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Abstract. We present a new approach towards constructing round-
optimal secure multiparty computation (MPC) protocols against ma-
licious adversaries without trusted setup assumptions. Our approach
builds on ideas previously developed in the context of covert multiparty
computation [Chandran et al., FOCS’07] even though we do not seek
covert security. Using our new approach, we obtain the following results:
– A five round MPC protocol based on the Decisional Diffie-Hellman

(DDH) assumption.
– A four round MPC protocol based on one-way permutations and

sub-exponentially secure DDH. This result is optimal in the number
of rounds.

Previously, no four-round MPC protocol for general functions was known
and five-round protocols were only known based on indistinguishabil-
ity obfuscation (and some additional assumptions) [Garg et al., EURO-
CRYPT’16].

1 Introduction

The notion of secure multiparty computation (MPC) [42, 16] is fundamental in
cryptography. Informally speaking, an MPC protocol allows mutually distrusting
parties to jointly evaluate a function on their private inputs in such a manner
that the protocol execution does not leak anything beyond the output of the
function.

A fundamental measure of efficiency in MPC is round complexity, i.e., the
number of rounds of communication between the parties. Protocols with smaller
round complexity are more desirable so as to minimize the effect of network
latency, which in turn decreases the time complexity of the protocol. Indeed,
the round complexity of MPC has been extensively studied over the last three
decades.

In this work, we study round-optimal MPC against malicious adversaries
who may corrupt an arbitrary subset of parties, in the plain model without any
trusted setup assumptions. We consider the traditional simultaneous message
model for MPC, where in each round of the protocol, each party simultaneously
broadcasts a message to the other parties.



A lower bound for this setting was established last year by Garg et al. [14]
who proved that three rounds are insufficient for coin-tossing w.r.t. black-box
simulation. (Their work builds on [26] who proved the necessity of five rounds for
coin-tossing in the unidirectional message model.) In the positive direction, sev-
eral constant-round MPC protocols were constructed in a long sequence of works,
based on a variety of assumptions and techniques (see, e.g., [27, 34, 35, 41, 18]).
Garg et al. [14] established an upper bound on the exact round complexity of
MPC by constructing a five round protocol based on indistinguishability ob-
fuscation [4, 12] and some additional assumptions.3 Their work constitutes the
state of the art on this subject.

Our Goals. Presently, no constructions of indistinguishability obfuscation are
known from standard assumptions. This motivates the following important ques-
tion:

Does there exist a five round maliciously-secure MPC protocol for general
functions based on standard polynomial-time assumptions?

Furthermore, given the gap between the lower bound (three rounds) and the
upper bound (five rounds) established by [14], we ask whether their upper bound
is tight:

Does there exist a four round maliciously-secure MPC protocol for general
functions?

In this work, we resolve both of these questions in the affirmative.

The Main Barrier. We highlight the main conceptual barrier towards achieving
our goals. Garg et al. [14] follow a natural two-step approach to obtain their
positive results: in the first step, they construct a four round multiparty coin-
tossing protocol. In the next step, they use their coin-tossing protocol to replace
the common random string (CRS) in a two-round MPC protocol in the CRS
model [11, 31].

We note, however, that this approach, in general, cannot do better than five
rounds. Indeed, since at least one of the rounds of the two-round MPC must
depend upon the CRS, we can only hope to parallelize its first round with the
coin-tossing protocol. Since coin-tossing requires four rounds, this only yields a
five round protocol at best.

A New Approach. In this work, we present a new approach towards con-
structing round-optimal MPC protocols in the plain model. At a high level,
our approach implements the classical GMW methodology [16] for constructing
maliciously-secure MPC protocols, with a crucial twist, to minimize the number
of rounds. This approach is inspired by the beautiful work of Chandran et al. [8]
for constructing covert multiparty computation protocols [40, 8, 20].

3 Garg et al. also construct a four-round protocol for the coin-tossing functionality. In
this work, we are interested in MPC for general functions.



Recall that the GMW compiler transforms a semi-honest MPC protocol into
a maliciously secure one by requiring the parties to prove (using zero-knowledge
proofs [17]) that each message in the semi-honest protocol was computed “hon-
estly.” Towards our goal of minimizing round complexity, we cannot afford to
prove honest behavior with every round of semi-honest MPC. Therefore, in our
approach, the parties prove honest behavior only once.

At first, such an approach may sound completely absurd. If each party is only
required to give a single proof of honest behavior, then a malicious adversary
may choose to cheat in the first few rounds of the semi-honest MPC protocol.
By the time the proof is completed and the honest parties are able to detect
cheating, it may already be “too late.” Indeed, the opportunity to cheat in even
a single round may be sufficient for a malicious adversary to completely break
the security of a semi-honest protocol. Therefore, it is not at all clear why such
an approach can be implemented in a secure manner.

In order to tackle this problem, we design a “special-purpose” semi-honest
MPC protocol that remains partially immune to malicious behavior before the
last round of the protocol. Specifically, in such a protocol, an adversary can in-
fluence the protocol outcome but not learn any private information by behaving
maliciously before the last round. We then “shield” the last round from being
revealed to the adversary until it has proven honest behavior for all of the preced-
ing rounds. A single proof suffices to accomplish this task. By parallelizing this
proof with the semi-honest MPC, we are able to minimize the round complexity.

We note that the above idea of delaying the proof of honest behavior to the
end of the computation was first developed in [8]. While they developed this
technique to achieve covert security (namely, hiding protocol participation from
other players), we use it in our setting to minimize round complexity.

1.1 Our Results

We present a new approach for constructing round-efficient MPC protocols that
are secure against malicious adversaries in the plain model. Using this approach,
we are able to achieve both of our aforementioned goals.

I. Robust Semi-honest MPC. As a first step towards obtaining our results
for maliciously-secure MPC, we construct a four round robust semi-honest MPC
protocol that remains partially immune to malicious behavior. In this protocol,
at the end of the first three rounds of computation, each party receives a secret
share of the function output. In the last round, the parties simply exchange their
shares to reconstruct the output. The key security property of this protocol is
that if the adversary cheats in the first three rounds, then it can only influence
the function output, but not learn any private information.

We construct such an MPC scheme for general functions assuming the exis-
tence of low-depth pseudorandom generators (PRGs) and a two-round “covert”



oblivious transfer (OT) protocol [40].4 Both of these primitives can be instanti-
ated from the Decisional Diffie-Hellman (DDH) assumption.

Theorem 1. Assuming DDH, there exists a four round robust semi-honest
MPC protocol for general functions.

The above result may be of independent interest.

II. Maliciously-secure MPC. Using theorem 1, we next construct maliciously-
secure MPC protocols in the plain model.

Our first result is a five round MPC protocol based on any four-round robust
semi-honest MPC, injective one-way functions and collision-resistant hash func-
tions (CRHFs). Since injective one-way functions and CRHFs can be built from
Discrete Log, we obtain the following result:

Theorem 2 (Five Rounds). Assuming DDH, there exists a five round
maliciously-secure MPC protocol for computing general functions.

We next modify our five round protocol to obtain a four round protocol,
albeit using sub-exponential hardness. The security of our construction uses
complexity leveraging between multiple primitives.

Theorem 3 (Four Rounds). Assuming one-way permutations and sub-
exponentially secure DDH, there exists a four round maliciously-secure MPC
protocol for computing general functions.

1.2 Our Techniques

As discussed earlier, the approach of Garg et al. [14] for constructing maliciously-
secure MPC protocols is unsuitable for achieving our goals. Therefore, we de-
velop a new approach for constructing round-efficient MPC against malicious
adversaries.

At a high-level, our approach implements the GMW paradigm for construct-
ing maliciously-secure MPC protocols, with a crucial twist. Recall that the GMW
paradigm transforms a semi-honest MPC protocol into a maliciously secure one
using the following three steps: (1) first, the parties commit to their inputs and
random tapes. (2) Next, the parties perform coin-tossing to establish an unbiased
random tape for each party. (3) Finally, the parties run the semi-honest MPC
protocol where along with every message, each party also gives zero-knowledge
proof of “honest” behavior consistent with the committed input and random
tape.

Both steps (2) and (3) above introduce additional rounds of interaction, and
constitute the main bottleneck towards constructing round-optimal MPC.

Main Ideas. Towards this, we develop two key modifications to the GMW
compiler:

4 We use low-depth PRGs to obtain degree-three randomizing polynomials for general
functions [2].



1. “One-shot” proof: Instead of requiring the parties to give a proof of honest
behavior in each round of the underlying semi-honest protocol, we use a
“delayed verification” technique where the parties prove honest behavior
only once, towards the end of the protocol. As we explain below, this allows
us to limit the overhead of additional rounds introduced by zero-knowledge
proofs in the GMW compiler.
The idea of delayed verification was previously developed in the work of
Goyal et. al. [8]. Interestingly, while they used this technique to achieve
security in the setting of covert computation [40, 8], we use this technique
to minimize the round complexity of our protocol.

2. No coin tossing: Second, we eliminate the coin-tossing step (i.e., step 2).
Note that by removing coin-tossing, we implicitly allow the adversarial par-
ties to potentially use “bad” randomness in the protocol. To ensure security
in this scenario, we will use a special semi-honest MPC protocol that is se-
cure against bad randomness. This idea has previously been used in many
works (see, e.g.,[3, 31]).

We now elaborate on the first step, which constitutes the conceptual core of
our work. We consider semi-honest MPC protocols with a specific structure con-
sisting of two phases: (a) Computation phase: in the first phase of the protocol,
the parties compute the function such that each party obtains a secret-share of
the output. (b) Output phase: In the second phase, the parties exchange their
output shares with each other to compute the final output. This phase consists
of only one round and is deterministic. Note that standard MPC protocols such
as [16] follow this structure.

At a high-level, we implement our delayed verification strategy as follows:
the parties first run the computation phase of the semi-honest protocol “as is”
without giving any proofs. At the end of this phase, each party gives a single
proof that it behaved honestly throughout the computation phase (using the
committed input and random tape). If all the proofs verify, then the parties
execute the output phase.

Right away, one may notice a glaring problem in the above approach. If
the computation phase is executed without any proof of honest behavior, the
adversary may behave maliciously in this phase and potentially learn the honest
party inputs even before the output phase begins! Indeed, standard semi-honest
MPC protocols do not guarantee security in such a setting.

To combat this problem, we develop a special purpose semi-honest MPC pro-
tocol that remains “partially immune” to malicious behavior. Specifically, such
a protocol maintains privacy against malicious adversaries until the end of the
computation phase. However, output correctness is not guaranteed if the adver-
sary behaved maliciously in the computation phase. We refer to such an MPC
protocol as robust semi-honest MPC. Later, we describe a four-round construc-
tion of robust semi-honest MPC where the first three rounds correspond to the
computation phase and the last round constitutes the output phase.

Note that the robustness property as described above perfectly suits our
requirements because in our compiled protocol, the output phase is executed



only after each party has proven that it behaved honestly during the computation
phase. This ensures full security of our compiled protocol.

A New Template for Malicious MPC. Putting the above ideas together,
we obtain the following new template for maliciously-secure MPC:

– First, each party commits to its input and randomness using a three-round
extractable commitment scheme.5 In parallel, the parties also execute the
computation phase of a four-round robust semi-honest MPC.

– Next, each party proves to every other party that it behaved honestly during
the first three rounds.

– Finally, the parties execute the output phase of the robust semi-honest MPC
and once again prove that their message is honestly computed.

In order to obtain a five round protocol from this template, we need to
parallelize the proofs with the other protocol messages. For this purpose, we use
delayed-input proofs [29] where the instance is only required in the last round.6

In particular, we use four-round delayed input zero-knowledge (ZK) proofs whose
first three messages are executed in parallel with the first three rounds of the
robust semi-honest MPC. This yields us a five round protocol.

We remark that during simulation, our simulator is able to extract the ad-
versary’s input only at the end of the third round. This means that we need to
simulate the first three rounds of the robust semi-honest MPC without knowl-
edge of the adversary’s input (or the function output). Our robust semi-honest
MPC satisfies this property; namely, the simulator for our robust semi-honest
MPC needs the adversary’s input and randomness (and the function output)
only to simulate the output phase.

Four Rounds: Main Ideas. We next turn to the problem of constructing
four-round MPC. At first, it is not clear how to obtain a four round protocol
using the above template. Indeed, as argued earlier, we cannot afford to execute
the output phase without verifying that the parties behaved honestly during
the computation phase. In the above template, the output phase is executed
after this verification is completed. Since three-round zero-knowledge proofs with
polynomial-time simulation are not known presently, the verification process in
the above protocol requires four rounds. Therefore, it may seem that that we
are limited to a five round protocol.

Towards that, we note that our robust semi-honest MPC (described later)
satisfies the following property: in order to simulate the view of the adversary
(w.r.t. the correct output), the simulator only needs to “cheat” in the output
phase (i.e., the last round). In particular, the simulation of the computation
phase can be done “honestly” using random inputs for the honest parties. In this

5 We use a variant of the extractable commitment scheme in [38] for this purpose.
This variant has been used in many prior works such as [21, 13, 19] because it is
“rewinding secure” – a property that is used in the security proofs.

6 Note that the witness for these proofs corresponds to the adversary’s input and
random tape which is already fixed in the first round.



case, we do not need full-fledged ZK proofs to establish honest behavior in the
computation phase; instead, we only need strong witness indistinguishable (WI)
proofs. Recall that in a strong WI proof system, for any two indistinguishable
instance distributions D1 and D2, a proof for x1 ← D1 using a witness w1 is
indistinguishable from a proof for x2 ← D2 using a witness w2. This suffices
for us because using strong WI, we can switch from an honest execution of the
computation phase using the real inputs of the honest parties to another honest
execution of the computation phase using random inputs for the honest parties.

Recently, Jain et al. [25] constructed three-round delayed-input strong WI
proofs of knowledge from the DDH assumption. However, their proof system
only guarantees strong WI property if the entire statement is chosen by the
prover in the last round. In our case, this is unfortunately not true, and hence
we cannot use their construction. Therefore, we take a different route, albeit at
the cost of sub-exponential hardness assumptions. Specifically, we observe that
by relying upon sub-exponential hardness, we can easily construct a three-round
(delayed-input) strong WI argument by combining any three-round (delayed-
input) WI proof of knowledge with a one or two-message “trapdoor phase” in
our simultaneous message setting. For example, let f be a one-way permutation.
The trapdoor phase can be implemented by having the verifier send y = f(x)
for a random x in parallel with the first prover message. The statement of the
WI proof of knowledge is changed to: either the original statement is true or the
prover knows x.

Now, by running in exponential time in the hybrids, we can break the one-
way permutation to recover x and then prove knowledge of x. This allows us to
switch from honest execution of the computation phase using the real inputs of
the honest parties to another honest execution using random inputs. After this
switch, we can go back to proving the honest statement which can be done in
polynomial time. This ensures that our final simulator is also polynomial time.

Handling Non-malleability Issues. So far, we ignored non-malleability re-
lated issues in our discussion. However, as noted in many prior works, zero-
knowledge proofs with standard soundness guarantee do not suffice in the setting
of constant-round MPC. Indeed, since proofs are being executed in parallel, we
need to ensure that an adversary’s proofs remain sound even when the honest
party’s proofs are being simulated [39].

We handle such malleability issues by using the techniques developed in a
large body of prior works. In our five round MPC protocol, we use the four-
round non-malleable zero-knowledge (NMZK) argument of [9] to ensure that
adversary’s proofs remain sound even during simulation.7 We make non-black-
box use of their protocol in our security proof. More specifically, following prior
works such as [5, 21, 13, 19], we establish a “soundness lemma” to ensure that
the adversary is behaving honestly across the hybrids. We use the extractability
property of the non-malleable commitment used inside the non-malleable zero-
knowledge argument to prove this property.

7 We also use the fact that argument system of [9] allows for simulating multiple proofs
executed in parallel.



In our four round protocol, we use the above NMZK to prove honest behavior
in the output phase. In order to prove honest behavior in the computation phase,
we use a slightly modified version of the strong WI argument system described
above which additionally uses a two-round non-malleable commitment [28] to
achieve the desired non-malleability properties. Unlike the five round construc-
tion, here, we rely upon complexity leveraging in several of the hybrids to argue
the “soundness lemma” as well as to tackle some delicate rewinding-related is-
sues that are commonplace in such proofs.8 We refer the reader to the technical
sections for details.

Robust Semi-honest MPC. We now briefly describe the high-level ideas in
our four-round construction of robust semi-honest MPC for general functionali-
ties. Towards this, we note that it suffices to achieve a simpler goal of construct-
ing robust semi-honest MPC for a restricted class of functionalities, namely,
for computing randomized encodings.9 That is, in order to construct a robust
MPC for a n-party functionality F , it suffices to construct a robust MPC for a
n-functionality Frnd that takes as input (x1, r1; · · · ;xn, rn) and outputs a ran-
domized encoding of F (x1, . . . , xn) using randomness r1⊕· · ·⊕rn. This is because
all the parties can jointly execute the protocol for Frnd to obtain the randomized
encoding. Each party can then individually execute the decoding algorithm of
the randomized encoding to recover the output F (x1, . . . , xn). Note that this
transformation preserves round complexity.

To construct a robust semi-honest n-party protocol for Frnd, we consider a
specific type of randomized encoding defined in [2]. In particular, they construct
a degree 3 randomizing polynomials 10 for arbitrary functionalities based on
low-depth pseudorandom generators. In their construction, every output bit of
the encoding can be computed by a degree 3 polynomial on the input and the
randomness. Hence, we further break down the goal of constructing a protocol
for Frnd into the following steps:

– Step 1: Construct a robust semi-honest MPC 3-party protocol for computing
degree 3 terms. In particular, at the end of the protocol, every party who
participated in the protocol get a secret share x1x2x3, where xq is the qth

party’s input for q ∈ {1, 2, 3}. The randomness for the secret sharing comes
from the parties in the protocol.

– Step 2: Using Step 1, construct a robust semi-honest MPC protocol to com-
pute degree 3 polynomials.

– Step 3: Using Step 2, construct a robust semi-honest MPC protocol for Frnd.

8 We believe that some of the use of complexity leveraging in our hybrids can be
avoided by modifications to our protocol. We leave further exploration of this direc-
tion for subsequent work.

9 A randomized encoding of function f and input x is such that, the output f(x) can
be recovered from this encoding and at the same time, this encoding should not leak
any information about either f or x.

10 The terms randomized encodings and randomizing polynomials are interchangeably
used.



Steps 2 and 3 can be achieved using standard transformations and these transfor-
mations are round preserving. Thus, it suffices to achieve Step 1 in four rounds.
Suppose P1, P2 and P3 participate in the protocol. Roughly, the protocol pro-
ceeds as follows: P1 and P2 perform a two message covert OT protocol to receive
a share of x1x2. Then, P1 and P3 perform a two message OT protocol to receive a
share of x1x2x3. We need to do more work to ensure that at the end, all of them
have shares of x1x2x3. Further, the robustness guarantee is argued using the
covert security of the OT protocol. We refer the reader to the technical sections
for more details.

1.3 Concurrent Work

In a concurrent and independent work, Brakerski, Halevi and Polychroniadou
[7] construct a maliciously-secure 4-round MPC protocol based on the sub-
exponential hardness of the Learning with Errors (LWE) problem and on the
adaptive commitments of [33]. Their approach is very different from ours, most
notably in the initial step, in that they construct and use a 3-round protocol
against semi-malicious adversaries from LWE, while we construct and use a ro-
bust semi-honest MPC protocol from DDH.

1.4 Related Work

The study of constant-round protocols for MPC was initiated by Beaver et al.
[6]. Their constructed constant-round MPC protocols in the presence of honest
majority. Subsequently, a long sequence of works constructed constant-round
MPC protocols against dishonest majority based on a variety of assumptions
and techniques (see, e.g., [27, 34, 35, 41, 18]). Very recently, Garg et al. [14] con-
structed five round MPC using indistinguishability obfuscation and three-round
parallel non-malleable commitments. They also construct a six-round MPC pro-
tocol using learning with errors (LWE) assumption and three-round parallel
non-malleable commitments. All of these results are in the plain model where
no trusted setup assumptions are available.

Asharov et. al. [3] constructed three round MPC protocols in the CRS model.
Subsequently, two-round MPC protocols in the CRS model were constructed by
Garg et al. [11] using indistinguishability obfuscation, and by Mukherjee and
Wichs [31] using LWE assumption.

1.5 Full Version

Due to space constraints, much of the details of the security proofs for our
constructions are omitted from this manuscript. The full version of the paper is
available at [1].

2 Definitions

We denote n to be the security parameter. Consider two distributions D0 and
D1. We denote D0 ≈c D1 if D0 and D1 are computationally indistinguishable.



2.1 Oblivious Transfer

We recall the notion of oblivious transfer [37, 10] below. We require that the
oblivious transfer protocol satisfies covert security [40, 8, 20]. Intuitively, we
require that the receiver’s messages are computationally indistinguishable from a
uniform distribution to a malicious sender. Similarly, we require that the sender’s
messages are computationally indistinguishable from a uniform distribution to
a malicious receiver.

Definition 1 (Covert Oblivious Transfer). A 1-out-of-2 oblivious transfer
(OT) protocol OT is a two party protocol between a sender and a receiver. A
sender has two input bits (b0, b1) and the receiver has a choice bit c. At the end
of the protocol, the receiver receives an output bit b′. We denote this process by
b′ ← 〈Sen(b0, b1),Rec(c)〉.

We require that an OT protocol satisfies the following properties:

– Correctness: For every b0, b1, c ∈ {0, 1}, we have:

Pr[bc ← 〈Sen(b0, b1),Rec(c)〉] = 1

– Covert security against adversarial senders: For all PPT senders Sen∗,
we require that the honest receiver’s messages are computationally indistin-
guishable from uniform distribution.

– Covert security against adversarial receivers: Suppose the input of
the sender (b0, b1) is sampled from a distribution on {0, 1}2. For all PPT
receivers Rec∗, we require that the honest sender’s messages (computed as
a function of (b0, b1)) are computationally indistinguishable from uniform
distribution.

An oblivious transfer protocol satisfying the above definition was constructed
in [40] using [32].

Theorem 4 ([40]). Assuming decisional Diffie Helman assumption, there ex-
ists a two message 1-out-of-2 covert oblivious transfer protocol.

We note that for our constructions, it actually suffices if the OT protocol
achieves indistinguishability security against malicious senders and receivers.
(This property is satisfied by [32].) The covertness property helps to simplify
the proof of our robust semi-honest MPC.

2.2 Randomizing Polynomials

We first recall the definition of randomizing polynomials [24, 2]. Instead of con-
sidering the standard form of randomizing polynomials consisting of encode and
decode algorithms, we instead consider a decomposable version where the circuit
is first encoded as polynomials and decode algorithm gets as input evaluations
of polynomials on input and randomness.



Definition 2 (Randomizing Polynomials). A randomizing polynomials
scheme RP = (CktE,D) for a family of circuits C has the following syntax:

– Encoding, CktE(C): On input circuit C ∈ C, input x, it outputs polynomials
p1, . . . , pm.

– Decoding, D(p1(x; r), . . . , pm(x; r)): On input evaluations of polynomials
p1(x; r), . . . , pm(x; r), it outputs the decoded value α.

RP is required to satisfy the following properties:

– Correctness: For every security parameter n ∈ N, circuit C and input x,
C(x) = D(p1(x; r), . . . , pm(x; r)), where (i) (p1, . . . , pm) ← CktE(C), (ii) r
is randomness sampled from uniform distribution.

– Efficiency: The typical efficiency we require is that the degree of the polyno-
mials {pi} should be significantly smaller than the degree of the circuit C,
where (p1, . . . , pm)← CktE(C).

– Security: For every PPT adversary A, for large enough security parameter
n ∈ N, circuit C and input x, there exists a simulator Sim such that:

{(p1(x; r), . . . , pm(x; r))} ≈c
{
Sim(1n, 1|C|, C(x))

}
,

where (i) (p1, . . . , pm) ← CktE(C), (ii) r is randomness sampled from uni-
form distribution.

We define the degree of randomizing polynomials to be maxC∈C{deg(pi) :
(p1, . . . , pm)← CktE(C ∈ C)}.

We have the following theorem from [2].

Theorem 5 ([2]). Assuming the existence of pseudorandom generators in
⊕L/Poly for all polynomial-time computable functions.

2.3 Non-malleable Commitments

Let Π = 〈C,R〉 be a statistically binding commitment scheme. Consider MiM
adversaries that are participating in one left and one right sessions in which k
commitments take place. We compare between a MiM and a simulated execu-
tion. In the MiM execution, the adversary A, with auxiliary information z, is
participating in one left and one right sessions. In the left session, the MiM ad-
versary interacts with C receiving commitments to value m using identities id

of its choice. In the right session A interacts with R, attempting to commit to a
related value m̃ again using identities ĩd of its choice. If any the right commit-
ment is invalid, or undefined, its value is set to ⊥. If ĩd = id, set m̃ =⊥ (i.e.,
any commitment where the adversary uses the same identity as that of honest
senders is considered invalid). Let mimA,mΠ (z) denote the random variable that
describes the values m̃ and the view of A, in the above experiment.

In the simulated execution, an efficient simulator Sim directly interacts with
R. Let simSim

Π (1n, z) denote the random variable describing the value m̃ commit-
ted by Sim, and the output view of Sim; whenever the view contains the same
identity as that identity of the left session, m̃ is set to ⊥.



Definition 3 (non-malleable commitment scheme). A commitment
scheme is non-malleable with respect to commitment if, for every PPT paral-
lel MiM adversary A, there exists a PPT simulator Sim such that for all m the
following ensembles are computationally indistinguishable:

{mimA,mΠ (z)}n∈N,z∈{0,1}∗ ≈ {simSim
Π (1n, z)}n∈N,z∈{0,1}∗

For our construction, we will require that the non-malleable commitments
are public coin and extractable. Four round non-malleable commitments based
on CRHFs satisfying both the conditions are described in [23]. Similarly, three
round non-malleable commitments based on quasi-polynomial injective OWFs
satisfying both conditions are described in [22]. Two round (private coin)
non-malleable commitments, with respect to commitment, are based on sub-
exponential hardness of DDH[28]. Additionally, two round non-interactive con-
current non-malleable commitments can be based on time-lock puzzles [30].

Binding property of the commitments. For convenience, we assume that the first
message sent by the committer in the four round non-malleable commitment
scheme is statistically binding. Thus, the second message in the scheme is sta-
tistically binding. The non-malleable commitment scheme in [9] satisfies this
property. But importantly, with minor modifications our proofs go through even
without this assumption.

2.4 Delayed-input Non-malleable Zero Knowledge

Let Πnmzk = 〈P, V 〉 be a delayed-input interactive argument system for an NP-
language L with witness relation RelL. Consider a PPT MiM adversary A that
is simultaneously participating in one left session and one right session. Before
the execution starts, both P , V and A receive as a common input the security
parameter n, and A receives as auxiliary input z ∈ {0, 1}∗.

In the left session A interacts with P using identity id of his choice. In the
right session, A interacts with V , using identity ĩd of his choice.

In the left session, before the last round of the protocol, P gets the statement
x. Also, in the right session A, during the last round of the protocol selects the
statement x̃ to be proved and sends it to V . Let ViewA(1n, z) denote a random
variable that describes the view of A in the above experiment.

Definition 4 (Delayed-input NMZK). A delayed-input argument system
Πnmzk = 〈P, V 〉 for NP-language L with witness relation RelL is Non-Malleable
Zero Knowledge (NMZK) if for any MiM adversary A that participates in one
left session and one right session, there exists a PPT machine Sim(1n, z) such
that

1. The probability ensembles {Sim1(1n, z)}n∈N,z∈{0,1}∗ and

{ViewA(1n, z)}λ∈N,z∈{0,1}∗ are computationally indistinguishable over n,

where Sim1(1n, z) denotes the first output of Sim(1n, z).



2. Let z ∈ {0, 1}∗ and let (View, w̃) denote the output of Sim(1n, z). Let x̃
be the right-session statement appearing in View and let id and ĩd be the
identities of the left and right sessions appearing in View. If the right session
is accepting and id 6= ĩd, then RelL(x̃, w̃) = 1.

The above definition, is easily extended to parallel NMZK, where the ad-
versary interacts with a polynomially bounded sessions on the left and right in
parallel.

For our constructions, we shall use the 4-round NMZK protocol in [9]. The
protocol is secure assuming CRFHs, and can thus be instantiated from DDH.
We refer the reader to their paper for a description of the protocol. Additionally,
we note that their protocol is also parallel ZK since we can extract trapdoors of
multiple executions in parallel.

2.5 Extractable Commitment Scheme

We will also use a simple challenge-response based extractable statistically-
binding string commitment scheme 〈C,R〉 that has been used in several prior
works, most notably [36, 38]. We note that in contrast to [36] where a multi-slot
protocol was used, here (similar to [38]), we only need a one-slot protocol.

Protocol 〈C,R〉. Let com(·) denote the commitment function of a non-interactive
perfectly binding string commitment scheme which requires the assumption
of injective one-way functions for its construction. Let n denote the security
parameter. The commitment scheme 〈C,R〉 is described as follows.

Commit Phase:

1. To commit to a string str, C chooses k = ω(log(n)) independent random
pairs {α0

i , α
1
i }ki=1 of strings such that ∀i ∈ [k], α0

i ⊕ α1
i = str; and commits

to all of them to R using com. Let B ← com(str), and A0
i ← com(α0

i ),
A1
i ← com(α1

i ) for every i ∈ [k].

2. R sends k uniformly random bits v1, . . . , vn.

3. For every i ∈ [k], if vi = 0, C opens A0
i , otherwise it opens A1

i to R by
sending the appropriate decommitment information.

Open Phase: C opens all the commitments by sending the decommitment in-
formation for each one of them.

For our construction, we require a modified extractor for the extractable
commitment scheme. The standard extractor returns the value str that was
committed to in the scheme. Instead, we require that the extractor return i, and
the openings of A0

i and A1
i . This extractor can be constructed easily, akin to the

standard extractor for the extractable commitment scheme.

This completes the description of 〈C,R〉.



“Rewinding secure” Commitment Scheme. Due to technical reasons, we will also
use a minor variant, denoted 〈C ′, R′〉, of the above commitment scheme which
will be rewinding secure. Protocol 〈C ′, R′〉 is the same as 〈C,R〉, except that for
a given receiver challenge string, the committer does not “open” the commit-
ments, but instead simply reveals the appropriate committed values (without
revealing the randomness used to create the corresponding commitments). More
specifically, in protocol 〈C ′, R′〉, on receiving a challenge string v1, . . . , vn from
the receiver, the committer uses the following strategy: for every i ∈ [k], if
vi = 0, C ′ sends α0

i , otherwise it sends α1
i to R′. Note that C ′ does not reveal

the decommitment values associated with the revealed shares.
The scheme is rewinding secure because we can respond to queries from the

adversary (for the commitment scheme) when we need to rewind it, and the
commitment scheme is exposed to an external challenger. This follows from the
fact that we can send random messages in the third round when the adversary
makes a different second round query.

When we use 〈C ′, R′〉 in our main construction, we will require the committer
C ′ to prove the “correctness” of the values (i.e., the secret shares) it reveals in
the last step of the commitment protocol. In fact, due to technical reasons, we
will also require the the committer to prove that the commitments that it sent
in the first step are “well-formed”. Below we formalize both these properties in
the form of a validity condition for the commit phase.

Proving Validity of the Commit Phase. We say that commit phase between C ′

and R′ is well formed with respect to a value ˆstr if there exist values {α̂0
i , α̂

1
i }ki=1

such that:

1. For all i ∈ [k], α̂0
i ⊕ α̂1

i = ˆstr, and
2. Commitments B, {A0

i , A
1
i }ki=1 can be decommitted to ˆstr, {α̂0

i , α̂
1
i }ki=1 re-

spectively.
3. Let ᾱv11 , . . . , ᾱ

vk
k denote the secret shares revealed by C in the commit phase.

Then, for all i ∈ [k], ᾱvii = α̂vii .

We state a simple lemma below, that states that ∃ an extractor E that
extracts the correct committed value with overwhelming probability if the com-
mitment is well formed. This lemma is implicit from [38, 36].

Lemma 1. If the validity condition for the commitment protocol holds, then E
fails to extract the committed value with only negligible probability.

3 Robust Semi-Honest MPC

We consider semi-honest secure multi-party computation protocols that satisfy
an additional robustness property. Intuitively the property says that, except the
final round, the messages of honest parties reveal no information about their
inputs even if the adversarial parties behave maliciously.



Definition 5. Let F be an n-party functionality. Let A = (A1,A2) represent a
PPT algorithm controlling a set of parties S ⊆ [n]. For a t-round protocol com-

puting F , we let RealExecA
1

(t−1)(x, z) denote the view of A1 during the first t− 1
rounds in the real execution of the protocol on input x = (x1, · · · , xn) and auxil-
iary input z. We require that at the end of the first t−1 rounds in the real proto-
col, A1 outputs state and (inp, rand) on a special tape where either (inp, rand) =
(⊥,⊥) (if A1 behaved maliciously) or (inp, rand) = ({x̂i}i∈S , {r̂i}i∈S) which is
consistent with the honest behavior for RealExec(t−1) (first t− 1 rounds).

A protocol is said to be a “robust” secure multiparty computation protocol
for F if for every PPT adversary A = (A1,A2) controlling a set of parties
S in the real world, where A2 is semi-honest, there exists a PPT simulator
Sim = (Sim1,Sim2) such that for every initial input vector x, every auxiliary
input z

– If (inp, rand) 6= (⊥,⊥), then:(
RealExecA

1

(t−1)(x, z), RealExecA
2

t (x, state)
)

≈c
(
RealExecA

1

(t−1)(x, z), Sim2({x̂i}i∈S , {r̂i}i∈S , y, state)
)

≈c
(
Sim1(z), Sim2 ({x̂i}i∈S , {r̂i}i∈S , y, state)

)
.

Here y = F (x̂1, . . . , x̂n), where x̂i = xi for i /∈ S. And RealExecA
2

t (x, state)
is the view of adversary A2 in the tth round of the real protocol.

– Else,

RealExecA
1

(t−1)(x, z) ≈c Sim
1(z).

Note that, in general, a semi-honest MPC protocol may not satisfy this prop-
erty. Below, we construct a four-round semi-honest MPC protocol with robust-
ness property.

3.1 Four Round Robust Semi-Honest MPC

We first describe the tools required for our construction. We require,

– Two message 1-out-of-2 covert oblivious transfer protocol. Denote this by
OT.

– Degree 3 randomizing polynomials for arbitrary polynomial sized circuits.
Denote this by RP = (CktE,D).

Both the tools mentioned above can be instantiated from DDH.

Construction. Our goal is to construct an n-party MPC protocol ΠF
sh secure

against semi-honest adversaries for an n-party functionality F . Moreover, we
show that ΠF

sh satisfies Robust property (Definition 5). We employ the following
steps:



– Step I: We first construct an 3-party semi-honest MPC protocol Π3MULT
sh

for the functionality 3MULT defined below. This protocol is a three round
protocol. However, we view this as a four round protocol (with the last round
being empty) – the reason behind doing this is because this protocol will be
used as a sub-protocol in the next steps and in the proof, the programming
of the simulator occurs only in the fourth round.

3MULT((x1, r1); (x2, r2); (x3)) outputs (r1; r2; x1x2x3 + r1 + r2)

– Step II: We use Π3MULT
sh to construct an n-party semi-honest MPC protocol

Π
3POLY{p}
sh for the functionality 3POLY{p} defined below, where p is a degree

3 polynomial in F2[y1, . . . ,yN ]. This protocol is a four round protocol and
it satisfies robust property.

3POLY{p}(X1; · · · ;Xn) outputs p(y1, . . . ,yN ),

where X1, . . . , Xn are partitions of y1, . . . ,yN .
– Step III: We use Π3POLY

sh to construct an n-party semi-honest MPC protocol
ΠF

sh. This protocol is a four round protocol and it satisfies robust property.

We now describe the steps in detail.

Step I: Constructing Π3MULT
sh . Denote the parties by P1, P2 and P3. Denote

the input of P1 to be (x1, r1), the input of P2 to be (x2, r2) and the input of P3

to be (x3). The protocol works as follows:

– Round 1: P1 participates in a 1-out-of-2 oblivious transfer protocol OT12

with P2. P1 plays the role of receiver. It generates the first message of OT12

as a function of x1.
Simultaneously, P2 and P3 participate in a 1-out-of-2 protocol OT23. P3 takes
the role of the receiver. It generates the first message of OT23 as a function
of x3.

– Round 2: P2 sends the second message in OT12 as a function of (x2 ·0+r′2;
x2 · 1 + r′2), where r′2 is sampled at random. P2 sends the second message in
OT23 as a function of (0 · r′2 + r2; 1 · r′2 + r2).
Simultaneously, P1 and P3 participate in a OT protocol OT13. P3 takes the
role of the receiver. It sends the first message of OT13 as a function of x3.

– Round 3: Let u be the value recovered by P1 from OT12. P1 sends the
second message to P3 in OT13 as a function of (u · 0 + r1, u · 1 + r1). Let α′3
recovered from OT13 by P3 and let α′′3 be the output recovered from OT23.

P1 outputs α1 = r1, P2 outputs α2 = r2 and P3 outputs α3 = α′3+α′′3 (operations
performed over F2).

Theorem 6. Assuming the correctness of OT, Π3MULT
sh satisfies correctness

property.

Theorem 7. Assuming the security of OT, Π3MULT
sh is a robust semi-honest

three-party secure computation protocol satisfying Definition 5.



Step II: Constructing Π
3POLY{p}
sh . We first introduce some notation. Consider

a polynomial q ∈ F2[y1, . . . ,yN ] with coefficients over F2. We define the set
MonS{q} as follows: a term t ∈ MonS{q} if and only if t appears in the expansion
of the polynomial q. We define MonS{q}i as follows: a term t ∈ MonS{q}i if and
only if t ∈ MonS{q} and t contains the variable yi.

We now describe Π
3POLY{p}
sh .

Protocol Π
3POLY{p}
sh : Let P1, . . . , Pn be the set of parties in the protocol. LetXi

be the input set of Pi for every i ∈ [n]. We have,
∑n
i=1 |Xi| = N and Xi∩Xj = ∅

for i 6= j. Every x ∈ Xi corresponds to a unique variable yj for some j.

– For every i ∈ [n], party Pi generates n additive shares si,1, . . . , si,n of 0. It
sends share si,j to Pj in the first round.

– In parallel, for every term t in the expansion of p, do the following:
- If t is of the form x3i , then Pi computes x3i .
- If t is of the form x2ixj then pick k ∈ [n] and k 6= i, k 6= j. Let rti and rtj

be the randomness, associated with t, sampled by Pi and Pj respectively.
The parties Pi(xi, r

t
i), Pj(xj , r

t
j) and Pk(1) execute Π3MULT

sh to obtain the
corresponding shares αti, α

t
j and αtk. Note that this finishes in the third

round.
- If t is of the form xixjxk, then parties Pi, Pj and Pk sample randomness

rti , r
j
t and rtk respectively. Then, they execute Π3MULT

sh on inputs (xi, r
t
i),

(xj , r
t
j) and (xk) to obtain the corresponding shares αti, α

t
j and αtk. Note

that this finishes in the third round.
– After the third round, Pi adds all the shares he has so far (including his own

shares) and he broadcasts his final share si to all the parties. This consumes
one round.

– Finally, Pi outputs
∑n
i=1 si.

Theorem 8. Assuming Π3MULT
sh satisfies correctness, Π

3POLY{p}
sh satisfies cor-

rectness property.

Theorem 9. Assuming the security of Π3MULT
sh , Π

3POLY{p}
sh is a robust semi-

honest MPC protcol satisfying Definition 5 as long as Π3MULT
sh satisfies Defini-

tion 5.

Step III: Constructing ΠF
sh. We describe ΠF

sh below.

Protocol ΠF
sh: Let C be a circuit representing F . That is, F (x1; . . . , xn) =

C(x1|| · · · ||xn). Let RP.CktE(C) = (p1, . . . , pm). Note that pi, for every i, is
a degree 3 polynomial in F2[y1, . . . ,yn, r1, . . . , rN ]. Construct polynomial p̂i ∈
F2[y1, . . . ,yn, , r1,1, . . . , rn,N ] by replacing rj , for every j ∈ [N ], in pi by the
polynomial

∑n
k=1 rk,j . Note that p̂i is still a degree 3 polynomial.

Pi samples randomness ri,j , for every j ∈ [N ]. For every j ∈ [m], all the

parties execute the protocol Π
3POLY{p̂j}
sh . The input of Pi is (xi, ri,1, . . . , ri,N )

in this protocol. In the end, every party receives αj = p̂j(x1, . . . , xn), for every
j ∈ [m]. Every party then executes D(α1, . . . , αn) to obtain α∗. It outputs α∗.



Theorem 10. Assuming the security of Π
3POLY{p}
sh and security of RP, ΠF

sh is
a robust semi-honest secure MPC protocol satisfying Definition 5 as long as

Π
3POLY{p}
sh satisfies Definition 5.

The proofs can be found in the full version of the paper.

4 Five Round Malicious MPC

Overview. We start by giving an overview of our construction. We want to use
the robust semi honest MPC as the basis for our construction, but its security
is only defined in the semi-honest setting. We enforce the semi-honest setting by
having the players prove, in parallel, that they computed the robust semi honest
MPC honestly. Players prove that (1) they computed the first three rounds of
the robust semi honest MPC honestly; and (2) they committed its input and
randomness used in the robust semi honest MPC to every other party using an
extractable commitment scheme. To do so, we use a four round input delayed
proof system, where the statement for the proof can be delayed till the final
round. This lets players send the final round of their proof in the fourth round.
Before proceeding, we verify each of the proofs received to ensure everyone is
behaving in an honest manner. Next, to prove that the last round of the robust
semi honest MPC is computed correctly, we use another instance of the four
round input delayed proof system. The first three rounds run in parallel with
the first three rounds of the protocol, but the last round of the proof system is
delayed till the fifth round, after computing the last round of the robust semi
honest MPC. This gives the total of five rounds.

Construction. For construction of the protocol, we require the following tools:

1. A 3-round “rewinding-secure” extractable commitment scheme Πrext =
〈Crext, Rrext〉 (refer to definition in section 2.5). We require the commitments
to be well formed, where this property is defined in section 2.5. Since there
will be commitments in both directions for every pair of players, we intro-
duce notation for individual messages of the protocol. πj

rextk→i
refers to the

j-th round of the Pk’s commitment to Pi.
Our protocol will require both πj

rextk→i
and πj

rexti→k
to be sent in round j,

where the latter is j-th round of Pi’s commitment to Pk.
2. A 4-round robust semi honest MPC protocol ΠrMPC (refer to definition

5) that has a next-message function nextMsgΠrMPC which, for player Pi,

on input (xi, ri,m
1, · · · ,mj) returns mj+1

i , the message Pi broadcasts to
all other players in the (j + 1)-th round as a part of the protocol. Here

mj = (mj
1, · · · ,mj

n) consists of all the messages sent during round j of the
protocol. The robust semi honest MPC also consists of a function OutΠrMPC

that computes the final output y.
3. Two 4-round delayed-input parallel non-malleable zero-knowledge protocols

(refer to definition 4). We use a minor variant of the NMZK protocol in
[9], where we commit to the witness in the first round of the non-malleable



commitment instead of committing to a random mask as in the original
protocol. (Our proof will make non-black box use of the NMZK.) 11 Πnmzk =
〈Pnmzk, Vnmzk〉 for the language

L =
{

({τk = (π1
rexti→k

, π2
rexti→k

, π3
rexti→k

)}k∈[n]\{i}, idi,mrMPC = (m1,m2,m3
i )) :

∃(xi, ri, {decrexti→k
}k∈n) s.t.

(
(∀ k : τk is a well formed commitment

of (xi, ri)) AND (m1
i = nextMsgΠrMPC(xi, ri) AND m

2
i =

nextMsgΠrMPC(xi, ri,m
1) AND m3

i = nextMsgΠrMPC(xi, ri,m
1,m2) )

)}
and Π̂nmzk = 〈P̂nmzk, V̂nmzk〉 for the language

L̂ =
{

({τk = (π1
rexti→k

, π2
rexti→k

, π3
rexti→k

)}k∈[n]\{i}, idi,mrMPC = (m1,m2,m3,

m4
i )) : ∃(xi, ri, {decrexti→k

}k∈n) s.t.
(

(∀ k : τk is a well formed

commitment of (xi, ri)) AND (m4
i = nextMsgΠrMPC(xi, ri,m

1,m2,m3))
)}

Similar to non-malleable commitment, we represent by πj
nmzkk→i

and π̂j
nmzkk→i

the messages sent in the j-th round of Pk’s proof to Pi for an instance of L
and L̂ respectively.
Here L consists of instances where the player with identifier idi, Pi, correctly
computes the first 3 rounds of the robust semi honest MPC with inputs
(xi, ri), and commits to this input to ever other player. Likewise, L̂ consists
of instances where the player with identifier idi, Pi, correctly computes the
4-th round of the robust semi honest MPC with inputs (xi, ri), and commits
to this input to ever other player.

Let P = {P1, · · · , Pn} be the set of parties and {id1, · · · , idn} denote their
corresponding unique identifiers (one can think of idi = i). The input and ran-
domness (xi, ri) to the robust semi honest MPC for player Pi is fixed in the
beginning of the protocol.

The protocol instructs each player Pi to compute a message M j
i for round

j and broadcasts it over the simultaneous broadcast channel. Thus in round j,
messages (M j

1, · · · ,M j
n) are simultaneously broadcast.

The protocol is detailed below. For ease of notation, we shall assume the that
security parameter n is an implicit argument to each of the functions.

Round 1. Each player Pi computes the message M1
i to be sent in the first round

as follows:

11 We can alternatively use the original NMZK protocol in [9], but we use the variant
here for simplicity of exposition. We are able to do this because the witness is known
in the first round.



1. Compute independently, with fresh randomness, the first (committer) mes-
sage of the “rewinding secure” extractable commitment for every other
player. i.e., ∀k ∈ [n] \ {i}

(π1
rexti→k

, deci→k)← Crext((xi, ri))

Set π1
rexti

:= (π1
rexti→1

, · · · , π1
rexti→i−1

,⊥, π1
rexti→i+1

, · · · , π1
rexti→n

).
2. Compute independently, with fresh randomness, the first (verifier) message

of both non-malleable zero-knowledge protocols for every other player. i.e.,
∀k ∈ [n] \ {i}

π1
nmzkk→i

← Vnmzk(idk, `), π̂1
nmzkk→i

← V̂nmzk(idk, ̂̀)
where ` and ̂̀ are the lengths of the input delayed statements for L and L̂
respectively.
Set

π1
nmzki

:= (π1
nmzk1→i

, · · · , π1
nmzki−1→i

,⊥, π1
nmzki+1→i

, · · · , π1
nmzkn→i

)

π̂1
nmzki

:= (π̂1
nmzk1→i

, · · · , π̂1
nmzki−1→i

,⊥, π̂1
nmzki+1→i

, · · · , π̂1
nmzkn→i

)

M1
i is now defined as,M1

i := (π1
rexti , π

1
nmzki

, π̂1
nmzki

). Broadcast M1
i and receive

M1
1 , · · · ,M1

i−1,M
1
i+1, · · · ,M1

n .

Round 2. Each player Pi computes the message M2
i to be sent in the second

round as follows:

1. Compute the second message of the “rewinding secure” extractable commit-
ment in response to the messages from the other parties. i.e., ∀k ∈ [n] \ {i}

π2
rextk→i

← Rrext(π
1
rextk→i

)

where π1
rextk→i

can be obtained from π1
rextk in M1

k .
Set π2

rexti
:= (π2

rext1→i
, · · · , π2

rexti−1→i
,⊥, π2

rexti+1→i
, · · · , π2

rextn→i
).

2. Compute the second message of both non-malleable zero-knowledge proto-
cols in response to the messages from the other parties. i.e., ∀k ∈ [n] \ {i}

wnmzki :=
(
xi, ri, {decrexti→k

}k∈[n]
)
, ŵnmzki :=

(
xi, ri, {decrexti→k

}k∈[n]
)

π2
nmzki→k

← Pnmzk(idi, `, wnmzki , π
1
nmzki→k

)

π̂2
nmzki→k

← P̂nmzk(idi, ̂̀, ŵnmzki , π̂
1
nmzki→k

)

where π1
nmzkk→i

and π̂1
nmzkk→i

can be obtained from π1
nmzkk

and π̂1
nmzkk

respec-

tively in M1
k . Set

π2
nmzki

:= (π2
nmzki→1

, · · · , π2
nmzki→i−1

,⊥, π2
nmzki→i+1

, · · · , π2
nmzki→n

)

π̂2
nmzki

:= (π̂2
nmzki→1

, · · · , π̂2
nmzki→i−1

,⊥, π̂2
nmzki→i+1

, · · · , π̂2
nmzki→n

)



3. Compute the first message of the robust semi honest MPC,

m1
i ← nextMsgΠrMPC(xi, ri).

M2
i is now defined as,M2

i := (π2
rexti , π

2
nmzki

, π̂2
nmzki

,m1
i ). Broadcast M2

i and receive
M2

1 , · · · ,M2
i−1,M

2
i+1, · · · ,M2

n .

Round 3. Each player Pi computes the message M3
i to be sent in the third round

as follows:

1. Compute the final message of the “rewinding secure” extractable commit-
ment. i.e., ∀k ∈ [n] \ {i}

π3
rexti→k

← Crext(π
1
rexti→k

, π2
rexti→k

)

where π1
rexti→k

is as computed earlier and π2
rexti→k

is obtained from π2
rextk in

M2
k . Set π3

rexti
:= (π3

rexti→1
, · · · , π3

rexti→i−1
,⊥, π3

rexti→i+1
, · · · , π3

rexti→n
).

2. Compute the third message of both non-malleable zero-knowledge protocols.
i.e., ∀k ∈ [n] \ {i}

π3
nmzkk→i

← Vnmzk(idk, π
1
nmzkk→i

, π2
nmzkk→i

)

π̂3
nmzkk→i

← V̂nmzk(idk, π̂
1
nmzkk→i

, π̂2
nmzkk→i

)

where π1
nmzkk→i

is as computed earlier and π2
nmzkk→i

is obtained from π2
nmzkk

in M2
k . π̂1

nmzkk→i
and π̂2

nmzkk→i
are obtained similarly.

Set

π3
nmzki

:= (π3
nmzk1→i

, · · · , π3
nmzki−1→i

,⊥, π3
nmzki+1→i

, · · · , π3
nmzkn→i

)

π̂3
nmzki

:= (π̂3
nmzk1→i

, · · · , π̂3
nmzki−1→i

,⊥, π̂3
nmzki+1→i

, · · · , π̂3
nmzkn→i

)

3. Compute the second message of the robust semi honest MPC,

m2
i ← nextMsgΠrMPC(xi, ri,m

1)

where m1 := (m1
1, · · · ,m1

n).

M3
i is now defined as,M3

i := (π3
rexti , π

3
nmzki

, π̂3
nmzki

,m2
i ). BroadcastM3

i and receive
M3

1 , · · · ,M3
i−1,M

3
i+1, · · · ,M3

n .

Round 4. Each player Pi computes the message M4
i to be sent in the fourth

round as follows:

1. Compute the third message of the robust semi honest MPC,

m3
i ← nextMsgΠrMPC(xi, ri,m

1,m2)

where m1 := (m1
1, · · · ,m1

n) and m2 := (m2
1, · · · ,m2

n).



2. Set the statement and witness for the non-malleable zero-knowledge language
L.

∀k : τk :=
(
π1
rexti→k

, π2
rexti→k

, π3
rexti→k

)
mrMPC :=

(
m1,m2,m3

i

)
xnmzki :=

(
{τk}k∈[n], idi,mrMPC

)
where |xnmzki | = `.

3. Compute the final message of the non-malleable zero-knowledge protocol for
language L. i.e., ∀k ∈ [n] \ {i}

π4
nmzki→k

← Pnmzk(idi, `, xnmzki , π
1
nmzki→k

, π2
nmzki→k

, π3
nmzki→k

)

where π1
nmzki→k

is obtained from π1
nmzkk

in M1
k . Similarly, π3

nmzki→k
is be ob-

tained from π3
nmzkk

in M3
k . π2

nmzki→k
is as computed earlier.

Set

π4
nmzki

:= (π4
nmzki→1

, · · · , π4
nmzki→i−1

,⊥, π4
nmzki→i+1

, · · · , π4
nmzki→n

)

M4
i is now defined as, M4

i := (π4
nmzki

,m3
i ). Broadcast M4

i and receive
M4

1 , · · · ,M4
i−1,M

4
i+1, · · · ,M4

n .

Round 5. Each player Pi computes the message M5
i to be sent in the fifth round

as follows:

1. Check if all the proofs in the protocol are accepting. The proof from Pk to Pj

is accepting if Pk has computed the first 3 rounds of the robust semi honest
MPC correctly and has committed to the same inputs, used in the robust
semi honest MPC, to every other player.
First, compute the statement xnmzkk for each player Pk. i.e., ∀k ∈ [n] \ {i}

∀t : τt :=
(
π1
rextk→t

, π2
rextk→t

, π3
rextk→t

)
mrMPCk

:=
(
m1,m2,m3

k

)
xnmzkk :=

(
{τt}t∈[n], idk,mrMPCk

)
Next, check if every proof is valid.

if ∃k, j s.t accept 6= Vnmzk(idk, xnmzkk , π
1
nmzkk→j

, π2
nmzkk→j

, π3
nmzkk→j

, π4
nmzkk→j

)

then output ⊥ and abort

else continue

This can be done because the proofs are public coin. Moreover this is done
to avoid the case that some honest parties continue on to the next round,
but the others abort.

2. Compute the final message of the robust semi honest MPC,

m4
i ← nextMsgΠrMPC(xi, ri,m

1,m2,m3)

where m1 := (m1
1, · · · ,m1

n) , m2 := (m2
1, · · · ,m2

n) and m3 := (m3
1, · · · ,m3

n).



3. Set the statement and witness for the non-malleable zero-knowledge language
L̂.

∀k : τk :=
(
π1
rexti→k

, π2
rexti→k

, π3
rexti→k

)
m̂rMPCi

:=
(
m1,m2,m3,m4

i

)
x̂nmzki :=

(
{τk}k∈[n], m̂rMPCi

, idi
)

where |x̂nmzki→k
| = ̂̀.

4. Compute the final message of the non-malleable zero-knowledge protocol for
language L̂. i.e., ∀k ∈ [n] \ {i}

π̂4
nmzki→k

← P̂nmzk(idi, ̂̀, x̂nmzki , π̂
1
nmzki→k

, π̂2
nmzki→k

, π̂3
nmzki→k

)

where π̂1
nmzki→k

is obtained from π̂1
nmzkk

in M1
k . Similarly, π̂3

nmzki→k
is obtained

from π̂3
nmzkk

in M3
k . π̂2

nmzkk→i
is as computed earlier.

Set π̂4
nmzki

:= (π̂4
nmzki→1

, · · · , π̂4
nmzki→i−1

,⊥, π̂4
nmzki→i+1

, · · · , π̂4
nmzki→n

)

M5
i is now defined as, M5

i := (m4
i , π̂

4
nmzki

). Broadcast M5
i and receive M5

1 ,
· · · ,M5

i−1,M
5
i+1, · · · ,M5

n .

Output computation. To compute the output, Pi performs the following steps:

1. Check if all the proofs in the protocol are accepting. The proof from Pk to
Pj is accepting if Pk has computed the 4-th round of the robust semi honest
MPC correctly and has committed to the same inputs, used in the robust
semi honest MPC, to every other party.
First, compute the statement x̂nmzkk for each player Pk. i.e., ∀k ∈ [n] \ {i}

∀t : τt :=
(
π1
rextk→t

, π2
rextk→t

, π3
rextk→t

)
m̂rMPCk

:=
(
m1,m2,m3,m4

k

)
x̂nmzkk :=

(
{τt}t∈[n], idk, m̂rMPCk

)
Next, check if every proof is valid.

if ∃k, j s.t accept 6= V̂nmzk(idk, x̂nmzkk , π̂
1
nmzkk→j

, π̂2
nmzkk→j

, π̂3
nmzkk→j

, π̂4
nmzkk→j

)

then output ⊥ and abort

else continue

2. Compute the output of the protocol as

y ← OutΠrMPC(xi, ri,m
1,m2,m3,m4)

Theorem 11. Assuming security of the “rewinding secure” extractable com-
mitment, robust semi-honest MPC and NMZK, the above described five round
protocol is secure against malicious adversaries.



We use the standard definition of security with abort against malicious ad-
versaries (see [15] for details).

Extractable commitments and NMZK can be instantiated from DL, while the
robust semi-honest MPC can be instantiated from DDH. Thus, all the required
primitives can be instantiated from DDH.

The complete proof can be found in the full version of our paper, but we
give an overview of the simulator below. Before we proceed to the simulator, we
discuss a few properties of the underlying primitives that we will need:

– Recall that simulator for the robust semi honest MPC consists of two parts.
The first part, Sim1

rMPC, simulates the first three rounds of the robust semi
honest MPC without requiring inputs or outputs of the adversary. The sec-
ond part, Sim2

rMPC, when given the inputs, random tape and outputs a sim-
ulated transcript of the last round that is consistent with the input and
randomness. Additionally, note that this simulation succeeds as long as the
adversary behaved honestly in the first three rounds of the robust semi hon-
est MPC.

– The extractor for the 3 round “rewinding secure” extractable commitment
works by rewinding the second and third round polynomial number of times.
From Lemma 1, we know that if the commitments are well formed, extraction
fails with only negligible probability.

– The simulator of the NMZKs works by extracting a trapdoor. Specifically,
it rewinds the second and third round polynomial number of times to get
signatures for two distinct messages. Further, this extraction fails only with
negligible probability.

– Combining the above two properties, we see that the rewindings of NMZK
and the “rewinding secure” extractable commitment are “composable” be-
cause they rewind in the same rounds in our MPC protocol.

We describe the ideal world simulator Sim below. We shall denote the set of
honest players by H and the set of corrupted players by PA.

1. The first three rounds of protocol are simulated as follows:

– For the robust semi honest MPC, since Sim1
rMPC doesn’t require any input

or output to simulate the first three rounds, we use it directly to obtain{
m1

i ,m
2
i ,m

3
i

}
Pi∈H

. Since the robust semi honest MPC starts from the

second round,
{
m3

i

}
Pi∈H

is sent in the 4th round with the last round of
the NMZK for L, but we group them here for simplicity.

– For simulating proofs for the NMZKs, we deal with three different cases:

(a) For proofs from the adversary, the honest player acts as a verifier. In
this case, fix a random tape for the verifier and respond honestly to
adversary queries.

(b) For proofs within honest players, we fix the random tape for the
verifiers and thus can trivially compute the trapdoor in the NMZKs
for both languages using the verifier’s random tape.



(c) For proofs from honest players to the adversary, we run the simu-

lators Simnmzk and Ŝimnmzk to simulate the first three rounds. This
internally rewinds polynomial many times to obtain the trapdoors.
If the extractor fails, output ⊥nmzk and abort.

– For the “rewinding secure” extractable commitment, we deal with two
cases:
(a) For commitments from the honest players to the adversary, we just

commit to the all ‘0’ string. We do this for commitments within the
honest players as well.

(b) For commitments where the honest players are recipients, run the
extractor to send responses and extract the values inside the com-
mitments. If extractor fails, output ⊥rext and abort.

As noted earlier, the rewinding performed within the NMZK simulator and
the extractor for “rewinding secure” extractable commitments work in the
same rounds and can be performed for each without affecting the other.

2. Simulate the last round of the NMZK for L in two steps.
– For proofs from the honest parties to the adversary, use Simnmzk and the

trapdoors obtained earlier to compute the last round of the NMZK for
L.

– For proofs within honest parties, the trapdoor is trivially known to the
simulator and thus compute the last round of the NMZK for L.

On receiving the proofs for L from the adversary, check if all the received
proofs are valid. This is equivalent to checking if all proofs in the protocol
verify. If the check fails, send abort to the ideal functionality and exit.

3. We perform an additional check before we obtain the final round of the ro-
bust semi honest MPC. Given m1,m2,m3, {(xk, rk)}Pk∈PA , we check if the
adversary has followed the computation in the first three rounds correctly.
If the check fails we output ⊥1

rMPC and abort. It is implicit that the proofs
for L have verified prior to this step.

4. Send the extracted inputs {xk}Pk∈PA to the ideal functionality to obtain the
output y.
Compute the final round (of all players) of the robust semi honest MPC as{

m4
i

}
Pi∈P

← Sim2
rMPC

(
m1,m2,m3, {xk}Pk∈PA , {rk}Pk∈PA , y

)
.

Additionally, simulate the last round of the NMZK for L̂. This is done in
two steps

– For proofs from the honest parties to the adversary, use Ŝimnmzk and the
trapdoors obtained earlier to compute the last round of the NMZK for
L̂.

– For proofs within honest parties, the trapdoor is trivially known to the
adversary and thus compute the last round of the NMZK for L̂.

5. On receiving the proofs for L̂ from the adversary check if all the received
proofs are valid. If the check fails, send abort to the ideal functionality.
Otherwise, on receiving

{
m∗4k

}
Pk∈PA

from the adversary, we check if it

matches the transcript simulated by Sim2
rMPC earlier. If not, but the proofs

above have verified output ⊥2
rMPC and abort. Else send continue to the ideal

functionality.



5 Four Round Malicious MPC

Overview. We give an overview of our four round construction. At a high-level,
the four round protocol is very similar to the five round protocol (from the
previous section) but to compress the number of rounds we cannot have two
instances of the four-round NMZK as before. Instead, we use a 3 round input-
delayed strong WI argument of knowledge (with appropriate non-malleability
properties), ending in the third round, to enable parties to prove their honest
behavior of the first three rounds. This lets the players send the fourth message
in the clear if the proof at the end of the third round verifies. For the output
round, we use a four-round NMZK as before to prove honest behavior.

The three-round input-delayed proof system that we use to establish honest
behavior in the first three rounds is depicted in figure 1. We do not argue its
security separately, but within the hybrids of our overall security proof.

P (Pi) V (Pk)

. . . . . . . . . . . . . . . . . . . . . . . . . Round 1 . . . . . . . . . . . . . . . . . . . . . . . . .

π1
WIPoKi→k

f(r), π1
nmcomi→k

. . . . . . . . . . . . . . . . . . . . . . . . . Round 2 . . . . . . . . . . . . . . . . . . . . . . . . .

π2
nmcomi→k

(w)

π2
WIPoKi→k

. . . . . . . . . . . . . . . . . . . . . . . . . Round 3 . . . . . . . . . . . . . . . . . . . . . . . . .

Set x for WIPoK π3
WIPoKi→k

Fig. 1. Components of the proof system

Proof for a language L using this proof system requires:

– Prover committing to a witness w using a 2-round non-malleable commit-
ment [28]. The relevance of w will become clear shortly.

– The verifier sends the image of the one way permutation applied on a random
string r.



– An input delayed witness indistinguishable proof of knowledge (WIPoK)
proving knowledge of either: (1) the decommitment of the non-malleable
commitment to w such that (x,w) ∈ RelL; or (2) the pre-image r of the one
way permutation.

Informally speaking, one can think of the above construction as a strong input
delayed WI argument of knowledge with non-malleability properties.

Construction. For construction of the protocol, we require the tools described
below. The exact security levels for each of these primitives are discussed at the
end of the construction.

1. A one-way permutation f .
2. A 3-round “rewinding secure” extractable commitment scheme Πrext =
〈Crext, Rrext〉 (refer to definition in section 2.5).

3. An instance of a 2-round (private coin) extractable non-malleable commit-
ment scheme Πnmcom = 〈Cnmcom, Rnmcom〉. These can be constructed from
the assumption of sub-exponentially hard DDH [28]. 12

We will use the following notation throughout the protocol for the various
commitment schemes

τrexti→k
:=
(
π1
rexti→k

, π2
rexti→k

, π3
rexti→k

)
; τnmcomi→k

:=
(
π1
nmcomi→k

, π2
nmcomi→k

)
4. A 4-round robust semi-honest MPC protocol ΠrMPC as described in the five

round protocol.
5. A 3 round input delayed witness indistinguishable proof of knowledge

(WIPoK) protocol ΠWIPoK = (PWIPoK, VWIPoK) for the language LWIPoK. We re-
quire the protocols to be public coin and instantiate them using the Lapidot-
Shamir protocol [29].
For the sake of readability and clarity, we modularize the language to obtain
the final language.

L =
{

({τrexti→k
, r1rexti→k

}k∈[n]\{i}, idi,mi = (m1,m2,m3
i )) :

∃(xi, ri, {decrexti→k
}k∈[n]) s.t.

(
(∀ k : τrexti→k

is a well formed

commitment of
(
(xi, ri)⊕ r1rexti→k

)
) AND (m1

i = nextMsgΠrMPC(xi, ri)

AND m2
i = nextMsgΠrMPC(xi, ri,m

1) AND

m3
i = nextMsgΠrMPC(xi, ri,m

1,m2) )
)}

L is the language which consists of instances where player Pi correctly com-
putes the first three rounds of the robust semi honest MPC with inputs
(xi, ri) and commits to (xi, ri) ⊕ r1rexti→k

to every other player Pk in the
“rewinding secure” extractable commitment. Additionally, we require that

12 While in all other cases, we have required the use of public coins, we can make do
with a private coin protocol here. This will become apparent in the proof.



the commitments in each of these “rewinding secure” extractable commit-
ment is well formed. We define xLi

:= ({τrexti→k
, r1rexti→k

}k∈[n]\{i}, idi,mi =
(m1,m2,m3

i )).

LWIPoK =
{

(xLi
, idk, τnmcomi→k

, yk→i) : ∃(w, decnmcomi→k
, ρ) s.t.(

( (xLi
, w) ∈ RelL ) AND ( (w, decnmcomi→k

, idi) is a valid

decommitment of τnmcomi→k
)
)
OR f(ρ) = yk→i

}
LWIPoK consists of instances where player Pi proves to player Pk that either

– it behaved honestly, i.e. it has a witness w such that (xLi , w) ∈ RelL,
and it has committed to this w in the non-malleable commitment; or

– it possesses the trapdoor mentioned earlier.
We define xWIPoKi→k

:= (xLi
, idk, τnmcomi→k

, yk→i).
6. A 4-round delayed-input parallel non-malleable zero-knowledge protocols (re-

fer to definition 4). We use the NMZK protocol in [9]. Our proof will make
non-black box use of the NMZK. Πnmzk = 〈Pnmzk, Vnmzk〉 for the language

L̂ =
{

({τrexti→k
, r1rexti→k

}k∈[n]\{i}, idi,mi = (m1,m2,m3,m4
i )) :

∃(xi, ri, {decrexti→k
}k∈n) s.t.

(
( ∀ k : τrexti→k

is a well formed

commitment of
(
(xi, ri)⊕ r1rexti→k

)
) AND

( m4
i = nextMsgΠrMPC(xi, ri,m

1,m2,m3) )
)}
.

L̂ is the language which consists of instances where player Pi (a) correctly
computed the final round of the robust MPC with inputs (xi, ri); and (b)
commits to (xi, ri) ⊕ r1rexti→k

to every other player Pk in the “rewinding
secure” extractable commitment such that they are well formed. We define
x̂Li

:= ({τrexti→k
, r1rexti→k

}k∈[n]\{i}, idi,mi = (m1,m2,m3,m4
i )).

We briefly describe each round of the protocol. A complete description of the
protocol can be found in the full version.

Round 1. Each player Pi computes the message M1
i to be broadcast in the first

round constituting of:

1. The first (committer) message of the “rewinding secure” extractable commit-
ment for every other player, computed independently with fresh randomness.

2. The first message of the robust semi honest MPC.
3. The different components that make up the proof system for L, computed

independently for every other player. This includes the image of the one-way
permutation on a random string, the first (receiver) message of the non-
malleable commitment and the first message for the input delayed witness
indistinguishable proof of knowledge (WIPoK) for LWIPoK.

4. The first (verifier) message of the non-malleable zero-knowledge protocol for
every other player, computed independently with fresh randomness.



Round 2. Each player Pi computes the message M2
i to be broadcast in the second

round consisting of:

1. The second message of the “rewinding secure” extractable commitment in
response to the messages from the other parties.

2. The second message of the robust semi honest MPC,
3. The second message for the different components in the proof system for L.

This includes the second message of the non-malleable commitment scheme
and the second message of the input delayed WIPoK for LWIPoK, in response
to messages from every other player.

4. The the second message of the non-malleable zero-knowledge protocols in
response to the messages from the other parties.

Round 3. Each player Pi computes the message M3
i to be broadcast in the third

round constituting of:

1. The final message of the “rewinding secure” extractable commitment.
2. (xi, ri) masked with the randomness sent in the “rewinding secure” ex-

tractable commitment. Here (xi, ri) is the input and randomness used by
Pi in the robust semi honest MPC.

3. The third message of the robust semi honest MPC.
4. The final message WIPoK for language LWIPoK.
5. The third message of the non-malleable zero-knowledge protocol.

Round 4. Each player Pi computes the message M4
i to be broadcast in the fourth

round:

1. The final message of the robust semi honest MPC. Prior to computing the
final message, Pi checks if proofs for LWIPoK between every pair of players
are accepting. This is possible since the proofs are public coin and have been
previously broadcast. If the proofs fail, Pi aborts the protocol.

2. The final message of the non-malleable zero-knowledge protocol for language
L̂.

Output Computation. To compute the output, Pi performs the following steps:

1. Check if proofs between every pair of players for L̂WIPoK are accepting. As
before, abort if the check fails.

2. Compute the output of the protocol.

We require the following security levels for the primitives used in our
construction, which are achieved by setting parameters accordingly: (1)
TrMPC(1−3)

, TWIPoK >> Trext, TSign; (2) TrMPC(1−3)
>> Tnmcom; (3) Tnmcom >> Tf ;

(4) Trext >> Tf ; where Tprim means that the primitive prim is secure against ad-
versaries running in time Tprim, and T << T ′ means that T · poly(n) < T ′. Here
nmcom is with respect to the two-round non-malleable commitment. TrMPC(1−3)

means that we require the first three rounds of our robust MPC to be indis-
tinguishable (for adversaries running in time TrMPC(1−3)

) for any two sets of



inputs and randomnesses. In fact, in our construction, the simulator Sim1 works
by setting a random input to generate the first three rounds. Hence, for our
construction, we require TrMPC(1−3)

-security for the following two distributions:

RealExecA
1

(t−1)(x, z) and Sim1(z).

Theorem 12. Assuming one-way permutations, TWIPoK-security of the input de-
layed WIPoK, Tnmcom-security of the two round non-malleable commitment, Trext-
security of the “rewinding secure” extractable commitment, TrMPC(1−3)

-security of
the first three rounds of the robust semi-honest MPC, and security of the NMZK,
the described four round protocol is secure against malicious adversaries.

All the primitives above with the desired security levels can be instantiated
from sub-exponential DDH. The proof of the above theorem can be found in the
full version of the paper.
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