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Abstract. Bitcoin is one of the most prominent example of a distributed
cryptographic protocol that is extensively used in reality. Nonetheless,
existing security proofs are property-based, and as such they do not
support composition.

In this work we put forth a universally composable treatment of the Bit-
coin protocol. We specify the goal that Bitcoin aims to achieve as a ledger
functionality in the (G)UC model of Canetti et al. [TCC’07]. Our ledger
functionality is weaker than the one recently proposed by Kiayias, Zhou,
and Zikas [EUROCRYPT’16], but unlike the latter suggestion, which
is arguably not implementable given the Bitcoin assumptions, we prove
that the one proposed here is securely UC realized under standard as-
sumptions by an appropriate abstraction of Bitcoin as a UC protocol. We
further show how known property-based approaches can be cast as spe-
cial instances of our treatment and how their underlying assumptions can
be cast in (G)UC without restricting the environment or the adversary.

1 Introduction

Since Nakamoto first proposed Bitcoin as a decentralized cryptocurrency [28],
several works have focused on analyzing and/or predicting its behavior under
different attack scenarios [4, [I5] 14, B4, [33] 18, 30]. However, a core question
remained:

What security goal does Bitcoin achieve under what assumptions?

An intuitive answer to this question was already given in Nakamoto’s orig-
inal white paper [28]: Bitcoin aims to achieve some form of consensus on a set
of valid transactions. The core difference of this consensus mechanism with tra-
ditional consensus [26], [24] 25| [31] is that it does not rely on having a known
(permissioned) set of participants, but everyone can join and leave at any point
in time. This is often referred to as the permissionless model. Consensus in this
model is achieved by shifting from the traditional assumptions on the fraction of
cheating versus honest participants, to assumptions on the collective computing
power of the cheating participants compared to the total computing power of
the parties that support the consensus mechanism. The core idea is that in order
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for a party’s action to affect the system’s behavior, it needs to prove that it is in-
vesting sufficient computing resources. In Bitcoin, these resources are measured
by means of solutions to a presumably computation-intensive problem.

Although the above idea is implicit in [2§], a formal description of Bitcoin’s
goal had not been proposed or known to be achieved (and under what assump-
tions) until the recent works of Garay, Kiayas, and Leonardos [16] and Pass,
Seeman, and shelat [29]. In a nutshell, these works set forth models of compu-
tation and, in these models, an abstraction of Bitcoin as a distributed protocol,
and proved that the output of this protocol satisfies certain security properties,
for example the common prefiz [16] or consistency [29] property. This property
confirms—under the assumption that not too much of the total computing power
of the system is invested in breaking it—a heuristic argument used by the Bit-
coin specification: if some block makes it deep enough into the blockchain of an
honest party, then it will eventually make it into the blockchain of every honest
party and will never be reversedﬂ In addition to the common prefix property,
other quality properties of the output of the abstracted blockchain protocol were
also defined and proved. A more detailed description of the security properties
in [16] and [29] is included in Section

Bitcoin as a service for cryptographic protocols. The main use of the Bitcoin pro-
tocol is as a decentralized monetary system with a payment mechanism, which
is what it was designed for. And although the exact economic forces that guide
its sustainability are still being researched, and certain rational models predict
it is not a stable solution, it is a fact that Bitcoin has not met any of these pes-
simistic predictions for several years and it is not clear it ever will do. And even
if it does, the research community has produced and is testing several alternative
decentralized cryptocurrencies, e.g., [27, [} [9], that are more functional and/or
resilient to theoretic attacks than Bitcoin. Thus, it is reasonable to assume that
decentralized cryptocurrencies are here to stay.

This leads to the natural questions of how one can use this new reality to
improve the security and/or efficiency of cryptographic protocols? First answers
to this question were given in [2] B [, (23] 2], 22], 20, [1I] where it was shown how
Bitcoin can be used as a punishment mechanism to incentivize honest behavior
in higher level cryptographic protocols such as fair lotteries, poker, and general
multi-party computation. But in order to formally define and prove the security
of the above constructions in a widely accepted cryptographic framework for
multi-party protocols, one needs to define what it means for these protocols to
be run in a world that gives them access to the Bitcoin network as a resource to
improve their security. In other words, the question now becomes:

What functionality can Bitcoin provide to cryptographic protocols?

To address this question, Bentov and Kumaresan [§] introduced a model of
computation in which protocols can use a punishment mechanism to incentivize
adversaries to adhere to their protocol instructions. As a basis, they use the

3 In the original Bitcoin heuristic ”deep enough” is defined as six blocks, whereas in
these works it is defined as linear in an appropriate security parameter.



universal composition framework of Canetti [10], but the proposed modifications
do not support composition and it is not clear how standard UC cryptographic
protocols can be cast as protocols in that model.

In a different direction, Kiayias, Zhou, and Zikas [I9] connected the above
question with the original question of Bitcoin’s security goal. More concretely,
they proposed identifying the resource that Bitcoin (or other decentralized cryp-
tocurrencies) offers to cryptographic protocols as its security goal, and express-
ing it in a standard language compatible with the existing literature on crypto-
graphic mulit-party protocols. More specifically, they modeled the ideal guaran-
tees as a transaction-ledger functionality in the universal composition framework.
To be more precise, the ledger of [I9] is formally a global setup in the (extended)
GUC framework of Canetti et al. [I1].

In a nutshell, the ledger proposed by [19] corresponds to a trusted party which
keeps a state of blocks of transactions and makes it available, upon request, to
any party. Furthermore, it accepts transactions from any party and records them
as long as they pass an appropriate validation procedure that depends on the
above publicly available state as well as other registered messages. Periodically,
this ledger puts the transactions that were recently registered into a block and
adds them into the state. As proved in [19], giving multi-party protocols access
to such a transaction-ledger functionality allows for formally capturing, within
the composable (G)UC framework, the mechanism of leveraging security loss
with coins. The proposed ledger functionality guarantees all properties that one
could expect from Bitcoin and encompasses the properties in [16], [29]. Therefore,
it is natural to postulate that it is a candidate for defining the security goal
of Bitcoin (and potentially other decentralized cryptocurrencies). However, the
ledger functionality proposed by [I9] was not accompanied by a security proof
that any of the known cryptocurrencies implements it.

However, as we show, despite being a step in the right direction, the ledger
proposed in [I9] cannot be realized under standard assumptions about the Bit-
coin network. On the positive side, we specify a new transaction ledger func-
tionality which still guarantees all properties postulated in [I6], [29], and prove
that a reasonable abstraction of the Bitcoin protocol implements this ledger. In
our construction, we describe Bitcoin as a UC protocol which generalizes both
protocols proposed in [16] 29]. Along the way we devise a compound way of cap-
turing in UC assumptions like the ones in [I6 [29], which enables us to compare
the strengths of these models.

Related Literature. The security of Bitcoin as a cryptographic protocol was
previously studied by Garay, Kiayas, and Leonardos [16] and by Pass, Seeman,
and shelat [29] who proposed and analyzed an abstraction of the core of the Bit-
coin protocol in a property-based manner. The treatment of [16] 29] does not of-
fer composable security guarantees. More recently, Kiayias, Zhou, and Zikas [19]
proposed capturing the security goal and resource implemented by Bitcoin by
means of a shared transaction-ledger functionality in the universal composition
with global setup (GUC) framework of Canetti et al. [IT]. However, the proposed
ledger-functionality is too strong to be implementable by Bitcoin. We refer the



interested reader to the full version [6] for the basic elements of these works and
a discussion on simulation-based security in general. A formal comparison of our
treatment with [16, 29], which indicates how both these protocols and definitions
can be captured as special cases of our security definition, is given in Section [4.4}

Our Results. We put forth the first universally composable (simulation-based)
proof of security of Bitcoin in the (G)UC model of Canetti et at. [I1]. We observe
that the ledger functionality proposed by Kiayas et al. [I9] is too strong to be
implemented by the Bitcoin protocol—in fact, by any protocol in the permis-
sionless setting, which uses network assumptions similar to Bitcoin. Intuitively,
the reason is that the functionality allows too little interference of the simulator
with its state, making it impossible to emulate adversarial attacks that result,
e.g., in the adversary inserting only transactions coming from parties it wants
or that result in parties holding chains of different length.

Therefore, we propose an alternative ledger functionality G, zpeer Which shares
certain design properties with the proposal in [I9] but which can be provably
implemented by the Bitcoin protocol. As in [I9], our proposed functionality can
be used as a global setup to allow protocols with different sessions to make use
of it, thereby enabling the ledger to be cast as shared among any protocol that
wants to use it. The ledger is parametrized by a generic transaction validation
predicate which enables it to capture decentralized blockchain protocols beyond
Bitcoin. Our functionality allows for parties/miners to join and or leave the
computation and allows for adaptive corruption.

Having defined our ledger functionality we next prove that for an appropri-
ate validation predicate G gpcer is implemented by Bitcoin assuming that miners
which deviate from the Bitcoin protocol do not control a majority of the total
hashing power at any point. To this end, we describe an abstraction of the Bitcoin
protocol as a synchronous UC protocol. Our protocol generalizes both [16], [29]—
as we argue, the protocols described in these works can be captured as instances
of our protocols. The difference between these two instances is the network as-
sumption that is used—more precisely, the assumption about knowledge on the
network delay—and the assumption on the number of queries per round. To
capture these assumptions in UC, we devise a methodology to formulate func-
tionality wrappers to capture assumptions, and discuss the implications of such
a method in preserving universal composability.

Our protocol works over a network of bounded-delay channels, where similar
to [29], the miners are not aware of (an upper bound on) the actual delay that the
network induces. We argue that such a network is strictly weaker than a network
with known bounded delay, which is implicit in the synchrony assumptions of [16]
(cf. Remark. Notwithstanding, unlike previous works, instead of starting from
a complete network that offers multicast, we explain how such a network could be
implemented by running the message-diffusion mechanism of the Bitcoin network
(which is run over a lower level network of unicast channels). Intuitively, this
network is built by every miner, upon joining the system, choosing some existing
miners of its choice to use them as relay-nodes.



Our security proof proposes a useful modularization of the Bitcoin protocol.
Concretely, we first identify the part of the Bitcoin code which intuitively corre-
sponds to the lottery aspect, provide an ideal UC functionality that reflects this
lottery aspect, and prove that this part of the Bitcoin code realizes the proposed
functionality. We then analyze the remainder of the protocol in the simpler world
where the respective code that implements the lottery aspect is replaced by in-
vocations of the corresponding functionality. Using the composition theorem, we
can then immediately combine the two parts into a proof of the full protocol.

Similarly to the backbone protocol from [16] our above UC protocol descrip-
tion of Bitcoin relies only on proofs of work and not on digital signatures. As
a result, it implements a somewhat weaker ledger, which does not guarantee
that transactions submitted by honest parties will eventually make it into the
blockchainﬁ As a last result, we show that (similarly to [I6]) by incorporating
public-key cryptography, i.e., taking signatures into account in the validation
predicate, we can implement a stronger ledger that ensures that transactions
issued by honest users—i.e., users who do not sign contradicting transactions
and who keep their signing keys for themselves—are guaranteed to be eventu-
ally included into the blockchain. The fact that our protocol is described in UC
makes this a straight-forward, modular construction using the proposed trans-
action ledger as a hybrid. In particular, we do not need to consider the specifics
of the Bitcoin protocol in the proof of this step. This also allows us to identify
the maximum (worst-case) delay a user needs to wait before being guaranteed to
see its transaction on the blockchain and be assured that it will not be inverted.

2 A Composable Model for Blockchain Protocols in the
Permissionless Model

In this section we describe our (G)UC-based model of execution for the Bitcoin
protocol. We remark that providing such a formal model of execution forces us
to make explicit all the implicit assumptions from previous works. As we lay
down the theoretical framework, we will also discuss these assumptions along
with their strengths and differences.

Bitcoin miners are represented as players—formally Interactive Turing Ma-
chine instances (ITIs)—in a multi-party computation. They interact which each
other by exchanging messages over an unauthenticated multicast network with
eventual delivery (see below) and might make queries to a common random ora-
cle. We will assume a central adversary A who gets to corrupt miners and might
use them to attempt to break the protocol’s security. As is common in (G)UC,
the resources available to the parties are described as hybrid functionalities. Be-
fore we provide the formal specification of such functionalities, we first discuss
a delicate issue that relates to the set of parties (ITIs) that might interact with
an ideal functionality.

4 We formulate a weakened guarantee, which we then amplify using digital signatures.



Functionalities with dynamic party sets. In many UC functionalities, the
set of parties is defined upon initiation of the functionality and is not subject to
change throughout the lifecycle of the execution. Nonetheless, UC does provide
support for functionalities in which the set of parties that might interact with
the functionality is dynamic. This dynamic nature is an inherent feature of the
Bitcoin protocol—where miners come and go at will. In this work we make this
explicit by means of the following mechanism: All the functionalities considered
here include the following three instructions that allow honest parties to join or
leave the set P of players that the functionality interacts with, and inform the
adversary about the current set of registered partiesﬂ

— Upon receiving (REGISTER, sid) from some party p; (or from .4 on behalf of
a corrupted p;), set P = P U {p;}. Return (REGISTER, sid, p;) to the caller.

— Upon receiving (DE-RECISTER, sid) from some party p; € P, set P := P\{p;}.
Return (DE-REGISTER, sid, p;) to p;.

— Upon receiving (GET-REGISTERED, sid) from the adversary A, the function-
ality returns (GET-REGISTERED, sid, P) to A.

For simplicity in the description of the functionalities, for a party p; € P we
will use p; to refer to this party’s ID.

In addition to the above registration instructions, global setups, i.e., shared
functionalities that are available both in the real and in the ideal world and allow
parties connected to them to share state [II], allow also UC functionalities to
register with themﬁ Concretely, global setups include, in addition to the above
party registration instructions, two registration/de-registration instructions for
functionalities:

— Upon receiving (REGISTER, sid¢) from a functionality F, set F := F U {F}.

— Upon receiving (DE-REGISTER, sid¢) from a functionality F, set F' := F\{F}.

— Upon receiving (GET-REGISTERED-F, sid¢) from the adversary A, the func-
tionality returns (GET-REGISTERED-F,sidc, F') to A.

The above three (or six in case of global setups) instructions will be part of
the code of all ideal functionalities considered in this work. However, to keep the
description simpler we will omit these instructions from the formal descriptions.
We are now ready to formally describe each of the available functionalities.

The Communication Network. In Bitcoin, parties/miners communicate over
an incomplete network of asynchronous unauthenticated unidirectional chan-
nels. Concretely, every miner chooses a set of other miners as its immediate
neighbors—typically by using some public information on IP addresses of ex-
isting miners—and uses its neighbors to send messages to all the miners in the

® Note that making the set of parties dynamic means that the adversary needs to be
informed about which parties are currently in the computation so that he can chose
how many (and which) parties to corrupt.

5 Although we allow no communication between functionalities, we will allow func-
tionalities to communicate with global setups. (They can use the interface of global
setups to additional honest parties, which is anyway open to the environment.)



Bitcoin network. This corresponds to multicasting the messageﬂ This is achieved
by a standard diffusion mechanism: The sender sends the message it wishes to
multicast to all its neighbors who check that a message with the same content
was not received before, and if this is the case forward it to their neighbors,
who then do the same check, and so on. We make the following two assumptions
about the communication channels in the above diffusion mechanism/protocol:

— They guarantee (reliable) delivery of messages within a delay parameter A,
but are otherwise specified to be of asynchronous nature (see below) and
hence no protocol can rely on timings regarding the delivery of messages.
The adversary might delay any message sent through such a channel, but at
most by A. In particular, the adversary cannot block messages. However, he
can induce an arbitrary order on the messages sent to some party.

— The receiver gets no information other than the messages themselves. In
particular, a receiver cannot link a message to its sender nor can he observe
whether or not two messages were sent from the same sender.

— The channel offers no privacy guarantees. The adversary is given read access
to all messages sent on the network.

Our formal description of communication with eventual delivery within the
UC framework builds on ideas from [I7, [5l [I3]. In particular, we capture such
communication by assuming for each miner p; € P a multi-use unicast chan-
nel Fy.cx with receiver p;, to which any miner p; € P can connect and input
messages to be delivered to p; € P. A miner connecting to the unicast channel
with receiver p; corresponds to the above process of looking up p; and making
him one of its access points. The unicast channel does not provide any infor-
mation to its receiver about who else is using it. In particular, messages are
buffered but the information of who is the sender is deleted; instead, the channel
creates unique independent message-IDs that are used as handles for the mes-
sages. Furthermore, the adversary—who is informed about both the content of
the messages and about the handles—is allowed to delay messages by any finite
amount, and allowed to deliver them in an arbitrary out-of-order manner.

To ensure that the adversary cannot arbitrarily delay the delivery of messages
submitted by honest parties, we use the following idea: We first turn the UC
channel-functionality to work in a “fetch message” mode, where the channel
delivers the message to its intended recipient p; if and only if p; asks to receive
it by issuing a special “fetch” command. If the adversary wishes to delay the
delivery of some message with message ID mid, he needs to submit to the channel
functionality an integer value Tnig—the delay for message with ID mid. This will
have the effect that the channel ignores the next Tnq fetch attempts, and only
then allows the receipt of the sender’s message. Importantly, we require that the
channel does not accept more than A accumulative delay on any message. To
allow the adversary freedom in scheduling the delivery of messages, we allow him

" In [16] this mechanism is referred to as “broadcast”; here, we use multicast to make
explicit the fact that this primitive is different from a standard Byzantine-agreement-
type broadcast, in that it does not guarantee any consistency for a malicious sender.



to input delays more than once, which are added to the current delay amount. If
the adversary wants to deliver the message in the next activation, all he needs to
do is submit a negative delay. Furthermore, we allow the adversary to schedule
more than one messages to be delivered in the same “fetch” command. Finally, to
ensure that the adversary is able to re-order such batches of messages arbitrarily,
we allow A to send special (swap, mid, mid’) commands that have as an effect
to change the order of the corresponding messages. The detailed specification of
the described channels, denoted Fy_cn is provided in the full version [6]. Note
that in the descriptions throughout the paper, for a vector M we denote by the
symbol || the operation which adds a new element to M.

From Unicast to Multicast. As already mentioned, the Bitcoin protocol
uses the above asynchronous-and-bounded-delay unicast network as a basis to
achieve a multicast mechanism. A multicast functionality with bounded delay
can be defined similarly to the above unicast channel. The main difference is
that once a message is inserted it is recorded once for each possible receiver. The
adversary can add delays to any subset of messages, but again for any message
the cumulative delay cannot exceed A. He is further allowed to do partial and
inconsistent multicasts, i.e., where different messages are sent to different parties.
This is the main difference of such a multicast network from a broadcast network.
The detailed specification of the corresponding functionality Fx_yic is similar to
that of Fy.cy and is provided in the full version [6]. There we also show how the
simple round-based diffusion mechanism can be used to implement a multicast
mechanism from unicast channels as long as the corresponding network among
honest parties stays strongly connected. (A network graph is strongly connected
if there is a directed path between any two nodes in the network, where the
unicast channels are seen as the directed edges from sender to receiver.)

The Random Oracle. As usual in cryptographic proofs, the queries to the hash
function are modeled by assuming access to a random oracle (functionality) Fro.
This functionality is specified as follows: upon receiving a query (EVAL,sid, x)
from a registered party, if x has not been queried before, a value y is chosen
uniformly at random from {0,1}" (for security parameter x) and returned to
the party (and the mapping (z,y) is internally stored). If z has been queried
before, the corresponding y is returned.

Synchrony. Katz et al. [I7], proposed a methodology for casting synchronous
protocols in UC by assuming they have access to an ideal functionality Gerocxk,
the clock, that allows parties to ensure that they proceed in synchronized rounds.
Informally, the idea is that the clock keeps track of a round variable whose value
the parties can request by sending it (CLOCK-READ, sid¢). This value is updated
only once all honest parties sent the clock a (CLOCK-UPDATE, sid¢) command.
Given such a clock, the authors of [I7] describe how synchronous proto-
cols can maintain their necessary round structure in UC: For every round p
each party first executes all its round-p instructions and then sends the clock a
CLOCK-UPDATE command. Subsequently, whenever activated, it sends the clock
a CLOCK-READ command and does not advance to round p+ 1 before it sees the



clocks variable being updated. This ensures that no honest party will start round
p + 1 before every honest party has completed round p. In [19], this idea was
transfered to the (G)UC setting, by assuming that the clock is a global setup.
This allows for different protocols to use the same clock and is the model we will
also use here. The detailed specification of Gqock is given in the full version [6].

As argued in [I7], in order for an eventual-delivery (aka guaranteed termina-
tion) functionality to be UC implementable by a synchronous protocol, it needs
to keep track of the number of activations that an honest party gets—so that it
knows when to generate output for honest parties. This requires that the pro-
tocol itself, when described as a UC interactive Turing-machine instance (ITT),
has a predictable behavior when it comes to the pattern of activations that it
needs before it sends the clock an update command. We capture this property
in a generic manner in Definition [I]

In order to make the definition better accessible, we briefly recall the me-
chanics of activations in UC. In a UC protocol execution, an honest party (ITT)
gets activated either by receiving an input from the environment, or by receiving
a message from one of its hybrid-functionalities (or from the adversary). Any ac-
tivation results in the activated I'TI performing some computation on its view of
the protocol and its local state and ends with either the party sending a message
to some of its hybrid functionalities or sending an output to the environment, or
not sending any message. In either of this case, the party loses the activationﬁ

For any given protocol execution, we define the honest-input sequence Zg
to consist of all inputs that the environment gives to honest parties in the
given execution (in the order that they were given) along with the identity
of the party who received the input. For an execution in which the environ-
ment has given m inputs to the honest parties in total, Ty is a vector of the
form ((x1,pidy),..., (zm,pid,,)), where z; is the i-th input that was given in
this execution, and pid, is the corresponding party who received this input.
We further define the timed honest-input sequence, denoted as f}}, to be the
honest-input sequence augmented with the respective clock time when an in-
put was given. If the timed honest-input sequence of an execution is 17 =
((1,pid;, 1), ., (Tm,pid,,, Tm)), this means that ((x1, pid,), ..., (Tm,pid,,))
is the honest-input sequence corresponding to this execution, and for each i € [n],
7; is the time of the global clock when input z; was handed to pid,.

Definition 1. A G ock-hybrid protocol II has a predictable synchronization
pattern iff there exist an algorithm predict-time;(-) such that for any possible
execution of II (i.e., for any adversary and environment, and any choice of
random coins) the following holds: If It = ((x1,pidy, 71),- -, (Tm, pid,,, Tm))
1s the corresponding timed honest-input sequence for this execution, then for any
i€ [m—1]: predict-time((z1,pidy, 71),- .., (%, Pid;, i) = Tit1-

As we argue, all synchronous protocol described in this work are designed to
have a predictable synchronization pattern.

8 In the latter case the activation goes to the environment by default.



Assumptions as UC Functionality Wrappers. In order to prove statements
about cryptographic protocols one often makes assumptions about what the
environment can or cannot do. For example, a standard assumption in [I6] [29] is
that in each round the adversary cannot do more calls to the random oracle than
what the honest parties (collectively) can do. This can be captured by assuming a
restricted environment and adversary which balances the amount of times that
the adversary queries the random oracle. In a property-based treatment such
as [I6], [29] this assumptions is typically acceptable.

However, in a simulation-based definition, restricting the class of adversaries
and environments in a security statement means that we can no longer generically
apply the composition theorem, which dismisses one of the major advantages of
using simulation-based security in the first place. Therefore, instead of restrict-
ing the class of environments/adversaries, here we take a different approach to
capture the fact that the adversary’s access to the RO is restricted with respect
to that of honest parties. In particular, we capture this assumption by means of
a functionality wrapper that wraps the RO functionality and forces the above
restrictions on the adversary, for example by assigning to each corrupted party
at most ¢ activations per round for a parameter q. To keep track of rounds the
functionality registers with the global clock Gooox. We refer the reader to [6] for
a detailed specification of such a wrapped random-oracle functionality W2 (Fro).

Remark 1 (Functionally Black-box Use of the Network (Delay)). A key difference
between the models in [I6] and [29] is that in the latter the parties do not know
any bound on the delay of the network. In particular, although both models
are in the synchronous setting, in [29] a party in the protocol does not know
when to expect a message which was sent to it in the previous round. Using
terminology from [32], the protocol uses the channel in a functionally black-
bor manner. Restricting to such protocols—a restriction which we also adopt
in this work—is in fact implying a weaker assumption on the protocol than
standard (known) bounded-delay channel. Intuitively the reason is that no such
protocol can realize a bounded-delay network with a known upper bound (unless
it sacrifices termination) since the protocol cannot decide whether or not the
bound has been reached.

3 The Transaction-Ledger Functionality

In this section we describe our ledger functionality, denoted as G ppcrr, Which
can, for example, be achieved by (a UC version) of the Bitcoin protocol. As
in [19], our ledger is parametrized by certain algorithms/predicates that allow
us to capture a more general version of a ledger which can be instantiated by
various cryptocurrencies. Since our abstraction of the Bitcoin protocol is in the
synchronous model of computation (this is consistent with known approaches
in the cryptographic literature), our ledger is also designed for this synchronous
model. Nonetheless, several of our modeling choices are made with the foresight
of removing or limiting the use of the clock and leaving room for less synchrony.
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At a high level, our ledger G ppeer has a similar structure as the ledger pro-
posed in [19]. Concretely, anyone (whether an honest miner or the adversary)
might submit a transaction which is validated by means of a predicate Validate,
and if it is found valid it is added to a buffer buffer. The adversary A is in-
formed that the transaction was received and is given its contentsﬂ Informally,
this buffer also contains transactions that, although validated, are not yet deep
enough in the blockchain to be considered out-of-reach for a adversary[l| Pe-
riodically, Girpcer fetches some of the transactions in the buffer, and using an
algorithm Blockify creates a block including these transactions and adds this
block to its permanent state state, which is a data structure that includes the
part of the blockchain the adversary can no longer change. This corresponds to
the common prefiz in [16, [29]. Any miner or the adversary is allowed to request
a read of the contents of the state.

This sketched specification is simple, but in order to have a ledger that can be
implemented by existing blockchain protocols, we need to relax this functionality
by giving the adversary more power to interfere with it and influence its behavior.
Before sketching the necessary relaxations we discuss the need for a new ledger
definition and it potential use as a global setup.

Remark 2 (Impossibility to realize the ledger of [19]). The main reasons why the
ledger in [19] is not realizable by known protocols under reasonable assumptions
are as follows: first, their ledger guarantees that parties always obtain the same
common state. Even with strong synchrony assumptions, this is not realizable
since an adversary, who just mined a new block, is not forced to inform each party
instantaneously (or at all) and thus could, e.g., make parties observe different
lengths of the same prefix. Second, the adversarial influence is restricted to
permuting the buffer. This is too optimistic, as in reality the adversary can
try to mine a new block and possibly exclude certain transactions. Also, this
excludes any possibility to quantify quality. Third, letting the update rate be
fixed does not adequately reflect the probabilistic nature of blockchain protocols.

Remark 3 (On the sound usage of a ledger as a global setup). As presented
in [I9], a UC ledger functionality G ppeer can be cast as a global setup [I1] which
allows different protocols to share state. This is true for any UC functionality as
stated in [I1] and [I2]. Nonetheless, as pointed out in the recent work of Canetti,
Shahaf, and Vald [12], one needs to be extra careful when replacing a global setup
by its implementation, e.g., in the case of G gpger by the UC Bitcoin protocol of
Section[d] Indeed, such a replacement does not, in general, preserve a realization
proof of some ideal functionality F that is conducted in a ledger-hybrid world,
because the simulator in that proof might rely on specific capabilities that are
not available any more after replacement (as the global setup is also replaced
in the ideal world). The authors of [I2] provide a sufficient condition for such a
replacement to be sound. This condition is generally too strong to be satisfied by

9 This is inevitable since we assume non-private communication, where the adversary
sees any message as soon as it is sent, even if the sender and receiver are honest.
19 E.g., in [I9] the adversary is allowed to permute the contents of the buffer.
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any natural ledger implementation, which opens the question of devising relaxed
sufficient conditions for sound replacements in an MPC context. As this work
focuses on the realization of ledger functionalities per se, we can treat Gppcer
as a standard UC functionality.

In the following, we review the necessary relaxations to obtain a realizable
ledger. We conclude this section with the specification of our generic ledger
functionality.

State-buffer validation. The first relaxation is with respect to the invariant that
is enforced by the validation predicate Validate. Concretely, in [19] it is assumed
that the validation predicate enforces that the buffer does not include conflicting
transactions, i.e., upon receipt of a transaction, Validate checks that it is not in
conflict with the state and the buffer, and if so the transaction is added to the
buffer. However, in reality we do not know how to implement such a strong filter,
as different miners might be working on different, potentially conflicting sets of
transactions. The only time when it becomes clear which of these conflicting
transactions will make it into the state is once one of them has been inserted
into a block which has made it deep enough into the blockchain (i.e., has become
part of state). Hence, given that the buffer includes all transactions that might
end up in the state, it might at some point include both conflicting transactions.

To enable us for a provably implementable ledger, in this work we take a
different approach. The validate predicate will be less restrictive as to which
transactions make it into the buffer. Concretely, at the very least, Validate will
enforce the invariant that no single transaction in the buffer contradicts the state
state, while different transactions in buffer might contradict each other. Look-
ing ahead, a stronger version that is achievable by employing digital signatures
(presented in Section, could enforce that no submitted transaction contradicts
other submitted transactions. As in [I9], whenever a new transaction x is sub-
mitted to G pparr, it is passed to Validate which takes as input a transaction and
the current state and decides if x should be added to the buffer. Additionally, as
buffer might include conflicts, whenever a new block is added to the state, the
buffer (i.e., every single transaction in buffer) is re-validated using Validate and
invalid transactions in buffer are removed. To allow for this re-validation to be
generic, transactions that are added to the buffer are accompanied by certain
metadata, i.e., the identity of the submitter, a unique transaction ID txicfEL or
the time 7 when = was received.

State update policies and security guarantees. The second relaxation is with
respect to the rate and the form and/or origin of transactions that make it into
a block. Concretely, instead of assuming that the state is extended in fixed time
intervals, we allow the adversary to define when this update occurs. This is done

11 In Bitcoin, txid would be the hash-pointer corresponding to this transaction. Note
that the generic ledger can capture explicit guarantees on the ability or disabil-
ity to link transactions, as this crucially depends on the concrete choice of an ID
mechanism.
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by allowing the adversary, at any point, to propose what we refer to as the next-
block candidate NxtBC. This is a data structure containing the contents of the
next block that A wants to have inserted into the state. Leaving NxtBC empty
can be interpreted as the adversary signaling that it does not want the state to
be updated in the current clock tick.

Of course allowing the adversary to always decide what makes it into the
state state, or if anything ever does, yields a very weak ledger. Intuitively, this
would be a ledger that only guarantees the common prefix property [16] but
no liveness or chain quality. Therefore, to enable us to capture also stronger
properties of blockchain protocols we parameterize the ledger by an algorithm
ExtendPolicy that, informally, enforces a state-update policy restricting the
freedom of the adversary to choose the next block and implementing an appro-
priate compliance-enforcing mechanism in case the adversary does not follow
the policy. This enforcing mechanism simply returns a default policy-complying
block using the current contents of the buffer. We point out that a good simula-
tor for realizing the ledger will avoid triggering this compliance-enforcing mech-
anism, as this could result in an uncontrolled update of the state which would
yield a potential distinguishing advantage. In other words, a good simulator, i.e.,
ideal-world adversary, always complies with the policy.

In a nutshell, ExtendPolicy takes the current contents of the buffer buffer,
along with the adversary’s recommendation NxtBC, and the block-insertion times
vector Tstave- Lhe latter is a vector listing the times when each block was in-
serted into state. The output of ExtendPolicy is a vector including the blocks
to be appended to the state during the next state-extend time-slot (where again,
ExtendPolicy outputting an empty vector is a signal to not extend). To ensure
that ExtendPolicy can also enforce properties that depend on who inserted how
many (or which) blocks into the state—e.g. the so-called chain quality property
from [I6]—we also pass to it the timed honest-input sequence Z% (cf. Section.

Some examples of how ExtendPolicy allows us to define ways that the pro-
tocol might restrict the adversary’s interference in the state-update include the
following properties from [I6]:

— Liveness corresponds to ExtendPolicy enforcing the following policy: If the
state has not been extended for more that a certain number of rounds and the
simulator keeps recommending an empty NxtBC, ExtendPolicy can choose
some of the transactions in the buffer (e.g., those that have been in the buffer
for a long time) and add them to the next block. Note that a good ideal-
world adversary will never allow for this automatic update to happen and
will make sure that he keeps the state extend rate within the right amount.

— Chain quality corresponds to ExtendPolicy enforcing the following policy:
ExtendPolicy looks into the blocks of state for a special type of transac-
tion (corresponding to a so-called coinbase transaction) and parses the state
(using the sequence of honest inputs f}; and the block-insertion times vec-
tor Tstate) tO see how long ago (in time or block-number) the last block
that gave a block-mining reward to some honest party was inserted into
the state. If this happened “too long” ago (this will be a parameter of this
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ExtendPolicy), then ExtendPolicy forces the coinbase transaction of the
next block to have as the miner ID the ID submitted by some honest miner.

In addition to the above standard properties, ExtendPolicy allows us to also
capture additional security properties of various blockchain protocols, e.g., the
fact that honest transactions eventually make it into a block and the fact that
transactions with higher rewards make it into a block faster than others.

In Section [ where we prove the security of Bitcoin, we will provide the con-
crete specification of Validate and ExtendPolicy for which the Bitcoin protocol
realizes our ledger.

Output Slackness and Sliding Window of State Blocks. The common prefix prop-
erty guarantees that blocks which are sufficiently deep in the blockchain of an
honest miner will eventually be included in the blockchain of every honest miner.
Stated differently, if an honest miner receives as output from the ledger a state
state, every honest miner will eventually receive state as its output. However, in
reality we cannot guarantee that at any given point in time all honest miners
see exactly the same blockchain length; this is especially the case when network
delays are incorporated into the model, but it is also true in the zero-delay model
of [T6]. Thus it is unclear how state can be defined so that at any point all parties
have the same view on it.

Therefore, to have a ledger implementable by standard assumptions we make
the following relaxation: We interpret state as the view of the state of the miner
with the longest blockchain. And we allow the adversary to define for every
honest miner p; a subchain state; of state of length |state;| = pt, that corresponds
to what p; gets as a response when he reads the state of the ledger (formally,
the adversary can fix a pointer pt;). For convenience, we denote by state|,, the
subchain of state that finishes in the pt,-th block. Once again, to avoid over-
relaxing the functionality to an unuseful setup, our ledger allows the adversary to
only move the pointers forward and it forbids the adversary to define pointers for
honest miners that are too far apart, i.e., more than windowSize state blocks.
The parameter windowSize € N denotes a core parameter of the ledger. In
particular, the parameter windowSize reflects the similarity of the blockchain to
the dynamics of a so-called sliding window, where the window of size windowSize
contains the possible views of honest miners onto state and where the head of
the window advances with the head of the state. In addition, it is convenient
to express security properties of concrete blockchain protocols, including the
properties discussed above, as assertions that hold within such a sliding window
(for any point in time).

Synchrony. In order to keep the ideal execution indistinguishable from the real
execution, the adversary should be unable to use the clock for distinguishing.
Since in the ideal world when a dummy party receives a CLOCK-UPDATE-message
for Gerocx it will forward it, the ledger needs to be responsible that the clock
counter does not advance before all honest parties have received sufficiently many
activations. This is achieved by the use of the function predict-time(Z%) (see
Definition , which, as we show, is defined for our ledger protocol. This function
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allows G gpeer to predict when the protocol would update the round and ensure
that it only allows the clock to advance if and only if the protocol would. Observe
that the ledger sees all protocol-relevant inputs/activations to honest parties and
can therefore easily keep track of the honest inputs sequence f}}

A final observation is with respect to guarantees that the protocol (and there-
fore also the ledger) can give to recently registered honest parties. Consider the
following scenario: An honest party registers as miner in round r and waits to
receive from honest parties the transactions to mine and the current longest
blockchain. In Bitcoin, upon joining, the miner sends out a special request—we
denote this here as a special NEW-MINER-message—and as soon as any party
receives it, it responds with the set of transactions and longest blockchain it
knows. Due to the network delay, the parties might take up to A rounds to
receive the NEW-MINER notification, and their response might also take up to
A rounds before it arrives to the new miner. However, because we do not make
any assumption on honest parties knowing A (see Remark 1) they need to start
mining as soon as a message arrives (otherwise they might wait indefinitely).
But now the adversary, in the worst case, can make these parties mine on any
block he wants and have them accept any valid chain he wants as the current
state while they wait for the network’s response: simply delay everything sent
to these parties by honest miners by the maximum delay A, and instead, imme-
diately deliver what you want them to work on. Thus, for the first Delay := 2A
roundﬁ (where Delay is a parameter of our ledger) these parties are practically
in the control of the adversary and their computing power is contributed to his.
We will call such miners de-synchronized and denote the set of such miners by
Pps. The formal specification of our ledger functionality G, pparr iS given in the
following. Using standard notation, we write [n] to denote the set {1,...,n}.

,—[ Functionality QLEDGER} h

Gienerr is parametrized by four algorithms, Validate, ExtendPolicy, Blockify, and
predict-timey, along with two parameters: windowSize,Delay € N. The
functionality manages variables state, NxtBC, buffer, 71, and Tstate, as described
above. The variables are initialized as follows: state := Tstate := NXtBC := ¢,
buffer :== 0, 7, = 1.

The functionality maintains the set of registered parties P, the (sub-)set of honest
parties H C P, and the (sub-set) of de-synchronized honest parties Pps C H. The
set P, H,Pps are all initially set to (). When a new honest party is registered, it is
added to all Ppgs (hence also to H and P) and the current time of registration is
also recorded; similarly, when a party is deregistered, it is removed from both P
and Pps.

12 For technical reasons described in Section A rounds in the protocol correspond
to 2A clock-ticks.
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For each party p; € P the functionality maintains a pointer pt, (initially set to 1)
and a current-state view state; := ¢ (initially set to empty). The functionality also
keeps track of the timed honest-input sequence in a vector Z5 (initially Z5 := ).

Upon receiving any input I from any party or from the adversary, send
(CLOCK-READ, sid¢) to Geroox and upon receiving response (CLOCK-READ, sid¢, T)
set 77, := 7 and do the following:

1. If I was received by an honest party p; € P:
(a) Set Tf := ThI|(I,pi, 71);
(b) Compute N = (]\71, ey ]\7[) = ExtendPolicy(f};,state, NxtBC, buffer, Tstate)

and if N # ¢ set state := state||Blockify(NN1)]| . . . ||Blockify(N;) and
Thvate '= Tstate| |75, where 75 = 7|| ..., ||7¢.

(c) For each BTX € buffer: if Validate(BTX, state, buffer) = 0 then delete BTX from
buffer.

(d) If there exists j € [{] with p;; € H \ Pps : |state| — pt,; < windowSize or
pAtij 72) state;, |, then for every j € [{] set pt, := |state| — |N]| for every
pi €°F.

2. Let P C Pps denote the set of desynchronized honest parties that were
registered at time 7' < 77, — Delay. Set Pps := Pps \ P.

3. Depending on the above input I and its sender’s ID, Girperr executes the

corresponding code from the following list:

e Submiting a transaction:
If I = (SUBMIT, sid, x) and is received from a party p; € P or from A (on
behalf of a corrupted party p;) do the following:
(a) Choose a unique transaction ID txid and set BTX := (x, txid, 7z, p;)
(b) If Validate(BTX, state, buffer) = 1, then buffer := buffer U {BTX}.
(c) Send (suBMIT,BTX) to A.

e Reading the state:
If I = (READ, sid) is received from a party p; € P then set
state; := state|min{pt;,|state)} @and return (READ, sid, state;) to the requestor. If

the requestor is A then send (state, buffer,fg) to A.

e Updating the state:
If I = (MAINTAIN-LEDGER, sid, minerID) is received by an honest party
p: € P and (after updating Z% as above) predict-time(Zj) = 7 > 71 then
send (CLOCK-UPDATE, sidc) to Gerook. Else send I to A.

e The adversary proposing the next block:
If I = (NEXT-BLOCK, (txids,...,txid)) is sent from the adversary, update
NxtBC as follows:
(a) Set NxtBC:=e.
(b) Fori=1,...,¢ do: if there exists BTX := (z, txid, minerlD, 7, p;) € buffer
with ID txid = txid; then set NxtBC := NxtBC||txid;.
(¢) Output (NEXT-BLOCK, ok) to A.
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o The adversary setting state-slackness:
If I = (SET-SLACK, (i1, Pt;, ), -, (Pig, Pt;,)), with {piy,...,pi,} CH\ Pps
is received from the adversary A do the following:
(a) If for all j € [¢] : |state| — pt;, < windowSize and pt; > state;, |, set
pt,, = pt,, for every j € [¢] and return (SET-SLACK, ok) to A.
(b) Otherwise set pt,, = state| for all j € [¢].

o The adversary setting the state for desychronized parties:

If I = (DESYNC-STATE, (pi, , state;, ), ..., (pi,, state;,)), with
{pir,---,pi,} C Pps is received from the adversary A, set state;; := state,’ij
for each j € [¢] and return (DESYNC-STATE, ok) to A.

\ J

4 Bitcoin as a Transaction Ledger Protocol

In this section we prove our main theorem, namely that, under appropriate as-
sumptions, Bitcoin realizes an instantiation of the ledger functionality from the
previous section. More concretely, we cast the Bitcoin protocol as a UC protocol,
where consistent with the existing methodology we assume that the protocol is
synchronous, i.e., parties can keep track of the current round by using an ap-
propriate global clock functionality. We first describe the UC protocol, denoted
Ledger-Protocol, in Section [I.I] which abstracts the components of Bitcoin that
are relevant for the construction of such a ledger—similar to how the backbone
protocol [16] captures core Bitcoin properties in their respective model of com-
putation. Later, in Section we specify the ledger functionality Q&DGER that
is implemented by the UC ledger protocol as an instance of our general ledger
functionality, i.e., by providing appropriate instantiations of algorithms Validate,
Blockify, and ExtendPolicy. In fact, for the sake of generality, we specify generic
classes of Validate and Blockify and parameterize our Ledger-Protocol with these
classes, so that the security statement still stays generic. We then prove our main
theorem (Theorem [1)) which can be described informally as follows:

Theorem (informal). Let Validate be the class of predicates that only take into
account the current state and a transaction (i.e., no transaction IDs, time, or
party IDs), and let windowSize = w(logk), K being the length of the outputs of
the random oracle. Then, for an appropriate ExtendPolicy and for any function
Blockify, the protocol Ledger-Protocol instantiated with algorithms Validate and
Blockify securely realizes a ledger functionality gﬁDGER (the generic ledger in-
stantiated with the above functions) under the following assumptions on network
delays and mining power, where mining power is roughly understood as the abil-
ity to find proofs of work via queries to the random oracle (and will be formally

defined later):

— In any round of the protocol execution, the collective mining power of the
adversary, contributed by corrupted and temporarily de-synchronized miners,
does not exceed the mining power of honest (and synchronized) parties in
that round. The exact relation additionally captures the (negative) impact of
network delays on the coordination of mining power of honest parties.
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— No message can be delayed in the network by more than A = O(1) rounds.

We prove the above theorem via what we believe is a useful modularization
of the Bitcoin protocol (cf. Figure. Informally, this modularization distills out
form the protocol a reactive state-extend subprocess which captures the lottery
that decides which miner gets to advance the blockchain next and additionally
the process of propagating this state to other miners. Lemma [I] shows that the
state-extend module/subprocess implements an appropriate reactive UC func-
tionality Fgrx. We can then use the UC composition theorem which allows us
to argue security of Ledger-Protocol in a simpler hybrid world where, instead of
using this subprocess, parties make calls to the functionality Fgrx. We conclude
this section (Subsection by showing how both the GKL and PSs proto-
cols can be cast as special cases of our protocol which provides the basis for
comparing the different models and their respective assumptions.

4.1 The Bitcoin ledger as a UC Protocol

In the following we provide the formal description of protocol Ledger-Protocol.
The protocol assumes as hybrids the multi-cast network Fn.yc (recall that we
assume that this network does have an upper bound A on the delay unknown to
the protocol) and a random oracle functionality Fro. Before providing the de-
tailed specification of our ledger protocol, we establish some useful notation and
terminology that we use throughout this section. For compatibility with existing
work, wherever it does not overload notation, we use some of the terminology
and notation from [16].

Blockchain. A blockchain C = By, ..., B, is a (finite) sequence of blocks where
each block B; = (s;, st;,n;) is a triple consisting of the pointer s;, the state block
st;, and the nonce n;. A special block is the genesis block G = (L, gen, 1) which
contains the genesis state gen. The head of chain C is the block head(C) := B,
and the length length(C) of the chain is the number of blocks, i.e., length(C) = n.
The chain CI* is the (potentially empty) sequence of the first length(C) — k
blocks of C. The state st corresponding to C is defined as a sequence of the
corresponding state blocks, i.e., st := sty||...||st,. In other words, one should
think of the blockchain C as an encoding of its underlying state st; such an
encoding might, e.g., organize C is an efficient searchable data structure as is
the case in the Bitcoin protocol where a blockchain is a linked list implemented
with hash-pointers.

In the protocol, the blockchain is the data structure storing a sequence of
entries, often referred to as transactions. Furthermore, as in [19], in order to cap-
ture blockchains with syntactically different state encoding, we use an algorithm
blockify;; to map a vector of transactions into a state block. Thus, each block
st € st (except the genesis state) of the state encoded in the blockchain has the
form st = Blockify(IN) where N is a vector of transactions.

For a blockchain C to be considered a valid blockchain, it needs to satisfy
certain conditions. Concretely, the validity of a blockchain C = By, ..., B, where
B; = (s;, st;,n;) depends on two aspects: chain-level validity, also referred to as
syntactic validity, and a state-level validity also referred to as semantic validity.
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Gerock

Gerock

(a) In the real world parties have ac-
cess to the global clock Gepock, the ran-
dom oracle Fro, and network Fn.ac.
Here, parties execute the Bitcoin pro-
tocol Ledger-Protocol

(b) In the hybrid world parties have ac-
cess to the state-exchange functional-
ity Fsrx (instead of the random oracle).
Here, parties execute the modularized
protocol Modular-Ledger-Protocol

Gerock Grepcer

(¢) In the ideal world, dummy parties
have access to the global clock Gerock
and the ledger Girpcer

Fig. 1. Modularization of the Bitcoin protocol.

Syntactic validity is defined with respect to a difficulty parameter D € [], where
K is the security parameter, and a given hash function H(-) : {0,1}" — {0,1}";
it requires that, for each ¢ > 1, the value s; contained in B; satisfies s; = H[B;_1]
and that additionally H[B;] < D holds.

The semantic validity on the other hand is defined on the state st encoded
in the blockchain C and specifies whether this content is valid (which might
depend on a particular application). The validation predicate Validate defined
in the ledger functionality (cf. Section |3) plays a similar role. In fact, the se-
mantic validity of the blockchain can be defined using an algorithm that we
denote isvalidstate which is builds upon the Validate predicate. The idea is that
for any choice of Validate, the blockchain protocol using isvalidstate for semantic
validation of the chain implements the ledger parametrized with Validate. More
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specifically, algorithm isvalidstate checks that a given blockchain state can be
built in an iterative manner, such that each contained transaction is considered
valid according to Validate upon insertion. It further ensures that the state starts
with the genesis state and that state blocks contain a special coin-base transac-
tion x<oin-base which assigns them to a miner. We remark that this only works for
predicates Validate which ignore all information other than the state and trans-
action that is being validatedH To avoid confusion, throughout this section we
use ValidTxp to refer to the validate predicate with the above restriction. The
pseudo-code of the algorithm isvalidstate which builds upon ValidTxy; is provided
in the full version [6]. We succinctly denote by isvalidchainp(C) the predicate
that returns true iff chain C satisfies syntactic and semantic validity as defined
above.

The Ledger Protocol. We are now ready to formally define our blockchain
protocol Ledger-Protocol, p 1 (we usually omit the parameters when clear from
the context). The protocol allows an arbitrary number of parties/miners to com-
municate by means of a multicast network Fx.nc. Note that this means that the
adversary can send different messages to different parties. New miners might dy-
namically joint or leave the protocol by means of the registration/de-registration
commands: when they join they register with all associated functionalities and
when they leave they deregisterlEI

Each party maintains a local blockchain which initially consists of the gene-
sis block. The chains of honest parties might differ (but as we will prove, it will
have a common prefix which will define the ledger state). New transactions are
added in a ‘mining process’. First, a party collects valid transactions (according
to VaIideB) and creates a new state block st using blockifyy. Next, the party at-
tempts to mine a new block which can be validly added to their local blockchain.
The mining is done using the extendchainp algorithm which takes as inputs a
chain C, a state block st, and the number ¢ of attempts. The core idea of the
algorithm is to find a proof-of-work which allows to extend C by a block which
encodes st. The pseudo-code of this algorithm is provided in the full version [6].
After each mining attempt parties will multicast their current chain. A party
will replace its local chain if it receives a longer chain. When queried to output
the state of the ledger, Ledger-Protocol outputs the state of its longest chain,
where it first chops-off the most recent T' blocks. This behavior will ensure that
all honest parties output a consistent ledger state.

As already mentioned, our Bitcoin-Ledger protocol proceeds in rounds which
are implemented by using a global synchronization clock Geiock. For formal rea-
sons that have to do with how activations are handled in UC, we have each round
correspond to two sub-rounds (also known as mini-rounds). To avoid confusion

'3 Recall that in the general ledger description, Validate might depend on some associ-
ated metadata; although this might be useful to capture alternative blockchains, it
is not the case for Bitcoin.

14 Note that when a party registers to a local functionality such as the network or the
random oracle it does not lose its activation token. This is a subtle point to ensure
that the real and ideal worlds are in-sync regarding activations.
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we refer to clock rounds as clock-ticks. We say that a protocol is in round r if the
current time of the clock is 7 € {2r — 1,2r}. In fact, having two clock-ticks per
round is the way to ensure in synchronous UC that messages (e.g., a block) sent
within a round are delivered at the beginning of the next round. The idea is that
each round is divided into two mini-rounds, where each mini-round corresponds
to a clock tick, and treat the first mini-round as a working mini-round where
parties might mine new blocks and submit them to the multicast network for
delivery, and in the second reading mini-round they simply fetch messages from
the network to obtain messages sent in the previous round. The pseudo-code of
this UC blockchain protocol, denoted as Ledger-Protocol, is provided in the full
version [6], where we also argue that the protocol satisfies Definition

4.2 The Bitcoin Ledger

We next show how to instantiate the ledger functionality from Section [3| with
appropriate parameters so that it is implemented by protocol Ledger-Protocol.
To define this Bitcoin ledger QEZDGER, we need to give specific instantiations of
the three functions Validate, Blockify, and ExtendPolicy.

As mentioned above, in case of Validate we use the same predicate as the
protocol uses to validate the states: For a given transaction x and a given state
state, the predicate decides whether this transaction is valid with respect to
state. Given such a validation predicate, the ledger validation predicate takes
a specific simple form which, excludes dependency on anything other than the
transaction x and the state state, i.e., for any values of txid, 77, p;, and buffer:

Validate((x, txid, 71, p;), state, buffer) := ValidTxp(x, state).

Blockify can be an arbitrary algorithm, and if the same algorithm is used in
Ledger-Protocol the security proof will go through. However, as discussed below
(in Definition , a meaningful Blockify should be in certain relation with the
ledger’s Validate predicate. (This relation is satisfied by the Bitcoin protocol.)

Finally, we define ExtendPolicy. At a high level, upon receiving a list of pos-
sible candidate blocks which should go into the state of the ledger, ExtendPolicy
does the following: for each block it first verifies that the blocks are valid with
respect to the state they extend. (Only valid blocks might be added to the state.)
Moreover, ExtendPolicy ensures the following property:

1. The speed of the ledger is not too fast. This is implemented by defining a
bound minTimeyindow o0 the time (number of rounds) within which no more
than windowSize state blocks can be added.

2. The speed of the ledger is not too slow. This is implemented by defining a
bound maxTimeyinqow Within which at least windowSize state blocks have
to be added. This is known as minimal chain-growth.

3. The adversary cannot claim too many block for parties it is corrupting. This
is formally enforced by defining an upper bound 7 on the number of these so-
called adversarial blocks within a sequence of state blocks. This is known as
chain quality. Formally, this is enforced by requiring that a certain fraction
of blocks need to start with a coinbase transaction that is associated with
an actual honest and synchronized party.
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4. Last but not least, ExtendPolicy guarantees that if a transaction is “old
enough”; and still valid with respect to the actual state, then it is included
into the state. This is a weak form of guaranteeing that a transaction will
make it into the state unless it is in conflict. As we show in Section [5] this
guarantee can be amplified by using digital signatures.

In order to enforce these policies, ExtendPolicy first defines an alternative block,
which satisfies all of the above criteria in an ideal way, and whenever it catches
the adversary in trying to propose blocks that do not obey the policies, it pun-
ishes the adversary by proposing its own generated block. The formal description
of the extend policy (as pseudo-code) for GB. . is given in the full version [6].

On the relation between Blockify and Validate. As already discussed above,
ExtendPolicy guarantees that the adversary cannot block the extension of the
state indefinitely, and that occasionally an honest miner will receive the block re-
ward (via the coin-base) transaction. These correspond to the chain-growth and
chain-quality properties from [I6]. However, our generic ExtendPolicy makes
explicit that a priori, we cannot exclude that the chain always extends with
blocks that include a coin-base transaction only, i.e., any submitted transac-
tion is ignored and never inserted into a new blocks. This issue is an orthogo-
nal one to ensuring that honest transactions are not invalidated by adversarial
interaction—which, as argued in [16], is achieved by adding digital signatures.

To see where this could be problematic in general, consider a blockify that,
at a certain point, creates a block that renders all possible future transactions
invalid. Observe that this does not mean that our protocol is insecure and that
this is as well possible for the protocols of [16], [29]; indeed our proof shows that
the protocol will give exactly the same guarantees as an G ypqer parametrized
with such an algorithm Blockify.

Nonetheless, a look in reality indicates that this situation never occurs with
Bitcoin. To capture that this is the case, Validate and Blockify need to be in a
certain relation with each other. Informally, this relation should ensure that the
above sketched situation never occurs. A way to ensure this, which is already
implemented by the Bitcoin protocol, is by restricting Blockify to only make an
invertible manipulation of the blocks when they are inserted into the state—e.g.,
be an encoding function of a code—and define Validate to depend on the inverse
of Blockify. This is captured in the following definition.

Definition 2. A co-design of Blockify and Validate is non-self-disqualifying if
there exists an efficiently computable function Dec mapping outputs of Blockify
to vectors N such that there exists a validate predicate Validate' for which the fol-

lowing properties hold for any possible state state = stq||...||ste, buffer buffer,
vectors N := (&1, ..., zy), and transaction z:
1. Validate(z, state, buffer) = Validate'(z, Dec(st1)||. .. ||Dec(st;), buffer)
2. Validate(w, state|| Blockify(N), buffer)
= Validate (z, Dec(sty)|| ... ||Dec(sts)|| N, buffer)
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We remark that the actual validation of Bitcoin does satisfy the above def-
inition, since a transaction is only rendered invalid with respect to the state if
the coins it is trying to spend have already been spent, and this only depends
on the transactions in the state and not the metadata added by Blockify. Hence,
in the following, we assume that ValidTxy and blockifyy satisfy the relation in
Definition 2

4.3 Security Analysis

We next turn to the security analysis of our protocol. As already mentioned,
we argue security in two step. In a first step, we distill out from the protocol
Ledger-Protocol a state-extend subprocess, denoted as StateExchange-Protocol,
and devise an alternative, modular description of the Ledger-Protocol protocol
in which every party makes invocations of this subprocess. We denote this mod-
ularized protocol by Modular-Ledger-Protocol. By a game-hopping argument, we
prove that the original protocol Ledger-Protocol and the modularized protocol
Modular-Ledger-Protocol are in fact functionally equivalent. The advantage of
having such a modular description is that we are now able to define an appro-
priate ideal functionality Fg;x that is realized by StateExchange-Protocol. Using
the universal composition theorem we can deduce that Ledger-Protocol UC em-
ulates Modular-Ledger-Protocol where invocations of StateExchange-Protocol are
replaced by invocations of Fgrx. The second step of the proof consists of prov-
ing that, under appropriate assumptions, Modular-Ledger-Protocol, where invoca-
tions of StateExchange-Protocol are replaced by invocations of Fgrx, implements
the Bitcoin ledger described in Section

Step 1. The state-exchange functionality Fg;x allows parties to submit ledger
states which are accepted with a certain probability. Accepted states are then
multicast to all parties. Informally, it can be seen as as lottery on which (valid)
states are exchanged among the participants. Parties can use Fgrx to multicast
a valid state, but instead of accepting any submitted state and sending it to all
(registered) parties, Fsrx keeps track of all states that it ever saw, and imple-
ments the following mechanism upon submission of a new ledger state st and
a state block st from any party: If st was previously submitted to Fg;x and
st||st is a valid state, then Fgrx accepts st||st with probability pg (resp. pa
for dishonest parties); accepted states are then sent to all registered parties. The
formal specification follows:

/—[ Functionality Fﬁ;f”’“} ~

The functionality is parametrized with a set of parties P. Any newly registered
(resp. deregistered) party is added to (resp. deleted from) P. For each party p € P
the functionality manages a tree 7, where each rooted path corresponds to a valid
state the party has received. Initially each tree contains the genesis state. Finally,
it manages a buffer M which contains successfully submitted states which have
not yet been delivered to (some) parties in P.

23



Submit /receive new states:

e Upon receiving (SUBMIT-NEW, sid, st, st) from some participant ps € P, if
isvalidstate(st||st) = 1 and st € 7, do the following:
1. Sample B according to a Bernoulli-Distribution with parameter py (or pa if
ps is dishonest).

2. If B=1, set stpew + sjc||st and add st,ew to Tp. - Else set Stoew — St.
3. Output (SUCCESS, sid, B) to ps.

4. On response (CONTINUE, sid) where P = {p1,...,pn} choose n new unique
message-1Ds midy, ..., mid,, initialize n new variables
Drig, = D%ij i=...:= Dniq,, = D%J:X =1 set
M := M||(stnew, mid1, Duidy » p1)|| - - - || (Stnew, Midn, Diig, , Pn), and send
(SUBMIT-NEW, sid, Stnew, ps, (p1, mid1), . .., (pn, midy,)) to the adversary.

e Upon receiving (FETCH-NEW, sid) from a party p € P or A (on behalf of p), do
the following:
1. For all tuples (st, mid, Dmid,p) € M set Dmig := Dmig — 1.

2. Let Mé’ denote the subvector of M including all tuples of the form
(st, mid, Dpig, p) where Dpmig = 0 (in the same order as they appear in ]\7[)
For each tuple (st, mid, Dmig,p) € Mé’ add st to 7,. Delete all entries in ]\25
from M and send ME to p.

e Upon receiving (SEND, sid, st,p’) from A on behalf some corrupted p € P, if
p € P and st € T, choose a new unique message-ID mid, initialize D := 1, add
(st, mid, Dimig, p’) to M, and return (SEND, sid, st,p’, mid) to A.

Further adversarial influence on the network:

e Upon receiving (SWAP, sid, mid, mid’) from A, if mid and mid’ are message-IDs
registered in the current M, swap the corresponding tuples in M. Return
(swap,sid) to A.

e Upon receiving (DELAY,sid, T, mid) from A, if T is a valid delay, mid is a
message-1D for a tuple (st, mid, Dmid, p) in the current M and DMAX L T < A,
set Dmig := Dmia + T and set DMAX .= DMAX 4 7

. J

The Modular-Ledger-Protocol uses the same hybrids as Ledger-Protocol but
abstracts the lottery implemented by the mining process by making calls to
the above state exchange functionality fSAT’)IzH’p 4. The detailed specification of
the Modular-Ledger-Protocol protocol can be found in the full version [6]. Note
that the only remaining parameter of Modular-Ledger-Protocol is the chop-off
parameter T, the rest is part of .FSATf(’H P4 The following Lemma states that
our Bitcoin protocol implements the above modular ledger protocol. The proof

appears in [6].

Lemma 1. The UC blockchain protocol Ledger-Protocol, p UC emulates the
protocol Modular-Ledger-Protocoly that runs in a hybrid world with access to the
functionality ]-'SAT’f(’H’“ with pa = 2% and pg =1 — (1 —pa)?, and A denotes

the network delay.
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Step 2. We are now ready to complete the proof of our main theorem. Before
providing the formal statement it is useful to discuss some of the key properties
used in both, the statement and the proof. The security of the Bitcoin protocol
depends on various key properties of an execution. This means that its security
depends on the number of random oracle queries (or, in the Fgrx hybrid world,
the number of submit-queries) by the pool of corrupted miners. Therefore it
is important to capture the relevant properties of such a UC execution. In the
following we denote by upper-case R the number of rounds of a given protocol
execution.

Capturing query power in an execution. In an execution, we measure the query
power per logical round r, which can be conveniently captured as a function
Tgp(r). We observe that in an interval of, say, t,. rounds, the total number of

ueries is
a r tpe—1

Qi,. = Z Tap(r)-
r=r’
In each round r € [R], each honest miner gets a certain number qZ(T) of

activations from the environment to maintain the ledger (i.e., to try to extend

the state). Let
aw = > 4
pi honest in round r

Also, the adversary makes a certain number qf:) of queries to Fgrx. We get

Top(r) = qX) + q(f;)'
Quantifying total mining power in an execution. Mining power is the expected
number of successful state extensions, i.e., the number of times a new state block
is successfully mined. The mining power of round r is therefore
Top(r) = pa+ay - pr.

Recall that py is the success probability per query of an honest miner and
pa is the success probability per query of a corrupted miner. If ps = p and
pg = 1—(1—p)9, it is convenient to consider (qf:) +q~qg)) -p as the total mining
power (by applying Bernoulli’s inequality). Within an interval of ¢,.. rounds, we
can for example quantify the overall expectation by T:S;fl(tm) =S T (7).
This allows to formulate the goal of a re-calibration of the difficulty parameter
as requiring that this value should be 2016 blocks for ¢,.. corresponding a desired
time bound (such as roughly two weeks), which is part of future work.

Quantifying adversarial mining power in an execution. The adversarial mining
power mp4(r) per round is made up of two parts: first, queries by corrupted
parties, and second, queries by honest, but de-synchronized miners.

mpa(r) i=pa- 4y + pu - Z

pi is de-sync

.
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Recall that a party is considered desynchronized for 2A rounds after its
registration.

It is convenient to measure the adversary’s contribution to the mining power
as the fraction of the overall mining power. In particular, we assume there is a
parameter p € (0,1) such that in any round r, the relation mp4(r) < p- Tpp(7)
holds. We then define 8, := p - T, (). Looking ahead, if a model is flat, then
the fraction (1 — p) corresponds to the fraction of users that are honest and
synchronized.

Quantifying honest and synchronized mining power in an execution. In each
round r € [R], each honest miner gets a certain number ¢, , of activations from
the environment, where it can submit one new state to Fgrx. This state is
accepted with probability py. We define the vector ¢, such that for any honest
miner p; in round 7, G.[i] = ¢; . The probability that a miner p; is successful
to extend the state by at least one block is a;, := 1 — (1 — py)% " and the
probability that at least one registered and synchronized, uncorrupted miner
successfully queries Fgrx to extend its local longest state is

o =1-— H (1 - ai,r) =1- H (1 — pH)qi’T.

honest sync p; honest sync p;

Looking ahead, in existing flat models of Bitcoin, parties are expected to be
synchronized and are otherwise counted as dishonest and the quantity (1 — p) is
the fraction of honest and synchronized miners.

Worst-Case Analysis. We analyze Bitcoin in a worst-case fashion. Let us assume
that the protocol runs for [R] rounds, then

a :=min {a; },¢[p), and § := max {B; },c[r]-

Remark 4. This view on Bitcoin gives already a glimpse for the relevance of the
re-calibration sub-protocol which is considered as part of future work. Ideally,
we would like the variation among the values o, and among the values 5, to
be small, which needs an additional assumption on the increase of computing
power per round. Thanks to the re-calibration phase, such a bound can exist
at all. If no re-calibration phase would happen, any strictly positive gradient of
the computing power development would eventually provoke Bitcoin failing, as
the value 8 (as a fraction of the total mining power) could not be reasonably
bounded. We are now ready to state the main theorem. The proof of the theorem
can be found in the full version [6].

Theorem 1. Let the functions ValidTxp, blockifyp, and ExtendPolicy be as de-
fined above. Letp € (0,1), integerq > 1, pgp = 1—(1—p)?, andps = p. Let A > 1
be the upper bound on the network delay. Consider Modular-Ledger-Protocoly in
the (QCLOCK,.FSAT’)’()H’pA,fI\IA_MC)-hbed world. If, for some X\ > 1, the relation

a-(1-2-(A+1)-a) 2 -4 (1)
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is satisfied in any real-world execution, where o and B are defined as above, then
the protocol Modular-Ledger-Protocol; UC-realizes QEDGER for any parameters in
the range

windowSize =71 and Delay =4A,
windowSize windowSize

and minTimeyindow < )
(1=96)-~ (140) - max, Typ(r)

maxTimeyindow >
n > (1+9) - windowSize - é,
gl

where v 1= 17%55 and 6 > 0 is an arbitrary constant. In particular, the real-
ization is perfect except with probability R - negl(T), where R denotes the upper
bound on the number of rounds, and negl(T) denotes a negligible function in T.

Remark 5. Tt is worth noting the implications of Equation [I} In practice, typi-
cally p is small such that « (and thus v) can be approximated using Bernoulli’s
inequality to be (1 — p)mp, where m is the estimated number of hash queries in
the Bitcoin network per round. Hence, by canceling out the term mp and letting
p be sufficiently small (compared to Alm), Equation |1| collapses roughly to the
condition that (1 — p)(1 —€) > (1 + &)p, which basically relates the fractions
of adversarial vs. honest mining power. Also, as pointed out by [29], for too
large values of p in the order of p > %p7 Equation |1{is violated for any constant
fraction p of corrupted miners and they present an attack in this case.

Proof (Overview). To show the theorem we specify a simulator for the ideal
world that internally runs the round-based mining procedure of every honest
party. Whenever the real world parties complete a working round, then the sim-
ulator has to assemble the views of all honest (and synchronized) miners that
it simulates and determine their common prefix of states, i.e., the longest state
stored or received by each simulated party when chopping off T" blocks. The
adversary will then propose a new block candidate, i.e., a list of transactions,
to the ledger to announce that the common prefix has increased. To reflect that
not all parties have the same view on this common prefix, the simulator can
adjust the state pointers accordingly. This simulation is perfect and corresponds
to an emulation of real-world processes. What possibly prevents a perfect simu-
lation is the requirement of a consistent prefix and the restrictions imposed by
ExtendPolicy. In order to show that these restrictions do not forbid a proper
simulation, we have to justify why the choice of the parameters in the theorem
statement is acceptable. To this end, we analyze the real-world execution to
bound the corresponding bad events that prevent a perfect simulation. This can
be done following the detailed analysis provided by Pass, Seeman, and shelat [29]
which includes the necessary claims for lower and upper on chain growth, chain
quality, and prefix consistency. From these claims, it follows that our simulator
can simulate the real-world, since the restrictions imposed by the ledger prohibit
a prefect simulation only with probability R - negl(7). This is an upper bound
on the distinguishing advantage of the real and ideal world. The detailed proof
is found in [6]. O
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Note that the theorem statement a-priori holds for any environment (but
simply yields a void statement if the conditions are not met). In order to turn
this into a composable statement, we follow the approach proposed in Section [2]
and model restrictions as wrapper functionalities to ensure the condition of the
theorem. We review two particular choices in [£.4] The general conceptual princi-
ple behind this is the following: For the hybrid world, that consists of a network
FnMc, & clock Gorock and a random oracle Fro with output length & (or al-
ternatively the state-exchange functionality Fsrx instead of the random oracle),
define a wrapper functionality WV which ensures the condition in Equation [T]and
(possibly) additional conditions on minimal (honest) and maximal (dishonest)
mining power. This can be done by enforcing appropriate restrictions along the
lines of the basic example in Section (e.g., imposing an upper bound on parties,
or RO queries per round etc.). We provide the details and the specification of
such a general random-oracle wrapper Wﬁ B’\DT” (Fro) with its parameter in
the full version of this work [6]. For this wrapper we have the following desired
corollary to Theorem [[]and Lemma [I] This statement is guaranteed to compose
according to the UC composition theorem.

Corollary 1. The UC blockchain protocol Ledger-Protocol, p, 1 that is executed

in the (gCLOCK,fNA_I\,IC,Wﬁ}i’DTm” (Fro))-hybrid world, UC-realizes functionality

Q,{%DGER (with the respective parameters assured by Theorem .

4.4 Comparison with Existing Work

We demonstrate how the protocols, assumptions, and results from the two ex-
isting works analyzing security of Bitcoin (in a property based manner) can be
cast as special cases of our construction.

We start with the result in [I6], which is the so-called flat and synchronous
modem with instant delivery and a constant number of parties n (i.e., Bitcoin
is seen as an n-party MPC protocol). B Consider the concrete values for o and
5 as follows:

— Let n denote the number of parties. Each corrupted party gets at most ¢
activations to query the Fgrx per round. Each honest party is activated
exactly once per round.

— In the model of GKL, we have ¢ > 1. Thus, we get py = 1 — (1 — p)? and
pa = p. We can further conclude that TS};L(T) <p-q-n.

15 The parameters are the ones introduced in this section: a lower bound on honest
mining power (per round) «, an upper bound on adversarial mining power (per
round) S, the total mining power (per round) Tmp, the network delay A, the difficulty
parameter D (that influences the probability of a successful PoW), and finally a value
A > 1 describing the required gap between honest and dishonest mining power.

16 The flat model means that every party gets the same number of hash queries in
every round.

17 In a recent paper, the authors of [I6] propose an analysis of Bitcoin for a variable
number of parties. Capturing the appropriate assumptions for this case, as a wrapper
in our composable setting, is part of future work.
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— The adversary gets (at most) ¢ queries per corrupted party with probability
pa = p and one query per honest but desynchronized party with success
probability pg = 1 — (1 — p)9. If ¢, denotes the number of corrupted or
desynchronized parties in round r, we get mpgKL(r) < t,-q-p and thus
BEKL = p.q-(p-n), where pn is the (assumed) upper bound on the number
of miners contributing to the adversarial mining power (independent of r).

— Each honest and synchronized miner gets exactly one activation per round,
ie., ¢ =1, withpy =1—-(1—p)? € (0,1), for some integer ¢ > 0. Inserting
it into the general equation yields aGX* = 1 — (1 — p)?1=P)" (independent
of 7). Note that since n is assumed to be fixed in their model, ¢(1 — p) - n is
in fact a lower bound on the honest and synchronized hashing power.

We can now easily specify a wrapper Wgakr, as special case of the above gen-
eral wrapper. In the hybrid world (Gerock, WakL (.FSAT’{()H Pay .7:1@ vc) this ensures

the condition of Theorem[IJand we arrive at the following composable statement:

Corollary 2. The protocol Modular-Ledger-Protocoly UC-realizes the function-
ality Guepaer in the (Gorock, WKL (.7-'81&H PAY, Fl i) -hybrid model (setting delay
A =1) for the parameters assured by Theoremfor the above choice:

At =1~ (1—p)=P" and FKE =p-q-(p-n).

Similarly, we can instantiate the above values with the assumptions of [29]:

— For each corrupted (and desynchronized) party, the adversary gets at most
one query per round. Each honest miner makes exactly one query per round.
This means that qu + qg) = N,.

— In the PSs model, pyr = p4 = p and hence TZ%S(T) <p-n,=p-n, where n
is as above. With these values we get mpiss(r) = p - n" and consequently

B8 = p.(p-n), where pn denotes the upper bound on corrupted parties in

any round. Putting things together, we also have ab%% =1 — (1 — p)(1=2)7,

Note that since n is assumed to be fixed in their model, (1 — p) - n is in fact

a lower bound on the honest and synchronized hashing power.

We can again specify a wrapper functionality Wpgs as above (where the
restriction is 1 query per corrupted instead of ¢). We again have that the hybrid
world (QCLOCK,WPSS(.FSAT’)Z(W ), F&ue) will ensure the condition of the theorem
and directly yields the following composable statement.

Corollary 3. The protocol Modular-Ledger-Protocol; UC-realizes Gigpger in the

(QCLOCK,W(fSAT’gz’p),fﬁMc)—hybrid model (with network delay A > 1) for the
parameters assured by Theorem[d] for the above choice:

aPSs —-1— (1 _p)(l—p)~n and BPSS =p- (P . n)
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5 Implementing a Stronger Ledger

As already observed in [16], the Bitcoin protocol makes use of digital signa-
tures to protect transactions which allows it to achieve stronger guarantees.
Informally, the stronger guarantee ensures that every transaction submitted by
an honest miner will eventually make it into the state. Using our terminology,
this means that by employing digital signatures, Bitcoin implements a stronger
ledger. In this section we present this stronger ledger and show how such an
implementation can be captured as a UC protocol which makes black-box use
of the Ledger-Protocol to implement this ledger. The UC composition theorem
makes such a proof immediate, as we do not need to think about the specifics of
the invoked ledger protocol, and we can instead argue security in a world where
this protocol is replaced by QR;DGER.

Protection of transactions using accounts. In Bitcoin, a miner creates an account
ID AccountID by generating a signature key pair and hashing the public key.
Any transaction of this party includes this account ID, i.e., x = (AccountID, x’).
An important property is that a transaction of a certain account cannot be
invalidated by a transaction with a different account ID. Hence, to protect the
validity of a transaction, upon submitting x, party p; has to sign it, append
the signature and verification key to get a transaction ((AccountlD,x’), vk, o).
The validation predicate now additionally has to check that the account ID is
the hash of the public key and that the signature o is valid with respect to the
verification key vk. Roughly, an adversary can invalidate x, only by either forging
a signature relative to vk, or by possessing key pair whose hash of the public key
collides with the account ID of the honest party. The details of the protocol and
the validate predicate as pseudo-code are provided in the full version [6].

Realized ledger. The realized ledger abstraction, denoted by g?Eg(;ER, is formally
specified in [6]. Roughly, it is a ledger functionality as the one from the previous
section, but which additionally allows parties to create unique accounts. Upon
receiving a transaction from party p;, QI%GER only accepts a transaction contain-
ing the AccountID that was previously associated to p; and ensures that parties
are restricted to issue transactions using their own accounts.

Amplification of transaction liveness. In Bitcoin a given transaction can only
be invalidated due to another one with the same account. By definition of
the enhanced ledger, this means that no other party can make a transaction
of p; not enter the state. The liveness guarantee for transactions specified by
ExtendPolicy in the previous chapter implies captures that if a valid trans-
action is in the buffer for long enough then it eventually enters the state. For
QE‘EGER, this implies that if p; submits a single transaction which is valid ac-
cording to the current state, then this transaction will eventually be contained
in the state. More precisely, we can conclude that this happens within the next
2 - windowSize new state blocks in the worst case. Relative to the current view
of p; this is no more than within the next 3-windowSize blocks as argued in [6].
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