
Four-Round Concurrent Non-Malleable
Commitments from One-Way Functions

Michele Ciampi1, Rafail Ostrovsky2, Luisa Siniscalchi1, and Ivan Visconti1

1 DIEM, University of Salerno, ITALY
{mciampi,lsiniscalchi,visconti}@unisa.it

2 UCLA, USA
rafail@cs.ucla.edu

Abstract. How many rounds and which assumptions are required
for concurrent non-malleable commitments? The above question
has puzzled researchers for several years. Pass in [TCC 2013] showed
a lower bound of 3 rounds for the case of black-box reductions to
falsifiable hardness assumptions with respect to polynomial-time
adversaries. On the other side, Goyal [STOC 2011], Lin and Pass
[STOC 2011] and Goyal et al. [FOCS 2012] showed that one-way
functions (OWFs) are sufficient with a constant number of rounds.
More recently Ciampi et al. [CRYPTO 2016] showed a 3-round con-
struction based on subexponentially strong one-way permutations.
In this work we show as main result the first 4-round concurrent
non-malleable commitment scheme assuming the existence of any
one-way function.
Our approach builds on a new security notion for argument systems
against man-in-the-middle attacks: Simulation-Witness-Independence.
We show how to construct a 4-round one-many simulation-witnesses-
independent argument system from one-way functions. We then
combine this new tool in parallel with a weak form of non-malleable
commitments constructed by Goyal et al. in [FOCS 2014] obtaining
the main result of our work.

1 Introduction

Commitment schemes are a fundamental primitive in Cryptography. Here we
consider the intriguing question of constructing round-efficient schemes that re-
main secure even against man-in-the-middle (MiM) attacks: non-malleable (NM)
commitments [12].

Non-malleable commitments. The round complexity of commitment schemes
in the stand-alone setting is nowadays well understood. Non-interactive commit-
ments can be constructed assuming the existence of 1-to-1 one-way functions
(OWFs) [18]; 2-round commitments can be constructed assuming the existence
of OWFs only. Moreover non-interactive commitments do not exist if one relies
on the black-box use of OWFs only [33].
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Instead, the round complexity of NM commitments3 after 25 years of research
remains a fascinating open question, in particular when taking into account the
required computational assumptions. The original construction of [12] required
a logarithmic number of rounds and the sole use of OWFs. Then, through a long
sequence of very exciting positive results [1, 41, 43, 42, 46, 45, 31, 47, 51, 29, 30,
19, 22], the above open question has been in part solved obtaining a constant-
round4 (even concurrent) NM commitment scheme by using any OWF in a black-
box fashion. On the negative side, Pass proved that NM commitments require
at least 3 rounds [40]5 when security is proved through a black-box reduction to
polynomial-time hardness assumptions.

Breaking the multiple rewind-slot barrier. The above papers left open
the question of achieving (concurrent) non-malleable commitments with optimal
round complexity. A main common issue for round-efficient non-malleable com-
mitments is that typically a security proof requires some simulation on the left
and extraction on the right that should not interfere with each other. Indeed, a
known paradigm introduced by Pass [39] proposes to have in a protocol multiple
potential rewind slots so that extraction and simulation can both be run in 2
independent sequential steps. On the negative side, the use of multiple rewind
slots increases the round complexity of the protocol (i.e., two rewind slots require
at least 5 rounds).

More recently the multiple rewind-slot technique has been bypassed in [25]
but only for the (simpler) one-one case (i.e., just one sender and one receiver). In
particular, Goyal et al. [25] showed a one-one 4-round NM commitment scheme
based on OWFs only. The more recent work of Goyal et al. [24, 23] exploited
the use of the NM codes in the split-state model to show a 3-round one-one
NM commitment scheme based on the black-box use of any 1-to-1 OWF that
is secure against super-polynomial time adversaries6. Ciampi et al. [6] obtained
concurrent non-malleability in 3 rounds starting from any one-one non-malleable
(and extractable) commitment scheme, but their security proof crucially relies
on the existence of one-way permutations secure against subexponential-time ad-
versaries. Assumptions against super-polynomial time adversaries allow to avoid
multiple rewind slots even in presence of polynomially many sessions since the
security proof can rely on straight-line simulation/extraction7.

3 In this paper we will consider only NM commitments w.r.t. commitments. For the
case of NM w.r.t. decommitments see [43, 46, 37, 2, 9, 21].

4 The construction of [22] can be compressed to 6 rounds (see [25]).
5 If instead one relies on non-standard assumptions or trusted setups (e.g., using

trusted parameters, working in the random oracle model, relying on the existence of
NM OWFs) then there exist non-interactive NM commitments [10, 38].

6 While [24, 23] only claimed one-one non-malleability, the difficulty of achieving con-
current non-malleability was discussed in [6] where Ciampi et al. showed an explicit
successful concurrent man-in-the-middle for the preliminary eprint version of [24].

7 Hardness assumptions against subexponential-time adversaries were already used
in [41, 47, 51] to improve the round-complexity of NM commitments.
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1.1 Our Results

In this paper we break the multiple-slot barrier for concurrent NM commit-
ments by showing a 4-round scheme based on the sole existence of OWFs. While
previous work relied on having either 1) stronger assumptions or 2) multiple
rewind slots or 3) limited concurrency, in this work we introduce new techniques
that allow to have just one rewind slot, minimal hardness assumptions and full
concurrency.

More specifically we give the following four contributions.

Non-malleable commitments w.r.t. non-aborting adversaries.We prove
that a subprotocol of [25] is a 4-round statistically binding concurrent NM
commitment scheme from OWFs (resp. a 3-round perfectly binding con-
current NM commitment scheme from 1-to-1 OWFs), if the adversary is
restricted to playing well-formed commitments in the right sessions when
receiving well formed commitments from the left sessions. We refer to this
weaker security notion as concurrent weak non-malleability (wNM).
Simulation-Witness-Independence. We define a new security notion
for argument systems w.r.t. man-in-the-middle attacks that we refer to as
simulation-witness-independence (SimWI). This security notion seemingly is
not implied by previous notions as simulation-extractability/soundness and
strong non-malleable witness indistinguishability.
4-Round One-Many SimWI from OWFs. We then construct a 4-round
one-many SimWI argument of knowledge for some specific languages by
relying on OWFs only. This construction circumvents the major problem
caused by the need of rewinding on the left to simulate and on the right to
extract when there is only one available rewind slot.
Concurrent wNM + One-Many SimWI ⇒ 4-Round Concurrent
NM Commitments. We present our new paradigm consisting in combining
the above two notions in a protocol that runs in parallel the concurrent
wNM commitment scheme and the one-many SimWI argument of knowledge.
Therefore as main result of this work we upgrade concurrent wNM to full-
fledged concurrent non-malleability without any penalization in rounds and
assumptions.

We now discuss in more details each of the above 4 contributions.

Weak Non-Malleable Commitments We define commitment schemes en-
joying a limited form of non-malleability8.

Informally, we say that a commitment scheme is weak non-malleable (wNM)
if it is non-malleable w.r.t. adversaries that never commit to ⊥ when receiving
honestly computed commitments. This form of non-malleability is significantly

8 We remark that Goyal in [19] defined a weaker notion of non-malleable commitments
(non-malleability w.r.t. replacement) that also had the goal to deal with commit-
ments of ⊥. While the goal is similar to our definition, the actual formulation is
quite different.
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weaker than full-fledged non-malleability. Indeed, a full-fledged MiM A can for
instance maul as follows: A creates a commitment of m0 making use of messages
computed by the sender in the left session so that if the sender commits to m0

then the commitment of A is a well formed commitment of m0, while instead if
the sender commits to m1 6= m0 then the commitment of A is not well formed
and therefore corresponds to ⊥. Such attacks can be explicitly instantiated as
shown in [6] where a generalization of the above A is used to prove that a
preliminary version of the scheme of [24] is not concurrent non-malleable.

While by itself the wNM guarantee is certainly unsatisfying as protection
against MiM attacks, the design of a wNM commitment scheme can be an eas-
ier task and schemes with such light non-malleability flavor might exist with
improved round complexity, efficiency and complexity assumptions compared to
schemes achieving full-fledged non-malleability.

We show that a protocol due to [25] is a 4-round statistically binding concur-
rent wNM commitment scheme requiring OWFs only (resp., a 3-round perfectly
binding concurrent wNM commitment scheme requiring 1-to-1 OWFs only).
Moreover their protocol can be instantiated to be public coin. The security proof
consists of some pretty straightforward observations on top of various useful lem-
mas already proven in [25]. Our contribution on wNM commitments therefore
consists in 1) introducing and formalizing this notion; 2) observing the existence
of a secure construction in previous work; 3) using it as one of the two main
building blocks of our paradigm allowing to obtain 4-round concurrent (full-
fledged) NM commitments from OWFs. For lack of space we postpone further
details on wNM commitments to the full version (see [5]) so that in this work
we can give more details on the more interesting results of this work (i.e., the
definition and construction of SimWI, and the new paradigm for concurrent NM
commitments). A formal definition of weak NM commitments can be found in
Sec. 2.3 (see Def. 5). The proof that a scheme proposed in [25] satisfies this
notion can be found in the full version (see [5]).

Simulation-Witness-Independence. We introduce a new security notion
against MiM attacks to argument systems. We call our security notion simulation-
witness-independence (SimWI) since it has similarities both with simulation ex-
tractability/soundness (see [44, 49]) and with (strong) non-malleable witness
indistinguishability [32, 36] (sNMWI,NMWI). For simplicity we will discuss now
the case of one prover and one verifier only, however our formal definition, con-
struction and application will focus on the one-many case (i.e., up to 1 prover
and polynomially many verifiers).

The 1st security flavor that our notion tries to capture is the concept that
the view of a MiM in the real game should be simulatable. Therefore we will
have an experiment corresponding to the real game where the MiM plays with
a honest prover and a honest verifier, and an experiment corresponding to the
simulated game that simply consists of the output of a stand-alone simulator
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that emulates the prover and runs the code of honest verifiers when interacting
internally with the MiM9.

While the above 1st security flavor guarantees that the statements proven
by the MiM in the real-world experiment and in the simulated experiment are
indistinguishable, there still is no guarantee that the MiM is unable to prove in
the two experiments statements that are associated to witnesses belonging to
distinguishable distributions. In other words, as 2nd flavor we want to capture
the independence of the witnesses associated to the statements proven by the
MiM with respect to the fact that the actual witness in the left session is used
(this is the case of the real game) or is not used (this is the case of the simulated
game). In order to avoid any ambiguity on which witness is associated to a
statement, we associate to an NP language a non-negative integer γ. More
precisely, for any NP language L we consider a non-negative integer γ such that
for any x ∈ L all witnesses of x have the same first γ bits10. The reason why
we assign such a value γ to every NP language is that it fixes in some non-
ambiguous way the input for the distinguisher of SimWI (indeed the input will
be the first γ bits of any witness) and at same time the prefix of all the witnesses
of an instance can be recovered by extracting any witness.

The above 2nd flavor makes our security definition non-trivial. Indeed stan-
dard zero knowledge is clearly insufficient against MiM attacks and the definition
has strong connections with the (hard to achieve) concept of committed message
in NM commitments11. One might think that some heavy machinery could al-
ready imply our new notion However, by taking into account all subtleties of the
definitions it turns out that SimWI is seemingly not implied by simulation ex-
tractability, simulation soundness and sNMWI/NMWI. We stress that our goal
is to get a one-many 4-round construction under minimal assumptions.

Comparison with simulation extractability and simulation sound-
ness. Simulation extractability requires the simulator to output a transcript and
witnesses for the statements appearing in the right sessions of the transcript.

Simulation soundness requires the MiM to fail in proving false statements
when receiving simulated proofs of false statements.

SimWI requires the simulator to output a transcript that includes statements
proven in right sessions. The distribution of the instance/witness pairs associ-
ated to those statements is required to be indistinguishable from the distribution
of the instance/witness pairs associated to the statements proved by the MiM
in the real game. In simulation extractability there is no requirement on the

9 There is nothing surprising so far, this is just the concept of zero knowledge naturally
augmented by extending the simulator with the behavior of honest verifiers to feed
the MiM with messages belonging to the right sessions too.

10 Note that when γ = 0 the 2nd security flavor is cancelled and SimWI becomes
equivalent to zero knowledge. Furthermore when γ is equal to the largest witness
size then we are considering languages in UP.

11 We stress that the main goal of this work is to construct 4-round concurrent NM
commitments from OWFs, and we will achieve it by making use of SimWI. As
such, to avoid circularity, we can not use concurrent NM commitments to construct
SimWI.
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witness given in output by the simulator beyond being valid witnesses. Simula-
tion soundness does not have any requirement on the witnesses associated to the
statements proven by the MiM.

Comparison with sNMWI/NMWI. sNMWI considers two indistinguish-
able distributions of instance/witnesses pairs. Very informally, the requirement
of sNMWI/NMWI is that the instance/witness pairs associated to the arguments
given by the MiM in the right sessions be independent of the distribution from
which the instance/witness pair of the argument given to the MiM in the left
session has been sampled.

SimWI requires the existence of a simulator while instead sNMWI/NMWI
only considers experiments where the actual prover plays.

One-Many SimWI From OWFs in 4 Rounds (i.e., in Just One
Rewind Slot!). As discussed above, SimWI is an interesting security notions
w.r.t. MiM attacks and similarly to all previous non-malleability notions is cer-
tainly non-trivial to achieve, especially when considering 1) the one-many case 2)
only four rounds (i.e., one rewind slot) and 3) minimal assumptions. In this work
we show how to construct a 4-round one-many SimWI argument of knowledge
(AoK) from OWFs, therefore avoiding multiple rewind slots.

A common approach to construct 4-round zero-knowledge arguments (even
without non-malleability requirements) relies on the FLS/FS paradigm [14, 15].
First there is a subprotocol useful to extract a trapdoor from the adversarial
verifier. Then there is a witness-indistinguishable proof of knowledge (WIPoK)
where the prover proves knowledge of either a witness for the statement or of
the trapdoor. In order to save rounds the two subprotocols are parallelized.

The above common approach fails in presence of MiM attacks. The reason is
that the MiM adversary can attack the witness indistinguishability (WI) of the
WIPoK received in the left session in order to prove his statements in the right
sessions. Using such a MiM to contradict the WI of the WIPoK is problematic
since one should extract some useful information from the right session but this
would require also to rewind the challenger of the WI of the WIPoK on the left.

We bypass the above difficulty as follows. Instead of relying on the WI of
the WIPoK that requires two messages played by the challenger, we propose a
construction where we essentially break the interactive challenger of WI into two
non-interactive challengers. We implement this idea by relying on: 1) instance-
dependent trapdoor commitments (IDTCom) and 2) special honest-verifier zero
knowledge (special HVZK). More in details, let (π1, π2, π3, π4) be the transcript
of a delayed-input12 4-round special HVZK adaptive-input proof of knowledge
(PoK). We require the prover to send an IDTCom com of π2 that is opened,
sending the opening dec, only in the last round, when π4 is sent. The actual
transcript therefore becomes (π1, com, π3, (π2, dec, π4)).

12 By delayed-input we mean that the statement will be known only at the last round.
The delayed-input property has been critically used in the past (e.g., [27, 11, 52])
and very recently (e.g., [7, 8, 16, 6, 26, 34]), since it helps in improving the round
complexity of external protocols.
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Consider now an experiment where the trapdoor is known and π2 can be
opened arbitrarily. If the output of the experiment deviates from the original one,
we will have a reduction to the trapdoorness of the IDTCom. The reduction is not
problematic since the challenger of the trapdoorness is non-interactive, sending
a pair (commitment, decommitment) that is either computed using the regular
procedure or through the use of the trapdoor. Next, in another experiment we
can replace the prover of the PoK with the special HVZK simulator that will
compute π2 and π4 after having as input π1 and π3. Again, the output of this
experiment will not deviate from the previous one otherwise we can show an
adversary for the special HVZK property. The reduction again is not problematic
since the challenger of special HVZK is non-interactive.

We implement the trapdoor-extraction subprotocol through OWFs by using
as trapdoor knowledge of two signatures under the same public key sent by
the verifier in the 1st round. The verifier will send a signature of one message
(chosen by the prover) in the 3rd round (with this approach we follow previous
ideas of [11, 20, 4, 3]). We will use a delayed-input special HVZK adaptive-input
PoK where the prover proves knowledge of either a witness for the statement or
of signatures of messages. The IDTCom will have the public key of the signature
scheme as instance, therefore the simulator after having extracted the signatures
will be able to equivocate the commitments. The security proof presents one
more caveat. Once the simulator rewinds on the left to obtain the trapdoor
it is not clear how to argue that the extraction from the right is meaningful
since the extractor might simply obtain the same trapdoor. More specifically,
the adversary might be able to equivocate on the right, therefore the extractor
of the PoK would fail, and the best we can get from such a binding violation is
the trapdoor of the IDTCom played in the right session. This does not give any
contradiction since the trapdoor of the right session had to be already known
in order to answer twice (before and after the rewind) in the right session to
the MiM. We resolve this problem by relying on a specific proof approach where
while the initial transcript is generated by the simulator, when the extractions
are played in the right sessions, the transcript of the left session is re-completed
by running the prover of the special HVZK PoK. The reason why in this case
the extraction on the right will succeed is that if we extract the trapdoor from
the right session then this will also happen in the real game where the trapdoor
is never used. In turn it would break the security of the signature scheme.

Caveat: adaptive-input selection. We will give a formal definition that
allows the MiM to select the instance/witness pair for the left session only at
the end, while the MiM must fix the statement for a right session already when
playing his first round in that session. Our construction satisfies this notion and
even a more important form of adaptiveness. We allow the MiM to specify the
statement in the last round of a right session, as long as the witness is already
fixed when playing his first round in that session. The reason why we prove
such more sophisticated form of adaptive-input selection is that it is required
in our application for concurrent NM commitments. Ideally one would like to
satisfy the best possible adaptive-input selection, in order to make this new
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primitive useful in a broader range of applications. However we can not prove
our construction secure with fully adaptive-input selection since we are not able
to extract the witness from a MiM selecting a new statement (with possibly a
new witness) in the last round of a right session. Indeed we would end up having
a certain statement in the transcript of the simulator and then a witness for
another statement obtained through rewinds. This would negatively affect our
proof approach.

4-Round Concurrent NM Commitments from OWFs. We solve the prob-
lem left open by [25] by showing a 4-round concurrent NM commitment scheme
relying on OWFs only. The new paradigm that we propose to obtain concurrent
non-malleability consists in combining in parallel a 4-round public-coin concur-
rent wNM commitment scheme from OWFs Π0, and a one-many 4-round SimWI
argument of knowledge from OWFs Π1.

The new paradigm. Π0 is run in order to commit to the message m. Π1 is
instead used to prove knowledge of a valid message and randomness explaining
the transcript of Π0. The power of the new approach consists in using the above
two tools that are in perfect synergy to defeat a concurrent MiM attack. The idea
of the security proof is now quite simple. Since any one-many NM commitment
is also many-many13 NM, we focus the following discussion on the one-many
case.

In the 1st experiment (the real game RG0) the sender commits to m0. Clearly
there can not be a commitment to ⊥ on the right otherwise the soundness of
Π1 is contradicted. Symmetrically there is an experiment RG1 where the sender
commits to m1 and there is no commitment to ⊥ on the right. Then we consider
an hybrid game H0 where the simulator of one-many SimWI of Π1 is used. Ob-
serve that if (by contradiction) the distribution of the messages committed on
the right changes w.r.t. RG0 we have that also the distribution of the witnesses
corresponding to the statements proved in Π1 on the right changes. However this
clearly violates SimWI. Therefore it must still be the case that a commitment
played on the right corresponds to ⊥ with negligible probability only. Symmet-
rically, there is an experiment H1 that is indistinguishable from RG1 and such
that commitments played on the right are well formed (i.e., different from ⊥).
Therefore we can conclude that RG0 is indistinguishable from RG1 by noticing
that H0 is indistinguishable from H1. Indeed, both H0 and H1 guarantee that
the messages committed by the adversary on the right correspond to ⊥ with
negligible probability only. Summing up, a detectable deviation from H0 to H1
implies a contradiction of the concurrent wNM of Π0

14. This observation con-
cludes the high-level overview of the security proof. However, some remarks are
in order.

Remark 1: the required adaptive-input flavor. As specified in the pre-
vious section, our 4-round one-many SimWI AoK Π1 is fully adaptive on the

13 A many-many NM commitment scheme can be also indicate as a concurrent NM
commitment scheme. In the rest of the paper we use the term concurrent.

14 This reduction needs extra help, see Remark 2 below.
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left but instead on the right requires the witness to be fixed already in the first
round of the MiM. The statements instead can be decided in the last round also
in the right sessions. The flexibility with the statement is important since Π0

is completed only in the last round and the entire transcript of Π0 is part of
the statement of Π1. The lack of flexibility on the witness in the right sessions
forces us to add one more requirement to Π0. We need that message and ran-
domness are already fixed in the 2nd round of Π0, since they will be the witness
for Π1. This property is satisfied by the construction of [25] that we prove to be
concurrent wNM in the full version (see [5]).

Remark 2: on the need of public coins in Π0. In a reduction we will have
to simulate the last round of the receiver of Π0 without knowing the randomness
he used to compute the previous round. Obviously public coins are easy to
simulate.

1.2 3-Round Concurrent Non-Malleable Commitments

The work of Ciampi et al. [6] relied on subexponentially strong one-way per-
mutations and the existence of any 3-round one-one non-malleable commitment
scheme Π. In this work we propose a different approach for 3-round one-one
non-malleable commitments that instead can start with a limited form of non-
malleability enjoyed by both a subprotocol of [25] and a subprotocol of [24]
(therefore we can instantiate our result in two completely different ways). The
result of Ciampi et al. [6] can still be instantiated using our 3-round one-one non-
malleable commitment scheme that we present in this work. Therefore our work
combined with the one of [6] gives the first 3-round concurrent non-malleable
commitment scheme from falsifiable assumptions15.

Our 3-round one-one non-malleable commitment scheme combines some ideas
of [6] along with the concept of weak non-malleable commitment. In particular
we start with a scheme that is one-one non-malleable only against synchronous
adversaries that do not commit to ⊥. As we discuss in the paper, both a subpro-
tocol of [25] and a subprotocol of [24] satisfy this security property. Considering
this notion we construct a compiler that, on input a 3-round synchronous weak
one-one NM commitment scheme, gives as output a 3-round extractable one-one
NM commitment scheme assuming OWPs secure against subexponential-time
adversaries. This can then be used inside [6] to get 3-round concurrent non-
malleable commitments from subexponential one-way permutations.

1.3 The New State of the Art

In Table 1 we summarize the new state of the art.

15 We stress that after our results were publicly available, a construction for 3-
round one-one non-malleable commitments with the black-box use of one-to-one
one-way functions secure against quasi-polynomial-time adversaries was announced
in [23].Their work revisited the primitives that instantiated their prior construc-
tion [24] based on 1-1 OWFs that appeared before this work and before [6].
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Paper No. Rounds Assumption Concurrency

Goyal/
STOC 2011 ≥ 6 OWFs Yes

Lin and Pass

Goyal et al. FOCS 2012 ≥ 6 BB OWFs Yes

Goyal et al. FOCS 2014 4 OWFs No

This work + Ciampi et al. CRYPTO 2016 3 subexp OWPs Yes

This work (main result) 4 OWFs Yes

Goyal et al. STOC 201616 3 BB quasi-poly 1-1 OWFs No

Table 1: Comparison with recent positive results from the oldest to the newest.

2 Definitions and Tools

2.1 Preliminaries

We denote the security parameter by λ and use “|” as concatenation operator
(i.e., if a and b are two strings then by a|b we denote the concatenation of a and
b). For a finite set Q, x ← Q sampling of x from Q with uniform distribution.
We use the abbreviation ppt that stays for probabilistic polynomial time. We
use poly(·) to indicate a generic polynomial function and N to denote the set
of positive integer. We use the notation st to denote the first t-bits of a string
s. A polynomial-time relation Rel (or polynomial relation, in short) is a subset
of {0, 1}∗ × {0, 1}∗ such that membership of (x,w) in Rel can be decided in
time polynomial in |x|. For (x,w) ∈ Rel, we call x the instance and w a witness
for x. For a polynomial-time relation Rel, we define the NP-language LRel as
LRel = {x|∃w : (x,w) ∈ Rel}. Analogously, unless otherwise specified, for an
NP-language L we denote by RelL the corresponding polynomial-time relation
(that is, RelL is such that L = LRelL). Let A and B be two interactive proba-
bilistic algorithms. We denote by 〈A(α), B(β)〉(γ) the distribution of B’s output
after running on private input β with A using private input α, both running
on common input γ. Typically, one of the two algorithms receives 1λ as input.
A transcript of 〈A(α), B(β)〉(γ) consists of the messages exchanged during an
execution where A receives a private input α, B receives a private input β and
both A and B receive a common input γ. Moreover, we will refer to the view of
A (resp. B) as the messages it received during the execution of 〈A(α), B(β)〉(γ),
along with its randomness and its input.

Definition 1 (Proof/argument system). A pair of ppt interactive algo-
rithms Π = (P,V) constitutes a proof system (resp., an argument system) for
an NP-language L, if the following conditions hold:

Completeness: For every x ∈ L and w such that (x,w) ∈ RelL, it holds
that: Prob [ 〈P(w),V〉(x) = 1 ] = 1.

16 The need of super-polynomial time hardness assumptions appeared in December
2016 [23].



4-Round Concurrent NM Commitments from OWFs 11

Soundness: For every interactive (resp., ppt interactive) algorithm P?,
there exists a negligible function ν such that for every x /∈ L and every z:
Prob [ 〈P?(z),V〉(x) = 1 ] < ν(|x|).

A proof/argument system Π = (P,V) for an NP-language L, enjoys delayed-
input completeness if P needs x and w only to compute the last round and V
needs x only to compute the output. Before that, P and V run having as input
only the size of x. The notion of delayed-input completeness was defined in [8]. An
interactive protocol Π = (P,V) is public coin if, at every round, V simply tosses
a predetermined number of coins (random challenge) and sends the outcome to
the prover. We say that the transcript τ of an execution b = 〈P(z),V〉(x) is
accepting if b = 1.

Definition 2 (Special Honest-Verifier Zero Knowledge (Special HVZK)).
Consider a public-coin proof/argument system Π = (P,V) for an NP-language
L where the verifier sends m messages of length `1, . . . , `m. We say that Π is
Special HVZK if there exists a PPT simulator algorithm S that on input any
x ∈ L, security parameter 1λ and any c1 ∈ {0, 1}`1 , . . . , cm ∈ {0, 1}`m , outputs
a transcript for proving x ∈ L where c1, . . . , cm are the messages of the verifier,
such that the distribution of the output of S is computationally indistinguish-
able from the distribution of a transcript obtained when V sends c1, . . . , cm as
challenges and P runs on common input x and any w such that (x,w) ∈ RelL.

In this paper we consider the notion of proof/argument of knowledge (PoK/AoK)
defined in [29]. Furthermore we consider the adaptive-input PoK/AoK prop-
erty for all the protocols that enjoy delayed-input completeness. Adaptive-input
PoK/AoK ensures that the PoK/AoK property still holds when a malicious
prover can choose the statement adaptively at the last round. We consider the
3-round public-coin Special HVZK PoK proposed by Lapidot and Shamir [28],
that we denote by LS. LS enjoys delayed-input completeness since the inputs for
both P and V are needed only to play the last round, and only the length of the
instance is needed earlier. LS also enjoys adaptive-input PoK. In particular we
use a 4-round delayed-input special HVZK adaptive-input AoK that is a variant
of LS [13] that relies on OWFs only. The additional round is indeed needed to
instantiate the commitment scheme used in LS under any OWF.

2.2 2-Round Instance-Dependent Trapdoor Commitments

Here we define a special commitment scheme based on an NP-language L where
sender and receiver also receive as input an instance x. While correctness and
computational hiding hold for any x, we require that statistical binding holds
for x 6∈ L and knowledge of a witness for x ∈ L allows to equivocate. Finally, we
require that a commitment along with two different openings allows to compute
the witness for x ∈ L. We recall that L̂ denotes the language that includes L
and all well formed instances that are not in L.
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Definition 3. Let 1λ be the security parameter, L be an NP-language and RelL
be the corresponding NP-relation. A triple of ppt algorithms TC = (Sen,Rec,TFake)
is a 2-Round Instance-Dependent Trapdoor Commitment scheme if the following
properties hold.

Correctness. In the 1st round, Rec on input 1λ and x ∈ L̂ outputs ρ. In the
2nd round Sen on input the message m, 1λ, ρ and x ∈ L outputs (com, dec).
We will refer to the pair (ρ, com) as the commitment of m. Moreover we
will refer to the execution of the above two rounds including the exchange
of the corresponding two messages as the commitment phase. Then Rec on
input m, x, com, dec and the private coins used to generate ρ in the com-
mitment phase outputs 1. We will refer to the execution of this last round
including the exchange of dec as the decommitment phase. Notice that an
adversarial sender Sen? could deviate from the behavior of Sen when com-
puting and sending com and dec for an instance x ∈ L̂. As a consequence
Rec could output 0 in the decommitment phase. We will say that dec is a
valid decommitment of (ρ, com) to m for an instance x ∈ L̂, if Rec outputs
1.

Hiding. Given a ppt adversary A, consider the following hiding experiment
ExpHidingbA,TC(λ, x) for b = 0, 1 and x ∈ L̂R:

– On input 1λ and x, A outputs a message m, along with ρ.

– The challenger on input x,m, ρ, b works as follows: if b = 0 then it runs
Sen on input m, x and ρ, obtaining a pair (com, dec), otherwise it runs
TFake on input x and ρ, obtaining a pair (com, aux). The challenger
outputs com.

– A on input com outputs a bit b′ and this is the output of the experiment.

We say that hiding holds if for any ppt adversary A there exist a negligible
function ν, s.t.:∣∣∣Prob

[
ExpHiding0

A,TC(λ, x) = 1
]
−Prob

[
ExpHiding1

A,TC(λ, x) = 1
] ∣∣∣ < ν(λ).

Special Binding. There exists a ppt algorithm that on input a commitment
(ρ, com), the private coins used by Rec to compute ρ, and two valid decommit-
ments (dec, dec′) of (ρ, com) to two different messages m and m′ w.r.t. an
instance x ∈ L, outputs w s.t. (x,w) ∈ RelL with overwhelming probability.

Trapdoorness. For any ppt adversary A there exist a negligible function ν,
s.t. for all x ∈ L it holds that:∣∣∣Prob

[
ExpComA,TC(λ, x) = 1

]
−Prob

[
ExpTrapdoorA,TC(λ, x) = 1

] ∣∣∣ < ν(λ)

where ExpComA,TC(λ, x) and ExpTrapdoorA,TC(λ, x) are defined below17.

17 We assume w.l.o.g. that A is stateful.
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ExpComA,TC(λ, x): ExpTrapdoorA,TC(λ, x):
-On input 1λ and x, A outputs
(ρ,m).

-On input 1λ and x, A outputs
(ρ,m).

-Sen on input 1λ, x, m and ρ,
outputs (com, dec).

-TFake on input 1λ, x and ρ,
outputs (com, aux).
-TFake on input tk s.t. (x, tk) ∈
RelL, x, ρ, com, aux and m out-
puts dec.

-A on input (com, dec) outputs
a bit b and this is the output of
the experiment.

-A on input (com, dec) outputs
a bit b and this is the output of
the experiment.

2.3 Non-Malleable Commitments

Here we follow [31]. Let Π = (Sen,Rec) be a statistically binding commitment
scheme and let λ be the security parameter. Consider MiM adversaries that are
participating in left and right sessions in which poly(λ) commitments take place.
We compare between a MiM and a simulated execution. In the MiM execution
the adversary A, with auxiliary information z, is simultaneously participating in
poly(λ) left and right sessions. In the left sessions the MiM adversary A inter-
acts with Sen1, . . . ,Senpoly(λ) receiving commitments to values m1, . . . ,mpoly(λ)

using identities id1, . . . , idpoly(λ) of its choice. In the right session A interacts
with Rec1, . . . ,Recpoly(λ) attempting to commit to a sequence of related values

m̃1, . . . , m̃poly(λ) again using identities of its choice ĩd1, . . . , ĩdpoly(λ). If any of the
right commitments is invalid, or undefined, its value is set to ⊥. For any i such
that ĩdi = idj for some j, set m̃i =⊥ (i.e., any commitment where the adver-
sary uses the same identity of one of the honest senders is considered invalid).

Let mim
A,m1,...,mpoly(λ)

Π (z) denote a random variable that describes the values
m̃1, . . . , m̃poly(λ) and the view of A, in the above experiment. In the simulated
execution, an efficient simulator S directly interacts with Rec1, . . . ,Recpoly(λ). Let

simS
Π(1λ, z) denote the random variable describing the values m̃1, . . . , m̃poly(λ)

committed by S, and the output view of S; whenever the view contains in the
i-th right session the same identity of any of the identities of the left sessions,
then mi is set to ⊥.

In all the paper we denote by δ̃ a value associated with the right session
(where the adversary A plays with a receiver) where δ is the corresponding
value in the left session. For example, the sender commits to v in the left session
while A commits to ṽ in the right session.

Definition 4 (Concurrent NM commitment scheme [31]). A commitment
scheme is concurrent NM with respect to commitment (or a many-many NM
commitment scheme) if, for every ppt concurrent MiM adversary A, there exists
a ppt simulator S such that for all mi ∈ {0, 1}poly(λ) for i = 1, . . . , poly(λ) the
following ensembles are computationally indistinguishable:

{mim
A,m1,...,mpoly(λ)

Π (z)}z∈{0,1}? ≈ {simS
Π(1λ, z)}z∈{0,1}? .
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As in [31] we also consider relaxed notions of concurrent non-malleability:
one-many and one-one NM commitment schemes. In a one-many NM commit-
ment scheme, A participates in one left and polynomially many right sessions.
In a one-one (i.e., a stand-alone secure) NM commitment scheme, we consider
only adversaries A that participate in one left and one right session. We will
make use of the following proposition of [31].

Proposition 1. Let (Sen,Rec) be a one-many NM commitment scheme. Then,
(Sen,Rec) is also a concurrent (i.e., many-many) NM commitment scheme.

We say that a commitment is valid or well formed if it can be decommitted
to a message m 6= ⊥. Following [29] we say that a MiM is synchronous if it
“aligns” the left and the right sessions; that is, whenever it receives message i
on the left, it directly sends message i on the right, and vice versa.

2.4 New Definitions: weak NM and SimWI

Definition 5 (weak NM commitment scheme). A commitment scheme is
weak one-one (resp., one-many) non-malleable if it is a one-one (resp., one-
many) NM commitment scheme with respect to MiM adversary that when re-
ceiving a well formed commitment in the left session, except with negligible prob-
ability computes well formed commitments (i.e., the computed commitments can
be opened to messages 6= ⊥) in the right sessions.

In the rest of the paper, following [25], we assume that identities are known
before the protocol begins, though strictly speaking this is not necessary, as the
identities do not appear in the protocol until after the first committer message.
The MiM can choose his identity adversarially as long as it differs from the
identities used by honest senders. As already observed in previous work, when
the identity is selected by the sender the id-based definitions guarantee non-
malleability as long as the MiM does not behave like a proxy (an unavoidable
attack). Indeed the sender can pick as identity the public key of a signature
scheme signing the transcript. The MiM will have to use a different identity or
to break the signature scheme.

Simulation-witness-independence (SimWI) for Lγ . We define SimWI for an NP
language L associating to the language a non-negative integer γ. Roughly speak-
ing all witnesses of an instance have in common the first γ bits, and this property
holds for all instances of L. More formally we will consider γ as a non-negative
integer such that for any x ∈ L it holds that any witness w of x can be parsed
as w = α|β, where |α| = γ, and α is the same for all witnesses of x. In order
to easy the notation, we will note denote by Lγ the NP language having the
above prefix γ. We will say that Lγ is a γ-prefix language meaning that for any
instance x of Lγ all witnesses of x have the same first γ bits.

When defining SimWI we will consider the one-many case since this is what
we will use in the next part of the paper. Adapting the definition to the one-one
case and to the fully concurrent case is straightforward.
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Discussion on adaptive-input selection and black-box simulation.
Since our definition considers a real game where the MiM plays with at most
one prover and polynomially many verifiers, and a simulated game that consists
of an execution of a stand-alone simulator, a natural definition would require
the indistinguishability of the two games for any x ∈ Lγ , giving to the prover as
input also a witness. This definition however would be difficult to use when the
argument of knowledge is played as a subprotocol of a larger protocol, especially
if it is played in parallel with other subprotocols and the adversary contributes in
selecting the statement for the left session. More specifically applications require
a security definition that features a delayed-input property so that players start
the protocol with the common input that is still undefined, and that will be
defined later potentially with the contribution of the adversary. Therefore in our
definition we will allow the adversary to explicitly select the statement, and as
such the adversary will provide also the witness for the prover. The simulated
game however will filter out the witness so that the simulator will receive only
the instance. This approach strictly follows the one of [50] where adaptive-input
selection is explicitly allowed and managed in a similar way. As final remark, our
definition will require the existence of a black-box simulator since a non-black-
box simulator could retrieve from the code of the adversary the witness for the
adaptively generated statement. The non-black-box simulator could then run
the honest prover procedure, therefore canceling completely the security flavor
of the simulation paradigm.

For simplicity we now give the formal definition with non-delayed inputs.

Definition. Let Π = (P,V) be an argument system for a γ-prefix language
Lγ and let RelLγ be the corresponding witness relation. Consider a ppt MiM
adversary A that is simultaneously participating in one left session and poly(λ)
right sessions. When the execution starts, all parties receive as a common input
the security parameter 1λ then A chooses the statement x ∈ Lγ and witness
w s.t. (x,w) ∈ RelLγ and sends them to P, furthermore A receives as auxiliary
input z ∈ {0, 1}?.

In the left session an honest prover P interacting with A proves the mem-
bership of x in Lγ . In the poly(λ) right sessions, A proves the membership in Lγ

of instances x̃1, . . . , x̃poly(λ) of his choice to the honest verifiers V1, . . . ,Vpoly(λ).
For simplicity, in this definition we consider an adversary A that chooses the
statement to be proved in the 1st round that he plays in every right sessions18.

Let {wimimΠ(1λ, z)}λ∈N,z∈{0,1}? be a random variable that describes the fol-
lowing 3 values: 1) the view of A in the above experiment, 2) the output of Vi
for i = 1, . . . , poly(λ) and 3) the first γ bits w̃γ1 , . . . , w̃

γ
poly(λ) of the corresponding

witnesses w̃1, . . . , w̃poly(λ) w.r.t. the instances x̃1, . . . , x̃poly(λ) that are part of A’s
view except that w̃γi = ⊥ if Vi did not output 1, with i = 1, . . . , poly(λ).

18 Our construction will satisfy a much stronger notion where in the left session A can
choose statement and witness in the last round, while in the right sessions A can
choose the statement in the very last round, as long as the witness is already fixed
in the second round.
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Let {simSΠ(1λ, z)}λ∈N,z∈{0,1}? be a random variable that describes the follow-
ing 3 values: 1) and 2) correspond to the output of S, 3) consists of the first
γ bits w̃γ1 , . . . , w̃

γ
poly(λ) of the corresponding witnesses w̃1, . . . , w̃poly(λ) w.r.t. the

instances x̃1, . . . , x̃poly(λ) that appear in the MiM view of the output of S except
that wγi = ⊥ if bi = 0. The output of S is composed by the following two values:
1) a MiM view and 2) bits b1, . . . , bpoly(λ).
S has black-box access to A and has the goal to emulate the prover without

having a witness, while perfectly emulating the verifiers of the right sessions.
Therefore S rewinds only when playing as prover19 and every instance/witness
pair (x,w) given in output by A is replaced by (x,⊥) and then returned to S
(i.e., the simulator runs without the witness w for the instance x chosen by A).

Definition 6 (SimWI). An argument system Π = (P,V) for a γ-prefix lan-
guage Lγ with witness relation RelLγ is SimWI if there exists an expected polynomial-
time simulator S such that for every MiM adversary A that participates in one
left session and poly(λ) right sessions the ensembles
{wimimΠ(1λ, z)}λ∈N,z∈{0,1}? and {simSΠ(1λ, z)}λ∈N,z∈{0,1}? are computationally
indistinguishable over λ.

3 4-Round One-Many SimWI From OWFs

We now show our construction of a 4-round argument of knowledge SWI =
(Pswi,Vswi) for the γ-prefix language Lγ that is one-many SimWI and can be
instantiated using any OWF. We will need the following tools:

1. a signature scheme Σ = (Gen,Sign,Ver);
2. a 2-round IDTC scheme TCΣ = (SenΣ,RecΣ,TFakeΣ) for the following NP-

language

LΣ =
{

vk : ∃ (msg1, msg2, σ1, σ2) s.t. Ver(vk, msg1, σ1) = 1

AND Ver(vk, msg2, σ2) = 1 AND msg1 6= msg2
}

;

3. a 4-round delayed-input public-coin Special HVZK (Def. 2) proof system
LS = (P,V) for the γ-prefix language Lγ that is adaptive-input PoK for the
corresponding relation RelLγ .

19 The motivation behind this definitional choice is that S is supposed to be an extended
zero-knowledge simulator that takes care also of the honest behavior of the verifiers
since A expects to play with them. Instead allowing S to have any behavior on the
right would hurt the power of SimWI in composing in parallel with other protocols.
Indeed if S rewinds on the right as verifier, it would in turn rewind also the left player
of the external protocol that is played in parallel. This would hurt the security of
the overall scheme whenever the external protocol is not resettably secure. We will
indeed compose a SimWI AoK with a weak NM commitment scheme that is not
resettably secure.
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com(ls2), msg

ls
3, σ

dec, ls2, ls
4

P
swi

V
swi

ρ, ls1, vk sk

After receiving x and w
s.t. (x,w) ∈ RelLγ

– (sk, vk)← Gen(λ) and σ ← Sign(sk, msg);
– com(ls2) is the commitment computed by running SenΣ for the language LΣ

and instance vk on input ρ (i.e., the 1st round of the commitment scheme),
in order to commit to ls2 (dec represents the decommitment information of
com(ls2));

– (ls1, ls2, ls3, ls4) is the transcript of LS for proving that x ∈ Lγ .

Fig. 1: 4-Round SimWI AoK SWI from OWFs.

Let x ∈ Lγ be the statement that Pswi wants to prove, and w a witness s.t.
(x,w) ∈ RelLγ . The high-level idea of our protocol is depicted in Fig. 1. In the
1st round the verifier Vswi computes and sends the 1st round ls1 of LS, computes
a pair of signature and verification keys (sk, vk), sends the verification key vk to
Pswi and computes and sends the 1st round ρ of TCΣ by running RecΣ on input
1λ and the instance vk ∈ LΣ . Then Pswi on input x,w and the received 1st round,
computes the 2nd round ls2 of LS and runs SenΣ on input 1λ, vk, ρ and message
ls2 thus obtaining a pair (com, dec). Pswi sends com and a random message msg

to Vswi. In the 3rd round Vswi sends the 3rd round ls3 of LS and a signature σ
(computed using sk) of the message msg. In the last round Pswi verifies whether
or not σ is a valid signature for msg. If σ is a valid signature, then Pswi, using x,
w and ls3, computes the 4th round ls4 of LS and sends dec, ls2 and ls4 to Vswi. At
this point Vswi outputs 1 iff RecΣ on input vk, com, dec, ls2 accepts (ls2, dec) as a
decommitment of com and the transcript for LS is accepting for V with respect
to the instance x. We remark that to execute LS the instance is not needed until
the last round but the instance length is required from the onset of the protocol.

Fig. 2 describes in details our SimWI AoK SWI.

Theorem 1. Assuming OWFs, SWI = (Pswi,Vswi) is a 4-round one-many SimWI
AoK for γ-prefix languages.

We divide the security proof in three parts, proving that SWI enjoys delayed-
input completeness, adaptive-input AoK and SimWI. Before that, we recall that
LS can be constructed from OWFs (see Section 2.1) as well as Σ using [48]. We
also observe that if Σ relies on OWFs, then also TCΣ can be constructed from
OWFs (see the full version [5]).

Delayed-Input Completeness. The completeness follows directly from the
completeness of LS, the correctness of TCΣ and the validity of Σ. We observe
that, due to the delayed-input property of LS, the statement x (and the respective
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Common input: security parameter λ, instance x ∈ Lγ , instance length `.
Input to P swi: w s.t. (x,w) ∈ RelLγ , with x,w available only in the 4th round.
Commitment phase:

1. V swi → P swi

1.1. Run (sk, vk)← Gen(1λ).
1.2. Run V on input 1λ and ` thus obtaining the 1st round ls1 of LS.
1.3. Run RecΣ on input 1λ and vk thus obtaining ρ.
1.4. Send (vk, ls1, ρ) to P swi.

2. P swi → V swi

2.1. Run P on input 1λ, ` and ls1 thus obtaining the 2nd round ls2 of LS.
2.2. Run SenΣ on input 1λ, vk, ρ and message ls2 to compute the pair

(com, dec).
2.3. Pick a message msg← {0, 1}λ.
2.4. Send (com, msg) to V swi.

3. V swi → P swi

3.1. Run V thus obtaining the 3rd round ls3 of LS.
3.2. Run Sign(sk, msg) thus obtaining a signature σ of the message msg.
3.3. Send (ls3, σ) to P swi.

4. P swi → V swi

4.1. If Ver(vk, msg, σ) 6= 1 then abort, continue as follows otherwise.
4.2. Run P on input x, w and ls3 thus obtaining the 4th round ls4 of LS.
4.3. Send ((dec, ls2), ls4) to V swi.

5. V swi: output 1 iff the following conditions are satisfied.
5.1. RecΣ on input vk, com, dec, ls2 accepts (ls2, dec) as a decommitment of

com.
5.2. (ls1, ls2, ls3, ls4) is accepting for V with respect to the instance x.

Fig. 2: 4-Round SimWI AoK SWI from OWFs.

witness w) are used by Pswi only to compute the last round. Therefore SWI enjoys
delayed-input completeness.

Adaptive-Input Argument of Knowledge. In order to prove that SWI
enjoys adaptive-input AoK for RelLγ , we need to show an efficient extractor E
that outputs the witnesses for the statements proved by an adversarial prover
Pswi?. E simply runs ExtLS, the adaptive-input PoK extractor of LS, in every
right session, and outputs what ExtLS outputs. More precisely E internally runs
and interacts with a SWI prover Pswi as Vswi

i does, but acting as a proxy between
Pswi? and ExtLS w.r.t. the messages of LS (for i = 1, . . . , poly(λ)). The important
observation is that E could fail if the following event NoExt happens with non-
negligible probability: Pswi? opens the commitment (ρ, com) to a different ls2

during the rewinds. Indeed, in this case ExtLS could fail in obtaining a witness.
We prove the following claim.

Claim 1. There exists a negligible function ν such that Prob [ NoExt ] < ν(λ).



4-Round Concurrent NM Commitments from OWFs 19

Proof. The proof is by contradiction, more specifically we now show an adversary
AΣ that extracts two signatures for two different messages in order to break the
signature scheme Σ when Prob [ NoExt ] is non-negligible in λ.

If two decommitments of (com, ρ) w.r.t. two different messages (ls2
′

and ls2)
are shown by Pswi? in the last round of SWI, AΣ can extract two different sig-
natures for two different messages by using the special binding of TCΣ. More
precisely, let vk be the verification key given by the challenger of the signature
scheme, then our adversary AΣ works as follows.

For all i ∈ {1, . . . , poly(λ)} − {j}, AΣ interacts in the i-th session against
Pswi? as Vswi

i would do. Instead in the j-th session AΣ runs as E would do, using
vk to compute the first round, and the oracle Sign(sk, ·) to compute a signature
σ of a message m sent by AΣ in the second round. Since we are assuming (by
contradiction) that during the rewinds from the 4th round to the 3rd round the
commitment (ρ, com) (sent in the second round by Pswi?) is opened in more than
one way, then, by using the special binding of TCΣ, AΣ extracts and outputs two
signatures for two different messages. We conclude this proof with the following
two observations. First, the signature oracle Sign(sk, ·) is called only once since,
by construction of E, the second round is played by Pswi? only once. Second, the
extractor E is an expected polynomial-time algorithm while AΣ must be a strict
polynomial-time algorithm. This mean that the execution E has to be truncated.
Obviously the running time of the extraction procedure can be truncated to
a sufficiently long value so that with non-negligible probability the truncated
extraction procedure will still yield the event NoExt to happened and this is
sufficient for AΣ to break the signature scheme20.

SimWI. In order to prove that SWI is SimWI (Definition 6) for any γ-prefix
language Lγ we prove the following lemma.

Lemma 1. {wimimSWI(1
λ, z)}λ∈N,z∈{0,1}? ≈ {simS

swi

SWI(1
λ, z)}λ∈N,z∈{0,1}? .

Proof. Here we actually prove something stronger. Indeed we prove the security
of SWI considering a MiM adversary Aswi that has additional power both in the
left and in the right sessions. More precisely in the left session Aswi can choose
the statement to be proved (and the related witness) in the third round. That
is, in the last round that goes from Aswi to Pswi.

Also, in all right sessions A fixes a family of statements in the second round,
and then adaptively picks the statement to be proved from that family in the
last round. In this way the MiM adversary has the power to adaptively choose
the statement to be proved in the last round of every right session conditioned on
belonging to the already fixed family, that has to be fixed in the second round.
In the rest of the paper we will refer to a SimWI protocol that is secure also in
this setting as adaptive-input SimWI.

20 The same arguments are used in [17]. The same standard argument about truncating
the execution of an expected polynomial-time algorithm is used in another proofs
but for simplicity we will not repeat this discussion.
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We start by showing the simulator Sswi and giving an overview of the entire
proof. The simulator is described in Figure 3. Roughly, Sswi interacts against
Aswi in both the left and right sessions. In the left session Sswi runs TFakeΣ to
compute and send a commitment com. Sswi then rewinds Aswi from the 3rd to
the 2nd round, in order to obtain two valid signatures σ1, σ2 for two different
messages (msg1, msg2). This informations constitute the trapdoor tk for TCΣ.
After that tk is computed, Sswi comes back to the main thread execution. Upon
receiving ls3 and x in the 3rd round from Aswi, Sswi computes an accepting
transcript for LS (ls1, ls2, ls3, ls4) running the Special HVZK simulator of LS on
input ls1, received in the 1st round from Aswi, and (x, ls3). In the last round
computes, by using tk, the decommitment information (dec, ls2) for com, and
sends (dec, ls2, ls4) to Aswi. In the i-th right session, for i = 1, . . . , poly(λ), Sswi

acts as Vswi
i would do against Aswi. When the execution against Aswi ends, Sswi

outputs the view of Aswi.
In the security proof we denote by {wimimHi(1

λ, z)}λ∈N,z∈{0,1}? the random
variable describing 1) the view ofAswi, 2) the output of Vswi

i for i = 1, . . . , poly(λ),
3) the first γ-bits w̃γ1 , . . . , w̃

γ
poly(λ) of the corresponding witnesses w̃1, . . . , w̃poly(λ)

w.r.t. the instances x̃1, . . . , x̃poly(λ) that appear in Aswi’s view except that w̃γi = ⊥
if Vswi

i rejected, with i = 1, . . . , poly(λ) 21.
The proof makes use of the following main hybrid experiments.

– The 1st hybrid experiment is H1(1λ, z). In this hybrid in the left session
Pswi interacts with Aswi in order to prove the validity of the instance x
using the witness w, while in the right sessions Vswi

i interacts with Aswi for
i = 1, . . . , poly(λ). We want to prove that in the i-th right session Aswi does
not prove any false instance x̃i for any i = 1, . . . , poly(λ)22. This property
follows immediately from the adaptive-input AoK of SWI. We observe that
in this case it is crucial that SWI is adaptive-input AoK, because we are
considering an adversary Aswi that can choose the instance to be proved in
the last round of every right session.

– The 2nd hybrid experiment isH2(1λ, z) and differs fromH1(1λ, z) in the way
the commitment com and the decommitment information dec are computed
in the left session. More precisely, Pswi runs TFakeΣ to compute a commit-
ment (ρ, com), and subsequently to compute a decommitment of (ρ, com) to
the value ls2 (we remark that no trapdoor is needed to run TFakeΣ in order
to compute (ρ, com)). In more details, this experiment rewinds the adver-
sary Aswi from the 3rd to the 2nd round of the left session to extract two
signatures σ1, σ2 of two different messages (msg1, msg2) and uses them as
trapdoor to run TFakeΣ. The indistinguishability between wimimH1

(1λ, z)
and wimimH2

(1λ, z) comes from the hiding and the trapdoorness of TCΣ.
– The 3rd hybrid experiment is H3(1λ, z) and differs from H2(1λ, z) in the

way the transcript for LS is computed. In more details the Special HVZK

21 To ease the notation sometimes we will refer to {wimimHi(1
λ, z)}λ∈N,z∈{0,1}? using

just wimimHi(1
λ, z).

22 When we refer to a proved instance x̃i we implicitly assume that V swi
i is accepting,

with i = 1, . . . , poly(λ).
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Common input: security parameters λ and instance length `.
Internal simulation of the left session:

1. Upon receiving (vk, ls1, ρ) from Aswi:
1.1. Run TFakeΣ on input 1λ, vk, ρ to compute the pair (com, aux).
1.2. Pick a message msg1 ← {0, 1}

λ.
1.3. Send (com, msg1) to Aswi.

2. Upon receiving (ls3, σ1, x,⊥) from Aswi:
2.1. If Ver(vk, msg1, σ) 6= 1 then abort, continue as follows otherwise.
2.2. Repeat Step 1.3, 1.2 and follow-up right session message up to λ/p timesa

in order to obtain a signature σ2 of a random message msg2 6= msg1. Abort
in case of failure in obtaining σ2 in such λ/p attempts otherwise return
to the main thread.

2.3. Run the Special HVZK simulator of LS on input (x, ls1, ls3) in order to
obtain (ls2, ls4).

2.4. Run TFakeΣ on input tk = (msg1, msg2, σ1, σ2), vk, ρ, com, aux and ls2 to
compute dec.

2.5. Send ((dec, ls2), ls4) to Aswi.

Internal simulation of the right sessions:

1. For i = 1, . . . , poly(λ) acts as V swi
i would do against Aswi.

Output: When the execution against Aswi ends, outputs the view of Aswi and the
bits b1, . . . , bpoly(λ) where, for i = 1, . . . , poly(λ), bi = 0 iff V swi

i is rejecting, bi = 1
otherwiseb.

a We refer with p as the probability that Aswi sends in the Step 2 a valid signature
for a randomly chosen message.

b Of course, if Aswi ends during the step 2.2 the simulator continues to work until
that step is completed.

Fig. 3: The SimWI Sswi for SWI.

simulator S of LS is used to compute the messages ls2 and ls4 instead of using
the honest procedure Pswi. The indistinguishability between wimimH2

(1λ, z)
and wimimH3(1λ, z) comes from the Special HVZK of LS. We observe that the
security proof ends with this hybrid experiment because wimimH3(1λ, z) ≡
simS

swi

SWI(1
λ, z).

A formal proof is given in the full version (see [5]).

4 4-Round Concurrent NM Commitment Scheme

Our construction makes use of an adaptive-input SimWI AoK SWI = (Pswi,Vswi)
combined with a weak concurrent NM commitment scheme Πwom. For our pro-
pose we consider a weak NM commitment scheme that with overwhelming proba-
bility any well-formed commitment can be opened to only one message. We recall
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that the weak concurrent NM commitment scheme of [25] enjoys this property
when instantiated with Naor’s commitment scheme [35].

We now consider the following language L based on the weak NM commit-
ment scheme Πwom = (Senwom,Recwom):

L =
{(
τ, id

)
: ∃ (m, dec) s.t. Recwom on input

(m, dec, id) accepts m as decommitment of τ
}

and the corresponding relation RelL.
We now use SWI = (Pswi,Vswi) to upgrade a 4-round public-coin concurrent

weak NM commitment scheme Πwom with the property that after the second
round there is at most one valid message, to a concurrent NM commitment
scheme. We will be able to invoke the security of SWI, since the language L is a
γ-prefix language with overwhelming probability with γ = |m|. In fact, given an
instance (τ, id) of L all the witnesses w1, . . . , wn of (τ, id) have the form m|deci
for i = 1, . . . , n (i.e., all witnesses have the same prefix m). Consider a SimWI
AoK for L. Let m be the message that NM4Sen wants to commit and id be the
id for this session. The high-level idea of our protocol is depicted in Fig. 4.

swi
2

swi
3

swi
4(x)

NM4Sen(m, id)

swi
1

wom
2(m)

wom
3

wom
4

wom
1

x = (wom1,wom2,wom3,wom4, id)

NM4Rec(id)

– t = (wom1,wom2(m),wom3,wom4) is the transcript generated from the exe-
cution of the weak non-malleable commitment Πwom in which Senwom wishes
to commit to the message m (using id id).

– (swi1, swi2, swi3, swi4(x)) in the transcript generated from an execution of the
SimWI AoK SWI in which P swi proves that the commitment (t, id) computed
using Πwom is well formed (i.e, it is a commitment of a message m 6= ⊥).

Fig. 4: 4-Round Concurrent NM Commitment Scheme from OWFs.

In the 1st round the receiver NM4Rec computes and sends the 1st round swi1

of SWI and the 1st round wom1 of Πwom using as input the id. Then NM4Sen on
input id, the message m and the received 1st round, computes the 2nd round
wom2 of Πwom in order to commit to the message m, using id, furthermore he
obtains decwom s.t. (m, decwom) constitutes the decommitment information23.

23 In order to match the adaptive-input selection satisfied by SWI, message and ran-
domness explaining the entire transcript are already fixed in this round.
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Moreover NM4Sen computes and sends the 2nd round swi2 of SWI. In the 3rd
round NM4Rec sends the 3rd round wom3 of Πwom and the 3rd round swi3 of SWI.
In the last round NM4Sen computes the 4th round wom4 of Πwom. Furthermore,
NM4Sen, using (wom1,wom2,wom3,wom4, id) as instance and (m, decwom) as a
witness, computes the 4th round swi4 of SWI and sends wom4, swi4 to NM4Rec. At
this point NM4Rec accepts the commitment (i.e., the transcript of the protocol
generated so far) iff the transcript for SWI is accepting for Vswi with respect
to the instance (wom1,wom2,wom3,wom4, id). The decommitment phase of our
scheme simply corresponds to the decommitment phase of Πwom.

As described before, SWI = (Pswi,Vswi) is used by NM4Sen to prove knowl-
edge of a message and randomness consistent with the transcript computed using
Πwom. To execute SWI the instance is not needed until the last round.

Fig. 5 describes in details our 4-round concurrent NM commitment scheme
ΠNM4Com.

Theorem 2. Assuming OWFs, ΠNM4Com = (NM4Sen,NM4Rec) is a 4-round
concurrent NM commitment scheme.

The 4-round concurrent NM commitment schemeΠNM4Com = (NM4Sen,NM4Rec)
relies on OWFs, because the adaptive-input SimWI AoK SWI can be constructed
using OWFs only (see Theorem 1). Furthermore Πwom can be instantiated using
the weak one-one non-malleable commitment scheme of [25] that is proved to
be weak concurrent non-malleable in the full version of our work (see [5]). Note
that this construction relies on OWFs and has also the additional property that
we require (i.e. after the second round the only valid message and the corre-
sponding decommitment informations are fixed). The security proof is divided
in two parts. In the 1st part we prove that ΠNM4Com is indeed a commitment
scheme. In the second part we prove that ΠNM4Com is a one-many NM commit-
ment scheme, and then we go from one-many to concurrent non-malleability by
using Proposition 1.

Lemma 2. ΠNM4Com = (NM4Sen,NM4Rec) is a statistically binding computa-
tionally hiding commitment scheme.

Proof. Correctness. The correctness follows directly from the delayed-input
completeness of SWI and the correctness of Πwom.

Statistically Binding. Observe that the message given in output in the de-
commitment phase of ΠNM4Com is the message committed using Πwom. Moreover
the decommitment of ΠNM4Com coincides with the decommitment of Πwom. Since
Πwom is statistically binding then so is ΠNM4Com.

Computationally Hiding. Computational hiding follows immediately from
Lemma 3.

Lemma 3. For all m ∈ {0, 1}poly(λ) {mimANMCom,m
ΠNM4Com

(z)}z∈{0,1}? ≈ {simSNM4Com

ΠNM4Com
(1λ, z)}z∈{0,1}? .

We denote by {mimA
NM4Com,m
Hmi

(z)}z∈{0,1}? the random variable describing the

view of the MiM ANM4Com combined with the values that it commits in the the
poly(λ) right sessions in hybrid Hmi (z).
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Common input: security parameter λ, instance length `, NM4Sen’s identity
id ∈ {0, 1}λ.
Input to NM4Sen: m ∈ {0, 1}poly{λ}.
Commitment phase:

1. NM4Rec→ NM4Sen
1.1. Run Recwom on input 1λ, id thus obtaining the 1st round wom1 of Πwom.
1.2. Run V swi on input 1λ and ` thus obtaining the 1st round swi1 of SWI.
1.3. Send (swi1,wom1) to NM4Sen.

2. NM4Sen→ NM4Rec
2.1. Run P swi on input 1λ, ` and swi1 thus obtaining the 2nd round swi2 of

SWI.
2.2. Run Senwom on input 1λ, id,wom1 and the message m thus obtaining

the 2nd round wom2 of Πwom and decwom s.t. (m, decwom) constitutes the
decommitment information.

2.3. Send (swi2,wom2) to NM4Rec.
3. NM4Rec→ NM4Sen

3.1. Run Recwom on input wom2 thus obtaining the 3rd round wom3 of Πwom.
3.2. Run V swi on input swi2 thus obtaining the 3rd round swi3 of SWI.
3.3. Send (wom3, swi3) to NM4Sen.

4. NM4Sen→ NM4Rec
4.1. Run Senwom on input wom3 thus obtaining the 4th round wom4 of Πwom.
4.2. Set x = (wom1,wom2,wom3,wom4, id) and w = (m, decwom) with |x| = `.

Run P swi on input x, w and swi3 thus obtaining the 4th round swi4 of
SWI.

4.3. Send (wom4, swi4) to NM4Rec.
5. NM4Rec : Set x = (wom1,wom2,wom3,wom4, id) and accept the commitment

iff (swi1, swi2, swi3, swi4) is accepting for V swi with respect to the instance x.

Decommitment phase:

1. NM4Sen→ NM4Rec: Send (m, decwom) to NM4Rec.
2. NM4Rec: accept m as the committed message if and only if Recwom,

on input (m, decwom), accepts m as the committed message of
(wom1,wom2,wom3,wom4, id).

Fig. 5: 4-round Concurrent NM Commitments ΠNM4Com from OWFs.

As required by the definition, we want to show that the distribution of the real
game experiment (i.e., the view of the MiM ANM4Com when playing with NM4Sen
committing m along with the messages committed in the right sessions) and the
one of the output of a simulator are computationally indistinguishable. We start
by showing the simulator SNM4Com and giving an overview of the entire proof.
The simulator is described in Figure 6.

– The 1st hybrid experiment is Hm1 (z). In this hybrid in the left session
NM4Sen commits to m, while in the right sessions NM4Reci interacts with
ANM4Com for i = 1, . . . , poly(λ). We prove that in the i-th right session
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Common input: Security parameters: λ. NM4Sen’s identity: id ∈ {0, 1}λ.
Internal simulation of the left session:

1. Upon receiving (swi1,wom1) from ANM4Com:
1.1. Run P swi on input 1λ, ` and swi1 thus obtaining the 2nd round swi2 of

SWI.
1.2. Run Senwom on input 1λ, id,wom1 and the message 0λ thus obtaining

the 2nd round wom2 of Πwom and decwom s.t. (0λ, decwom) constitutes the
decommitment informations.

1.3. Send (swi2,wom2) to ANM4Com.
2. Upon receiving (wom3, swi3) from ANM4Com:

2.1. Run Senwom on input wom3 thus obtaining the 4th round wom4 of Πwom.
2.2. Set x = (wom1,wom2,wom3,wom4, id) and w = (0λ, decwom) with |x| =

`. Run P swi on input x, w and swi3 thus obtaining the 4th round swi4 of
SWI.

2.3. Send (wom4, swi4) to ANM4Com.

Right sessions:

1. SNM4Com acts as a proxy between ANM4Com and NM4Reci, with i =
1, . . . , poly(λ).

Fig. 6: The simulator SNM4Com of ΠNM4Com.

ANM4Com does not commit to a message m̃i =⊥ for any i = 1, . . . , poly(λ).
The proof follows immediately from the adaptive-input AoK of SWI. We ob-
serve that in this case it is crucial that SWI is adaptive-input AoK, because
the theorem proved by ANM4Com are fully specified only in the last round of

every right session. Clearly we have that mimA
NM4Com,m

ΠNM4Com
(z) = mimA

NM4Com,m
Hm1

(z).

– The 2nd hybrid experiment is Hm2 (z) and differs from Hm1 (z) in the way
the transcript of SWI is computed. In this hybrid the simulator Sswi of SWI
is used to compute the transcript of SWI. The indistinguishability between

mimA
NM4Com,m
Hm1

(z) and mimA
NM4Com,m
Hm2

(z) comes from the adaptive-input SimWI

property of SWI. It is important to observe that we can properly rely on
the adaptive-input SimWI property of SWI since the committed message in
Πwom is fixed in the second round. Therefore also the family of statement
Xw = {x : (x,w) ∈ RelL or x /∈ L} proved using SWI is implicitly fixed in
the second round. Moreover we can rely on the security of SWI because the
language L is a γ-prefix language for prefix = |m|. Indeed, all witnesses of any
instance of L have the same prefix (i.e., the committed messagem). Therefore
when using the simulator of SWI we are guaranteed that the distribution of
the first γ bits of the witnesses corresponding to the statements proven by
the adversary in the right sessions of SWI does not change. In turn, this
implies that the distribution of the committed messages in the right sessions
does not change since each message committed in a session is in the first γ
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bits of any witness corresponding to the statement proven in SWI in that
session.

We also consider the hybrid experiments H0
1(z), H0

2(z), that are the same
hybrid experiments described above with the difference that Πwom is used to
commit to a message 0λ instead of m. From the same arguments described

above we have that mimA
NM4Com,m
H0

1
(z) ≈ mimA

NM4Com,m
H0

2
(z) and that in the i-th

right session of H0
1(z) ANM4Com commits to a message m̃i =⊥ with negligible

probability (for any i = 1, . . . , poly(λ)). We also observe that mimA
NM4Com,m
H0

1
(z) =

simSNM4Com

ΠNM4Com
(1λ, z).

The only thing that remains to argue to complete the proof is that the
view of ANM4Com, along with messages committed in the right sessions of the
execution of Hm2 (z), is indistinguishable from the view of ANM4Com along with
the messages committed in the right sessions ofH0

2(z). This is actually ensured by
the weak concurrent non-malleability of Πwom. Indeed, from the arguments given
above, in both Hm2 (z) and H0

2(z) the adversary ANM4Com commits to a message
m̃i = ⊥ with negligible probability for i = 1, . . . , poly(λ). Therefore we can use
this ANM4Com to construct and adversary Awom that breaks the weak concurrent
non-malleability of Πwom. Roughly speaking, let m, 0λ be the challenge messages,
then Awom works as following against the challenger Cwom. In the left session acts
as a proxy for all the messages of Πwom between Cwom and ANM4Com and executes
the simulator Sswi of SWI in parallel. In the i-th right session Awom interacts as
Recwom,i would do w.r.t. the messages of Πwom and as Vswi

i for the messages
of SWI, for all i = 1, . . . , poly(λ). The distinguisher that break the concurrent
weak non-malleability of Πwom runs DNM4Com (that exists by contradiction) that

distinguishes mimA
NM4Com,m
H0

2
(z) from mimA

NM4Com,m
Hm2

(z), and outputs what DNM4Com

outputs.

A caveat that we have to address in this reduction is due to the rewinds made
by Sswi in the left session in order to compute the transcript of SWI. Indeed a
rewind made in the left session could affect the reduction rewinding also the
receivers of Πwom involved in the reduction. More precisely could happen that in
a session j ∈ {1, . . . , poly(λ)} the third round of Πwom has to be played multiple
times because of the multiple values ˜wom2

j received in the j-th right session. We
can avoid this problem by sending a random string as a third round of Πwom. In
this way for the first value ˜wom2

j received from ANM4Com the reduction interacts
with the receiver of Πwom and for all the other values the reduction sends a
random string. This is the reason why in our construction we require Πwom

to be public coin. One additional issue is the following. The simulator of SWI
could rewind the entire left session during the reduction, therefore requiring to
compute a new commitment of m for the protocol Πwom. Since we are assuming
that Πwom is weak concurrent non-malleable, the reduction can request to receive
multiple commitments for the same message. A formal proof is given in the full
version (see [5]).
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5 3-Round NM Commitments from Strong OWPs

In addition to the definition of NM commitments given in Section 2.3, in this
section we consider also a synchronous NM commitment scheme secure against
a sub-exponential time adversary. The definitions follow below.

5.1 Synchronous NM Commitment Scheme

Definition 7 (synchronous NM commitment scheme). A commitment scheme
is synchronous one-one (resp., one-many) non-malleable if it is one-one (resp.,
one-many) NM with respect to synchronous MiM adversaries.

We also consider the definition of a NM commitment scheme secure against
a MIM A running in time bounded by T = 2λ

α

for some positive constant
α < 1. In this case we will say that a commitment scheme is T -non-malleable.
We will also say that an NM commitment scheme is T̃ -breakable to specify that

an algorithm which runs in time T̃ = 2λ
β

, for some positive constant β < 1, can
maul the committed message.

awsyn, aLS

cwsyn, cLS, Y

zwsyn, zLS

NMSen(m, id) NMRec(id)

– Y is an element taken from the range of the OWP f .
– τ = (awsyn, cwsyn, zwsyn) is the transcript of 〈Senwsyn(m),Recwsyn〉(id).
– (aLS, cLS, zLS) is the transcript of LS for proving knowledge of either the

decommitment of τ to a message 6=⊥ or of the preimage of Y .

Fig. 7: Informal description of our 3-round NM commitment scheme ΠNMCom.

5.2 3-Round NM Commitment Scheme: ΠNMCom = (NMSen,NMRec)

Our construction is based on a compiler that takes as input a 3-round syn-
chronous weak one-one NM commitment scheme Πwsyn = (Senwsyn,Recwsyn), a
OWP f , a WI adaptive PoK for NP LS, and outputs a 3-round extractable
one-one NM commitment scheme ΠNMCom = (NMSen,NMRec).

In order to construct our compiler we consider the following tools:

1. a OWP f that is secure against ppt adversaries and that is T̃f -breakable;
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Common input: security parameters: λ, (λwsyn, λLS, `) = Params(λ), id ∈
{0, 1}λ.
Input to NMSen: m ∈ {0, 1}poly{λ}.
Commitment phase:

1. NMSen→ NMRec
1.1. Run Senwsyn on input 1λwsyn , id and m thus obtaining the 1st round

awsyn of Πwsyn.
1.2. Run P on input 1λLS and ` thus obtaining the 1st round aLS of LS.
1.3. Send (awsyn, aLS) to NMRec.

2. NMRec→ NMSen
2.1. Run Recwsyn on input id and awsyn thus obtaining the 2nd round cwsyn

of Πwsyn.
2.2. Run V on input aLS thus obtaining the 2nd round cLS of LS.
2.3. Pick a random Y ∈ {0, 1}λ.
2.4. Send (cwsyn, cLS, Y ) to NMSen.

3. NMSen→ NMRec
3.1. Run Senwsyn on input cwsyn thus obtaining the 3rd round zwsyn of Πwsyn

and the decommitment information decwsyn.
3.2. Set x = (awsyn, cwsyn, zwsyn, Y, id) and w = (m, decwsyn,⊥) with |x| = `.

Run P on input x, w, and cLS thus obtaining the 3rd round zLS of LS.
3.3. Send (zwsyn, zLS) to NMRec.

4. NMRec: Set x = (awsyn, cwsyn, zwsyn, Y, id) and abort iff (aLS, cLS, zLS) is not
accepted by V for x ∈ L.

Decommitment phase:

1. NMSen→ NMRec: Send (decwsyn,m) to NMRec.
2. NMRec: accept m as the committed message if and only if Recwsyn on input

(m, decwsyn) accepts m as a committed message of (awsyn, cwsyn, zwsyn, id).

Fig. 8: 3-Round NM Commitment scheme ΠNMCom.

2. a 3-round one-one synchronous weak NM commitment scheme Πwsyn =

(Senwsyn,Recwsyn) that is Twsyn-hiding/NM, and T̃wsyn-breakable;
3. the LS PoK LS = (P,V) for the language

L =
{

(a, c, z, Y, id) : ∃ (m, dec, y) s.t.
(
Recwsyn on input (a, c, z,m, dec, id)

accepts m 6=⊥ as a decommitment of (a, c, z, id) OR Y = f(y)
)}

that is TLS-WI for the corresponding relation RelL.

Let λ be the security parameter of our scheme. We use w.l.o.g. λ also as
security parameter for the one-wayness of f with respect to polynomial-time ad-
versaries. We consider the following hierarchy of security levels: T̃f << Twsyn <<

T̃wsyn =
√
TLS << TLS where by “T << T ′” we mean that “T · poly(λ) < T ′”.

Now, similarly to [47, 6], we define different security parameters, one for each
tool involved in the security proof to be consistent with the hierarchy of security
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levels defined above. Given the security parameter λ of our scheme, we will make
use of the following security parameters: 1) λ for the OWP f ; 2) λwsyn for the
synchronous weak one-one NM commitment scheme; 3) λLS for LS. A formal
proof of the following theorem is given in the full version (see [5]).

Theorem 3. Suppose there exists a synchronous weak one-one NM commitment
scheme and OWPs, both secure against subexponential-time adversaries, then
ΠNMCom is an extractable one-one NM commitment scheme.
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