
Private Multiplication over Finite Fields

Sonia Belaïd1, Fabrice Benhamouda2, Alain Passelègue3,
Emmanuel Prouff4,5, Adrian Thillard6, and Damien Vergnaud7,8

1 Thales Communications & Security, Gennevilliers, France
2 IBM Research, Yorktown Heights, USA

3 UCLA, Los Angeles, USA
4 Safran Identity and Security, France

5 Sorbonne Universités, UPMC Univ Paris 06, CNRS, INRIA, Laboratoire
d’Informatique de Paris 6 (LIP6), Équipe PolSys, 4 place Jussieu, 75252 Paris, France

6 ANSSI, Paris, France
7 Département d’informatique de l’ENS, École normale supérieure, CNRS,

PSL Research University, 75005 Paris, France
8 INRIA

Abstract. The notion of privacy in the probing model, introduced by
Ishai, Sahai, and Wagner in 2003, is nowadays frequently involved to
assess the security of circuits manipulating sensitive information. How-
ever, provable security in this model still comes at the cost of a signif-
icant overhead both in terms of arithmetic complexity and randomness
complexity. In this paper, we deal with this issue for circuits processing
multiplication over finite fields. Our contributions are manifold. Extend-
ing the work of Belaïd, Benhamouda, Passelègue, Prouff, Thillard, and
Vergnaud at Eurocrypt 2016, we introduce an algebraic characterization
of the privacy for multiplication in any finite field and we propose a
novel algebraic characterization for non-interference (a stronger security
notion in this setting). Then, we present two generic constructions of
multiplication circuits in finite fields that achieve non-interference in the
probing model. Denoting by d the number of probes used by the adver-
sary, the first proposal reduces the number of bilinear multiplications
(i.e., of general multiplications of two non-constant values in the finite
field) to only 2d+ 1 whereas the state-of-the-art was O(d2). The second
proposal reduces the randomness complexity to d random elements in
the underlying finite field, hence improving the O(d log d) randomness
complexity achieved by Belaïd et al. in their paper. This construction is
almost optimal since we also prove that d/2 is a lower bound. Eventually,
we show that both algebraic constructions can always be instantiated in
large enough finite fields. Furthermore, for the important cases d ∈ {2, 3},
we illustrate that they perform well in practice by presenting explicit re-
alizations for finite fields of practical interest.
Keywords. Side-Channel Analysis, Probing Model, Bilinear Complex-
ity, Randomness Complexity, Constructions, Lower Bounds, Probabilis-
tic Method.

2 Sonia Belaïd et al.

1 Introduction

While most symmetric cryptographic algorithms are now assumed to be secure
against classical black-box attacks (e.g., when the attacker gets the knowledge
of some inputs and/or outputs), their implementation can still be vulnerable to
side-channel attacks. These attacks, revealed by Kocher in the 1990s [19], make
additional use of the physical leakage of the underlying device (e.g., tempera-
ture, power consumption, execution time, . . .) during the algorithm execution
to recover the secret key.

These side-channel attacks are actually very powerful both against hardware
and software implementations. In practice, keys from a classical block cipher
can be recovered in a few minutes on many devices. Therefore, there is a huge
need in efficient and secure countermeasures. Among the many ones proposed by
the community, masking (a.k.a. splitting or sharing) [9,16] is probably the most
widely deployed. The main idea is to split each sensitive data, which depends
both on the secret key and on known variables (e.g., inputs or outputs) into d+1
shares. The first d shares are generated uniformly at random and the last one
is computed so that the combination of the d + 1 shares with some group law
∗ is equal to the initial value. With this technique, the attacker actually needs
the whole set of d+ 1 shares to learn any information on the initial value. Since
each share’s observation comes with noise, the higher the order d is, the more
complex the attack is [9, 21].

In order to evaluate the security of masking schemes, the cryptographic com-
munity has made important efforts to define leakage models which properly
reflect the reality of embedded devices. In 2003 [18], Ishai, Sahai, and Wagner
introduced the d-probing model in which the attacker can get access to the exact
values of at most d intermediate variables of its choice in the targeted imple-
mentation. While in practice, the attacker has access to the noisy values of all
the manipulated variables, this model may still make sense, since recovering the
exact value of d variables from their noisy observations is exponentially hard in
the order d. Furthermore, it is widely used for its convenience to realize security
proofs. Ten years later [21], Prouff, and Rivain extended a model initially intro-
duced by Chari et al. [9], referred to as the noisy leakage model. This time, the
model fits the reality of embedded devices since the attacker is assumed to get
the noisy observations of all the intermediate variables of the implementation.
However, because it requires the manipulation of noisy data (i.e., real values),
this model is not convenient to make security proofs. Fortunately, Duc, Dziem-
bowski, and Faust [13] exhibited a reduction from the noisy leakage model to the
d-probing model, later improved in practice by Duc, Faust, and Standaert [14].
In other words, they proved that if an implementation is secure in the d-probing
model, then it is also secure in the realistic noisy leakage model for specific
number of shares, level of noise and circuit sizes. This sequence of works makes
the d-probing model both realistic and convenient to make security proofs of
masking schemes. An implementation secure in the d-probing model is said to
satisfy the d-privacy property or equivalently to be d-private [18].

Private Multiplication over Finite Fields 3

1.1 Our Problem

For the large majority of symmetric cryptographic algorithms which manipulate
Boolean values, we naturally protect their implementation using Boolean mask-
ing for which ∗ = ⊕. Each sensitive data is thus split into d + 1 shares whose
Boolean addition returns the initial value.9

In this context, the protection of linear functions is trivial since they just
need to be applied independently to each share. However, the protection of non-
linear functions is more complicated since the shares cannot be manipulated
independently from each other. Concretely, additional randomness is required to
randomize the computations which manipulate several shares of the same data.
In particular, it is not trivial to evaluate the best way to build such counter-
measures while minimizing the quantity of additional randomness as well as the
number of operations.

The first proposal to perform a d-private multiplication over the finite field
F2 was made by Ishai, Sahai, and Wagner in their seminal paper [18] (further
referred to as ISW multiplication). They achieved d-privacy with d(d+ 1)/2 ad-
ditional random bits and (d+ 1)2 products over F2. Their multiplication then
became the cornerstone of a sequence of works to build more complex d-private
implementations [3,10,13,14,24]. Their proposal was described to securely com-
pute a d-private multiplication over F2, but it can actually be transposed to
secure a multiplication over any finite field Fq (e.g. [15, 24]) (in which case it
requires d(d+1)/2 random field elements and (d+ 1)2 products over Fq). Secure
implementation of multiplications over larger finite fields Fq (in particular for
finite fields of characteristic 2), is of utmost practical interest to evaluate an
S-box expressed as a polynomial over a such a finite field. For instance, it has
been shown in [24] and [12] respectively that the implementation of the AES
S-box (resp. the DES S-boxes) may be done with 4 (resp. 3) multiplications over
F28 (resp. F26), instead of several dozens of multiplications over F2. However,
with the order d growing up in practice for security reasons, this multiplication
remains quite expensive. In particular, it consumes a large amount of random-
ness, which is generated by a physical source followed by a deterministic random
bit generator, and it also requires a large number of multiplications, which are
more expensive than linear operations.

That is why the community started to investigate more efficient d-private
multiplications. Belaïd et al. [4] proposed a new d-private multiplication over
the finite field F2 with twice as less randomness while preserving the number
of multiplications. They also proved that any d-private multiplication over F2
requires at least d random bits and they proved a O(d log d) quasi-linear (non-
constructive) upper bound for this randomness complexity. Most of their results
can be readily generalized to d-private multiplication over any finite field F2n

9 An alternative is to apply so-called threshold implementations [20]. In [23], Reparaz
et al. have shown that the latter implementations can be built from circuits that
are made secure in the probing model. Thus, any improvement of the complexity of
arithmetic circuits secure in the probing model may lead to complexity improvement
for higher-order threshold implementations.

4 Sonia Belaïd et al.

of characteristic 2 (except for the lower bound which holds only in F2). While
their multiplication is d-private, it offers less security than the ISW one since
it does not compose necessarily securely with other private circuits (see below
for formal security definitions). It still can be used in symmetric algorithms to
improve their performances: for instance, in the S-box of the block cipher AES
defined over F28 , three of the four multiplications can be replaced by theirs.
Nevertheless, the proposal remains expensive and there is still a huge need in
more efficient d-private multiplications.

1.2 Related Work

Other methods of encoding have been proposed in the literature. The inner prod-
uct masking, proposed by Balasch et al. [2] encodes, over any finite field Fq, the
secret as a pair of vectors (L,R) such that the secret equals the inner product
of L and R. In [1], this construction was enhanced by fixing a public value for
L, hence allowing to achieve d-privacy using d + 1 shares. The subsequent ran-
domness and computation complexities for the multiplication are however still
quadratic in d. Another approach, proposed by Prouff, and Roche [22] uses poly-
nomial masking. Based on Shamir’s secret sharing scheme, the secret is viewed
as the constant coefficient of a certain polynomial, whose values when evaluated
at some public points (αi)i≤d constitute the shares.10. Though the complexity
for the multiplication of the original proposal is cubic in d, Coron, Prouff, and
Roche [11] achieved a complexity in O(d2log4d) for fields of characteristic 2. The
recent work [17], which aims at achieving higher-order security in the presence
of so-called glitches, is based on ISW multiplication and therefore requires O(d2)
random values and field multiplications. It may moreover be noticed that this
work directly benefits from the improvement proposed in [4] and in this paper.

1.3 Our Contributions

In this work, we aim to go further in the research of efficient d-private multipli-
cations over finite fields Fq (where q is some prime power). Given two sharings
a = (a0, . . . , ad) ∈ Fd+1

q and b = (b0, . . . , bd) ∈ Fd+1
q , we aim to exhibit an

output sharing c = (c0, . . . , cd) ∈ Fd+1
q such that

d∑
i=0

ci =
(

d∑
i=0

ai

)
·

(
d∑

i=0
bi

)

where the sum and product denote Fq operations. The computation of this shar-
ing c should achieve the d-privacy (and actually will achieve a stronger security
10 It may be remarked that the inner product masking with fixed public values for L

is very close to polynomial masking, where R plays a similar role as the tuple of
polynomial evaluations and where L plays a similar role as the reconstruction vector
(deduced from the public values (αi)i≤d).

Private Multiplication over Finite Fields 5

notion) with the use of a minimal number of random Fq elements and a minimal
number of products in Fq.

Extending the work of Belaïd et al. [4], we first present an algebraic char-
acterization for privacy in the d-probing model for multiplication in any finite
field. Contrary to the work done in [4] in which the authors limited themselves
to multiplications based on the sum of shares’ products, in this paper, we extend
the possibilities by authorizing products of sums of shares.

As mentioned above, the scheme proposed by Belaïd et al. offers less security
than the original ISW proposal since it does not compose necessarily securely
with other private circuits. It is thus necessary to consider new security properties
which strengthen the d-privacy. The introduction of such properties was made by
Barthe, Belaïd, Dupressoir, Fouque, Grégoire, Strub, and Zucchini in [3], under
the name of non-interference, tight non-interference, and strong non-interference
(see Section 2 for formal definitions and for a comparison of these notions).

We then propose a novel algebraic characterization for non-interference in
the d-probing model for multiplication in any finite field (and actually for any
bivariate function over a finite field, as long as intermediate values are linear in
the randomness and linear or bilinear in the inputs).

Theorem 3.5 (informal). A multiplication algorithm is non-interfering in the
d-probing model if and only if there does not exist a set of ` ≤ d intermedi-
ate results {p1, . . . , p`} and a Fq-linear combination of {p1, . . . , p`} that can be
written as

aᵀ ·M · b + aᵀ · µ + νᵀ · b + τ ,

whereM ∈ F(d+1)×(d+1)
q , µ,ν ∈ Fd+1

q , and τ ∈ Fq, and all the rows of the matrix(
M |µ

)
∈ F(d+1)×(d+2)

q or the matrix
(
Mᵀ|ν

)
∈ F(d+1)×(d+2)

q are non-zero.

We then present two generic algebraic constructions of multiplication circuits
in finite fields (based on this characterization) that achieve non-interference in
the d-probing model. Both constructions are explicit and improve the complexity
of previous proposals and their security is ensured as soon as some matrices
satisfy some precise linear algebraic condition.

The first proposal (Algorithm 4) aims at reducing the number of bilinear
multiplications (i.e., of general multiplications of two non-constant values in the
finite field). The scheme requires only 2d + 1 bilinear multiplications whereas
all previous proposals need O(d2) such multiplications (at the cost of increas-
ing the number of linear multiplications, i.e. multiplications by some constant).
This leads to an important efficiency improvement in practice since bilinear mul-
tiplications over Fq cannot be tabulated for q > 26 (such a tabulation indeed
requires log2(q)q2 bits of ROM memory which is quickly too high for constrained
devices), while multiplications by a constant can often be tabulated as long as
q 6 210 (such a tabulation indeed requires log2(q)q bits of ROM memory). When
the processing cannot be tabulated, it must be computed on-the-fly, which im-
plies a non-negligible timing penalty: for instance a multiplication over F28 based

6 Sonia Belaïd et al.

on log-alog tables11 would take around 40 CPU cycles on a classical AVR 8-bit
architecture, while a direct lookup table access only takes 2 cycles (see [6] for
more details about the different time/memory trade-offs for the multiplication
processing). Additionally, our new scheme (Algorithm 4) achieves the strong
non-interference security notion (Theorem 4.3) and composes therefore securely
with other private circuits.

The goal of the second construction (Algorithm 5) is to reduce the random-
ness complexity; it needs only d random elements in the underlying finite field
(improving the non-constructive upper bound O(d log d) proven in [4]). This con-
stitutes an important improvement both from a theoretical and practical point
of views since the generation of random values on a constrained device may be
very time-consuming. Our second proposal achieves the non-interference security
notion (which is stronger than the privacy notion achieved in [4]).

We show (using the probabilistic method) that both algebraic constructions
can always be instantiated in large enough finite fields (Theorem 4.5 and Theo-
rem 5.4). The second construction is almost optimal (for randomness complex-
ity) since from our algebraic characterization, we can deduce the following lower
bound on the randomness complexity:

Proposition 5.6 (informal). A non-interfering multiplication algorithm in the
d-probing model uses more than b(d− 1)/2c random elements in Fq.

With our upper-bound, this proposition shows that the randomness com-
plexity is therefore in Θ(d). These asymptotic results provide strong theoretical
insights on the complexity of private multiplication. However, we also show that
our constructions perform well in practice. In particular, for the important cases
d ∈ {2, 3}, that are used in real-world implementations, we present explicit real-
izations of our constructions for finite fields of practical interest (and in particular
for F28 used by the AES).

In terms of performance, we also compared the efficiency of our proposed
constructions with the state of the art [4], for the practical masking orders d ∈
{2, 3} and the finite field F28 . The simulations have been done on a classical AVR
8-bit architecture; for different timing complexities of randomness generation12

and of field multiplication, we measured the number of CPU cycles necessary to
run the algorithms.

For d = 2 and a field multiplication taking 45 CPU cycles,13 the proposal
of [4] is more efficient, as soon as the generation of a random byte takes more
than 7 cycles. In the event where this generation is shorter, our Algorithm 4
11 More precisely, the non-zero field elements to multiplied are first represented as

powers of a primitive element α such that z = x × y becomes αc = αa+b with
(x, y, z) = (αa, αb, αc). The mappings x → αa, y → αb and αc → z have been
tabulated for efficiency reasons. The particular case x = 0 or y = 0 has been treated
with care to not introduce timing dependency.

12 For comparison/testing purpose, we did not call the device random generator but,
instead, simulated the generation by a software code.

13 This timing corresponds to a code written in assembly and involving log-alog look-up
tables.

Private Multiplication over Finite Fields 7

(Section 4.1) is better. Algorithm 5 (Section 5.1) is, in this case, always worse
than the state of the art proposal, but it still outperforms Algorithm 4 as soon
as the generation of random takes more than 12 cycles.

When the masking order is d = 3, Algorithm 4 is better when the random
generation takes less than 16 cycles. Then, the algorithm of [4] is better when
this number is lower than 60. Finally, Algorithm 5 outperforms both other con-
structions when the generation takes more than 60 cycles.

Similarly, we ran several simulations studying the impact of the complexity
of the multiplication on our constructions. By fixing at 20 the number of cycles
for the random generation, we observed that Algorithm 4 outperforms state of
the art algorithms when the multiplication takes more than 6 cycles (resp. 93
cycles) for d = 2 (resp. d = 3). A comparison of the complexities of state of the
art algorithms and our new proposals can be found in Table 1.

Table 1: Complexities of ISW, EC16, our new d-private compression gadget for
multiplication and our specific gadgets at several orders

Complexities ISW EC16 [4]/small cases Alg. 4 Alg. 5
Second-Order Masking (d = 2)

sums 12 12 / 10 38 12
linear products 0 0 / 0 8 6

products 9 9 / 9 5 9
random scalars 3 3 / 2 9 2

Third-Order Masking (d = 3)
sums 24 22 / 20 84 24

linear products 0 0 / 0 18 12
products 16 16 / 16 7 16

random scalars 6 5 / 4 21 3
Fourth-Order Masking (d = 4)

sums 40 38 / 30 148 40
linear products 0 0 / 0 32 20

products 25 25 / 25 9 25
random scalars 10 8 / 5 38 4

dth-Order Masking

sums 2d(d+ 1)
{

d(7d+ 10)/4 (d even)
(7d+ 1)(d+ 1)/4 (d odd)

9d2 + d 2d(d+ 1)

linear products 0 0 2d2 d(d+ 1)
products (d+ 1)2 (d+ 1)2 2d+ 1 (d+ 1)2

random scalars d(d+ 1)/2
{

d2/4 + d (d even)
(d2 − 1)/4 + d (d odd)

2d2 + d(d−1)
2 d

8 Sonia Belaïd et al.

2 Preliminaries

This section defines notation and basic notions that we use in this paper.

2.1 Notation

For a finite set S, we denote by |S| its cardinality, and by s $← S the operation
of picking up an element s of S uniformly at random. We denote by Fq the finite
field with q elements. Vectors are denoted by lower case bold font letters, and
matrices are denoted by bold font letters. All vectors are column vectors unless
otherwise specified. The image of the linear map associated to a matrix M is
denoted by im(M). For a vector x, we denote by xi its i-th coordinate and by
hw(x) its Hamming weight (i.e., the number of its coordinates that are different
from 0). When double indexing will be needed, we shall denote by xi,j the j-th
coordinate of the vector xi. For vectors x1, . . . ,xt in Fn

q , we denote 〈x1, . . . ,xt〉
the vector space generated by the set {x1, . . . ,xt}.

The probability density function associated to a discrete random variable X
defined over S (e.g., Fq) is the function which maps x ∈ S to Pr [X = x]. It is
denoted by {X} or by {X}r if there is a need to specify the randomness source r
over which the distribution is considered.

Throughout the rest of this paper, when not specified, we consider the el-
ements to belong to the finite field Fq for some prime power q. Some of our
results require q to be larger than some lower bound that is then specified in
the corresponding statements. We denote by r ← $ the fact of sampling a fresh
uniform element from Fq and assigning it to r.

2.2 Arithmetic Circuits and Privacy

An arithmetic circuit C is a directed acyclic graph whose vertices are input gates,
output gates, addition gates, multiplication gates, or constant-scalar gates (over
Fq) and whose edges are wires carrying the inputs/outputs of the operations
performed by the vertices. A constant-scalar gate is parameterized by a scalar γ ∈
Fq, has fan-in 0, and outputs γ. A randomized circuit is a circuit augmented with
random-scalar gates. A random-scalar gate is a gate with fan-in 0 that produces
a random scalar in Fq and sends it along its output wire; the scalar is selected
uniformly and independently of everything else afresh for each invocation of the
circuit.

For a circuit C, we denote by (y1, y2, . . .) ← C(x1, x2, . . .) the operation of
running C on inputs (x1, x2, . . .) and letting (y1, y2, . . .) denote the outputs.
Moreover, if C is randomized, we denote by (y1, y2, . . .)

$← C(x1, x2, . . .) the
operation of running C on inputs (x1, x2, . . .) and with uniform fresh random-
ness. When we will need to specify this randomness we shall use the notation
(y1, y2, . . .) ← C(x1, x2, . . . ; r). Eventually, for any subset P of wires in C, we
denote by CP (x1, x2, . . . ; r) (or CP (x1, x2, . . .) if the randomness is not specified)
the list of values on the wires in P .

Private Multiplication over Finite Fields 9

We hereafter give a formal definition of the notion of gadget used in prior
works (e.g., [15]).

Definition 2.1 (gadget). Let n,m be two positive integers and f be a function
from Fn

q to Fm
q . Let u, v be two positive integers. A (u, v)-gadget for f is an arith-

metic (randomized) circuit C such that for every tuple (x1,x2, . . . ,xn)ᵀ ∈ (Fu
q)n

and every randomness r, (y1,y2, . . . ,ym)ᵀ ← C(x1,x2, . . . ,xn; r) satisfies v∑
j=1

y1,j ,

v∑
j=1

y2,j , . . . ,

v∑
j=1

ym,j

ᵀ

= f

 u∑
j=1

x1,j ,

u∑
j=1

x2,j , . . . ,

u∑
j=1

xn,j

 .

We usually define xi =
∑u

j=1 xi,j and yi =
∑v

j=i yi,j . The element xi,j (resp.
yi,j) is called the j-th share of xi (resp. yi).

Let us now define the notion of privacy for a gadget.

Definition 2.2 (d-private gadget). Let n be a positive integer and let f be a
function defined over Fn

q . Let u and v be two positive integers. A (u, v)-gadget C
for f is d-private if and only if for any set P of d wires in C, the distribution
{CP (x1,x2, . . . ,xn; r) | ∀i ∈ {1, . . . , n},

∑u
j=1 xi,j = xi}x1,x2,··· ,xn,r

is the same
for every (x1, x2, . . . , xn)ᵀ ∈ Fn

q .

Remark 2.3. In Definition 2.2, we recall that xi denotes the i-th input of f , while
xi represents a sharing of xi.

Remark 2.4. When there is no ambiguity, and for simplicity, the mention of the
privacy order d will sometimes be omitted.

From now on, and to clarify the link with the probing attack model introduced
in [18], the wires in a set P used to attack an implementation are referred as the
probes and the corresponding values in CP (. . . ; r) as the intermediate results.
To simplify the descriptions, a probe p is sometimes used to directly denote the
corresponding intermediate result. When the inputs w and the circuit C are clear
from the context, the distribution {CP (x1, . . . ,xn; r)}r is simplified to {(p)p∈P }.

2.3 Compositional Security Notions

A (u,w)-gadget for the function f ◦ f ′ can be obviously built by composing a
(v, w)-gadget of f and a (u, v)-gadget of f ′. However, the composition C ◦C ′ of
two d-private gadgets C and C ′ is not necessarily itself d-private. For the latter
to hold, gadget C ′ must satisfy a property which strengthens the privacy. The
introduction of such a property has been made by Barthe et al. in [3]. Before
recalling their definitions, we first need to introduce the notion of t-simulatability.

Definition 2.5 (t-simulatability). Let u and v be two positive integers. Let
C be a (u, v)-gadget for a function defined over Fn

q . For some positive integers `
and t, a set P = {p1, . . . , p`} of ` probes on C is t-simulatable, if there exist n sets

10 Sonia Belaïd et al.

I1, I2, ..., In of at most t indices in {1, . . . , u} and a randomized function sim de-
fined from (Ft

q)n to F`
q such that for any fixed tuple (x1,x2, . . . ,xn) ∈ (Fu

q)n, the
distributions {p1, . . . , p`} (which implicitly depends on (x1,x2, . . . ,xn), and the
random values used by the gadget) and {sim((x1,i)i∈I1 , (x2,i)i∈I2 , . . . , (xn,i)i∈In

)}
are identical.

Remark 2.6. The notation sim((x1,i)i∈I1 , (x2,i)i∈I2 , . . . , (xn,i)i∈In
) will be sim-

plified to sim(xI1 ,xI2 , . . . ,xIn
). Moreover, depending on the context, we will

sometimes call a t-simulatable set of probes, a set of probes which can be sim-
ulated with at most t shares of each of the n inputs of the gadget (which is an
equivalent definition).

We now provide the notions of security that we will be using throughout the
rest of the paper.

Definition 2.7 (d-non-interference). A (u, v)-gadget C for a function f de-
fined over Fn

q is d-non-interfering (or d-NI) if and only if every set of at most d
probes can be simulated with at most d shares of each of its n inputs.

Definition 2.8 (d-tight non-interference). [3] A gadget C is d-tight non-
interfering (or d-TNI) if and only if every set of t ≤ d probes can be simulated
with at most t shares of each input.

Definition 2.9 (d-strong non-interference). A (u, v)-gadget C for a func-
tion f defined over Fn

q is d-strong non-interfering (or d-SNI) if and only if for
every set P1 of d1 probes on internal wires (i.e., no output wires nor output
shares) and every set P2 of d2 probes on output shares such that d1 +d2 ≤ d, the
set P1 ∪ P2 of probes can be simulated by only d1 shares of each of its n inputs.

The d-SNI property is stronger than the d-NI property, which is itself stronger
than the d-privacy property. The relations between all these notions are discussed
in more details below.

2.4 Relations Between Compositional Security Notions

We recall that, from [3], if C is d-SNI (see Definition 2.9), then it is d-NI (see
Definition 2.7); and if it is d-NI, then it is d-private. But a d-private gadget is not
necessarily d-NI (see the counterexample given in [4, Appendix B]), and a d-NI
gadget is not necessarily d-SNI (see for instance gadgets implementing SecMult
in [24] or Algorithm 3 in [4]). Furthermore, in [4, Proposition 7.4], it is proven
that d-NI and d-TNI are equivalent. These relations are depicted in Fig. 1.

From [3], the composition of a d-TNI (or d-NI) gadget with a d-SNI14 is d-
SNI, while the composition of d-TNI gadgets is not necessarily d-NI. This implies
that d-SNI gadgets can be directly composed while maintaining the d-privacy
property, whereas a d-SNI refreshing gadget (which randomizes the shares of
its inputs using fresh random values) must sometimes be involved before the
composition of d-NI gadgets.
14 The inputs of the final gadget correspond to the inputs of the d-TNI one, while the

outputs of the final gadget correspond to the outputs of the d-SNI one.

Private Multiplication over Finite Fields 11

privacyNITNISNI
66

Fig. 1: Relations between privacy, NI, TNI, and SNI
(normal arrows are implications, strike out arrows are separations)

2.5 Case of Study

In this paper, we focus on the construction of efficient d-NI or d-SNI multiplica-
tion gadgets over Fq for any order d.

Definition 2.10 (multiplication gadget). A multiplication (u, v)-gadget is
a (u, v)-gadget C for the function f : (a, b) ∈ F2

q 7→ a · b ∈ Fq.

Remark 2.11. When the sharing orders u and v will be clear from the context,
the term (u, v) will be omitted.

In the sequel, the two inputs of a multiplication (u, v)-gadget C are denoted
by a and b. Their respective sharings are thus denoted by a = (a0, . . . , au−1)ᵀ ∈
Fu

q and b = (b0, . . . , bu−1)ᵀ ∈ Fu
q . The output is denoted by c and its sharing

is denoted by c = (c0, . . . , cv−1)ᵀ ∈ Fv
q . We also denote by r = (r1, . . . , rR)ᵀ ∈

FR
q the vector of the random scalars that are involved in the gadget C. Thus,

any intermediate result, a.k.a. probe, in the evaluation of C is a function of
a0, . . . , au−1, b0, . . . , bu−1, r1, . . . , rR.

3 Algebraic Characterizations

This section aims at introducing algebraic characterizations for the privacy and
the non-interference properties of a multiplication (d + 1, v)-gadget (for some
positive integers d and v) over Fq.

3.1 Bilinear Probes and Matrix Notation

For our algebraic characterizations, we focus on specific probes we call bilinear
probes.

Definition 3.1. Let C be a (d + 1, v)-gadget for a function f : F2
q → Fq. A

bilinear probe p is a probe on C (and thus an expression of a0, . . . , ad, b0, . . . , bd,
r1, . . . , rR), which is an affine functions of aibj, ai, bj and rk (for 0 ≤ i, j ≤ d
and 1 ≤ k ≤ R). In other words, a bilinear probe p can be written as:

aᵀ ·Mp · b + aᵀ · µp + νᵀ
p · b + σᵀ

p · r + τp ,

where Mp ∈ F(d+1)×(d+1)
q , µp ∈ Fd+1

q , νp ∈ Fd+1
q , σp ∈ FR

q , and τp ∈ Fq.

In the following sections we shall say that an expression f(x1, . . . , xn, r) func-
tionally depends on the variable r if there exists a1, . . . , an such that the function
r 7→ f(a1, . . . , an, r) is not constant.

12 Sonia Belaïd et al.

3.2 Algebraic Characterization for Privacy

We start by a simple extension of the algebraic characterization in [4] to any field
Fq and to any function f : F2

q → Fq instead of just the multiplication function
f(a, b) = a · b (however, please note that our characterization consider only
bilinear probes). We consider the following condition:

Condition 3.1. Let C be a (d+ 1, v)-gadget for a two-input function f : F2
q →

Fq. A set of bilinear probes P = {p1, . . . , p`} on C satisfies Condition 3.1 if and
only if there exists a vector λ ∈ F`

q such that the expression
∑`

i=1 λipi can be
written as ∑̀

i=1
λipi = aᵀ ·M · b + aᵀ · µ + νᵀ · b + τ ,

where M ∈ F(d+1)×(d+1)
q , µ ∈ Fd+1

q , ν ∈ Fd+1
q , and τ ∈ Fq, and such that the

all-one vector ud+1 = (1, . . . , 1)ᵀ ∈ Fd+1
q is in the affine space µ + im(M) or

ν + im(Mᵀ), where im(M) is the column space of M .

We point out that, using notation of the above condition, for any set of bilinear
probes P = {p1, . . . , p`} on C and any λ ∈ F`

q, the expression
∑`

i=1 λipi can be
written as

∑̀
i=1

λipi = aᵀ ·Mλ · b + aᵀ · µλ + νᵀ
λ · b + σᵀ

λ · r + τλ , (1)

where Mλ ∈ F(d+1)×(d+1)
q , µλ ∈ Fd+1

q , νλ ∈ Fd+1
q , σλ ∈ FR

q , and τλ ∈ Fq.
Condition 3.1 is therefore equivalent to asking that there exists λ ∈ F`

q such
that:

σλ = 0 and ud+1 ∈ (µλ + im(Mλ)) ∪ (νλ + im(Mᵀ
λ)) .

Theorem 3.2. Let C be a (d+1, v)-gadget for a two-input function f : F2
q → Fq.

Let P be a set of bilinear probes on C. Then P satisfies Condition 3.1 if and
only if there exist a(0), b(0), a(1), b(1) ∈ Fq, such that:

{(p)p∈P | (a, b) = (a(0), b(0))} 6= {(p)p∈P | (a, b) = (a(1), b(1))} .

That is, the distribution {(p)p∈P } does depend on the value of (a, b).

The proof essentially uses the same ideas as the proof of Theorem A.1 of [4] and
is detailed in the full version.

Remark 3.3. We do not restrict the size of the set P . Furthermore, the proof
does not rely on the correctness property of C.

Corollary 3.4. Let C be a (d + 1, v)-gadget for a two-input function f : F2
q →

Fq. We suppose that any possible probe on C is bilinear. Then, C is d-private
if and only if there does not exist any set P of d probes on C satisfying Condi-
tion 3.1.

Private Multiplication over Finite Fields 13

Proof. The proof is straightforward from Theorem 3.2. ut

When q = 2 and when f(a, b) = a · b, this corollary is actually equivalent to
Theorem A.1 of [5]. Contrary to this former theorem, we only need to consider
set of exactly d probes, as Condition 3.1 allows for discarding some probes (by
choosing λi = 0). Furthermore, the gadget C has at least 2d + 2 ≥ d possible
probes: a0, . . . , ad, b0, . . . , bd. Thus, any set ` < d probes can be completed into
a set of d probes.

3.3 Algebraic Characterization for Non-Interference

In this subsection, we introduce a novel algebraic characterization for Non-
Interference (NI). We consider the following condition:

Condition 3.2. Let C be a (d+ 1, v)-gadget for a two-input function f : F2
q →

Fq. A set of bilinear probes P = {p1, . . . , p`} on C satisfies Condition 3.2 if and
only if there exists λ ∈ F`

q such that the expression
∑`

i=1 λipi can be written as

∑̀
i=1

λipi = aᵀ ·M · b + aᵀ · µ + νᵀ · b + τ ,

where M ∈ F(d+1)×(d+1)
q , µ ∈ Fd+1

q , ν ∈ Fd+1
q , and τ ∈ Fq, and such that all

the rows of the matrix
(
M µ

)
∈ F(d+1)×(d+2)

q (which is the concatenation of
the matrix M and the column vector µ) are non-zero or all the columns of the

matrix
(
M
νᵀ

)
∈ F(d+2)×(d+1)

q are non-zero.

We recall that, using notation of the above condition, for any set of bilinear
probes P = {p1, . . . , p`} on C and any λ ∈ F`

q, the expression
∑`

i=1 λipi can be
written as in Equation (1). Therefore, Condition 3.2 is equivalent to asking that
there exists λ ∈ F`

q such that
∑`

i=1 λipi is functionally independent from any rk

(0 ≤ k ≤ R) and functionally depends on every ai (0 ≤ i ≤ d) or on every bj

(0 ≤ j ≤ d). This condition is therefore quite natural.

Theorem 3.5. Let C be a (d+1, v)-gadget for a two-input function f : F2
q → Fq.

Let P be a set of bilinear probes on C. Then if P satisfies Condition 3.2, P is
not d-simulatable. Furthermore, if P is not d-simulatable and q > d+ 1, then P
satisfies Condition 3.2.

We point out that the first part of the theorem does not require q > d + 1. As
the second part is used for constructions while the first part is used for lower
bounds, the restriction q > d+ 1 is never an issue in our paper.

Proof. Let us start by proving the first direction, the second being more complex.
Direction 1: Left to right. By contrapositive, let us assume that there exists

14 Sonia Belaïd et al.

a set P = {p1, . . . , p`} of probes that satisfies Condition 3.2: that is, there exists
λ ∈ F`

q such that the sum
∑`

i=1 λipi can be written as:

s =
∑̀
i=1

λipi = aᵀ ·M · b+ aᵀ · µ+ νᵀ · b ,

and, without loss of generality, such that all the rows of the matrix M ′ =(
M µ

)
∈ F(d+1)×(d+2)

q are non-zero, meaning that s does functionally depend
on every ai but does not functionally depend on any ri.

Then, assume that the set P can be simulated with at most d values of
the ai’s, e.g., using only a1, . . . , ad, and let us further assume that the sim-
ulator has access to all the bi’s. That is, there exists a randomized function
sim that takes as inputs (a1, . . . , ad) and (b0, . . . , bd) such that the distribution
sim(a1, . . . , ad, b0, . . . , bd) is exactly the same as the distribution P .

Since s functionally depends on a0, there exist specific values a1, . . . , ad,
b0, . . . , bd such that the function:

f(a1,...,ad,b1,...,bd) : a0 7→ aᵀ ·M · b+ aᵀ · µ+ νᵀ · b ,

is not constant, by definition of s functionally depending on a0.
Therefore, since sim(a1, . . . , ad, b0, . . . , bd) does not depend on a0, it is impos-

sible that it perfectly simulates the distribution P . This implies that one cannot
simulate such a set of probes with at most d shares of each input and concludes
the proof of this first direction.
Direction 2: Right to left. Let us now consider a set P = {p1, . . . , p`} of
bilinear probes that cannot be simulated with at most d shares of each input.
Probes in P being bilinear, any linear combination of these probes can be written
as

sλ =
∑̀
i=1

λipi = aᵀ ·Mλ · b+ aᵀ · µλ + νᵀ
λ · b+ σᵀ

λ · r ,

by definition. We want to show that, since P cannot be simulated with at most
d shares of each input, there exists a particular λ such that σλ = 0 and all the

rows of
(
Mλ µλ

)
are non-zero or all the columns of

(
Mλ

νᵀ
λ

)
are non-zero.

Let us once again consider the matrix S ∈ F`×R
q whose coefficients si,j are

defined as si,j = α if and only if pi can be written as αrj + zi where zi does not
functionally depend on rj . That is, if we write pi = aᵀ ·Mpi · b+ aᵀ ·µi + νiᵀ ·
b + spi

ᵀ · r, the i-th row of S is spi
ᵀ. We can permute the columns of S and

the rows of r such that a row reduction on the matrix S yields a matrix of the
form:

S′ =
(

0t,t 0t,`−t

It S′′

)
.

Again, it is clear that since the distribution {p1, . . . , p`} cannot be simulated
with at most d shares of each input, we have t > 0. Indeed, otherwise we can

Private Multiplication over Finite Fields 15

simply simulate all probes by uniformly random values (and thus do not even
need shares of the input). Let N be the invertible matrix in F`×`

q such that
N · S = S′. We write (p′1, . . . , p′`)

ᵀ = N · p. Then, the distribution {p′1, . . . , p′`}
also cannot be simulated with at most d shares of each input. In addition, for
t < i ≤ `, p′i does functionally depend on ri and no other p′j does functionally
depend on rj (due to the shape of S′). Therefore, it is immediate that these
probes can be simulated by setting them to uniformly random values, and thus
the distribution {p′1, . . . , p′t} also cannot be simulated with at most d shares of
each input.

We remark that (p′1, . . . , p′t) does not functionally depend on any random bit,
due to the shape of S′. Therefore, for each 1 ≤ i ≤ t, we can write:

p′i = aᵀ ·M ′
i · b+ aᵀ · µ′

i + ν′
i
ᵀ · b ,

for some matrices M ′
i ∈ F(d+1)×(d+1)

q and vectors µ′
i,ν

′
i ∈ Fd+1

q . Clearly, up
to switching to roles of a and b, this implies that for any ai, i ∈ {0, . . . , d},
there exists j ∈ {1, . . . , t} such that p′j functionally depends on ai, otherwise one
can simulate all the p′i’s with at most d shares of a, and then one can simulate
P = {p1, . . . , p`} as well.

We then just need to show that there exist λ ∈ Ft
q such that

∑t
i=1 λi · p′i

satisfies Condition 3.2. This is actually immediate as soon as q > d+ 1: for i =
0, . . . , d the set Hi = {λ ∈ Ft

q |
∑t

i=1 λip
′
i does not functionally depends on ai}

is a hyperplane, and thus we just need to prove that there exists λ ∈ Ft
q \∪d

i=0Hi,
which is true as soon as q > d+ 1. This concludes the proof of Theorem 3.5. ut

Remark 3.6. As for Theorem 3.2, we do not restrict the size of the set P in
Theorem 3.5. Furthermore, the proof does not rely on the correctness property
of C.

Corollary 3.7. Let C be a (d + 1, v)-gadget for a two-input function f : F2
q →

Fq. We suppose that any possible probe on C is bilinear. If q > d + 1 and there
does not exist any set P of d probes on C satisfying Condition 3.2, then C is
d-NI. Furthermore, if C is d-NI, then there does not exist any set P of d probes
on C satisfying Condition 3.2.

Proof. The proof is straightforward from Theorem 3.5. ut

4 Construction with a Linear Number of Bilinear
Multiplications

Let us now show our generic d-SNI construction with a linear number of bilinear
multiplications (i.e., multiplications by a value which is not constant), in the
order d. The construction is in two steps. We first construct a d-NI multiplication
(d+1, 2d+1)-gadget. In other words, our first construction outputs 2d+1 shares
instead of d+ 1. We then show how to compress these 2d + 1 shares into d + 1
shares to get a d-SNI multiplication (d + 1, d + 1)-gadget, using the gadget

16 Sonia Belaïd et al.

SharingCompress from the Appendix C.1 of [8], that we recall and prove to be
d-SNI (while it was only implicitly proved d-NI in [8]).

We start by presenting the generic construction and its security proof. The
first part of our construction uses a matrix γ ∈ Fd×d

q satisfying some conditions.
That is why we then show that such a matrix exists for any d when q is large
enough (but we only prove that q being exponential in d log d is sufficient) using
the probabilistic method. We conclude by explicitly constructing matrices γ for
small values of d.

4.1 Construction

Construction with 2d + 1 output shares. Let γ = (γi,j)1≤i,j≤d ∈ Fd×d
q be

a constant matrix and let δ ∈ Fd×d
q be the matrix defined by δi,j = 1− γj,i.

The main idea of our construction with 2d + 1 output shares is to remark
that:

a · b =
(
a0 +

d∑
i=1

(ri + ai)
)
·

(
b0 +

d∑
i=1

(si + bi)
)

−
d∑

i=1
ri ·

b0 +
d∑

j=1
(δi,jsj + bj)

− d∑
i=1

si ·

a0 +
d∑

j=1
(γi,jrj + aj)


if a =

∑d
i=0 ai and b =

∑d
j=0 bj . On the right-hand side of the above equation

there are only 2d+ 1 bilinear multiplications.
We can then construct a multiplication (d + 1, 2d + 1)-gadget which out-

puts the following 2d + 1 shares (the computation is performed with the usual
priorities: parenthesis first, then products, then from left to right):

• c0 =
(
a0 +

∑d
i=1(ri + ai)

)
·
(
b0 +

∑d
i=1(si + bi)

)
;

• ci = −ri ·
(
b0 +

∑d
j=1(δi,jsj + bj)

)
, for i = 1, . . . , d;

• ci+d = −si ·
(
a0 +

∑d
j=1(γi,jrj + aj)

)
, for i = 1, . . . , d.

The corresponding gadget is given in Algorithm 1 and is clearly correct.
However, the latter gadget has two issues. First, it outputs 2d + 1 shares

instead of d + 1. Second, it is obviously not secure for every matrix γ. For
example, if γ is a matrix of zeros or the identity matrix, the gadget is clearly
not d-private, let alone d-NI or d-SNI. Actually, it is not even clear that there
exists a matrix γ for which the gadget is private. Let us now deal with these two
issues.

From 2d+ 1 output shares to d+ 1. For the first issue, we use the gadget
SharingCompress from the Appendix C.1 of [8] to compress the shares c0, . . . , c2d

into d+ 1 shares. We recall this gadget in Algorithm 2.

Private Multiplication over Finite Fields 17

Algorithm 1 ExtendedMult
Require: a = (a0, . . . , ad), b = (b0, . . . , bd)
Ensure: c = (c0, . . . , c2d) such that

∑2d

i=0 ci = (
∑d

i=0 ai) · (
∑d

i=0 bi)
x← a0; y ← b0
for i = 1 to d do

ci ← b0
ci+d ← a0
for j = 1 to d do

sj ← $
rj ← $
t← δi,jsj + bj

ci ← ci + t
y ← y + (sj + bj)
t← γi,jrj + aj

ci+d ← ci+d + t
x← x+ (rj + aj)

ci ← −ri · ci

ci+d ← −si · ci+d

c0 ← x · y
return (c0, c1, . . . c2d)

Proposition 4.1. The gadget SharingCompress[k : `] depicted in Algorithm 2
is (`− 1)-SNI.

This proof is given in the full version. From this proposition, we deduce that the
instance SharingCompress[2d+ 1 : d+ 1] that we need is d-SNI.

Finally, the full gadget with a linear number of bilinear multiplications is
depicted in Algorithm 4. It essentially calls Algorithm 3 which handles the special
case where the number of input shares is twice the number of output shares.

As we are composing the gadget SharingCompress with our multiplication
gadget above, we need to prove that the former gadget satisfies a security prop-
erty which behaves well with composition. In [8], only privacy is proven which
does not behave well with composition. That is why we prove instead the fol-
lowing proposition in the full version.

Conditions on γ and δ. As mentioned before, the construction is completely
insecure for some matrices γ, such as the matrix of zeros. Let us now exhibit
necessary conditions for the scheme to be d-NI.

The probes involving only the ai’s and the ri’s15 are of the following forms:

• ai, ri, ri + ai, γj,iri, γj,iri + ai, (for 0 ≤ i ≤ d and 1 ≤ j ≤ d)
• a0 +

∑k
i=1(ri + ai) (for 1 ≤ k ≤ d),

• a0 +
∑k

i=1(γj,iri + ai) (for 1 ≤ j ≤ d and 1 ≤ k ≤ d).
15 By probes involving only the ai’s and the ri’s, we mean probes that do not func-

tionally depend on any bi nor any si.

18 Sonia Belaïd et al.

Algorithm 2 SharingCompress[k : `] from [8, Appendix C.1]
Require: k-sharing (xi)1≤i≤k

Ensure: `-sharing (yi)1≤i≤` such that
∑`

i=1 yi =
∑k

i=1 xi

K ← `dk/`e
for j = k + 1 to K do

xj ← 0
for j = 1 to ` do

yj ← xj

for j = 1 to K−`
`

do
(y1, . . . , y`)← SharingCompress[2` : `](y1, . . . y`, xj`+1, . . . , xj`+`)

return (y1, . . . , y`)

Algorithm 3 SharingCompress[2d : d] from [8, Appendix C.1]
Require: 2d-sharing (xi)1≤i≤2d

Ensure: d-sharing (yi)1≤i≤d such that
∑d

i=1 yi =
∑2d

i=1 xi

for i = 1 to d do
for j = i+ 1 to d do

ri,j ← $
for i = 1 to d do

vi ← 0
for i = 1 to d do

for j = 1 to i− 1 do
vi ← vi − rj,i

for j = i+ 1 to d do
vi ← vi + ri,j

for i = 1 to d do
yi ← xi + vi

yi ← yi + xi+d

return (y1, . . . yd)

Algorithm 4 Construction with a Linear Number of Bilinear Multiplications
Require: a = (a0, . . . , ad), b = (b0, . . . , bd)
Ensure: c′ = (c′0, . . . , c′d) such that

∑d

i=0 c
′
i = (

∑d

i=0 ai) · (
∑d

i=0 bi)
(c0, . . . c2d)← ExtendedMult(a, b)
(c′0, . . . c′d)← SharingCompress[2d+ 1 : d+ 1](c0, . . . c2d)
return (c′0, c′1, . . . c′d)

Private Multiplication over Finite Fields 19

Thanks to Theorem 3.5, a necessary condition for d-NI is that there is no linear
combination of at most d of these expressions, which do not functionally depend
on any ri but which does depend on all the ai’s.

The probes involving only the bi’s and the si’s are similar except that ai,
ri, and γj,i are replaced by bi, si, δj,i respectively. A similar necessary condition
can be deduced from Theorem 3.5.

Formally, let us introduce a first necessary condition on the matrix γ.

Condition 4.1. Let ` = (2d+ 4) · d+ 1. Let Id ∈ Fd×d
q be the identity matrix,

0m×n ∈ Fm×n
q be a matrix of zeros (when n = 1, 0m×n is also written 0m),

1m×n ∈ Fm×n
q be a matrix of ones, Dγ,j ∈ Fd×d

q be the diagonal matrix such
that Dγ,j,i,i = γj,i, T d ∈ Fd×d

q be the upper-triangular matrix with just ones, and
T γ,j ∈ Fd×d

q be the upper-triangular matrix for which Tγ,j,i,k = γj,i for i ≤ k.
In other words, we have:

Id =


1 0 . . . 0
0 1 0
...

. . .
...

0 . . . 0 1

 Dγ,j =


γj,1 0 . . . 0
0 γj,2 0
...

. . .
...

0 . . . 0 γj,d



T d =


1 1 . . . 1
0 1 1
...

. . .
...

0 . . . 0 1

 T γ,j =


γj,1 γj,1 . . . γj,1
0 γj,2 γj,2
...

. . .
...

0 . . . 0 γj,d


We define the following matrices:

L =
(

1 01×d 01×d 01×d 01×d . . . 01×d 11×d 11×d . . . 11×d

0d Id 0d×d Id Id . . . Id T d T d . . . T d

)
M =

(
0d 0d×d Id Id Dγ,1 . . . Dγ,d T d T γ,1 . . . T γ,d

)
Condition 4.1 is satisfied for a matrix γ if for any vector v ∈ F`

q of Hamming
weight hw(v) ≤ d such that L·v contains no coefficient equal to 0 thenM ·v 6= 0d.

Let us explain how this condition was constructed. The rows of L correspond
to a0, . . . , ad. The rows of M correspond to r1, . . . , rd. Any linear combination
of the probes involving only the ai’s and the ri’s can be written as

(a0, . . . , ad) ·L · v + (r1, . . . , rd) ·M · v .

Hence the above condition.

Remark 4.2. If all the vectors v ∈ F`
q of Hamming weight hw(v) ≤ d were

considered, this condition would be equivalent to saying that the linear code
of parity-check matrix M has minimum distance at least d. However, as we
only consider vectors v such that additionally L · v contains no coefficient equal
to 0, this simple relation to codes is not true. We remark however that if the

20 Sonia Belaïd et al.

linear code of parity-check matrixM has minimum distance at least d, then the
condition would be satisfied. Unfortunately for us, this code clearly has minimum
distance 1, as it contains the vector (1, 0, . . . , 0)ᵀ ∈ F`

q. That is why we cannot
naively use classical coding theory results to prove the existence of a matrix γ
satisfying Condition 4.1.

We remark that the same necessary condition should hold for the matrix δ
by symmetry between ai, ri,γ and bi, si, δ. Therefore, the formal condition we
are considering is the following.

Condition 4.2. Condition 4.2 holds (for a matrix γ ∈ Fd×d
q) if Condition 4.1 is

satisfied for both γ and δ, where δ ∈ Fd×d
q is the matrix defined by δi,j = 1−γj,i.

4.2 Security Analysis

We have shown that Condition 4.2 is necessary for our gadget (Algorithm 4) to
be d-NI. The next theorem shows it is also sufficient for it to be d-SNI.

Theorem 4.3. If γ ∈ Fd×d
q satisfies Condition 4.2 and if q > d + 1, then

Algorithm 4 is d-SNI.

To prove this theorem, we use the following lemma.

Lemma 4.4. Let P be a set of t probes in Algorithm 1 such that t ≤ d. Then,
there exists a set Q1 of at most t probes involving only the ai’s and the ri’s and
a set Q2 of at most t probes involving only the bi’s and the si’s, such that the
set P can be simulated by the probes in Q1 ∪Q2.

Proof (Lemma 4.4). We list hereafter all the possible probes in Algorithm 1. We
gather them by sets for the needs of the proof.

Set 1: ai, ri, ri + ai, γj,iri, γj,iri + ai, (for 0 ≤ i ≤ d and 1 ≤ j ≤ d);
Set 2: a0 +

∑k
i=1(ri + ai) (for 1 ≤ k ≤ d);

Set 3: a0 +
∑k

i=1(γj,iri + ai) (for 1 ≤ j ≤ d and 1 ≤ k ≤ d);
Set 4: bi, si, si + bi, δj,isi, δj,isi + bi, (for 0 ≤ i ≤ d and 1 ≤ j ≤ d);
Set 5: b0 +

∑k
i=1(si + bi) (for 1 ≤ k ≤ d);

Set 6: b0 +
∑k

i=1(δj,isi + bi) (for 1 ≤ j ≤ d and 1 ≤ k ≤ d);
Set 7: −ri ·

(
b0 +

∑d
j=1(δi,jsj + bj)

)
(for 1 ≤ i ≤ d);

Set 8: −si ·
(
a0 +

∑d
j=1(γi,jrj + aj)

)
(for 1 ≤ i ≤ d);

Set 9: (a0 +
∑d

i=1(ri + ai)) · (b0 +
∑d

i=1(si + bi)).

Let us now consider a set P of t probes among the listed ones. We initialize two
sets Q1 and Q2 to the empty set and show how to fill them with at most t probes
involving only the ai’s and the ri’s for Q1 and at most t probes involving only
the bi’s and the si’s for Q2 in such a way that P can be perfectly simulated by
probes of Q1 ∪Q2.

Private Multiplication over Finite Fields 21

For all the probes of P which belong to Sets 1 to 3, then we add them
directly to Q1 since they only depend on ai’s, ri’s and constants. Similarly, for
all the probes of P which belong to Sets 4 to 6, then we add them directly to
Q2 since they only depend on bi’s, si’s and constants. For P ’s probes belonging
to Set 7, we add probe −ri to Q1 and b0 +

∑d
j=1(δi,jsi + bj) to Q2. For P ’s

probes belonging to Set 8, we add probe −si to Q2 and a0 +
∑d

j=1(γi,jri + aj)
to Q1. Finally, for probes of P from Set 9, we add a0 +

∑d
i=1(ri + ai) to Q1

and b0 +
∑d

i=1(si + bi) to Q2. Since for each probe of P , at most one probe was
added to Q1 and at most one probe was added to Q2, it is clear that after all
the t probes of P are processed, Q1 and Q2 contain at most t probes each.

Let us now prove that all the probes of P can be perfectly simulated by the
probes of Q1 ∪ Q2. For probes of P belonging to six first sets, the exact same
values were added to Q1 (for the three first sets) or Q2 (for Set 4 to 6) thus
the simulation is trivial. For probes of P in Set 7, −ri was added to Q1 and
b0 +

∑d
j=1(δi,jsi + bj) to Q2. The multiplication of these two probes perfectly

simulate the initial probe of P . The same conclusions can be made for probes of
P in Sets 8 and 9 since each time probes were added to Q1 and Q2 so that their
product corresponds to the initial probe of P . ut

Proof (Theorem 4.3). From Lemma 4.4, any set P of t ≤ d probes in Algorithm 1
can be perfectly simulated by probes of two sets Q1 and Q2 of cardinal at most
t and containing probes involving only the ai’s and the ri’s for Q1 and probes
involving only the bi’s and the si’s for Q2.

From Condition 4.2, any combination of the t probes of Q1 either depend
on strictly less than t ai’s or it is functionally dependent on at least one ri.
Thanks to Theorem 3.5 and the fact that q > d + 1, the t probes of Q1 can be
perfectly simulated using at most t shares ai. The same statement can be made
for the probes of Q2. Therefore, from Lemma 4.4, any set of t ≤ d probes on
Algorithm 1 can be perfectly simulated by at most t shares ai and t shares bi,
which proves that Algorithm 1 is d-TNI.

Since from Proposition 4.1, SharingCompress[2d + 1 : d + 1] is d-SNI, from
the composition theorems established in [3], Algorithm 4 is d-SNI. ut

4.3 Probabilistic Construction
In order to prove the existence of a matrix γ which satisfies Condition 4.1 for q
large enough (but only exponential in d log d), we state Theorem 4.5 that makes
use of the non-constructive “probabilistic method.” More precisely, we prove that
if one chooses γ uniformly at random in Fd×d

q , the probability that the matrix
γ satisfies Condition 4.2 is more than zero, when q is large enough. The proof
of Theorem 4.5 uses probability but the existence of a matrix γ which satisfies
Condition 4.2 (for q large enough) is guaranteed without any possible error.
Theorem 4.5. For any d ≥ 1, for any prime power q, if γ is chosen uniformly
in Fd×d

q , then

Pr[γ satisfies Condition 4.2] ≥ 1− 2 · (12d)d · d · q−1 .

22 Sonia Belaïd et al.

In particular, for any d ≥ 1, there exists an integer Q = O(d)d+1, such that for
any prime power q ≥ Q, there exists a matrix γ ∈ Fd×d

q satisfying Condition 4.2.

As when γ is uniformly random, so is δ, Theorem 4.5 immediately follows
from the following proposition and the union bound.

Proposition 4.6. For any d ≥ 1, for any prime power q, if γ is chosen uni-
formly in Fd×d

q , then

Pr[γ satisfies Condition 4.1] ≥ 1− (12d)d · d · q−1 .

In particular, for any d ≥ 1, there exists an integer Q = O(d)d+1, such that for
any prime power q ≥ Q, there exists a matrix γ ∈ Fd×d

q satisfying Condition 4.1.

The proof of this proposition is very technical and is provided in the full version.

Remark 4.7. Note that the constants in the previous proof are not the best
possible and can be improved. In the following, we present explicit constructions
for small values of d.

4.4 Small Cases

We show here the instantiation for d = 2. The case for d = 3 is similar and is
provided in details in the full version.

Let d = 2. Let us now explicitly instantiate our construction for any non-
prime field Fq where q = pk, k ≥ 2. Let ξ be any element in Fq \ Fp. A possible
instantiation is:

γ =
(

ξ ξ + 1
ξ + 1 ξ

)
, δ =

(
−ξ + 1 −ξ
−ξ −ξ + 1

)
.

The computed shares are hence:

• c0 = (a0 + (r1 + a1) + (r2 + a2)) · (b0 + (s1 + b1) + (s2 + b2))
• c1 = −r1 · (b0 + ((−ξ + 1)s1 + b1) + (−ξs2 + b2))
• c2 = −r2 · (b0 + (−ξs1 + b1) + ((−ξ + 1)s2 + b2))
• c3 = −s1 · (a0 + (ξr1 + a1) + ((ξ + 1)r2 + a2))
• c4 = −s2 · (a0 + ((ξ + 1)r1 + a1) + (ξr2 + a2))

Let us now prove that this scheme satisfies Condition 4.2. Let us consider
the matrices L and M as defined in Condition 4.1:

L =
(1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 1
0 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1

)

M =
(

0 0 0 1 0 1 0 ξ 0 ξ + 1 0 1 1 ξ ξ ξ + 1 ξ + 1
0 0 0 0 1 0 1 0 ξ + 1 0 ξ 0 1 0 ξ + 1 0 ξ

)

Private Multiplication over Finite Fields 23

We will prove that, for any vector v such that hw(v) ≤ 2, it holds that if
M · v = 02, then L · v has a 0 coefficient.

Let us start by the case hw(v) = 1. IfM ·v = 02, the only non-zero coefficient
of v clearly must be in one of the first 1 + d = 3 coordinates. Denote by i
the index of this coefficient. Since i ≤ 3, from the definition of L, we have
L · v = I3 · (v1, v2, v3)ᵀ, and thus its i-th coefficient is equal to the non-zero
coefficient of v but the two other coefficients of L·v are equal to 0. This concludes
this case.

Let us tackle the case hw(v) = 2. Note that L · v hence corresponds to a
linear combination of exactly two columns of L. By construction of L, all first
columns (until the occurrence of T d) are of Hamming weight 1. Consequently,
for L · v to have only non-zero coefficients, at least one of the 3 · d = 6 last
coordinates of v must be non-zero. The corresponding columns of L have two
possible values : (1, 1, 0)> or (1, 1, 1)>. Let us consider the cases where one
coordinate of v corresponding to a column (1, 1, 0)> is set. The corresponding
column in M is of the form (α, 0)>, where α can be 1, ξ, ξ + 1. In order for
L · v to have only non-zero coefficients, the other non-zero coordinate of v must
correspond to a column of L where the last coefficient is non-zero. However,
for all of these columns, the corresponding column of M is always of the form
(λ, β), with β 6= 0, in which case M · v 6= 02. It just remains to consider the
case where one non-zero coordinate of v corresponds to a column (1, 1, 1)> of L.
The corresponding columns inM can be (1, 1)>, (ξ, ξ + 1)>, or (ξ + 1, ξ)>. Note
that for no other column in L one can retrieve a corresponding column in M
whose coefficients are both non-zero. Consequently, both non-zero coordinates
of v must correspond to columns (1, 1, 1)> of L. Since no two vectors among
(1, 1), (ξ, ξ+1), and (ξ+1, ξ) are proportional, then we always haveM ·v 6= 02.

The exact same reasoning can be held for δ, since no two vectors among
(1, 1), (−ξ + 1,−ξ), (−ξ,−ξ + 1) are proportional.

5 Construction with Linear Randomness Complexity

In this section, we describe a construction that only requires a linear randomness
complexity. That is, our (d + 1, d + 1)-gadget only uses d random scalars. In
particular, our construction breaks the linear bound of d+1 random scalars (for
order d ≥ 3) proven in [4]. There is no contradiction since this lower bound is
proven only in F2. Our construction is described below and once again makes
use of a matrix of scalars that needs to satisfy certain properties, as explained
later in this section.

5.1 Construction

Construction. Let γ = (γi,j)0≤i≤d
1≤j≤d

∈ F(d+1)×d
q be a constant matrix (with d+1

rows instead of d for the previous construction).

24 Sonia Belaïd et al.

Following the previous gadget with the objective of minimizing the random-
ness complexity, we can construct a multiplication (d + 1, d + 1)-gadget which
outputs the shares (c0, . . . , cd) defined as follows:

ci = a0bi +
d∑

j=1
(γi,jrj + ajbi) ,

for 0 ≤ i ≤ d. The gadget is formally depicted in Algorithm 5 and is correct
under the condition that for any 0 ≤ j ≤ d,

d∑
i=0

γi,j = 0 .

Algorithm 5 New Construction with Linear Randomness
Require: a = (a0, . . . , ad), b = (b0, . . . , bd)
Ensure: c = (c0, . . . , cd) such that

∑d

i=0 ci = (
∑d

i=0 ai) · (
∑d

i=0 bi)
for i = 1 to d do

ci ← a0bi

for j = 1 to d do
rj ← $
for i = 0 to d do

ci ← ci + (γi,jrj + ajbi)
return (c0, . . . , cd)

We remark that if this construction is secure, it breaks the randomness com-
plexity lower bound of d+1 random bits proven in [4] when q = 2. Furthermore,
it is the first construction with a linear number of random scalars (in d). Previ-
ously, the construction with the best randomness complexity used a quasi-linear
number of random scalars [4].

However, as for our construction in Section 4.1, the construction is clearly
not secure for every matrix γ. For example, if γ is a matrix of zeros, the gadget
is clearly not private, let alone NI or SNI. Actually, it is not even clear that there
exists a matrix γ for which the gadget is private. We prove in the following that
this is indeed the case if the finite field is large enough and we provide explicit
choices of the matrix γ for small orders d ∈ {2, 3} over small finite fields.

Condition on γ. Similarly to Section 4.1, the following condition is necessary
for the above construction to be d-NI.

Condition 5.1. Let ` = (2d+ 4) · d+ 1. Let Id ∈ Fd×d
q be the identity matrix,

0m×n ∈ Fm×n
q be a matrix of zeros (when n = 1, 0m×n is also written 0m),

1m×n ∈ Fm×n
q be a matrix of ones, Dγ,j ∈ Fd×d

q be the diagonal matrix such

Private Multiplication over Finite Fields 25

that Dγ,j,i,i = γj,i, T d ∈ Fd×d
q be the upper-triangular matrix with just ones,

T γ,j ∈ Fd×d
q be the upper-triangular matrix for which Tγ,j,i,k = γj,i for i ≤ k.

Let ω0, . . . , ωd be (d + 1) indeterminates and we consider the field of rational
fractions Fq(ω0, . . . , ωd). In other words, we have:

Id =


1 0 . . . 0
0 1 0
...

. . .
...

0 . . . 0 1

 Dγ,j =


γj,1 0 . . . 0
0 γj,2 0
...

. . .
...

0 . . . 0 γj,d



T d =


1 1 . . . 1
0 1 1
...

. . .
...

0 . . . 0 1

 T γ,j =


γj,1 γj,1 . . . γj,1
0 γj,2 γj,2
...

. . .
...

0 . . . 0 γj,d


We define the following matrices:

L′ =
(

1 01×d 01×d 01×d 01×d . . . 01×d ω011×d ω111×d . . . ωd11×d

0d Id 0d×d ω0Id ω1Id . . . ωdId ω0T d ω1T d . . . ωdT d

)
M ′ =

(
0d 0d×d Id Dγ,0 Dγ,1 . . . Dγ,d T γ,0 T γ,1 . . . T γ,d

)
where L′ ∈ Fq(ω0, . . . , ωd)(d+1)×` and M ′ ∈ Fd×`

q .
Condition 5.1 is satisfied for a matrix γ if for any vector v ∈ F`

q of Hamming
weight hw(v) ≤ d such that L′ ·v contains no coefficient equal to 0 thenM ′ ·v 6=
0d.

5.2 Security Analysis

Lemma 5.1. Each probe contains at most one share bi of b.

Proof. A probe can only target the partial expression of an output or an entire
output. In this construction, each output ci is built with a single share bi of b.
Therefore, a probe can contain at most one such share. ut

Corollary 5.2. Any set of at most d probes contains at most d shares of b.

Proposition 5.3. The above construction with d random scalars is d-NI, if γ
satisfies Condition 5.1.

Proof. From Condition 5.1, any combination of at most d probes in our construc-
tion is either functionally dependent on at most d shares ai or on at least one
random scalar. Furthermore, using in addition Corollary 5.2, any combination
of at most d probes is functionally dependent on at most d shares bi. Therefore,
thanks to Theorem 3.5 and the fact that q > d+ 1, the construction is d-NI. ut

26 Sonia Belaïd et al.

5.3 Probabilistic Construction

As in the previous section, in order to prove the existence of a matrix γ which
satisfies Condition 4.2 for q large enough (but only exponential in d log d), we
state Theorem 5.4 that makes also use of the non-constructive “probabilistic
method.” Its proof is detailed in the full version.
Theorem 5.4. For any d ≥ 1, for any prime power q, if γ is chosen uniformly
in γ ∈ F(d+1)×d

q under the condition that
∑d

i=0 γi,j = 0 for 0 ≤ i ≤ d, then

Pr[γ satisfies Condition 4.2] ≥ 1− d(d+ 1) · (12d)d · q−1

In particular, for any d ≥ 1, there exists an integer Q = O(dd+2), such that for
any prime power q ≥ Q, there exists a matrix γ ∈ Fd×d

q satisfying Condition 5.1.

5.4 Small Cases

We show here the instanciation for d ∈ {2, 3}.

d = 2. Let d equal 2. Let us now explicitly instantiate our construction for any
non-prime field Fq where q = pk, k ≥ 2. Let ξ be any element in Fq \ Fp. A
possible instantiation is:

γ =

 1 ξ
ξ 1

−ξ − 1 −ξ − 1

 .

The computed shares are hence:

• c0 = a0b0 + (1 · r1 + a1b0) + (ξ · r2 + a2b0)
• c1 = a0b1 + (ξ · r1 + a1b1) + (1 · r2 + a2b1)
• c2 = a0b2 + ((−ξ − 1) · r1 + a1b2) + (−ξ − 1) · r2 + a2b2)

Let us now prove that this scheme satisfies Condition 5.1. The reasoning is
similar to the proof in Section 4.4.

In order forM ′ ·v to be null, and for L′ ·v to be of full Hamming weight, we
observe that the two non-zero coefficients of v must correspond to two columns
of full Hamming weight of M ′. However, no two vectors in (1, ξ), (ξ, 1), (−ξ −
1,−ξ − 1) are proportional. This ensures that Condition 5.1 is satisfied for γ.

d = 3. Let d equal 3. Let us now explicitly instantiate our construction for any
non-prime field Fq where q = 2k, k ≥ 4. Let ξ be any element in Fq \ Fp. A
possible instantiation is:

γ =


1 ξ ξ + 1
1 ξ2 + 1 ξ
1 ξ + 1 ξ2 + ξ + 1
1 ξ2 + ξ + 1 ξ + 1

 .

The computed shares are hence:

Private Multiplication over Finite Fields 27

• c0 = a0b0 + (1 · r1 + a1b0) + (ξ · r2 + a2b0) + ((ξ + 1) · r3 + a3b0)
• c1 = a0b1 + (1 · r1 + a1b1) + ((ξ2 + 1) · r2 + a2b1) + (ξ · r3 + a3b1)
• c2 = a0b2 + (1 · r1 + a1b2) + ((ξ + 1) · r2 + a2b2) + ((ξ2 + ξ + 1ξ) · r3 + a3b2)
• c3 = a0b3 + (1 · r1 + a1b3) + ((ξ2 + ξ + 1) · r2 + a2b3) + ((ξ + 1) · r3 + a3b3)

Let us now prove that this scheme satisfies Condition 5.1. The reasoning
is similar to the proof in Section 4.4. We check the non-proportionality of the
relevant vectors (1, ξ, ξ+1), (1, ξ2 +1, ξ), (1, ξ+1, ξ2 +ξ+1), (1, ξ2 +ξ+1, ξ+1),
and finish by computing all left determinants using a computer algebra system.
It follows that this construction satisfies Condition 5.1.

5.5 Lower Bound

Let us now show a lower bound on the randomness complexity of d-NI multipli-
cation gadgets satisfying the following condition.

Condition 5.2. A multiplication gadget satisfies Condition 5.2 if the output
shares are affine functions (over Fq) of the products aibj and of the input shares
ai and bj (coefficients of the affine functions may depend on the random scalars).
In other words, each output share ci can be written as (possibly after expansion
and simplification):

ci = aᵀ ·Mi(r) · b + aᵀ · µi(r) + νᵀ
i (r) · b + τi(r) ,

where Mi(r) ∈ F(d+1)×(d+1)
q , µi(r) ∈ Fd+1

q , νi(r) ∈ Fd+1
q , and τi(r) ∈ Fq are

arbitrary functions of the vector r ∈ FR
q of random scalars.

This condition is very weak. In particular, it does not restrict output shares
to be bilinear and do not restrict internal values of the circuit at all. All the d-NI
multiplication gadgets we know [4, 10, 18, 24] including the ours in Sections 4.1
and 5.1 satisfy this condition. We first need the following lemma.

Lemma 5.5. Let U ∈ F(d+1)×(d+1)
q be the matrix of ones. Let M ,M ′ be two

matrices in F(d+1)×(d+1)
q such that M +M ′ = U . Then all the columns or all

the rows of M , or all the columns or all the rows of M ′ are non-zero.

Proof. Let us prove the lemma by contraposition. We suppose that bothM and
M ′ have a column of zeros and a row of zeros. Let us suppose that the i-th
row of M is a zero row and the j-th column of M ′ is a zero column. Then
Mi,j = M ′i,j = 0 6= 1 = Ui,j and M +M ′ 6= U . ut

We can now state our lower bound.

Proposition 5.6. Let C be a d-NI multiplication gadget satisfying Condition 5.2.
Then C uses more than b(d− 1)/2c random scalars (i.e., R ≥ d/2).

A d-NI multiplication gadget satisfying Condition 5.2 thus requires a linear
number of random scalars in d. We recall our construction in Section 5.1 uses d
random scalars, which is linear in d.

28 Sonia Belaïd et al.

Proof. Let us suppose that C uses only R ≤ b(d − 1)/2c random scalars. Let
k = bd/2c. Let us construct a set of probes which cannot be simulated by at
most d shares of each input a and b. As C satisfies Condition 5.2, we can write:

c0 + · · ·+ ck = aᵀ ·M(r) · b + aᵀ · µ(r) + νᵀ(r) · b + τ(r) ,
ck+1 + · · ·+ cd = aᵀ ·M ′(r) · b + aᵀ · µ′(r) + ν′ᵀ(r) · b + τ ′(r) ,

where M(r),M ′(r) ∈ F(d+1)×(d+1)
q , µ(r),µ(r) ∈ Fd+1

q , ν(r),ν(r) ∈ Fd+1
q , and

τ(r), τ ′(r) ∈ Fq are arbitrary functions of the vector r ∈ FR
q of random scalars.

Let U ∈ F(d+1)×(d+1)
q be the matrix of ones. As

∑d
i=0 ci = ab = aᵀ ·U · b by

correctnesss of C, we have M(r) +M ′(r) = U . In particular, when r = 0 (for
example), Lemma 5.5 ensures that c0 + · · · + ck or ck+1 + · · · + cd functionally
depends on every ai (0 ≤ i ≤ d) or on every bj (0 ≤ j ≤ d). Therefore, one of the
following set of probes cannot be simulated by at most d shares of each input a
and b:

{r1, . . . , rR, c0, . . . , ck} and {r1, . . . , rR, ck+1, . . . , cd} .

We conclude by remarking that R+(k+1) ≤ b(d−1)/2c+bd/2c+1 ≤ d, as either
d−1 or d is odd and so either b(d−1)/2c ≤ (d−1)/2−1 or bd/2c ≤ d/2−1. ut

Acknowledgements. The second author was supported by the Defense Ad-
vanced Research Projects Agency (DARPA) and Army Research Office (ARO)
under Contract No. W911NF-15-C-0236. The third author was supported in
part from a DARPA/ARL SAFEWARE award, NSF Frontier Award 1413955,
NSF grants 1619348, 1228984, 1136174, and 1065276, BSF grant 2012378, a Xe-
rox Faculty Research Award, a Google Faculty Research Award, an equipment
grant from Intel, and an Okawa Foundation Research Grant. This material is
based upon work supported by the Defense Advanced Research Projects Agency
through the ARL under Contract W911NF-15-C-0205. The views expressed are
those of the authors and do not reflect the official policy or position of the De-
partment of Defense, the National Science Foundation, or the U.S. Government.
The fourth and fifth authors were supported in part by the European Union’s
H2020 Programme under grant agreement number ICT-731591 (REASSURE).
The fifth author was supported in part by the French ANR project BRUTUS,
ANR-14-CE28-0015.

References

1. Balasch, J., Faust, S., Gierlichs, B.: Inner product masking revisited. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 486–510.
Springer, Heidelberg (Apr 2015)

2. Balasch, J., Faust, S., Gierlichs, B., Verbauwhede, I.: Theory and practice of a
leakage resilient masking scheme. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 758–775. Springer, Heidelberg (Dec 2012)

Private Multiplication over Finite Fields 29

3. Barthe, G., Belaïd, S., Dupressoir, F., Fouque, P.A., Grégoire, B., Strub, P.Y.,
Zucchini, R.: Strong non-interference and type-directed higher-order masking. In:
Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM
CCS 16. pp. 116–129. ACM Press (Oct 2016)

4. Belaïd, S., Benhamouda, F., Passelègue, A., Prouff, E., Thillard, A., Vergnaud,
D.: Randomness complexity of private circuits for multiplication. In: Fischlin, M.,
Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 616–648.
Springer, Heidelberg (May 2016)

5. Belaïd, S., Benhamouda, F., Passelègue, A., Prouff, E., Thillard, A., Vergnaud, D.:
Randomness complexity of private circuits for multiplication. Cryptology ePrint
Archive, Report 2016/211 (2016), full version of [4]. http://eprint.iacr.org/
2016/211

6. Carlet, C., Prouff, E.: Polynomial evaluation and side channel analysis. In: Ryan,
P.Y.A., Naccache, D., Quisquater, J. (eds.) The New Codebreakers - Essays Ded-
icated to David Kahn on the Occasion of His 85th Birthday. Lecture Notes in
Computer Science, vol. 9100, pp. 315–341. Springer (2016), http://dx.doi.org/
10.1007/978-3-662-49301-4_20

7. Carlet, C., Prouff, E., Rivain, M., Roche, T.: Algebraic decomposition for probing
security. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part I. LNCS,
vol. 9215, pp. 742–763. Springer, Heidelberg (Aug 2015)

8. Carlet, C., Prouff, E., Rivain, M., Roche, T.: Algebraic decomposition for probing
security. Cryptology ePrint Archive, Report 2016/321 (2016), full version of [7].
http://eprint.iacr.org/2016/321

9. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M.J. (ed.) CRYPTO’99. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (Aug 1999)

10. Coron, J.S., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel security
and mask refreshing. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 410–424.
Springer, Heidelberg (Mar 2014)

11. Coron, J., Prouff, E., Roche, T.: On the use of Shamir’s secret sharing against side-
channel analysis. In: Mangard, S. (ed.) Smart Card Research and Advanced Appli-
cations - 11th International Conference, CARDIS 2012, Graz, Austria, November
28-30, 2012, Revised Selected Papers. Lecture Notes in Computer Science, vol.
7771, pp. 77–90. Springer (2012)

12. Coron, J.S., Roy, A., Vivek, S.: Fast evaluation of polynomials over binary finite
fields and application to side-channel countermeasures. In: Batina, L., Robshaw,
M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 170–187. Springer, Heidelberg (Sep
2014)

13. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: From probing attacks
to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 423–440. Springer, Heidelberg (May 2014)

14. Duc, A., Faust, S., Standaert, F.X.: Making masking security proofs concrete -
or how to evaluate the security of any leaking device. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 401–429. Springer,
Heidelberg (Apr 2015)

15. Faust, S., Rabin, T., Reyzin, L., Tromer, E., Vaikuntanathan, V.: Protecting cir-
cuits from leakage: the computationally-bounded and noisy cases. In: Gilbert, H.
(ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 135–156. Springer, Heidelberg
(May 2010)

http://eprint.iacr.org/2016/211
http://eprint.iacr.org/2016/211
http://dx.doi.org/10.1007/978-3-662-49301-4_20
http://dx.doi.org/10.1007/978-3-662-49301-4_20
http://eprint.iacr.org/2016/321

30 Sonia Belaïd et al.

16. Goubin, L., Patarin, J.: DES and differential power analysis (the “duplication”
method). In: Koç, Çetin Kaya., Paar, C. (eds.) CHES’99. LNCS, vol. 1717, pp.
158–172. Springer, Heidelberg (Aug 1999)

17. Gross, H., Mangard, S., Korak, T.: Domain-oriented masking: Compact masked
hardware implementations with arbitrary protection order. IACR Cryptology
ePrint Archive 2016, 486 (2016), http://eprint.iacr.org/2016/486, To appear
in the proceedings of CARDIS 2016.

18. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (Aug 2003)

19. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO’96. LNCS, vol. 1109, pp. 104–
113. Springer, Heidelberg (Aug 1996)

20. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear
functions in the presence of glitches. J. Cryptology 24(2), 292–321 (2011), http:
//dx.doi.org/10.1007/s00145-010-9085-7

21. Prouff, E., Rivain, M.: Masking against side-channel attacks: A formal security
proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 142–159. Springer, Heidelberg (May 2013)

22. Prouff, E., Roche, T.: Higher-order glitches free implementation of the AES us-
ing secure multi-party computation protocols. In: Preneel, B., Takagi, T. (eds.)
CHES 2011. LNCS, vol. 6917, pp. 63–78. Springer, Heidelberg (Sep / Oct 2011)

23. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating
masking schemes. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part I.
LNCS, vol. 9215, pp. 764–783. Springer, Heidelberg (Aug 2015)

24. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (Aug 2010)

http://eprint.iacr.org/2016/486
http://dx.doi.org/10.1007/s00145-010-9085-7
http://dx.doi.org/10.1007/s00145-010-9085-7

	Private Multiplication over Finite Fields
	Introduction
	Our Problem
	Related Work
	Our Contributions

	Preliminaries
	Notation
	Arithmetic Circuits and Privacy
	Compositional Security Notions
	Relations Between Compositional Security Notions
	Case of Study

	Algebraic Characterizations
	Bilinear Probes and Matrix Notation
	Algebraic Characterization for Privacy
	Algebraic Characterization for Non-Interference

	Construction with a Linear Number of Bilinear Multiplications
	Construction
	Security Analysis
	Probabilistic Construction
	Small Cases

	Construction with Linear Randomness Complexity
	Construction
	Security Analysis
	Probabilistic Construction
	Small Cases
	Lower Bound

