the adversary) and the KL-
divergence δ =

√
δkl, which is efficient (see e.g. [5, 40] for proofs). Lemma 1, in

combination with Lemma 3, shows that it is sufficient for algorithms to approx-
imate the probabilities of the target distribution with floating point numbers of
precision about half the security parameter. Interestingly, in this setting, it is im-
portant to approximate probabilities in floating point, as κ/2 bits of fixed-point
precision is not secure. (See the full version [32] for an attack.)

In this work, we make use of the Theorem 1 and 2 to reduce the task of
generating a specific discrete Gaussian, to generating samples from different
distributions. Observe that these theorems assume access to exact samplers. In
order to analyze our algorithms, we need to bound the divergence from the true
distribution when applying the theorems to samples from a distribution close to
the exact Gaussian distributions.

Lemma 4. Let ∆ be a useful or efficient metric. Let AP be an algorithm query-
ing a distribution ensemble Pθ at most q times. Then we have

∆(AQ,R) ≤ ∆(AP ,R) + q ·∆(Pθ,Qθ)

for any distribution R and any ensemble Qθ.

For the proof we refer to the full version [32].
By letting A be the algorithm that performs the convolution as in Theorem

1 and applying Lemma 4 to it with Pi = DΛ,ci,si and approximate distributions

Qi = D̃Λ,ci,si , we can show that convolving approximate discrete Gaussians re-
sults in good approximations of the expected discrete Gaussian. Furthermore, we
can also apply Lemma 4 to Theorem 2, if we have a bound on the approximation
of the second sampler for any center c2.

As an example, consider again the statistical distance ∆sd. By applying
Lemma 4 to the convolutions in Theorem 1 (resp. 2), the resulting approxi-
mation error satisfies:

∆sd(AD̃Λ,ci,si ,DY,s) . 2ε+
∑
i

∆sd(D̃Λ,ci,si ,DΛ,ci,si).



Conveniently, this works recursively: if we use the obtained approximate samples
as input to another convolution, the loss in statistical distance is simply additive
in the number of convolutions we apply. This shows that using a metric to analyze
approximation errors is relatively straight-forward.

Unfortunately, ∆sd is not efficient and thus requires high precision to guar-
antee security. While

√
δkl allows to improve on that, it is not a metric and thus

Lemma 4 does not apply. One can still use
√
δkl to improve on the efficiency

by exploiting the metric properties of ∆sd, i.e. one first decomposes the statisti-
cal distance of the approximate distribution as in the previous paragraph, and
then bounds the individual parts using property 3. But as we start working with
more complex and recursive algorithms, this method becomes more involved.
One needs to be careful to not rely on typical metric properties when analyzing
algorithms using

√
δkl, like triangle inequality and symmetry. We found it much

more convenient to use an efficient metric ∆. This allows to carry out the anal-
ysis using only ∆, and directly claim bit security of −2 log∆(Pθ,Qθ) by Lemma
3.

4 A New Closeness Metric

In this section we introduce a new measure of closeness between probability
distributions which combines the ease of use of a metric with the properties of
divergences that allow to obtain sharper security bounds. More specifically, we
provide an efficient metric with a simple definition.

Definition 2. The max-log distance between two distributions P and Q over
the same support S is

∆ml(P,Q) = max
x∈S
|lnP(x)− lnQ(x)| .

For convenience, we also write ∆ml(p, q) = |ln p − ln q| for any two positive
reals p and q. It is easy to see that ∆ml is a metric.

Lemma 5. ∆ml is a metric, i.e., it is symmetric (∆ml(P,Q) = ∆ml(Q,P)),
positive definite (∆ml(P,Q) ≥ 0 with equality if and only if P = Q), and it
satisfies the triangle inequality (∆ml(P,Q) ≤ ∆ml(P,R) +∆ml(R,Q)).

Proof. All properties are inherited from the infinity norm, simply by noticing
that ∆ml(P,Q) = ‖f(P)− f(Q)‖∞ for some function f(P) = (lnP(x))x. ut

In the full version [32] we proof that in the regime close to 0, ∆ml is essentially
equal to δre.

Lemma 6. For any two positive real p and q,

∆ml(p, q) ≤ − ln(1− δre(p, q)) . δre(p, q) (2)

δre(p, q) ≤ exp(∆ml(p, q))− 1 . ∆ml(p, q). (3)

The same bounds hold for ∆ml(P,Q) and δre(P,Q) for any two distributions
P,Q over the same support S.



The next two lemmas prove that ∆ml is an efficient metric.

Lemma 7. ∆ml satisfies the sub-additivity property (for joint distributions) and
data processing inequality.

The proof essentially follows the proof of the same properties for ∆sd from
[28]. For completeness we provide it in the full version [32].

Finally, we show that ∆ml also satisfies the pythagorean probability preser-
vation property for any parameter λ ≤ 1

3 .

Lemma 8. For distributions Pi and Qi over support
∏
i Si, if ∆ml(Pi | ai,Qi |

ai) ≤ 1/3 for all i and ai ∈
∏
j<i Sj, then

∆sd((Pi)i, (Qi)i) ≤ ‖(max
ai

∆ml(Pi | ai,Qi | ai))i‖2.

Proof. First, we observe that under the condition ∆ml(P,Q) ≤ 1/3, we have
δkl(P,Q) ≤ 2∆ml(P,Q)2. This can be checked using Equation (3) as follows.
Let x = ∆ml(P,Q) ≤ 1/3. Applying Lemma 1 with µ = ex − 1, we get

δkl(P,Q) ≤ (ex − 1)2

2(2− ex)2
≤ 2x2,

where the last inequality is implied by (ex − 1)(1 + 1/(2x)) ≤ 1, which can be

verified using the convexity bound ex− 1 ≤ (e
1
3 − 1)3x (valid for x ∈ [0, 1/3]) as

follows:

(ex − 1) ·
(

1 +
1

2x

)
≤ (e

1
3 − 1) · (3x+ 1.5) ≤ (e

1
3 − 1) · 2.5 ≈ 0.99.

Now that we have established the bound δkl(P,Q) ≤ 2∆ml(P,Q)2, we can
use Pinsker’s inequality and the sub-additivity of δkl (which directly follows from
what is often referred to as the chain rule) to get

∆sd((Pi)i, (Qi)i) ≤
√
δkl((Pi)i, (Qi)i)/2

≤
√

1

2

∑
i

max
ai

δkl(Pi | ai,Qi | ai)

≤
√∑

i

max
ai

∆ml(Pi | ai,Qi | ai)2

= ‖(max
ai

∆ml(Pi | ai,Qi | ai))i‖2.

ut

It follows that we can instantiate Lemma 4 with ∆ml to analyze the increase
of approximation error if applying multiple convolutions to approximate samples.
We make this explicit by reformulating Theorem 1 and 2 in terms of the max-log
distance and approximate distributions (following Lemma 4), specializing them
to our setting.



Corollary 1. Let z ∈ Zm be a nonzero integer vector with gcd(z) = 1 and
s ∈ Rm with si ≥

√
2‖z‖∞ηε(Z) for all i ≤ m. Let yi be independent samples

from D̃Z,si , respectively, with ∆ml(DZ,si , D̃Z,si) ≤ µi for all i. Let D̃Z,s be the

distribution of y =
∑
ziyi. Then ∆ml(DZ,s, D̃Z,s) . 2ε+

∑
i µi.

Corollary 2. Let s1, s2 > 0, with s2 = s2
1+s2

2 and s−2
3 = s−2

1 +s−2
2 . Let Λ = KZ

be a copy of the integer lattice Z scaled by a constant K. For any c1 and c2 ∈ R,
denote the distribution of x1 ← x2 + D̃c1−x2+Z,s1 , where x2 ← D̃c2+Λ,s2 , by

D̃c1+Z,s. If s1 ≥ ηε(Z), s3 ≥ ηε(Λ) = Kηε(Z), ∆ml(Dc2+Λ,s2 , D̃c2+Λ,s2) ≤ µ2 and

∆ml(Dc+Z,s1 , D̃c+Z,s1) ≤ µ1 for any c ∈ R, then

∆ml(Dc1+Z,s, D̃c1+Z,s) . 4ε+ µ1 + µ2.

Relationship to Other Measures. The max-log distance is closely related to the
Rényi divergence of order∞ and shares many of its properties, including a mul-
tiplicative probability preservation: PrX←P [E] ≥ PrX←Q[E]/ exp(∆ml(P,Q))
[5]. While we do not use this property in this work, a subsequent work [41]
shows that this property can be used to achieve even stronger security proofs
(for a different definition of bit security).

It has also been noted that the Rényi divergence is related to the notion of
differential privacy. More specifically, an algorithm A(D), taking a database D
as input, is ε-differentially private if the Rényi divergence of order∞ between the
output distributions of A(D1) and A(D2) is less than ε for any two neighboring
databases D1 and D2. Since neighborhood is often defined using a symmetric
relation on the set of databases, this is equivalent to a formulation using the
max-log distance. Finally, the techniques used in [41] are related to advanced
composition theorems in the differential privacy terminology. For more details
we refer the reader to [33] and references therein.

5 Sampling the Integers

In this section we describe and analyze our new algorithm to sample the discrete
Gaussian distribution. The entire algorithm SampleZ is presented in Algorithm
1. In Sect. 5.1 and 5.2, we analyze the sub-routines SampleI and SampleC,
which may already be directly useful in some applications. Then, in Sect. 5.3,
we analyze the full algorithm SampleZ. All algorithms assume access to a base
sampler SampleB to approximate the distribution Dci+Z,s0 , for a small and fixed
set of values for the coset ci and one fixed s0. Any algorithm can be used as a
base sampler, provided it produces distributions D̃ci+Z,s0 within a small distance

∆ml(D̃ci+Z,s0 ,Dci+Z,s0) ≤ µ from the exact Gaussian Dci+Z,s0 . By Lemma 6,
this is essentially equivalent to approximating the Gaussian probabilities with a
relative error bound of µ. The reader is referred to Sect. 6.2 for a possible choice
of SampleB.



SampleZb,k,max(c, s)
x← SampleI(max)

K ←
√
s2 − s̄2/smax

c′ ← bc+Kxek
y ← SampleCb,s0(c′)
return y

SampleCb(c ∈ b−kZ)
if k = 0

return 0

g ← b−k+1 · SampleBs0(bk−1c)

return g + SampleCb(c− g ∈ b−k+1Z)

SampleI(i)
if i = 0
x← SampleBs0(0)
return x

x1 ← SampleI(i− 1)
x2 ← SampleI(i− 1)
y = zix1 + max(1, zi − 1)x2
return y

Algorithm 1: A sampling algorithm for Dc+Z,s for arbitrary c and s. Definitions
for zi and si as in (4) and (5) and s̄ as in (6). SampleB is an arbitrary base
sampler for Dc+Z,s0 with fixed s0 and small number of cosets c+Z, where c ∈ Z/b.

5.1 Large deviations

In this section we show how to efficiently sample DZ,s for an arbitrarily large s�
ηε(Z) using samples from DZ,s0 for some small fixed value of s0 ≥

√
2ηε(Z). For

this we make use of convolution to combine the samples from the basic sampler
to yield a distribution with larger noise parameter. The algorithm accomplishing
this is given in Algorithm 1 as SampleI.

Lemma 9. For a given value of s0 ≥ 4
√

2ηε(Z) define the following sequence of
values2 for i > 0:

zi =

⌊
si−1√

2η

⌋
(4)

s2
i = (z2

i + max((zi − 1)2, 1))s2
i−1 (5)

If ∆ml(DZ,s0 ,SampleBs0(0)) ≤ µ, then ∆ml(DZ,si ,SampleI(i)) ≤ (µ + 2ε)2i

and the running time of SampleI is at most 2i plus 2i invocations of SampleB.
Finally, si(s0) ≥ 22i , implying i ≤ dlog log se is sufficient to achieve a given
target s.

We defer the proof to the full version [32].
The algorithm SampleI will overshoot the noise parameter, but in many

applications (including ours further below) this is enough. In fact, for us it will
not matter by how much we overshoot a given target s, as we will show in the

2 Notice that the values in (4) and (5) depend both on the index i and the initial s0, so
we will write them as zi(s0) and si(s0) when we need to emphasize this dependency.



following sections how to adjust the noise parameter to obtain a sample from a
specific target distribution (with arbitrary center).

SampleCenteredGaussian(s)
Select largest i such that si < s
x1 ← SampleI(i)
x2 ← SampleI(i)

z ←

⌈
1
2

(
1 +

√
2
(

s
si

)2
− 1

)⌉
return zx1 + (z − 1)x2

Algorithm 2: A sampling algorithm for DZ,s̃ for some s̃ not much larger than s.
Definition of si as in (5).

If all we are interested in is the centered Gaussian distribution with a specific
noise parameter not much larger than a certain target width, as is the case in
many applications, it is relatively easy to adapt the algorithm to get closer to
the target s. One way of doing this is to adjust zi in the top level of the recursion
to yield something closer to s. This is demonstrated by Algorithm 2, for which
the following corollary establishes a bound on the size of the resulting noise
parameter.

Corollary 3. If ∆ml(SampleI(i),DZ,si) . µ for the largest i such that si ≤ s
and s ≥ s0 ≥

√
2ηε(Z), then ∆ml(SampleCenteredGaussian(s),DZ,s̃) . 2µ+

2ε for some s̃ such that s ≤ s̃ ≤
√

5s.

Proof. First note that si < s implies z ≥ 2. The choice of z and si now guarantees

that Corollary 1 is applicable and that (z − 1)2 + (z − 2)2 < s2

s2i
≤ z2 + (z − 1)2.

Since s̃2 = (z2 + (z − 1)2)s2
i this establishes the lower bound and shows that

s̃2 ≤ z2+(z−1)2

(z−1)2+(z−2)2 s
2. The upper bound follows from the fact that the ratio

z2+(z−1)2

(z−1)2+(z−2)2 is decreasing in z and equals 5 for z = 2.

The bound on the ∆ml distance is immediate from Corollary 1. ut

Note that the constant
√

5 in Corollary 3 follows from the worst case where
z = 2. Using a little more care in the choice of small coefficients, the bound can
be improved to

√
2, but for a simpler exposition we omitted this optimization.

However, it will not be possible to get arbitrarily close to any target s if given
a fixed s0, but if the target s is fixed we can always choose a suitable small s0

such that the target distribution will be generated exactly.
For a fixed s0, zi(s0) and si(s0) are fixed, so one can precompute si and

corresponding zi for a small set of i. As Lemma 9 shows, the si grow very
rapidly so only a very small number (∼ log log s) of precomputed values are



necessary to generate extremely wide distributions. If the target s is fixed, only
the coefficients zi need to be stored.

5.2 Arbitrary center

We now show how to sample from an arbitrary coset c + Z using samplers for
only a small number of cosets. We assume c is given as a k digit number in base
b between 0 and 1. The parameter k dictates the trade-off between running time
and output precision, while the basis b determines the number of cosets the base
sampler SampleB needs to be able to sample from.

The idea of our new algorithm SampleC (see Algorithm 1) is to round the
center randomly digit by digit to finally obtain a sample from c + Z. Every
rounding operation consumes a sample from one of b cosets of Z (where b is a
parameter). To show correctness, we iteratively use a convolution theorem.

While this process of iterative rounding increases the noise of the output
distribution, this increase is minor as the following lemma shows.

Lemma 10. Let 2 ≤ b ∈ Z be a base, s0 ≥ (
√

(b+ 1)/b)ηε(Z) and c ∈ b−kZ. If

∆ml(Dci+Z,s0 ,SampleBs0(ci)) ≤ µ

for all ci ∈ Z/b, then ∆ml(SampleCb(c),Dc+Z,s̄) . (4ε+ µ)k where

s̄ = s0


√√√√k−1∑

i=0

b−2i

 . (6)

Proof. The proof follows by induction and Corollary 2. For k = 1 the claim is
obviously true. For k > 1, invoke the induction hypothesis and apply Corollary

2 with s1 = s0

√∑k−2
i=0 b

−2i, s2 = s0/b
k−1, Λ = b−k+1Z, c2 = b−k[c]k (where [c]k

is the k-th digit in the b-ary expansion of c), and c1 = c.
It remains to show that the conditions on the noise parameters are met. First

note that
∑k
i=0 b

−2i ≥ 1 for all k ≥ 1, and so s1 ≥ s0 > ηε(Z).
Then we have

s−2
3 = s−2

1 + s−2
2 = s−2

0

(k−2∑
i=0

b−2i

)−1

+ b2(k−1)


= s−2

0

(
1− b−2

1− b−2(k−1)
+ b2(k−1)

)
= s−2

0

b2(k−1) − b−2

1− b−2(k−1)

and so

s3 =

√
1− b−2(k−1)

b2(k−1) − b−2
s0 =

1

bk−1

√
1− b−2(k−1)

1− b−2k
s0 =

1

bk−1

√
b2k − b2
b2k − 1

s0



Note that
b+ 1

b
· b

2k − b2

b2k − 1
≥ 1

for all k > 1, which shows that s3 ≥ b−k+1ηε(Z) = ηε(Λ). ut

The parameter b in SampleC offers a trade-off between running time and
number of required samplers for cosets of Z. As most efficient samplers require
storage for each coset, this is effectively a time-memory trade-off. The larger the
base b, the more bits we can round at a time, but that requires more cosets. Note
that the running time decreases by a logarithmic factor in b, while the storage
requirement increases linearly with b.

Reducing the number of required samples. Recall from the previous sec-
tion that the parameter k determines the trade-off between running time and
output precision: the larger k, the closer the approximation of the centers and
thus the better the output distribution, but the number of required base samples
and the running time grow linearly with k. We now show that by using a biased
coin flip we can speed up the algorithm by a factor 2 while maintaining a good
approximation.

Lemma 11. Let s ≥ ηε(Z) and b, k ∈ Z such that τ = b−k ≤ (4π)−1. Then

∆ml(DZ,c,s,DZ,bcek,s) . π2τ2 + 2ε = π2/b2k + 2ε,

where DZ,bcek,s is the distribution of the process of computing c′ = bcek and then
returning a sample from DZ,c′,s.

To prove the lemma, we first observe that linear functions can approximate
the Gaussian function well on small enough intervals.

Lemma 12. For any x1, x2 with x2−x1 = τ , |x1|, |x2| ≤ ts for some t ≥ 1 and
x ∈ [x1, x2], we have

δre

(
ρs(x),

x− x1

τ
ρs(x2) +

x2 − x
τ

ρs(x1)

)
≤ π2t2τ2

2s2
e

2πτt
s .

In particular, if τ ≤ s
4πt , the bound on the right hand side is less than π2t2τ2

s2 .

Proof. By linear interpolation,∣∣∣∣ρs(x)−
(
x− x1

τ
ρs(x2) +

x2 − x
τ

ρs(x1)

)∣∣∣∣ ≤ τ2

8
max

x1≤x′≤x2

|ρ′′s (x′)|

Observe that

ρ′′s (x) =

(
2πx2

s2
− 1

)
2π

s2
ρs(x)



implying that ‖ρ′′s (x′)‖ ≤ max( 2πx′2

s2 , 1) 2π
s2 ρs(x

′) ≤ 4π2t2

s2 ρ(x′). Finally note that
if x′2 ≥ x2, then ρs(x

′) ≤ ρs(x). Otherwise,

ρs(x
′)

ρs(x)
= e−π( x

′2−x2

s2
) = eπ( x

2−x′2

s2
) = eπ(

(x−x′)(x+x′)
s2

) ≤ e 2πτt
s

concluding the proof. ut

Proof (of Lemma 11). We set t = ηε(Z), which allows us to treat Dc+Z,s as a
ts-bounded distribution. If we assume that s ≥ ηε(Z) for some negligible ε, we
can conclude that Lemma 12 also holds for the respective distributions, since
ρs(c+ Z) ≈ s for any c, i.e. with c1 = bcck and c2 = dcek:

∆ml(DZ,c,s,DZ,bcer,s) = max
x

∣∣∣∣ln DZ,c,s(x)

DZ,bcer,s(x)

∣∣∣∣
= max

x

∣∣∣∣∣ln DZ,c,s(x)(
c2−c
τ DZ,c1,s(x) + c−c1

τ DZ,c2,s(x)
) ∣∣∣∣∣

≤ max
x

∣∣∣∣∣ln ρs(x− c)(1± ε)s
(1± ε)s

(
c2−c
τ ρs(x− c1) + c−c1

τ ρs(x− c2)
) ∣∣∣∣∣

≤ max
x

∣∣∣∣∆ml

(
ρs(x− c),

c2 − c
τ

ρs(x− c1) +
c− c1
τ

ρs(x− c2)

)
+ ln

1± ε
1± ε

∣∣∣∣
. max

x
δre

(
ρs(x− c),

c2 − c
τ

ρs(x− c1) +
c− c1
τ

ρs(x− c2)

)
+ 2ε

≤ π2t2τ2

s2
+ 2ε

.
π2

b2k
+ 2ε

where we used Lemma 12 and Lemma 6. ut

In combination with SampleC (cf. Algorithm 1), Lemma 11 suggests an
efficient algorithm to sample from DZ,c,s̄ for fixed s and arbitrary c:

1. write c in base b (which is a parameter of the algorithm) and divide this
representation into the k = logb

1
τ higher order digits (representing chead)

and the rest ctail

2. use ctail to define the bias of a Bernoulli distribution to round chead either
up or down

3. return SampleCb,s0(chead ∈ b−kZ).

These steps correspond to the computation of c′ and the following invocation
of SampleC in the algorithm SampleZ. The efficiency gain stems from the
fact that sampling from a biased Bernoulli distribution is much cheaper than
drawing samples from the discrete Gaussian. This allows us to support centers
c with arbitrary precision above k with essentially no efficiency loss, since the
lower order bits only define the bias of the Bernoulli distribution, which is cheap
to implement.



5.3 The Full Sampler

So far we have shown how to generate samples efficiently from DZ,si for po-
tentially very large si and how to sample from DZ,c,s̄ for arbitrary c ∈ R and
a specific s̄, both using only b samplers for DZ,ci,s0 for ci ∈ b−1Z and fixed
s0 ≥ ηε(Z). We now prove correctness of the full sampler, SampleZ, which puts
all the pieces together by leveraging Corollary 2 yet again.

Lemma 13. Let b, k ∈ Z be a base and a precision parameter such that k >
logb 4π. If

– ∆ml(DZ,smax
,SampleI(max)) ≤ µi and

– ∆ml(Dc′+Z,s̄,SampleCb(c
′)) ≤ µc for any c′ ∈ Z/bk and some s̄ ≥ ηε(Z),

then

∆ml(Dc+Z,s,SampleZb,k,max(c, s)) . 6ε+ π2/b2k + µi + µc

for any c and s such that 1 < s/s̄ ≤ smax/ηε(Z).

Proof. By Lemma 11 and 4, ∆ml(Dc+Kx,SampleC(bc+Kxek)) ≤ π2/b2k+2ε+
µc. By correctness of SampleI (Lemma 9), ∆ml(DKZ,Ksmax

,Kx) ≤ µi (where

x← SampleI(max)) and by definition of K we have s =
√

(Ksmax)2 + s̄2. Now
rewrite DZ,c+Kx,s̄ = c + Kx + D−Kx−c+Z,s̄ and apply Corollary 2 with c2 = 0,
c1 = c, x1 = Kx and x2 = y to see that ∆ml(Dc+Z,s,SampleZb,k,max(c, s)) .
6ε+ π2/b2k + µi + µc, if the conditions in the theorem are met. This can easily
be seen to be true from the assumptions on s by the following calculation.

s3 =
(
(Ksmax)−2 + s̄−2

)− 1
2 =

(
1

s2 − s̄2
+

1

s̄2

)− 1
2

=

(
s̄2(s2 − s̄2)

s2

) 1
2

=
s̄

s

√
s2 − s̄2 ≥

√
s2 − s̄2ηε(Z)/smax = ηε(KZ)

ut

The running time of SampleZ is obvious: one invocation of SampleI and
one of SampleC, which we analyzed in Sect. 5.1 and 5.2, resp., and a few ad-
ditional arithmetic operations to calculate K and c′. It is worth noting that the
computation of K, the most complex arithmetic computation of the entire algo-
rithm, depends only on s. In many applications, for example trapdoor sampling,
s is restricted to a relatively small set, which depends on the key. This means
that Ks can be precomputed for the set of possible s’s allowing to avoid the FP
computation at very low memory cost. Finally, the algorithm may approximate
the scaling factor K by a value K̃ such that δre(K̃,K) ≤ µK , which results in

an approximation of the distribution of width s̃ =
√

(K̃si)2 + s̄ instead of s. El-

ementary calculations show that ∆ml(DZ,c,s,DZ,c,s̃) . 4πt2µK which by triangle
inequality adds to the approximation error.



As an example, assume we have an application, where we know that s̄ ≤
s ≤ 220 = smax. It can be checked, that for any base b and s0 ≥ 4

√
2ηε(Z), the

following parameter settings for our algorithm result in

∆ml(DZ,c,s,SampleZb,k,max(c, s)) ≤ 2−52,

and thus in ≥ 100 bits of security by Lemma 3:

– t = ηε(Z) = 6, which results in ε ≤ 2−112

– µ = 2−60, the precision of the base sampler, resulting in µi ≤ 2−55

– k = d30/ log be, which results in µc ≤ 2−55 and π2/b2k ≤ 2−56

– µK = 2−64, the precision of calculating K, resulting in 4πt2µK ≤ 2−55.

5.4 Online-Offline Phase and Constant-Time Implementation

Note that a large part of the computation time during our convolution algorithm
is spent in the base sampler, which is independent of the center and the noise
parameter. This allows us to split the algorithm into an offline and an online
phase, similar in spirit to Peikert’s sampler [38], which gives rise to a number of
platform dependent optimizations. The obvious approach is to simply precom-
pute a number of samples for each of the b cosets and combine them in the online
phase until we run out. Note that the trade-off now is not only a time-memory
trade-off anymore, it is a time-memory-lifetime trade-off for the device that de-
pends on b. Increasing b speeds up the algorithm, but requires to precompute
and store samples for more cosets. While it also means that we effectively de-
crease the number of samples required per output sample, the latter dependence
is only logarithmic, while the former is linear in b.

There are a number of other ways to exploit this structure without limiting
the lifetime of the device. Most devices that execute cryptographic primitives
have idle times (e.g. web servers) which can be used to restock the number of pre-
computed samples. As another example, one can separate the offline phase (basic
sampler) and the online phase (combination phase) into two parallel devices with
a shared buffer. While the basic sampler keeps filling the buffer with samples,
the online phase can combine these samples into the desired distribution. An
obvious architecture for such a high performance system would implement the
base sampler in a highly parallel fashion (e.g. FPGA or GPU) and the online
phase on a regular CPU. This shows that in many scenarios the offline phase
can be for free.

The separation of offline and online phase also allows for a straight-forward
constant-time implementation with very little overhead. A general problem with
sampling algorithms in this context is that the running time of the sampler can
leak information about the output sample or the input, which clearly hurts secu-
rity. For a fixed Gaussian, a simple mitigation strategy is to generate the samples
in large batches. This approach breaks down in general when the parameters of
the target distribution vary per sample and are not known in advance. In con-
trast, this idea can be used to implement our algorithm in constant time by



generating the basic samples in batches in constant time. Note that every out-
put sample requires the exact same number of base samples and convolutions,
so the online phase lends itself naturally to a constant-time implementation.

Assume every invocation of SampleZ requires q base samples and let t̂0 be
the maximum over ci ∈ Z/b of the expected running time (over the random
coins) of the base sampler (computed either by analysis or experimentation).
Consider the following algorithm.

Initialization:

– Use the base sampler to fill b buffers of size q, where the i-th buffer stores
discrete Gaussian samples Dci+Z,so for all ci ∈ Z/b.

Query phase:

– On input c and s, call SampleZ(c, s), where SampleBs0(ci) simply reads
from the respective buffer.

– Call the base sampler q times to restock the buffers and pad the running
time of this step to T = qt̂0 +O(

√
κq).

Note that the restocking of base samples in the query phase runs in constant
time with overwhelming probability, which follows from Hoeffding’s inequality
(the constant in the O-notation depends on the worst-case running time of the
base sampler). It follows, that the query phase runs in constant time if all the
arithmetic operations in SampleZ are implemented in constant time and the
randomized rounding operation is converted to constant time, both of which are
easy to achieve.

The amortized overhead is only O(
√
κ/q), where q is the number of base

samples required per output sample. This can be further reduced, if enough
memory for larger buffers is available. Finally, the separation of online and offline
phase into different independent systems or precomputation of the offline phase
allow for an even more convenient constant-time implementation: One only needs
to convert the arithmetic operations and the coin flip into constant time. This
incurs only a minimal penalty in running time.

6 Applications and Comparison

We first give a short overview of existing sampling algorithms (Sect. 6.1) and
select a suitable one as our base sampler, before we describe the experimental
study.

6.1 Brief Survey of Existing Samplers

All of the currently known samplers can be categorized into two types3: rejection-
based samplers and tree traversal algorithms. Table 1 summarizes the existing

3 Technically, even rejection-based samplers can be thought of as tree traversal algo-
rithms, but this is not as natural for them, hence our categorization.



sampling algorithms and their properties in comparison to our work. The table
does not contain a column with the running time, since this depends on a lot of
factors (speed of FP arithmetic vs memory access vs randomness etc.), but for
the rejection-based samplers, the rejection rate can be thought of as a measure
of the running time. Tree-traversal algorithms should be thought of as much
faster than rejection based samplers. A more concrete comparison on a specific
platform will be given in Sect. 6.4 and Sect. 6.6.

Table 1. Comparison of Sampling Algorithms, starting with rejection-based sampler,
followed by tree-traversal samplers and finally Algorithm 1. The column exp(·) indi-
cates if the algorithm requires to evaluate exp(·) online. The column “Generic” refers
to the property of being able to produce samples from discrete Gaussians with differ-
ent parameters not known before precomputation (i.e. which may vary from query to
query). The security parameter is denoted by κ.

Algorithm Memory Rejection Rate exp(·) Generic

Rejection Sampling [22] 0 ∼ .9 Yes Yes
Discrete Ziggurat [11] var var Yes No
Bernoulli-type [14] O(κ log s) ∼ .5 No No
Karney [25] 0 ∼ .5 No Yes

Knuth-Yao [18] O(κs) - No No
Inversion Sampling [38] O(κs) - No No

Our work var - No Yes

6.2 The Base Sampler

We first consider the problem of generating samples from DZ,c,s when s =
O(ηε(Z)) is relatively small and c is fixed. We are interested in the amortized
cost of sample generation, where we want to generate a large batch of samples.

We first observe that we are sampling from a relatively narrow Gaussian
distribution, so memory will not be a concern for us. Since we want to generate
a large number of samples, our main criteria for the suitability of an algorithm
is its expected running time. For any algorithm, this is lower bounded by the
entropy of DZ,c,s, so a natural choice is (lazy) inversion sampling [38] or Knuth-
Yao [18], since both are (close to) randomness optimal and their running time
is essentially the number of random bits they consume, hence providing us with
an optimal algorithm for our purpose. In fact, Knuth-Yao is a little faster than
inversion sampling, so we focus on that.

6.3 Setup of Experimental Study

There are a number of cryptographic applications for our sampler, most of which
use an integer sampler in one of three typical settings.



– The output distribution is the centered discrete Gaussian with fixed noise
parameter. This is the case in most basic LWE based schemes, where the
noise for the LWE instance is sampled using an integer sampler.

– The output distribution is the discrete Gaussian with fixed noise parameter,
but varying center. This is the case in the online phase of Peikert’s sampler
[38]. In particular, if applied to q-ary lattices the centers are restricted to
the set 1

qZ.
– The output distribution is the discrete Gaussian where both, the center and

the noise parameter may vary for each sample. This is typically used as a
subroutine for sampling from the discrete Gaussian over lattices, as the GPV
sampler [22] or in the offline phase of Peikert’s sampler.

The ideas presented in this work can be applied to any of these settings. In
particular, the algorithms in Sect. 5 can be used to achieve new time-memory
trade-offs in all three cases. The optimal trade-off is highly application specific
and depends on a lot of factors, for example, the target platform (hardware
vs. software), the cost of randomness (TRNGs vs. PRNGs), available memory,
cost of evaluating exp(·), cost of basic floating point/integer arithmetic, etc. In
the following we present an experimental comparison of our algorithm to pre-
vious algorithms. Obviously, we are not able to take all factors into account,
so we restrict ourselves to a comparison in a software implementation, where
all algorithms use the same source of randomness (NTL’s PRNG), evaluate the
randomness bit by bit in order to minimize randomness consumption, and use
only elementary data types during the sampling. In particular, whenever FP
arithmetic is necessary or ρs(·) needs to be evaluated during the sampling, all
the algorithms use only double or extended double precision. This should be
sufficient since we are targeting around 100 bits of security and the arguments
in Sect. 3 apply to any algorithm. We do not claim that the implementation is
optimal for any of the evaluated algorithms, but it should provide a fair com-
parison. We instantiated our algorithms with the parameters as listed at the end
of Sect. 5.3. Our implementation makes no effort towards a constant-time im-
plementation. Even though turning Algorithm 1 into a constant-time algorithm
is conceptually simple (cf. Sect. 5.4), this still requires a substantial amount of
design and implementation effort, which is out of the scope of this work.

When referring to specific settings of the parameter s, we will often refer to
it as multiple of

√
2π. The reason is that two slightly different definitions of ρs(·)

are common in the literature and the factor
√

2π converts between them. While
we found one of them to be more convenient in the analytic part of this work,
most previous experimental studies [11, 40] use the other. So this notation is for
easier comparability.

6.4 Fixed Centered Gaussian

In this section we consider the simplest scenario for discrete Gaussian sampling:
sampling from the centered discrete Gaussian distribution above a certain noise
level. This is accomplished by Algorithm 2. Note that the parameter s0 allows for



a time memory trade-off in our setting: the larger s0, the more memory required
by our base sampler (Knuth-Yao), but the fewer the levels of recursion. More
precisely, the memory requirement grows linearly with s0, while the running time
decreases logarithmically.

We compare the method in different settings to the only other adjustable
time-memory trade-off known to date – the discrete Ziggurat. For our evalua-
tion we modified the implementation of [11] to use elementary data types only
during the sampling (as opposed to arbitrary precision arithmetic in the original
implementation). The baseline algorithms in this setting are the Bernoulli-type
sampler and Karney’s algorithm, as they allow to sample from the centered dis-
crete Gaussian quite efficiently using very little or no memory. Figure 1 shows the
result of our experimental analysis for a set of representative s’s. We chose the
examples mostly according to the examples in [11], where we skipped the data
point at s = 10

√
2π, since this is already a very narrow distribution which can be

efficiently sampled using Knuth-Yao with very moderate memory requirements.
Instead, we show the results for s = 214

√
2π (chosen somewhat arbitrarily), addi-

tionally to data points close to the ones presented in [11]: s ∈ {25, 210, 217}
√

2π.
Figure 1 shows that the two algorithms complement each other quite nicely:

while Ziggurat allows for better trade-offs in the low memory regime, using
convolution achieves much better running times in the high memory regime.
This suggests that Ziggurat might be the better choice for constrained devices,
but recall that it requires evaluations of exp(·). So if s is not too large, even for
constrained devices the convolution type sampler can be a better choice (see for
example [40]).

Note that the improvement gained by using more memory deteriorates in our
implementation, up to the point where using more memory actually hurts the
running time (see Fig. 1, bottom right). A similar effect can be observed with
the discrete Ziggurat algorithm. At first sight this might be counter-intuitive,
but can be easily explained with a limited processor cache size: larger memory
requirement in our case means fewer cache hits, which results in more RAM
accesses, which are much slower. This nicely illustrates how dependent this trade-
off is on the speed of the available memory. Since fast memory is usually much
more expensive than slower memory, for a given budget it is very plausible
that the money is better spent on limited amounts of fast memory and using
Algorithm 2 rather than implementing the full Knuth-Yao with larger and slower
memory. In our specific example (Fig. 1, bottom right), this means that using a
convolution of two samples generated by smaller Knuth-Yao samplers is actually
faster than generating the samples directly with a large Knuth-Yao sampler.

6.5 Fixed Gaussian with Varying Center

We now turn to the second setting, where the noise parameter is still fixed but the
center may vary. In order to take advantage of the fact that the noise parameter is
fixed and the center in a restricted set for the online phase, Peikert suggested that
“if q is reasonably small it may be worthwhile (for faster rounding) to precompute
the tables of the cumulative distribution functions for all q possibilities” [38].
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Fig. 1. Time memory trade-off for Algorithm 2 and discrete Ziggurat compared to
Bernoulli-type sampling and Karney’s algorithm for s ∈ {25, 210, 214, 217}

√
2π. Knuth-

Yao corresponds to right most point of Algorithm 2.

This might be feasible, but only for very small q and s (depending on the available
memory). If not enough memory is available, there is currently no option other
than falling back to Karney’s algorithm or rejection sampling.

Depending on the cost of randomness, speed and amount of available memory
and processor speed for arithmetic, Knuth-Yao can be significantly faster than
Karney’s algorithm. For example, in our prototype implementation, Knuth-Yao
was up to 6 times faster, but keep in mind that this number is highly platform
dependent and can vary widely. Accordingly, we can afford to invoke Knuth-
Yao several times, sacrificing some running time for memory savings, and still
outperform Karney’s algorithm. Our algorithms offer exactly this kind of trade-
off. There are two ways in which we can take advantage of convolution theorems
to address the challenge of having to store q Knuth-Yao samplers. The first
simply consists in storing the samplers for some smaller s0, which will reduce
the required memory by a factor s/s0. After obtaining a sample from the right
coset, using only the 0-coset we can generate and add a sample from a wider
distribution to obtain the correct distribution. This is very similar to Algorithm
2 with the additional step of adding a sample from the right coset, where we
simply invoke Corollary 1 once more. This step will increase the running time
by at most logs0 s additively (cf. Lemma 9).



Note that there is a limit to this technique though, since we need s0 >√
2ηε(Z) for the convolution to yield the correct output distribution. If s is

already small, but there is not enough memory available because q is too large,
this approach will fail. In this case we can use the algorithm from Sect. 5.2 to
reduce the number of samplers needed to be stored. In particular, for any base b
such that4 rad(q) | b, we can cut down on the memory cost by a factor q/b, which
will increase the running time by dlogb qe. For this, we simply need to express
the center c in the base b and round the digits individually using SampleCb. For
example, if q is a power of a small prime p, we can choose b to be any multiple
of p. This can dramatically increase the modulus q for which we can sample fast
with a given amount of memory, assuming rad(q) is small. As a more specific
example, say q is a perfect square and let b =

√
q. Instead of storing q Knuth-

Yao samplers and invoking one when a sample is required for a coset 1
qZ, we can

store b samplers and randomly round each of the 2 digits of the center in base b
successively. This effectively doubles the running time, but this is likely to still
be much faster than Karney’s algorithm (again, depending on the platform), but
we reduced the amount of necessary memory by a factor

√
q.

Clearly, depending on the specific q, s and platform, the two techniques can
be combined. The optimal trade-off depends on all three factors and has to be
evaluated for each application. Our algorithms provide developers with the tools
to optimize this trade-off and make the most of the available resources.

6.6 Varying Gaussian

Finally, we evaluate the practical performance of our full sampler, SampleZ.
Precomputing the value K, as suggested in Sect. 5.3, made little difference in
our software implementation and we show results for the algorithm that does
not precompute K. The bottleneck in our algorithm is the call to SampleC, as
it consumes a number of samples which depends on the base b. Again, similar
to the previous section, the base b offers a time-memory trade-off, which is the
target of our evaluation. We experimented with the sampler for a wide range of
noise parameters s, but since our algorithm is essentially independent of s (as
long as it is ≤ smax), it is not surprising that the trade-off is essentially the same
in all cases. Accordingly, we present only one exemplary result in Fig. 2. As a
frame of reference, rejection sampling achieved 0.994 · 106 samples per second,
which shows that by spending only very moderate amounts of memory (< 1mb),
our algorithm can match and outperform rejection sampling. On the other hand,
Karney’s algorithm achieved 3.281 · 106 samples per second, which seems out of
reach for reasonable amounts of memory, making it the most efficient choice in
this setting, if no other criteria are of concern. But we stress again that this
depends highly on how efficiently Knuth-Yao can be implemented compared to
Karney’s algorithm on the target platform. While the running time of both,
rejection sampling and Karney’s algorithm depends on s, this dependence is

4 This is the condition for 1
q

being expressible as a finite number in base b.



rather weak (logarithmic with small constants) so the picture does not change
much for other noise parameters.
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Fig. 3. Performance of Algorithm 1 com-
pared to Karney’s algorithm, (online
phase only).

Recall that our algorithm can be split into online and offline phase, since the
base samples are independent of the target distribution. Karney’s algorithm also
initially samples from a Gaussian that is independent of the target distribution,
so a similar approach can be applied. However, the trade-off is fixed and no
speed-ups can be achieved by spending more memory.

We tested both algorithms, where we assumed that the offline phase is free,
for a wide range of s. For this, we fixed b = 16 for our algorithm, which seemed
to be a good choice in our setting. Note that similar to Sect. 6.4, spending more
memory (and increasing b) should in theory only improve the algorithm. But if
this comes at the cost of slowing down memory access due to a limited cache
size, this can actually hurt performance. The results are depicted in Fig. 3. The
graph allows for two interesting observations: First, our algorithm consistently
outperforms Karney’s algorithm in this setting. So if the offline phase can be
considered to be free or a limited life-time is acceptable (cf. Sect. 5.4), our al-
gorithm seems to be the better choice. Second, as expected, our algorithm is
essentially independent of s (as long as it is < smax), while the performance of
Karney’s algorithm deteriorates as s grows. This is due to the fact that Karney’s
algorithm requires to sample a uniform number in [0, s] during the online phase,
which is logarithmic in s. This leads to a larger gap between the performance
of the two algorithms as s grows, and supports the claim that our sampler al-
lows for an efficient constant time implementation. In contrast, both Karney’s
algorithm and rejection sampling seem to be inherently costly to turn into con-
stant time algorithms, due to their dependence on s and the fact that they are
probabilistically rejecting samples.



In summary, we believe that there are a number of applications and target
platforms, where our algorithm will be the best choice to implement a discrete
Gaussian sampler.
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