
Indistinguishability Obfuscation for Turing

Machines: Constant Overhead and Amortization

Prabhanjan Ananth⋆ Abhishek Jain⋆⋆ Amit Sahai⋆ ⋆ ⋆

Abstract. We study the asymptotic efficiency of indistinguishability
obfuscation (iO) on two fronts:

– Obfuscation size: Present constructions of indistinguishability ob-
fuscation (iO) create obfuscated programs where the size of the ob-
fuscated program is at least a multiplicative factor of security pa-
rameter larger than the size of the original program.
In this work, we construct the first iO scheme for (bounded-input)
Turing machines that achieves only a constant multiplicative over-
head in size. The constant in our scheme is, in fact, 2.

– Amortization: Suppose we want to obfuscate an arbitrary polyno-
mial number of (bounded-input) Turing machines M1, . . . ,Mn. We
ask whether it is possible to obfuscate M1, . . . ,Mn using a single
application of an iO scheme for a circuit family where the size of any
circuit is independent of n as well the size of any Turing machine
Mi.
In this work, we resolve this question in the affirmative, obtaining a
new bootstrapping theorem for obfuscating arbitrarily many Turing
machines.

In order to obtain both of these results, we develop a new template for
obfuscating Turing machines that is of independent interest and likely
to find applications in future. The security of our results rely on the

⋆University of California Los Angeles. Email: prabhanjan@cs.ucla.edu. This work
was partially supported by grant #360584 from the Simons Foundation and the grants
listed under Amit Sahai.

⋆⋆Johns Hopkins University. Email: abhishek@cs.jhu.edu. Supported in part by
DARPA/ARL Safeware Grant W911NF-15-C-0213.
⋆ ⋆ ⋆University of California Los Angeles. Email: sahai@cs.ucla.edu Research sup-
ported in part from a DARPA/ARL SAFEWARE award, NSF Frontier Award 1413955,
NSF grants 1619348, 1228984, 1136174, and 1065276, BSF grant 2012378, a Xerox
Faculty Research Award, a Google Faculty Research Award, an equipment grant from
Intel, and an Okawa Foundation Research Grant. This material is based upon work
supported by the Defense Advanced Research Projects Agency through the ARL under
Contract W911NF-15-C-0205. The views expressed are those of the authors and do not
reflect the official policy or position of the Department of Defense, the National Science
Foundation, or the U.S. Government.

1

existence of sub-exponentially secure iO for circuits and re-randomizable
encryption schemes.

1 Introduction

The notion of indistinguishability obfuscation (iO) [11] guarantees that given
two equivalent programs M0 and M1, their obfuscations are computationally
indistinguishable. The first candidate for general-purpose iO was given by Garg
et al. [32]. Since their work, iO has been used to realize numerous advanced
cryptographic tasks, such as functional encryption [32], deniable encryption [55],
software watermarking [28] and PPAD hardness [14], that previously seemed
beyond our reach.

Over the last few years, research on iO constructions has evolved in two di-
rections. The first line of research concerns with developing iO candidates with
stronger security guarantees and progressively weaker reliance on multilinear
maps [31], with the goal of eventually building it from standard cryptographic as-
sumptions. By now, a large sequence of works (see, e.g., [32,10,21,53,39,3,56,9,4,15,5,49,51,34])
have investigated this line of research. The works of [51,34] constitute the state
of the art in this direction, where [51] give a construction of iO for circuits from
a concrete assumption on constant-degree multilinear maps, while [34] gives an
iO candidate in a weak multilinear map model [52] that resists all known attacks
on multilinear maps [27,36,18,30,29,52].

Another line of research concerns with building iO candidates with improved
efficiency in a generic manner. The goal here is to develop bootstrapping theo-
rems for iO that achieve greater efficiency when obfuscating different classes of
programs. This started with the work of Garg et al. [32], which showed, roughly
speaking, that iO for functions computed by branching programs implies iO for
functions computed by general boolean circuits. While this first bootstrapping
theorem achieved iO for all polynomial-time circuits, it still left open the ques-
tion of obfuscating natural representations of the original program (for example,
Turing machines).

Last year, this question was addressed in multiple works [13,24,48] showing
that iO for circuits implies iO for Turing Machines with bounded-length in-
puts (see also [23,26,22,2] for extensions). Moving to the Turing Machine model
yields significant efficiency improvements over the circuit model since the size
of a Turing Machine may be much smaller than the corresponding circuit size.
Importantly, it also achieves per-input running time, as opposed to incurring
worst-case running time that is inherent to the circuit model of computation.

Our Work. In this work, we continue the study of bootstrapping mechanisms
for iO to achieve further qualitative and quantitative gains in the asymptotic effi-
ciency of obfuscation. We note that despite the recent advances, existing mecha-
nisms for general-purpose iO remain highly inefficient and incur large polynomial
overhead in the size of the program being obfuscated. We seek to improve the
state of affairs on two fronts:

• Size Efficiency: First, we seek to develop obfuscation mechanisms where the
size of an obfuscated program incurs only a small overhead in the size of the
program being obfuscated.

• Amortization: Second, we seek to develop iO amortization techniques, where
a single expensive call to an obfuscation oracle (that obfuscates programs of
a priori fixed size) can be used to obfuscate arbitrarily many programs.

We expand on each of our goals below. Below, we restrict our discussion to
Turing machine obfuscation, which is the main focus of this work.

I. Size Efficiency of iO. All known mechanisms for iO yield obfuscated pro-
grams of size polynomial in the size of the underlying program and the security
parameter, thus incurring a multiplicative overhead of at least the security pa-
rameter in the size of the underlying program.1 The works of [19,1,46] achieve
these parameters by relying on (public-coin) differing inputs obfuscation [11,46].
In contrast, [13,24,48,23,26,22,2] only rely upon iO for circuits; however, these
works are restricted to programs with bounded-length inputs, and as such incur
overhead of poly(λ, |M |, L), where L is the bound on the input length.

In this work, we ask the question:

Is it possible to realize general-purpose iO with
constant multiplicative overhead in program size?

More precisely, we ask whether it is possible to obfuscate bounded-input Turing
Machines such that the resulting machine is of size c · |M |+poly(λ,L), where c
is a universal constant and L is the input length bound.

Achieving constant multiplicative overhead has been a major goal in many
areas of computer science, from constructing asymptotically good error correct-
ing codes, to encryption schemes where the size of the ciphertext is linear in the
size of the plaintext. To the best of our knowledge, however, this question in
the context of program obfuscation has appeared to be far out of reach in the
context of basing security on iO itself.2

II. iO Amortization. We next consider the case of obfuscating multiple Turing
machines. Since known circuit obfuscation mechanisms are inefficient not just in
terms of obfuscation size but also the obfuscation time, we would like to minimize
the use of circuit obfuscation for obfuscating multiple Turing machines. We ask
the following question:

1 For the case of circuits, the recent work of [15] gives an iO construction where the
obfuscated circuit incurs only a constant overhead in the size of the underlying circuit
but polynomial dependence on the depth of the circuit. While our focus is on Turing
machine obfuscation, our results also yield improvements for circuit obfuscation. We
refer the reader to Section 1.4 for a comparison of our results with [15].

2 We observe that using (public-coin) differing input obfuscation, a variant of the
construction given by [19,1,46] where FHE is combined with hybrid encryption, can
yield constant multiplicative overhead. However, the plausibility of differing input
obfuscation has come under scrutiny [33,12]. Thus, in this work, we focus only on
achieving iO with constant multiplicative overhead from the existence of iO (without
constant multiplicative overhead) itself.

Is it possible to obfuscate arbitrarily many Turing machines by using a single
invocation to an iO obfuscator for circuits of a priori fixed polynomial size?

More precisely, let O be an iO obfuscator for circuits of a fixed polyno-
mial size. Then, we want the ability to obfuscate multiple Turing machines
M1, . . . ,Mn for an unbounded polynomial n, by making a single invocation to
O. As above, we study this question for Turing machines with an a priori fixed
input length bound L, and allow O to depend on L.

Note that a successful resolution of this question will yield an amortization
phenomenon where arbitrarily many Turing machines can be obfuscated using
(relatively) less expensive cryptographic primitives and only a single expensive
invocation to a circuit obfuscator.

Bounded-input vs Unbounded-input Turing machines. We note that if
we could build iO for Turing machines with unbounded input length, then both
of our aforementioned questions become moot. This is because one could simply
obfuscate a universal Turing machine and pass on the actual machine that one
wishes to obfuscate as an (encrypted) input. The state of the art in iO research,
however, is still limited to Turing machines with bounded input length. In this
case, the above approach does not work since the size of the obfuscation for
bounded-input TMs grows polynomially in the input length bound.

In a recent work, [50] provide a transformation from output compressing
randomized encodings for TMs to iO for unbounded-input TMs. However, no
construction (with a security reduction) is presently known for such randomized
encodings. In particular, in the same work, [50] show that such randomized
encodings, in general, do not exist.

1.1 Our Results

I. iO with Constant Multiplicative Overhead. Our first result is a con-
struction of iO for Turing machines with bounded input length where the size
of obfuscation of a machine M is only 2|M | + poly(λ,L), where L is the in-
put length bound. Our construction is based on sub-exponentially secure iO for
general circuits and one-way functions.

Theorem 1 (Informal). Assuming sub-exponentially secure iO for general cir-
cuits and sub-exponentially secure re-randomizable encryption schemes, there ex-
ists an iO for Turing Machines with bounded input length such that the size of
the obfuscation of a Turing machine M is 2 · |M | + poly(λ,L), where L is an
input length bound.

Re-randomizable encryption schemes can be based on standard assumptions
such as DDH and learning with errors.

In order to obtain this result, we develop a new template for obfuscating Turing
machines starting from indistinguishability obfuscation for circuits. An obfusca-
tion of Turing machine M in our template comprises of:

– A reusable encoding of M .
– An obfuscated input encoder circuit, that takes as input x and produces an

encoding of x. This encoding is then decoded, together with the (reusable)
encoding of M , to recover M(x).

Our template exhibits two salient properties: (a) the reusable encoding of M
is constructed from standard cryptographic primitives, without any use of iO.
(b) The size of the input encoder circuit is independent of M . In contrast, prior
templates for iO for Turing machines comprised of a single obfuscated encoder
circuit that contains M hardwired in its description, and therefore depends on
the size of M .

We use the above template to reduce the problem of construction of iO for
Turing machines with constant multiplicative overhead in size to the problem
of constructing reusable TM encodings with constant multiplicative overhead in
size. We defer discussion on the security properties associated with the reusable
encoding scheme to the technical overview (Section 1.2). As we discuss next, our
template enables some new applications.

II. A Bootstrapping Theorem for Obfuscating Multiple Programs. We
now state our second result. Using our new template for Turing machine obfus-
cation, we show how to obfuscate N = poly(λ) Turing machines M1, . . . ,MN ,
for any polynomial N , using just a single invocation to an obfuscated circuit
where the circuit size is independent of N and the size of each Mi and only
depends on the security parameter and an input length bound L for every TM
Mi. At a high level, this can be achieved by combining the input encoder circuits
corresponding to the N machines into a single circuit whose size is independent
of N .

Theorem 2 (Informal). Let iOckt be an indistinguishability obfuscation for
circuits scheme for a class of circuits Cλ,L. There exists an indistinguishability
obfuscation scheme iOtm for Turing machines with input length bound L, where
any polynomial number of Turing machines can be simultaneously obfuscated by
making a single call to iOckt.

We emphasize that in order to obtain the above result, we crucially rely on
the two aforementioned salient properties of our template. Indeed, it is unclear
how to use the prior works [13,24,48] to obtain the above result.

We remark that the above bootstrapping theorem, combined with the fact
that the reusable TM encodings in our template for TM obfuscation achieve
constant overhead in size, implies the following useful corollary:

Corollary 1. Assuming sub-exponentially secure iO for general circuits and
sub-exponentially secure re-randomizable encryption schemes, there exists an iO
scheme for Turing Machines with bounded input length such that the total size
of the obfuscations of N Turing machines M1, . . . ,MN is 2Σi|Mi|+ poly(λ,L),
where L is an input length bound.3

3 Note that, in contrast, a naive (direct) use of Theorem 1 would yield a result where
the the total size is 2Σi|Mi|+N · poly(λ,L).

We refer the reader to Section 1.3 for a brief discussion on how we obtain
Theorem 2.

III. Subsequent work: Patchable iO. In a subsequent work [7], the same
authors show how to use our template to construct patchable iO. This notion
allows for updating obfuscation of a Turing machine M to an obfuscation of
another machine M ′ with the help of patches that are privately-generated. Apart
from being a natural extension to iO, many applications of iO can be obtained
from this primitive using extremely simple transformations. At a high level,
the reason why our template finds use in their work is because they effectively
reduce the problem of patchable iO to building a patchable reusable encoding
scheme. However, their work has to deal with several conceptual issues that arise
specifically in the context of patching. We refer the reader to [7] for more details.

IV. Other Applications. Our result on iO for TMs with constant overhead in
size can be applied in many applications of iO to achieve commensurate efficiency
gains. Below we highlight some of these applications.

Functional Encryption with Constant Overhead. Plugging in our iO in the func-
tional encryption (FE) scheme of Waters [?],4 we obtain an FE scheme for Turing
machines where the size of a function key for a Turing machine M with input
length bound L is only c · |M |+poly(λ,L) for some constant c. Further, the size
of a ciphertext for any message x is only c′ · |x|+poly(λ) for some constant c′.5

The size of the function keys can be further reduced by leveraging the recent
result of [8] who construct adaptively secure FE for TMs with unbounded length
inputs, based on iO and one-way functions. Instantiating their FE construction
with our iO and the above discussed FE scheme, we obtain the first construction
of an (adaptively secure) FE scheme where the size of a function key for an
unbounded length input TM M is only c · |M |+ poly(λ) for some constant c.

Reusable Garbled Turing Machines with Constant Overhead. By applying the trans-
formations of De Caro et al. [25] and Goldwasser et al. [40] on the above FE
scheme, we obtain the first construction of Reusable Garbled TM scheme where
both the machine encodings and input encodings incur only constant multiplica-
tive overhead in the size of the machine and input, respectively. Specifically, the
encoding size of a machine M is c · |M |+ poly(λ), while the encoding size of an
input x is c1 · |x|+ c2|M(x)|+ poly(λ) for some constants c, c1, c2.

Previously, Boneh et al. [16] constructed reusable garbled circuits with addi-
tive overhead in either the circuit encoding size, or the input encoding size (but
not both simultaneously).

4 [?] presents two FE schemes: the first one only handles post-challenge key queries,
while the second one allows for both pre-challenge and post-challenge key queries.
We only consider the instantiation of the first scheme with our iO.

5 The construction of [?] already achieves the second property.

1.2 Technical Overview: New Template for Succinct iO

We now provide an overview of the main ideas underlying our results. We start
by motivating and explaining our new template for succinct iO and then explain
how we build succinct iO with constant overhead in size. Next, in Section 1.3,
we explain how we obtain our bootstrapping theorem for obfuscating arbitrarily
many Turing machine.

We start by recalling the common template for constructing iO for Turing
machines (TM) used in all the prior works in the literature [13,24,48,23,26].
Similar to these works, we focus on the restricted setting of TMs with inputs
of a priori bounded length. For simplicity of discussion, however, we will ignore
this restriction in this section.

Prior template for succinct iO. [13,24,48] reduce the problem of obfuscating
Turing machines to the problem of obfuscating circuits. This is achieved in the
following two steps:

1. Randomized encoding for TMs. The first step is to construct a randomized
encoding (RE) [44] for Turing machines using iO for circuits.

2. From RE to iO. The second step consists of obfuscating the encoding pro-
cedure of RE (constructed in the first step). Very roughly, to obfuscate a
machine M , we simply obfuscate a circuit CM,K that has the machine M
and a PRF key K hardwired. On any input x, circuit CM outputs a “fresh”
RE of M(x) using randomness PRFK(x). To recover M(x), the evaluator
simply executes the decoding algorithm of RE.

Following [13,24,48], all of the subsequent works on succinct iO [23,26] follow
the above template.6

Shortcomings of the prior template. However, as we discuss now, this tem-
plate is highly problematic for achieving our goal of iO with constant multiplica-
tive overhead in size.

– First, note that since the obfuscation of machine M corresponds to obfus-
cating a circuit that has machine M hardwired, in order to achieve constant
overhead in the size of M , we would require the underlying circuit obfuscator
to already satisfy the constant overhead property!

– Furthermore, since the description of circuit CM includes the encoding pro-
cedure of the RE, we would require the RE scheme constructed in the first
step to not only achieve constant overhead in size, but also in encoding time.
In particular, we would require that the running time of the RE encode
procedure on input (M,x) has only a constant multiplicative overhead in
|M |+ |x|.
We stress that this is a much more serious issue. Indeed, ensuring that the
running time has only a constant multiplicative overhead in the input size
is in general a hard problem for many cryptographic primitives (see [45] for
discussion).

6 We note that the above template also works for obfuscating RAM programs if we
start with an RE for RAM in the first step.

Towards that end, we devise a new template for constructing iO for TMs
which is more amenable to our goal of iO with constant overhead in size.

A new template for succinct iO: Starting ideas. Our first idea is to mod-
ify the above template in such a manner that the obfuscated circuit does not
contain machine M anymore. Instead, the machine M is encoded separately.
Specifically, in our modified template, obfuscation of a machine M consists of
two components:

– An encoding M̃ of the machine M using an encoding key sk.
– Obfuscation of the “input encoder”, i.e., a circuit C ′

sk,K that has hardwired
in its description the encoding key sk and a PRF key K. On any input x,
C ′

sk,K computes an input encoding x̃ using sk and randomness PRFK(x).

To evaluate the obfuscation of M on an input x, the evaluator first executes
the obfuscated circuit to obtain an encoding x̃. It then decodes (M̃, x̃) to obtain
M(x).

A few remarks are in order: first, note that the above template requires a
decomposable RE where a machine M and an input x can be encoded separately
using an encoding key sk. Second, the RE scheme must be reusable, i.e., given
an encoding M̃ of M and multiple input encodings x̃1, . . . , x̃n (computed using

the same encoding key sk) for any n, it should be possible to decode (M̃, x̃i) to
obtain M(xi) for every i ∈ [n].

It is easy to verify the correctness of the above construction. Now, let us see
why this template is more suitable for our goal. Observe that if the (reusable)
encoding of M has constant overhead in size, then the obfuscation scheme also
achieves the same property. Crucially, we do not need the RE scheme to achieve
constant overhead in encoding time.

At this point, it seems that we have reduced the problem of iO for TMs
with constant size overhead to the problem of reusable RE with constant size
overhead. This intuition, unfortunately, turns out to be misleading. The main
challenge arises in proving security of the above template. Very briefly, we note
that following [38,53,39], prior works on succinct iO use a common “input-by-
input” proof strategy to argue the security of their construction. Recall that the
obfuscation of a TM M in these works corresponds to obfuscation of the circuit
CM,K described earlier. Then, in order to implement the “input-by-input” proof
strategy, it is necessary that the PRF key K supports puncturing [55,17,20,47].
Note, however, that in our new template, obfuscation of M consists of a reusable
encoding of M and obfuscation of circuit C ′

sk,K described above. Then, imple-
menting a similar proof strategy for our template would require the encoding key
sk of the reusable RE (that is embedded in the circuit C ′

sk,K) to also support
puncturing. However, the standard notion of reusable RE [40] does not support
key puncturing, and therefore, does not suffice for arguing security of the above
construction.

Oblivious Evaluation Encodings. Towards that end, our next idea is to
develop an “iO-friendly” notion of reusable RE that we refer to as oblivious

evaluation encodings (OEE). Our definition of OEE is specifically tailored to
facilitate a security proof of the construction discussed above.

In an OEE scheme, instead of encoding a single machine, we allow encoding
of two machinesM0 andM1 together using an encoding key sk. Further, an input
x is encoded together with a “choice” bit b using sk. The decode algorithm, on
input encodings of (x, b) and (M0,M1), outputs Mb(x).

7

An OEE scheme also comes equipped with two key puncturing algorithms:

– Input puncturing: On input an encoding key sk and input x, it outputs a
punctured encoding key skinpx . This punctured key allows for computation
of encodings of (x′, 0) and (x′, 1) for all inputs x′ ̸= x. The security property
associated with it is as follows: for any input x, given a machine encoding of
(M0,M1) s.t. M0(x) = M1(x) and a punctured key skinpx , no PPT adversary
should be able to distinguish between encodings of (x, 0) and (x, 1).

– (Choice) Bit puncturing: On input an encoding key sk and bit b, it outputs
a punctured encoding key skbitb . This punctured key allows for computation
of encodings of (x, b) for all x. The security property associated with it is as
follows: for any machine pair (M0,M1), given a punctured key skbit0 , no PPT
adversary should be able to distinguish encoding of (M0,M0) from (M0,M1).
(The security for punctured key skbit1 can be defined analogously.)

Finally, we say that an OEE scheme achieves constant multiplicative overhead
in size if the size of machine encoding of any pair (M0,M1) is |M0| + |M1| +
poly(λ). Further, similar to reusable RE, we require that the size of the input
encoding of x is poly(λ, |x|) and in particular, independent of the size of |M0|
and |M1|.

iO for TMs from OEE. We now describe our modified template for construct-
ing iO for TMs where reusable RE is replaced with OEE. An obfuscation of a
machine M consists of two components: (a) An OEE TM encoding of (M,M)
generated using an OEE secret key sk. (b) Obfuscation of the OEE input en-
coder, i.e., a circuit Csk,K that on input x outputs an OEE input encoding of
(x, 0) using the OEE key sk and randomness generated using the PRF key K. To
evaluate the obfuscated machine on an input x, an evaluator first computes en-
coding of (x, 0) using the obfuscated Csk,K and then decodes (x, 0) and (M,M),
using the OEE decode algorithm, to obtain M(x).

To prove security, we need to argue that obfuscations of two equivalent ma-
chines M0 and M1 are computationally indistinguishable. For the above con-
struction, this effectively boils down to transitioning from a hybrid where we
give out a machine encoding of (M0,M0) to one where we give out a machine
encoding of (M1,M1). We achieve this by crucially relying on the security of the
key puncturing algorithms. Very roughly, we first use the punctured key skbit0 to
transition from (M0,M0) to (M0,M1) and then later, we use skbit1 to transition
from (M0,M1) to (M1,M1). In between these steps, we rely on punctured keys

7 An informed reader might find some similarities between OEE and oblivious transfer.
Indeed, the name for our primitive is inspired by oblivious transfer.

skinpx , for every input x (one at a time), to transition from a hybrid where the
(obfuscated) input encoder produces encodings corresponding to bit b = 0 to
one where b = 1.

Now, note that if we instantiate the above construction with an OEE scheme
that achieves constant overhead in size, then the resulting obfuscation scheme
also satisfies the same property even if the obfuscation of circuit Csk,K has
polynomial overhead in size. Here, note that it is crucial that we require that
the size of the OEE input encodings to be independent of |M0| and |M1|. Thus,
in order to achieve our goal of iO for TMs with constant size overhead, the
remaining puzzle piece is a construction of OEE with constant overhead in size.
Our main technical contribution is to provide such a construction.

Construction of OEE: Initial Challenges. A natural approach towards con-
structing OEE is to start with known constructions of reusable RE for TMs. We
note that the only known approach in the literature for constructing reusable
RE for TMs is due to [37]. In their approach, for every input, a “fresh” instance
of a single-use RE for TMs [13,24,48,23,26,8] is computed on the fly. However, as
discussed at the beginning of this section, in order to achieve constant overhead
in size, such an approach would require that the single-use RE achieves constant
overhead in encoding time, which is a significantly harder problem. Therefore,
this approach is ill suited to our goal.

In light of the above, we start from the (single-use) RE construction of Kop-
pula et al. [48] and use the ingredients developed in their work to build all the
properties necessary for an OEE scheme with constant overhead in size. Indeed,
the work of KLW forms the basis of all known subsequent constructions of ran-
domized encodings for TMs/ RAMs [23,26,22,2] that do not suffer from space
bound restrictions (unlike [13,24]); therefore, it is a natural starting point for
our goal.

We start by recalling the RE construction of KLW. We only provide a sim-
plified description, omitting several technical details.

An RE encoding of (M,x) has two components:

• Authenticated Hash Tree: the first component consists of a verifiable hash
tree8 computed on an encryption of the input tape initialized with TM M .
The root of the hash tree is authenticated using a special signature.

• Obfuscated Next Step Function: The second component is an obfuscated
circuit of the next step function of Ux(·), where Ux is a universal TM that
takes as input a machine M and produces M(x). The hash key, signing and
verification keys and decryption key are hardwired inside this obfuscated
circuit. It takes as input an encrypted state, an encrypted symbol on the
tape along with a proof of validity that consists of authentication path in
the hash tree and the signature on the root. Upon receiving such an input, it
first checks input validity using the hash key and the signature verification

8 [48] uses a special hash tree called positional accumulator. For this high-level
overview, one can think of it as a “iO-friendly” Merkle hash tree. We refer the
reader to the technical sections for further details.

key. It then decrypts the state and the symbol using the decryption key.
Next, it executes the next step of the transition function. It then re-encrypts
the new state and the new symbol. Using the old authentication path, it
recomputes the new authentication path and a fresh signature on the root.
Finally, it outputs the new signed root.

A reader familiar with [48] will notice that in the above discussion, we have
flipped the roles of the machine and the input. First, it is easy to see that these
two presentations are equivalent. More importantly, this specific presentation is
crucial to our construction of OEE because by flipping the roles of the machine
and the input, we are able to leverage the inherent asymmetry in the machine
encoding and input encoding in KLW. This point will become more clear later
in this section.

The security proof of KLW, at a high level, works by authenticating one step
of the computation at a time. In particular, this idea is implemented using a
recurring hybrid where for any execution step i of Ux(M), the obfuscated circuit
only accepts a unique input and all other inputs are rejected. This unique input
is a function of the parameters associated with the hashing scheme, signature
scheme and the encryption scheme. We call such hybrids unique-input accepting
hybrids. Such hybrids have, in fact, been used in other iO-based constructions
as well.9

Using the above template, we discuss initial ideas towards constructing an
OEE scheme. In the beginning, we restrict our attention to achieving reusability
with constant overhead. Later, we will discuss how to achieve the key puncturing
properties later.

Challenge #1: Reusability. A natural first idea to achieve reusability is to
have the first component in the above construction to be the machine encoding
and the second component to be the input encoding. To argue security, lets
consider a simple case when the adversary is given a machine encoding of M
and two input encodings of x1 and x2. A natural first approach is to argue the
security of M on x1 first and then argue the security of M on x2. The hope
here is that we can reuse the (single-use) security proof of KLW separately for
x1 and x2. This, however, doesn’t work because the unique-accepting hybrids
corresponding to input x1 would be incompatible with the computation of M on
x2 (and vice versa). An alternate idea would be to employ multi-input accepting
hybrids instead of unique-input accepting hybrids, where the obfuscated next
step function, for a given i, accepts a fixed set of multiple inputs and rejects all
other inputs. However, this would mean that we can only hardwire an a priori
fixed number of values in the obfuscated circuit which would then put a bound
on the number of input encodings that can be issued. Hence this direction is also
not feasible.

9 For example, Hubacek and Wichs [43] consider a scenario where the obfuscated
circuit accepts pre-images of the hash function as input. In order to use iO security,
they use a special hash function (SSB hash) that is programmed to accept only one
input on a special index.

In order to resolve the above difficulty, we modify the above template. For
any input x, to generate an input encoding, we generate fresh parameters of the
hashing, signature and the encryption schemes. We then generate the obfuscated
circuit of the next step function of Ux(·) with all the parameters (including the
freshly generated ones) hardwired inside it. The machine encoding of M , how-
ever, is computed with respect to parameters that are decided at the OEE setup
time. At this point it is not clear why correctness should hold: the parameters
associated with encodings of x and M are independently generated.

To address this, we introduce a translation mechanism that translates ma-
chine encoding of M with respect to one set of parameters into another machine
encoding of M w.r.t to a different set of parameters. In more detail, every in-
put encoding will be equipped with a freshly generated translator. A translator,
associated with an encoding of x, takes as input a machine encoding of M , com-
puted using the parameters part of OEE setup, checks for validity and outputs
a new encoding of M corresponding to the fresh parameters associated with the
encoding of x. For now, the translator can be thought of as an obfuscated circuit
that has hardwired inside it the old and the new parameters. Later we discuss
its actual implementation.

Finally, a word about security. Roughly speaking, due to the use of fresh
parameters for every input, we are able to reduce security to the one-input
security of KLW.

Challenge #2: Constant Overhead. While the above high level approach
tackles reusability, it does not yet suffice for achieving constant multiplicative
overhead in the size of the machine encodings. Recall that the machine encoding
consists of an encryption of the machine along with the hash tree and a signature
on the root. We first observe that the hashing algorithm is public and hence, it
is not necessary to include the hash tree as part of the input encoding; instead
the input encoding can just consist of an encryption of the machine, root of the
hash tree and a signature on it. The decoder can reconstruct the hash tree and
proceed as before. We can then use an encryption scheme with constant overhead
in size to ensure that the encryption of M only incurs constant overhead in size.
Note, however, that such an encryption scheme should also be compatible with
hash tree computation over it.

While one might envision constructing such a scheme, a bigger issue is the
size of the translator. In fact, the size of the translator, as described above, is
polynomial in the input length, which corresponds to the size of the machine
encoding. It therefore invalidates the efficiency requirement of OEE on the size
of input encodings.

One plausible approach to overcome this problem might be to not refresh the
encryption of M and in fact just translate the signature associated with the root
of the hash tree into a different signature. This would mean that the decryption
key associated with the encryption of M would be common among all the input
encodings. However, in the security proof, this conflicts with the unique-input
accepting hybrids as discussed earlier.

Construction of OEE: Our Approach. The main reason why the above so-
lution does not work is because the machine M is in an encrypted form. Suppose
we instead focus on the weaker goal of achieving authenticity without privacy.
That is, we guarantee the correctness of computation against dishonest evalua-
tors but not hide the machine. Our crucial observation is that the above high
level template sans encryption of the machine is already a candidate solution
for achieving this weaker security goal. An astute reader would observe that this
setting resembles attribute based encryption [54,42] (ABE). Indeed in order to
build OEE, our first step is to build an ABE scheme for TMs where the key
size incurs a constant multiplicative overhead in the original machine length.
We achieve this goal by using the ideas developed above. We then provide a
generic reduction to transform such an ABE scheme into an OEE scheme satis-
fying constant multiplicative overhead in size. We now explain our steps in more
detail.

ABE for TMs. Recall that in an ABE scheme, an encryption of an attribute,
message pair (x,m) can be decrypted using a secret key corresponding to a
machine M to recover m only if M(x) = 1. An ABE scheme is said to have a
constant multiplicative overhead in size if the size of key of M is c|M |+poly(λ)
for a constant c. Here, note that neither x nor M are required to be hidden.

The starting point of our construction of ABE is the message hiding encoding
(MHE) scheme of KLW. An MHE scheme is effectively a “privacy-free” RE
scheme, and therefore, perfectly suited for our goal of constructing an ABE
scheme. More concretely, an MHE encoding of a tuple (M,x,msg), where M
is a TM and x is an input to M , allows one to recover msg iff M(x) = 1.
On the efficiency side, computing the encoding of (M,x,msg) should take time
independent of the time to compute M on x. The important point to note here
is that only msg needs to be hidden from the adversary and in particular, it is
not necessary to hide the computation of M on x.

The construction of MHE follows along the same lines as the RE construc-
tion of KLW with the crucial difference that the machine M (unlike the RE
construction) is not encrypted. Following the above discussion, this has the right
template from which we can build our ABE scheme. Using KLW’s template and
incorporating the ideas we developed earlier, we sketch the construction of ABE
below. This is an oversimplified version and several intricate technical details are
omitted.

• Generate secret key sk, verification key vk of a special signature scheme
(termed as splittable signature scheme in [48]). Generate a hash key hk of a
verifiable hash tree. The public key consists of (vk, hk) and the secret key is
sk.

• ABE key of a machine M is computed by first computing a hash tree on M
using hk. The root of the hash tree rt is then signed using sk to obtain σ.
Output (M,σ). Note that |σ| = poly(λ) and thus, the constant multiplicative
overhead property is satisfied.

• ABE encryption of (x,msg) is computed by first computing an obfuscated
circuit of the next step function of Ux,msg(·). We have Ux,msg to be a circuit

that takes as input circuit C and outputs msg if C(x) = 1. The parame-
ters hardwired in this obfuscated circuit contains (among other parameters)
(sk′, vk′) of a splittable signature scheme where (sk′, vk′) is sampled afresh.
In addition, it consists of a signature translator SignProg, that we introduced
earlier. This signature translator takes as input a pair (rt, σ). Upon receiving
such an input, it first verifies the validity of the signature w.r.t vk and then
outputs a signature on rt w.r.t sk′ if the verification succeeds. Otherwise it
outputs ⊥.
The final output of the encryption algorithm is the obfuscated circuit along
with the signature translator.

To argue security, we need to rely on the underlying security of message
hiding encodings. Unlike several recent constructions that use KLW, thanks to
the modularization of our approach, we are able to reduce the security of our
construction to the security of MHE construction of KLW. We view this as a
positive step towards reducing the “page complexity” of research works in this
area.

Construction of OEE from ABE for TMs. One of the main differences
between OEE and ABE is that OEE guarantees privacy of computation while
ABE only offers authenticity. Therefore, we need to employ a privacy mecha-
nism in order to transform ABE into an OEE scheme. A similar scenario was
encountered by Goldwasser et al. [40] in a different context. Their main goal was
to obtain single-key FE for circuits from ABE for circuits while we are interested
in constructing OEE, which has seemingly stronger requirements than FE, from
ABE for Turing machines. Nevertheless, we show how their techniques will be
useful to develop a basic template of our construction of OEE.

As a starting point, we encode the pair of machines (M0,M1) by first en-
crypting them together. Since we perform computation on the machines, the en-
cryption scheme we use is fully homomorphic [35]. In the input encoding of (x, b),
we encrypt the choice bit b using the same public key. To evaluate (M0,M1) on
(x, b), we execute the homomorphic evaluation function. Notice, however, that
the output is in encrypted form. We need to provide additional capability to
the evaluator to decrypt the output (and nothing else). One way around is that
the input encoding algorithm publishes a garbling of the FHE decryption al-
gorithm. But the input encoder must somehow convey the garbled circuit wire
keys, corresponding to the output of the FHE evaluation, to the evaluator.

This is where ABE for TMs comes to the rescue. Using ABE, we can ensure
that the evaluator gets only the wire keys corresponding to the output of the
FHE evaluation. Once this is achieved, the garbled circuit that is provided as
part of the input encoding can then be evaluated to obtain the decrypted output.
We can then show that the resulting OEE scheme has constant multiplicative
overhead if the underlying ABE scheme also satisfies this property.

While the above high level idea is promising, there are still some serious
issues. The first issue is that we need to homomorphically evaluate on Turing
machines as against circuits. This can be resolved by using the powers-of-two
evaluation technique from the work of [41]. The second and the more important

question is: what are the punctured keys? The input puncturing key could simply
be the ABE public key and the FHE public key-secret key pair. The choice bit
puncturing key, however, is more tricky. Note that setting the FHE secret key to
be the punctured key will ensure correctness but completely destroy the security.
To resolve this issue, we use the classic two-key technique: we encrypt machines
M0 and M1 using two different FHE public keys. The choice bit puncturing key
is set to be one of the FHE secret keys depending on which bit needs to be
punctured.

1.3 Technical Overview: Boostrapping Theorem

We now explain how our template for Turing machine obfuscation can be used
to obtain Theorem 2. Suppose that we wish to obfuscate N Turing machines
M1, . . . ,MN for N = poly(λ).

Using our template discussed above, a starting idea towards obtaining The-
orem 2 is as follows. Let K1 and K2 be keys for two puncturable PRF families.
The obfuscation of M1, . . . ,MN consists of the following parts:

– N different OEE TM encodings ˜(M1,M1), . . . , ˜(MN ,MN) where each ˜(Mi,Mi)
is computed using an encoding key ski that is generated using randomness
PRFK1(i).

– Obfuscation of a “joint” input encoder circuit CK1,K2 that contains K1 and
K2 hardwired in its description. It takes as input a pair (x, i) and performs
the following steps: (a) Compute an OEE encoding key ski “on-the-fly” by
running the OEE setup algorithm using randomness PRFK1(i). (b) Compute

and output an OEE input encoding (̃x, 0)i for the ith machine using the key
ski and fresh randomness PRFK2(i, x).

Then security of the above construction can be argued using a straightforward
hybrid argument using the puncturing properties of the PRF.

The above idea, however, does not immediately yield Theorem 2. The prob-

lem is that the OEE input encoding (̃x, 0)i itself contains obfuscated programs.
Therefore, the circuit CK1,K2 (described above) itself needs to make queries to
a circuit obfuscation scheme.

We resolve the above problem in the following manner. Recall from above
that an OEE input encoding in our scheme consists of two components: a gar-
bled circuit and an ABE ciphertext. An ABE ciphertext, in turn, consists of
obfuscations of two circuits. Lets refer to these circuits as Csub

1 and Csub
2 . Then,

our idea is to simply “absorb” the functionality of Csub
1 and Csub

2 within CK1,K2 .
In more detail, we consider a modified input encoder circuit C ′

K1,K2
that works

in three modes: (a) In mode 1, it takes as input (x, i) and simply outputs the

garbled circuit component of the input encoding (̃x, 0)i. (b) In mode 2, it takes
an input for circuit Csub

1 and produces its output. (c) In mode 3, it takes an
input for circuit Csub

2 and produces its output.
With the above modification, obfuscation of M1, . . . ,MN now consists of N

different OEE TM encodings ˜(M1,M1), . . . , ˜(MN ,MN) and obfuscation of the

modified input encoder circuit C ′
K1,K2

. Crucially, this process only involves a sin-
gle invocation of the circuit obfuscation scheme for the circuit family {C ′

K1,K2
},

where the size of C ′
K1,K2

is independent of N as well as the size of any Mi. This
gives us Theorem 2.

1.4 Related Work

In a recent work, [15] give a construction of iO for circuits where the size of ob-
fuscation of a circuit C with depth d and inputs of length L is 2·C+poly(λ, d, L).
Their construction relies on (sub-exponentially secure) iO for circuits with poly-
nomial overhead and the learning with errors assumption.

While we focus on the Turing machine model in this work, we note that our
construction can be easily downgraded to the case of circuits to obtain an iO
scheme where the size of obfuscation of a circuit C with inputs of length L is
2·C+poly(λ, L). In particular, it does not grow with the circuit depth beyond the
dependence on the circuit size. Our construction requires (sub-exponentially se-
cure) iO for circuits with poly overhead and re-randomizable encryption schemes.

1.5 Full Version

Due to space constraints, much of the details of our constructions and the cor-
responding security proofs are omitted from this manuscript. The full version of
the paper is available at [6].

2 Attribute-based Encryption for TMs with Additive
Overhead

In an attribute-based encryption (ABE) scheme, a message m can be encrypted
together with an attribute x such that an evaluator holding a decryption key
corresponding to a predicate P can recoverm if and only if P (x) = 1. Unlike most
prior works on ABE that model predicates as circuits, in this work, following
[41], we model predicates as Turing machines with inputs of arbitrary length. We
only consider the setting where the adversary can receive only one decryption
key. We refer to this as 1-key ABE.

Below, we start by providing definition of 1-key ABE for TMs. In Section
2.2, we present our construction. The proof of security of this construction can
be found in the full version. Finally, in Section 2.3, we extend our 1-key ABE
construction to build two-outcome ABE for TMs.

2.1 Definition

A 1-key ABE for Turing machines scheme, defined for a class of Turing ma-
chinesM, consists of four PPT algorithms, 1ABE = (1ABE.Setup, 1ABE.KeyGen,
1ABE.Enc, 1ABE.Dec). We denote the associated message space to be MSG. The
syntax of the algorithms is given below.

– Setup, 1ABE.Setup(1λ): On input a security parameter λ in unary, it outputs
a public key-secret key pair (1ABE.PP, 1ABE.SK).

– Key Generation, 1ABE.KeyGen(1ABE.SK,M): On input a secret key 1ABE.SK
and a TM M ∈M, it outputs an ABE key 1ABE.skM .

– Encryption, 1ABE.Enc(1ABE.PP, x,msg): On input the public parameters
1ABE.PP, attribute x ∈ {0, 1}∗ and message msg ∈ MSG, it outputs the
ciphertext 1ABE.CT(x,msg).

– Decryption, 1ABE.Dec(1ABE.skM , 1ABE.CT(x,msg)): On input the ABE key
1ABE.skM and encryption 1ABE.CT(x,msg), it outputs the decrypted result
out.

Correctness. The correctness property dictates that the decryption of a cipher-
text of (x,msg) using an ABE key for M yields the message msg if M(x) = 1. In
formal terms, the output of the decryption procedure 1ABE.Dec(1ABE.skM , 1ABE.CT(x,msg))
is (always) msg if M(x) = 1, where

- (1ABE.SK, 1ABE.PP)← 1ABE.Setup(1λ),
- 1ABE.skM ← 1ABE.KeyGen(1ABE.SK,M ∈M) and,
- 1ABE.CT(x,msg) ← 1ABE.Enc(1ABE.PP, x,msg).

Security. The security framework we consider is identical to the indistinguisha-
bility based security notion of ABE for circuits except that (i) the key queries
correspond to Turing machines instead of circuits and (ii) the adversary is only
allowed to make a single key query. Furthermore, we only consider the setting
when the adversary submits both the challenge message pair as well as the key
query at the beginning of the game itself. We term this weak selective security.
We formally define this below.

The security is defined in terms of the following security experiment between
a challenger and a PPT adversary. We denote the challenger by Ch and the ad-
versary by A.

Expt1ABEA (1λ, b):

1. A sends to Ch a tuple consisting of a Turing machine M , an attribute x and
two messages (msg0,msg1). If M(x) = 1 then the experiment is aborted.

2. The challenger Ch replies to A with the public key, decryption key of M ,
the challenge ciphertext;

(
1ABE.PP, 1ABE.skM , 1ABE.CT(x,msgb)

)
, where the

values are computed as follows:
– (1ABE.PP, 1ABE.SK)← 1ABE.Setup(1λ),

– 1ABE.skM ← 1ABE.KeyGen(1ABE.SK,M)

– 1ABE.CT(x,msgb)
← 1ABE.Enc(1ABE.PP, x,msgb).

3. The experiment terminates when the adversary outputs the bit b′.

We say that a 1-key ABE for TMs scheme is weak-selectively secure if any PPT
adversary can guess the challenge bit only with negligible probability.

Definition 1. A 1-key attribute based encryption for TMs scheme is said to be
weak-selectively secure if there exists a negligible function negl(λ) such that
for every PPT adversary A,∣∣∣Pr[0← Expt1ABEA (1λ, 0)]− Pr[0← Expt1ABEA (1λ, 1)]

∣∣∣ ≤ negl(λ)

Remark 1. Henceforth, we will omit the term “weak-selective” when referring to
the security of ABE schemes.

1-Key Attribute Based Encryption for TMs with Additive Overhead.
We say that a 1-key attribute based encryption for TMs scheme achieves additive
overhead property if the size of an ABE key for a TM M is only |M |+poly(λ).
More formally,

Definition 2. A 1-key attribute based encryption for TMs scheme, 1ABE, de-
fined for a class of Turing machines M, satisfies additive overhead property if
|1ABE.skM | = |M | + poly(λ), where (1ABE.SK, 1ABE.PP) ← 1ABE.Setup(1λ)
and 1ABE.skM ← 1ABE.KeyGen(1ABE.SK,M ∈M).

2.2 Construction of 1-Key ABE

We now present our construction of 1-key ABE for TMs. We begin with a brief
overview.

Overview. Our construction uses three main primitives imported from [48] –
namely, positional accumulators, splittable signatures and iterators.

The setup first generates the setup of the splittable signatures scheme to
yield (SKtm,VKtm,VKrej). The rejection-verification key VKrej will be discarded.
(SKtm,VKtm) will be the master signing key-verification key pair. The setup also
generates accumulator and iterator parameters.

The signing key SKtm will be the ABE secret key and the rest of the pa-
rameters form the public key. To generate an ABE key of M , first compute the
accumulator storage of M . Then sign the accumulator value of M using SKtm to
obtain σ. Output the values M , σ and accumulator value10.

An ABE encryption of (x,msg) is an obfuscation of the next step function
that computes Ux(·) (universal circuit with x hardcoded in it) one step at a
time. Call this obfuscated circuit N . Embedded into this obfuscated circuit are
accumulator and iterator parameters, part of the public parameters. In addition,
it has a PRF key KA used to generate fresh splittable signature instantiations.
In order for this to be compatible with the master signing key, a signature
translator is provided as part of the ciphertext. This translator circuit, which
will be obfuscated, takes as input message, a signature verifiable using VKtm and

10 In this construction, the key generation also outputs an iterator value.

produces a new signature with respect to parameters generated using KA. Call
this obfuscated circuit S. The ciphertext consists of (N,S).

Construction. We will use the following primitives in our construction:

1. A puncturable PRF family denoted by F.
2. A storage accumulator scheme based on iO and one-way functions that

was constructed by [48]. We denote it by Acc = (SetupAcc, EnforceRead,
EnforceWrite, PrepRead, PrepWrite, VerifyRead,WriteStore, Update). LetΣtape

be the associated message space with accumulated value of size ℓAcc bits.
3. An iterators scheme denoted by Itr =(SetupItr, ItrEnforce, Iterate). Let {0, 1}2λ+ℓAcc

be the associated message space with iterated value of size ℓItr bits.
4. A splittable signatures scheme denoted by SplScheme = (SetupSpl, SignSpl,VerSpl,

SplitSpl, SignSplAbo). Let {0, 1}ℓItr+ℓAcc+2λ be the associated message space.

Our Scheme. We now describe our construction of a 1-key ABE scheme
1ABE = (1ABE.Setup, 1ABE.KeyGen, 1ABE.Enc, 1ABE.Dec) for the Turing ma-
chine familyM. Without loss of generality, the start state of every Turing ma-
chine inM is denoted by q0. We denote the message space for the ABE scheme
as MSG.

1ABE.Setup(1λ): On input a security parameter λ, it first executes the setup

of splittable signatures scheme to compute (SKtm,VKtm,VKrej)← SetupSpl(1λ).
Next, it executes the setup of the accumulator scheme to obtain the values
(PPAcc, w̃0, s̃tore0) ← SetupAcc(1λ). It then executes the setup of the iterator
scheme to obtain the public parameters (PPItr, v0)← SetupItr(1λ).

It finally outputs the following public key-secret key pair,(
1ABE.PP = (VKtm,PPAcc, w̃0, s̃tore0,PPItr, v0), 1ABE.SK = (1ABE.PP, SKtm)

)
1ABE.KeyGen(SKtm,M ∈M): On input a master secret key 1ABE.SK = (1ABE.PP, SKtm)
and a Turing machine M ∈M, it executes the following steps:

1. Parse the public key 1ABE.PP as (VKtm,PPAcc, w̃0, s̃tore0,PPItr, v0).

2. Initialization of the storage tree: Let ℓtm = |M | be the length of the ma-

chine M . For 1 ≤ j ≤ ℓtm, compute s̃torej = WriteStore(PPAcc, s̃torej−1, j −
1,Mj), auxj = PrepWrite(PPAcc, s̃torej−1, j−1), w̃j = Update(PPAcc, w̃j−1,Mj , j−
1, auxj) , where Mj denotes the jth bit of M . Set the root w0 = w̃ℓtm .

3. Signing the accumulator value: Generate a signature on the message
(v0, q0, w0, 0) by computing σ0 ← SignSpl(SKtm, µ = (v0, q0, w0, 0)), where q0
is the start state of M .

It outputs the ABE key 1ABE.skM = (M,w0, σtm, v0, s̃tore0).

[Note: The key generation does not output the storage tree store0 but instead

it just outputs the initial store value s̃tore0. As we see later, the evaluator in

possession of M , s̃tore0 and PPAcc can reconstruct the tree store0.]

1ABE.Enc(1ABE.PP, x,msg): On input a public key 1ABE.PP = (VKtm,PPAcc,

w̃0, s̃tore0,PPItr, v0), attribute x ∈ {0, 1}∗ and message msg ∈ MSG, it executes
the following steps:

1. Sample a PRF key KA at random from the family F.

2. Obfuscating the next step function: Consider a universal Turing ma-
chine Ux(·) that on input M executes M on x for at most 2λ steps and out-
puts M(x) if M terminates, otherwise it outputs ⊥. Compute an obfuscation
of the program NxtMsg described in Figure 1, namelyN ← iO(NxtMsg{Ux(·),
msg,PPAcc,PPItr,KA}). NxtMsg is essentially the next message function of
the Turing machine Ux(·) – it takes as input a TM M and outputs M(x)
if it halts within 2λ else it outputs ⊥. In addition, it performs checks to
validate whether the previous step was correctly computed. It also generates
authentication values for the current step.

3. Compute an obfuscation of the program S ← (SignProg{KA,VKtm}) where
SignProg is defined in Figure 2. The program SignProg takes as input a
message-signature pair and outputs a signature with respect to a different
key on the same message.

It outputs the ciphertext 1ABE.CT = (N,S).

1ABE.Dec(1ABE.skM , 1ABE.CT): On input the ABE key 1ABE.skM = (M,w0, σtm, v0, s̃tore0)
and a ciphertext 1ABE.CT = (N,S), it first executes the obfuscated program
S
(
y = (v0, q0, w0, 0), σtm

)
to obtain σ0. It then executes the following steps.

1. Reconstructing the storage tree: Let ℓtm = |M | be the length of the

TM M . For 1 ≤ j ≤ ℓtm, update the storage tree by computing, s̃torej =

WriteStore(PPAcc, s̃torej−1, j − 1,Mj). Set store0 = s̃toreℓtm .
2. Executing N one step at a time: For i = 1 to 2λ,

(a) Compute the proof that validates the storage value storei−1 (storage
value at (i − 1)th time step) at position posi−1. Let (symi−1, πi−1) ←
PrepRead(PPAcc, storei−1, posi−1).

(b) Compute the auxiliary value, auxi−1 ← PrepWrite(PPAcc, store−1, posi−1).

(c) Run the obfuscated next message function. Compute out← N(i, symi−1, posi−1,
sti−1, wi−1, vi−1, σi−1, πi−1, auxi−1). If out ∈ MSG ∪ {⊥}, output out.
Else parse out as (symw,i, posi, sti, wi, vi, σi).

(d) Compute the storage value, storei ←WriteStore(PPAcc, storei−1, posi−1,
symw,i).

This completes the description of the scheme. The correctness of the above
scheme follows along the same lines as the message hiding encoding scheme of
Koppula et al. For completeness, we give a proof sketch below.

Program NxtMsg

Constants: Turing machine Ux = ⟨Q,Σtape, δ, q0, qacc, qrej⟩, message msg, Public
parameters for accumulator PPAcc, Public parameters for Iterator PPItr, Puncturable
PRF key KA ∈ K.

Input: Time t ∈ [T], symbol symin ∈ Σtape, position posin ∈ [T], state stin ∈ Q,
accumulator value win ∈ {0, 1}ℓAcc , Iterator value vin, signature σin, accumulator proof
π, auxiliary value aux.

1. Verification of the accumulator proof:
– If VerifyRead(PPAcc, win, symin, posin, π) = 0 output ⊥.

2. Verification of signature on the input state, position, accumulator and
iterator values:
– Let F (KA, t− 1) = rA. Compute (SKA,VKA,VKA,rej) = SetupSpl(1λ; rA).
– Let min = (vin, stin, win, posin). If VerSpl(VKA,min, σin) = 0 output ⊥.

3. Executing the transition function:
– Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.
– If stout = qrej output ⊥.
– If stout = qacc output msg.

4. Updating the accumulator and the iterator values:
– Compute wout = Update(PPAcc, win, symout, posin, aux). If wout = Reject, output
⊥.

– Compute vout = Iterate(PPItr, vin, (stin, win, posin)).
5. Generating the signature on the new state, position, accumulator and

iterator values:
– Let F (KA, t) = r′A. Compute (SK′

A,VK
′
A,VK

′
A,rej)← SetupSpl(1λ; r′A).

– Let mout = (vout, stout, wout, posout) and σout = SignSpl(SK′
A,mout).

6. Output symout, posout, stout, wout, vout, σout.

Fig. 1: Program NxtMsg

Program SignProg

Constants: PRF key KA and verification key VKtm.
Input: Message y and a signature σtm.

1. If VerSpl(VKtm, y, σtm) = 0 then output ⊥.
2. Execute the pseudorandom function on input 0 to obtain rA ← F (K, 0).

Execute the setup of splittable signatures scheme to compute (SK0,VK0) ←
SetupSpl(1λ; rA).

3. Compute the signature σ0 ← SignSpl(SK0, y).
4. Output σ0.

Fig. 2: Program SignProg

Lemma 1. 1ABE satisfies the correctness property of an ABE scheme.

Proof sketch. Suppose 1ABE.CT is a ciphertext of message msg w.r.t an attribute
x and 1ABE.skM is an ABE key for a machine M . We claim that in the ith

iteration of the decryption of 1ABE.CT using 1ABE.skM , the storage corresponds
to the work tape of the execution ofM(x) at the ith time step, denoted byWt=i.

11

Once we show this, the lemma follows.
We prove this claim by induction on the total number of steps in the TM

execution. The base case corresponds to 0th time step when the iterations haven’t
begun. At this point, the storage corresponds to the description of the machine
M which is exactly Wt=0 (work tape at time step 0). In the induction hypothesis,
we assume that at time step i − 1, the storage contains the work tape Wt=i−1.
We need to argue for the case when t = i. To take care of this case, we just need
to argue that the obfuscated next step function computes the ith step of the
execution of M(x) correctly. The correctness of obfuscated next step function in
turn follows from the correctness of iO and other underlying primitives.

Remark 2. In the description of Koppula et al., the accumulator and the iterator
algorithms also take the time bound T as input. Here, we set T = 2λ since we
are only concerned with Turing machines that run in time polynomial in λ.

Additive overhead. Let 1ABE.skM = (M,w0, σtm, v0, s̃tore0) be an ABE key
generated as the output of 1ABE.KeyGen(1ABE.SK,M ∈M). From the efficiency

property of accumulators, we have that |w0| and |s̃tore0| simply polynomials
in the security parameter λ. The signature σtm on the message w0 is also of
length polynomial in the security parameter. Lastly, the iterator parameter v0
is also only polynomial in the security parameter. Thus, the size of 1ABE.skM
is |M |+ poly(λ).
The proof of security can be found in the full version.

2.3 1-Key Two-Outcome ABE for TMs

Goldwasser et al. [40] proposed the notion of 1-key two-outcome ABE for cir-
cuits as a variant of 1-key attribute based encryption for circuits where a pair
of secret messages are encoded as opposed to a single secret message. Depend-
ing on the output of the predicate, exactly one of the messages is revealed and
the other message remains hidden. That is, given an encryption of a single at-
tribute x and two messages (msg0,msg1), the decryption algorithm on input an
ABE key TwoABE.skM , outputs msg0 if M(x) = 0 and msg1 otherwise. The
security guarantee then says that if M(x) = 0 (resp., M(x) = 1) then the
pair (TwoABE.skM ,TwoABE.CT(x,msg0,msg1)

), reveal no information about msg1
(resp., msg0).

We adapt their definition to the case when the predicates are implemented
as Turing machines instead of circuits. We give a formal definition and a simple
construction of this primitive in the full version.

11 To be more precise, the storage in the KLW construction is a tree with the jth leaf
containing the value of the jth location in the work tape Wt=i.

3 Oblivious Evaluation Encodings

In this section, we define and construct oblivious evaluation encodings (OEE).
This is a strengthening of the notion of machine hiding encodings (MHE) intro-
duced in [48]. Very briefly, machine hiding encodings are essentially randomized
encodings (RE), except that in MHE, the machine needs to be hidden whereas in
RE, the input needs to be hidden. More concretely, an MHE scheme for Turing
machines has an encoding procedure that encodes the output of a Turing ma-
chine M and an input x. This is coupled with a decode procedure that decodes
the output M(x). The main efficiency requirement is that the encoding proce-
dure should be much “simpler” than actually computing M on x. The security
guarantee states that the encoding does not reveal anything more than M(x).

We make several changes to the notion of MHE to obtain our definition of
OEE. First, we require that the machine and the input can be encoded separately.
Secondly, the machine encoding takes as input two Turing machines (M0,M1)
and outputs a joint encoding. Correspondingly, the input encoding now also
takes as input a bit b in addition to the actual input x, where b indicates which
of the two machines M0 or M1 needs to be used. The decode algorithm on input
an encoding of (M0,M1) and (x, b), outputs Mb(x). In terms of security, we
require the following two properties to be satisfied:

– Any PPT adversary should not be able to distinguish encodings of (M0,M0)
and (M0,M1) (resp., (M1,M1) and (M0,M1)) even if the adversary is given
a punctured input encoding key that allows him to encode inputs of the form
(x, 0) (resp., (x, 1)).

– Any PPT adversary is unable to distinguish the encodings of (x, 0) and
(x, 1) even given an oblivious evaluation encoding (M0,M1), where M0(x) =
M1(x) and another type of punctured input encoding key that allows him
to generate input encodings of (x′, 0) and (x′, 1) for all x′ ̸= x.

3.1 Definition

Syntax. We describe the syntax of a oblivious evaluation encoding scheme OEE
below. The class of Turing machines associated with the scheme is M and the
input space is {0, 1}∗. Although we consider inputs of arbitrary lengths, during
the generation of the parameters we place an upper bound on the running time
of the machines which automatically puts an upper bound on the length of the
inputs.

– OEE.Setup(1λ): It takes as input a security parameter λ and outputs a secret
key OEE.sk.

– OEE.TMEncode(OEE.sk,M0,M1): It takes as input a secret key OEE.sk, a

pair of Turing machinesM0,M1 ∈M and outputs a joint encoding ˜(M0,M1).
– OEE.InpEncode(OEE.sk, x, b): It takes as input a secret key OEE.sk, an input

x ∈ {0, 1}∗, a choice bit b and outputs an input encoding (̃x, b).

– OEE.Decode(˜(M0,M1), (̃x, b)): It takes as input a joint Turing machine en-

coding ˜(M0,M1), an input encoding (̃x, b), and outputs a value z.

In addition to the above main algorithms, there are four helper algorithms.

– OEE.puncInp(OEE.sk, x): It takes as input a secret key OEE.sk, input x ∈
{0, 1}∗ and outputs a punctured key OEE.skx.

– OEE.pIEncode(OEE.skx, x
′, b): It takes as input a punctured secret key OEE.skx,

an input x′ ̸= x, a bit b and outputs an input encoding (̃x′, b).
– OEE.puncBit(OEE.sk, b): It takes as input a secret key OEE.sk, an input bit

b and outputs a key OEE.skb.
– OEE.pBEncode(OEE.skb, x): It takes as input a key OEE.skb, an input x and

outputs an input encoding (̃x, b).

Correctness. We say that an OEE scheme is correct if it satisfies the following
three properties:

1. Correctness of Encode and Decode: For all M0,M1 ∈ M, x ∈ {0, 1}∗ and
b ∈ {0, 1},

OEE.Decode
(

˜(M0,M1), (̃x, b)
)
= Mb(x),

where (i) OEE.sk← OEE.Setup(1λ), (ii) ˜(M0,M1)← OEE.TMEncode(OEE.sk,M0,M1)

and, (iii) (̃x, b)← OEE.InpEncode(OEE.sk, x, b).
2. Correctness of Input Puncturing: For all M0,M1 ∈ M, x, x′ ∈ {0, 1}∗ such

that x′ ̸= x and b ∈ {0, 1},

OEE.Decode
(

˜(M0,M1), (̃x′, b)
)
= Mb(x

′),

where (i) OEE.sk← OEE.Setup
(
1λ

)
; (ii) ˜(M0,M1)← OEE.TMEncode(OEE.sk,

M0,M1) and, (iii) (̃x′, b)← OEE.pIEncode (OEE.puncInp (OEE.sk, x) , x′, b).
3. Correctness of Bit Puncturing: For all M0,M1 ∈ M, x ∈ {0, 1}∗ and b ∈
{0, 1},

OEE.Decode
(

˜(M0,M1), (̃x, b)
)
= Mb(x),

where (i) OEE.sk← OEE.Setup
(
1λ

)
, (ii) ˜(M0,M1)← OEE.TMEncode(OEE.sk,

M0,M1) and, (iii) (̃x, b)← OEE.pBEncode (OEE.puncBit (OEE.sk, b) , x).

Efficiency. We require that an OEE scheme satisfies the following efficiency
conditions. Informally, we require that the Turing machine encoding (resp., in-
put encoding) algorithm only has a logarithmic dependence on the time bound.
Furthermore, the running time of the decode algorithm should take time propor-
tional to the computation time of the encoded Turing machine on the encoded
input.

1. The running time of OEE.TMEncode(OEE.sk,M0 ∈ M,M1 ∈ M) is a poly-
nomial in (λ, |M0|, |M1|), where OEE.sk← OEE.Setup(1λ).

2. The running time of OEE.InpEncode(OEE.sk, x ∈ {0, 1}∗, b) is a polynomial
in (λ, |x|), where OEE.sk← OEE.Setup(1λ).

3. The running time of OEE.Decode(˜(M0,M1), (̃x, b)) is a polynomial in (λ, |M0|, |M1|, |x|, t),
where OEE.sk← OEE.Setup(1λ), ˜(M0,M1)← OEE.TMEncode(OEE.sk,M0 ∈
M,M1 ∈ M), (̃x, b) ← OEE.InpEncode(OEE.sk, x ∈ {0, 1}∗, b) and t is the
running time of the Turing machine Mb on x.

Indistinguishability of Encoding Bit. We describe security of encoding bit
as a multi-stage game between an adversary A and a challenger.

– Setup: A chooses two Turing machines M0,M1 ∈ M and an input x such
that |M0| = |M1| and M0(x) = M1(x). A sends the tuple (M0,M1, x) to the
challenger.
The challenger chooses a bit b ∈ {0, 1} and computes the following: (a) OEE.sk←
OEE.Setup(1λ), (b) machine encoding ˜(M0,M1)← OEE.TMEncode(OEE.sk,

M0,M1), (c) input encoding (̃x, b)← OEE.InpEncode(OEE.sk, x, b), and (d) punc-
tured key OEE.skx ← OEE.puncInp(OEE.sk, x). Finally, it sends the following
tuple to A: (

˜(M0,M1), (̃x, b),OEE.skx
)
.

– Guess: A outputs a bit b′ ∈ {0, 1}.

The advantage of A in this game is defined as advOEE1 = Pr[b′ = b]− 1
2 .

Definition 3 (Indistinguishability of encoding bit). An OEE scheme sat-
isfies indistinguishability of encoding bit if there exists a neglible function negl(·)
such that for every PPT adversary A in the above security game, advOEE1 =
negl(λ).

Indistinguishability of Machine Encoding. We describe security of machine
encoding as a multi-stage game between an adversary A and a challenger.

– Setup: A chooses two Turing machines M0,M1 ∈ M and a bit c ∈ {0, 1}
such that |M0| = |M1|. A sends the tuple (M0,M1, c) to the challenger.
The challenger chooses a bit b ∈ {0, 1} and computes the following: (a) OEE.sk←
OEE.Setup(1λ), (b) ˜(TM1,TM2)← OEE.TMEncode(OEE.sk,TM1,TM2), where
TM1 = M0,TM2 = M1⊕b if c = 0 and TM1 = M0⊕b,TM2 = M1 otherwise,
and (c) OEE.skc ← OEE.puncBit(OEE.sk, c). Finally, it sends the following
tuple to A: (

˜(TM1,TM2),OEE.skc
)
.

– Guess: A outputs a bit b′ ∈ {0, 1}.

The advantage of A in this game is defined as adv = Pr[b′ = b]− 1
2 .

Definition 4 (Indistinguishability of machine encoding). An OEE scheme
satisfies indistinguishability of machine encoding if there exists a negligible func-
tion negl(·) such that for every PPT adversary A in the above security game,
advOEE2 = negl(λ).

OEE with Constant Multiplicative Overhead. The efficiency property in
OEE dictates that the output length of the Turing machine encoding algorithm
is a polynomial in the size of the Turing machine. We can restrict this condition
further by requiring that the Turing machine encoding is only linear in the Turing
machine size. We term the notion of OEE that satisfies this property as OEE
with constant multiplicative overhead.

Definition 5 (OEE with constant multiplicative overhead). An oblivi-
ous evaluation encoding scheme for a class of Turing machines M is said to
have constant multiplicative overhead if its Turing machine encoding algorithm

OEE.TMEncode on input (OEE.sk,M0,M1) outputs an encoding ˜(M0,M1) such

that | ˜(M0,M1)| = c · (|M0|+ |M1|) + poly(λ), where c is a constant > 0.

3.2 Construction of OEE

Notation. We denote the class of Turing machines associated with oblivious
evaluation encoding to be M. For simplicity of notation, we assume that M
consists of only single-bit output Turing machines. In every machine M in M,
there is a special location on the worktape in which the output of the Turing
machine (0 or 1) is written. Until the termination of the Turing machine, this
location contains the symbol ⊥. We use the notation M(x) to denote the value
contained in this special location.

To construct a oblivious evaluation encoding scheme, we will use the following
ingredients.

1. A 1-key two-outcome ABE for TMs scheme defined for a class of Turing ma-
chines M, represented by TwoABE = (TwoABE.Setup,TwoABE.TMEncode,
TwoABE.InpEncode,TwoABE.Decode).

2. A fully homomorphic encryption scheme for circuits with additive overhead,
represented by FHE = (FHE.Setup,FHE.Enc,FHE.Eval,FHE.Dec).

3. A garbling scheme GC = (Garble,EvalGC).

Construction. We denote the oblivious evaluation encoding scheme to be
OEE = (OEE.Setup,OEE.InpEncode,OEE.TMEncode,OEE.Decode) that is equipped
with auxiliary algorithms (OEE.puncInp,OEE.pIEncode,OEE.puncBit,OEE.pBEncode).
The construction of OEE is presented below.

OEE.Setup(1λ): On input a security parameter λ in unary, it executes the fol-
lowing steps.

– Run TwoABE.Setup(1λ) to obtain a secret key-public parameters pair, (TwoABE.SK,
TwoABE.PP).

– Run FHE.Setup(1λ) twice to obtain FHE public key-secret key pairs (FHE.pk0,FHE.sk0)
and (FHE.pk1,FHE.sk1).

It finally outputs OEE.sk = (TwoABE.SK,TwoABE.PP,FHE.pk0,FHE.sk0,FHE.pk1,FHE.sk1).

OEE.TMEncode(OEE.sk,M0,M1): On input a secret key OEE.sk and a pair of
Turing machines M0,M1 ∈M, it does the following.

– Parse OEE.sk as (TwoABE.SK,TwoABE.PP,FHE.pk0,FHE.sk0,FHE.pk1,FHE.sk1).
– Compute FHE encryptions of TMsM0 andM1 w.r.t public keys FHE.pk0 and

FHE.pk1, respectively. That is, compute FHE.CTM0 ← FHE.Enc(FHE.pk0,M0)
and FHE.CTM1 ← FHE.Enc(FHE.pk1,M1).

– Compute a TwoABE decryption key TwoABE.SKN ← TwoABE.KeyGen(
TwoABE.SK, N) for the machine N = N(

{FHE.pkc,FHE.CTMc}c∈{0,1}

) described

in Figure 3.

It outputs the TM encoding ˜(M0,M1) = TwoABE.SKN .

N(
{FHE.pkc,FHE.CTMc}c∈{0,1}

)(x, i, ind)
– Let U = Ux,ind(·) be a universal Turing machine that on input a Turing machine M ,

outputs M(x) if the computation terminates within 2ind number of steps, otherwise
it outputs ⊥.

– Transform the universal Turing machine U into a circuit (see full version) by com-
puting C ← TMtoCKT(U).

– Execute FHE.Eval(FHE.pk0, C,FHE.CTM0) to obtain z1. Similarly execute
FHE.Eval(FHE.pk1, C,FHE.CTM1) to obtain z2.

– Set z = (z1||z2). Output the ith bit of z.

Fig. 3: Description of program N .

OEE.InpEncode(OEE.sk, x, b): On input the secret key OEE.sk, input x and bit b,
it executes the following steps.

– Parse OEE.sk as (TwoABE.SK,TwoABE.PP,FHE.pk0,FHE.sk0,FHE.pk1,FHE.sk1).
– For ind ∈ [λ], compute a garbled circuit along with the wire keys,

(
gcktind, {wind

i,0 ,

wind
i,1}i∈[q]

)
← Garble(1λ, G), where G = G(FHE.skb,b)(·) is a circuit that takes

as input FHE ciphertexts (FHE.CT0, FHE.CT1) and outputs ab, where ab ←
FHE.Dec(FHE.skb,FHE.CTb). Here, q denotes the total length of two FHE
ciphertexts (FHE.CT0,FHE.CT1).

– For every i ∈ [q] and ind ∈ [λ], compute a TwoABE ciphertext TwoABE.CTi,ind ←
TwoABE.Enc

(
TwoABE.PP, (x, i, ind), wind

i,0 , w
ind
i,1

)
of the message pair (wind

i,0 , w
ind
i,1)

along with attribute (x, i, ind).

Finally, it outputs the encoding (̃x, b) =
(
TwoABE.PP, {gckt}ind∈[λ], {TwoABE.CTi,ind}i∈[q],ind∈[λ]

)
.

OEE.Decode(˜(M0,M1), (̃x, b)): On input a TM encoding ˜(M0,M1) and an input

encoding (̃x, b), it executes the following steps.

– Parse the TM encoding ˜(M0,M1) = TwoABE.SKN and the input encoding

(̃x, b) =
(
TwoABE.PP, {gckt}ind∈[λ], {TwoABE.CTi,ind}i∈[q],ind∈[λ]

)
.

– For every ind ∈ [λ], do the following:
1. For every i ∈ [q], execute the decryption procedure of TwoABE to obtain

the wire keys of the garbled circuit, w̃ind
i ← TwoABE.Dec(TwoABE.SKN ,

TwoABE.CTi,ind).
2. Execute EvalGC(gcktind, w̃

ind
1 , . . . , w̃ind

q) to obtain outind.
3. If outind ̸= ⊥ then output out = outind. Otherwise, continue.

This completes the description of the main algorithms. We now describe the
auxiliary algorithms.

OEE.puncInp(OEE.sk, x): The secret key OEE.sk = (TwoABE.SK,TwoABE.PP,
FHE.pk0,FHE.sk0,FHE.pk1,FHE.sk1) punctured at point x is OEE.skx = (TwoABE.PP,
FHE.pk0,FHE.sk0,FHE.pk1,FHE.sk1). That is, the punctured key is same as the
original secret key except that the master secret key of TwoABE is removed.
Output OEE.skx.

OEE.pIEncode(OEE.skx, x
′): On input a punctured key OEE.skx and input x′ ̸= x,

it executes OEE.InpEncode(OEE.skx, x
′, b) to obtain the result (̃x′, b) which is set

to be the output.

[Note: The algorithm OEE.InpEncode can directly be executed on the punctured
key OEE.skx and input x′ because the master secret key TwoABE.SK is never
used during its execution.]

OEE.puncBit(OEE.sk, b): On input a secret key OEE.sk and a bit b ∈ {0, 1}, it
first interprets OEE.sk as (TwoABE.SK,TwoABE.PP,FHE.pk0,FHE.sk0,FHE.pk1,
FHE.sk1). It then outputs a punctured key OEE.skb = (TwoABE.PP,FHE.pk0,
FHE.pk1,FHE.skb).

OEE.pBEncode(OEE.skb, x): On input the punctured key OEE.skb, it computes

(̃x, b)← OEE.InpEncode(OEE.skb, x, b). The result (̃x, b) is then output.

[Note: The algorithm OEE.InpEncode can directly be executed on the punctured
key OEE.skb and input x because the FHE secret key associated to b, namely
FHE.skb, is never used during the execution.]

This completes the description of the auxiliary algorithms. In the full version,
we prove that our construction satisfies the desired correctness, efficiency and
security properties.

4 Succinct iO with Constant Multiplicative Overhead

Let OEE = (OEE.Setup,OEE.InpEncode,OEE.TMEncode,OEE.Decode) be an OEE
scheme with constant multiplicative overhead that is equipped with auxiliary al-
gorithms (OEE.puncInp,OEE.pIEncode,OEE.puncBit,OEE.pBEncode). Let iO be
an indistinguishability obfuscator for general circuits. Let PRF be a puncturable
PRF family. Using these primitives, we now give a construction of a succinct in-
distinguishability obfuscator with constant multiplicative overhead. We denote
it by SuccIO.

Construction. Let M denote the family of turing machines. On input the
security parameter and a turing machine M ∈M, SuccIO(1λ,M) computes the
following:

– OEE.sk← OEE.Setup(1λ).

– ˜(M,M)← OEE.TMEncode(OEE.sk,M,M).

– C̃ ← iO
(
C[K,OEE.sk]

)
, where K is a randomly chosen key for the puncturable

PRF family and C[K,OEE.sk] is the circuit described in Figure 4.

C[K,OEE.sk] (x)

1. Compute r ← PRFK(x).

2. Compute (̃x, 0)← OEE.InpEncode(OEE.sk, x, 0) using randomness r.

3. Output (̃x, 0).

Fig. 4: Circuit C[K,OEE.sk].

The output of the obfuscator is
(

˜(M,M), C̃
)
.

To evaluate the obfuscated machine on an input x, the evaluator first com-

putes C̃(x) to obtain (̃x, 0). Next, it computes y ← OEE.Decode
(

˜(M,M), (̃x, 0)
)

and outputs y.
The proof of correctness and security can be found in the full version.

References

[1] Prabhanjan Ananth, Dan Boneh, Sanjam Garg, Amit Sahai, and Mark
Zhandry. Differing-inputs obfuscation and applications. IACR Cryptology
ePrint Archive, 2013:689, 2013.

[2] Prabhanjan Ananth, Yu-Chi Chen, Kai-Min Chung, Huijia Lin, and Wei-
Kai Lin. Delegating ram computations with adaptive soundness and privacy.
In TCC-II, 2016.

[3] Prabhanjan Ananth, Divya Gupta, Yuval Ishai, and Amit Sahai. Optimizing
obfuscation: Avoiding barrington’s theorem. In ACM CCS, 2014.

[4] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation
from compact functional encryption. In CRYPTO, 2015.

[5] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Achieving compact-
ness generically: Indistinguishability obfuscation from non-compact func-
tional encryption. IACR Cryptology ePrint Archive, 2015:730, 2015.

[6] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Indistinguishabil-
ity obfuscation for turing machines: Constant overhead and amortization.
IACR Cryptology ePrint Archive, 2015:1023, 2015.

[7] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Patchable indistin-
guishability obfuscation: io for evolving software. In EUROCRYPT, 2017.

[8] Prabhanjan Ananth and Amit Sahai. Functional encryption for turing ma-
chines. In TCC 2016-A, 2016.

[9] Benny Applebaum and Zvika Brakerski. Obfuscating circuits via composite-
order graded encoding. In TCC, 2015.

[10] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit
Sahai. Protecting obfuscation against algebraic attacks. In EUROCRYPT,
2014.

[11] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating
programs. J. ACM, 59(2):6, 2012.

[12] Mihir Bellare, Igors Stepanovs, and Brent Waters. New negative results on
differing-inputs obfuscation. In EUROCRYPT, 2016.

[13] Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Siddartha Telang.
Succinct randomized encodings and their applications. In STOC, 2015.

[14] Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic hard-
ness of finding a nash equilibrium. In FOCS, pages 1480–1498, 2015.

[15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation
from functional encryption. In FOCS, 2015.

[16] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Niko-
laenko, Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayaga-
murthy. Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits. In EUROCRYPT, 2014.

[17] Dan Boneh and Brent Waters. Constrained pseudorandom functions and
their applications. In ASIACRYPT, 2013.

[18] Dan Boneh, David J. Wu, and Joe Zimmerman. Immunizing multilinear
maps against zeroizing attacks. IACR Cryptology ePrint Archive, 2014:930,
2014.

[19] Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfusca-
tion. In TCC, 2014.

[20] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and
pseudorandom functions. In PKC, 2014.

[21] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for
all circuits via generic graded encoding. In TCC, pages 1–25, 2014.

[22] Ran Canetti, Yilei Chen, Justin Holmgren, and Mariana Raykova. Adaptive
succinct garbled ram or: How to delegate your database. In TCC-II, 2016.

[23] Ran Canetti and Justin Holmgren. Fully succinct garbled RAM. In ITCS,
2016.

[24] Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan.
Indistinguishability obfuscation of iterated circuits and RAM programs. In
STOC, 2015.

[25] Angelo De Caro, Vincenzo Iovino, Abhishek Jain, Adam O’Neill, Omer
Paneth, and Giuseppe Persiano. On the achievability of simulation-based
security for functional encryption. In CRYPTO, pages 519–535, 2013.

[26] Yu-Chi Chen, Sherman S. M. Chow, Kai-Min Chung, Russell W. F. Lai,
Wei-Kai Lin, and Hong-Sheng Zhou. Computation-trace indistinguishability
obfuscation and its applications. In ITCS, 2016.

[27] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien
Stehlé. Cryptanalysis of the multilinear map over the integers. In EURO-
CRYPT, 2015.

[28] Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan, and
Daniel Wichs. Watermarking cryptographic capabilities. In STOC, pages
1115–1127, 2016.

[29] Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrède Lepoint, He-
manta K. Maji, Eric Miles, Mariana Raykova, Amit Sahai, and Mehdi Ti-
bouchi. Zeroizing without low-level zeroes: New MMAP attacks and their
limitations. In CRYPTO, 2015.

[30] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Cryptanal-
ysis of two candidate fixes of multilinear maps over the integers. IACR
Cryptology ePrint Archive, 2014:975, 2014.

[31] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps
from ideal lattices. In EUROCRYPT, pages 1–17, 2013.

[32] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and
Brent Waters. Candidate indistinguishability obfuscation and functional
encryption for all circuits. In FOCS, 2013.

[33] Sanjam Garg, Craig Gentry, Shai Halevi, and Daniel Wichs. On the implau-
sibility of differing-inputs obfuscation and extractable witness encryption
with auxiliary input. In CRYPTO, 2014.

[34] Sanjam Garg, Eric Miles, Pratyay Mukherjee, Amit Sahai, Akshay Srini-
vasan, and Mark Zhandry. Secure obfuscation in a weak multilinear map
model: A simple construction secure against all known attacks. In TCC-B,
2016.

[35] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC,
pages 169–178, 2009.

[36] Craig Gentry, Shai Halevi, Hemanta K. Maji, and Amit Sahai. Zeroizing
without zeroes: Cryptanalyzing multilinear maps without encodings of zero.
IACR Cryptology ePrint Archive, 2014:929, 2014.

[37] Craig Gentry, Shai Halevi, Mariana Raykova, and Daniel Wichs. Outsourc-
ing private ram computation. In FOCS. IEEE, 2014.

[38] Craig Gentry, Allison Lewko, and Brent Waters. Witness encryption from
instance independent assumptions. In Advances in Cryptology–CRYPTO
2014, pages 426–443, 2014.

[39] Craig Gentry, Allison B. Lewko, Amit Sahai, and Brent Waters. Indistin-
guishability obfuscation from the multilinear subgroup elimination assump-
tion. In FOCS, 2015.

[40] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikun-
tanathan, and Nickolai Zeldovich. Reusable garbled circuits and succinct
functional encryption. In STOC, 2013.

[41] Shafi Goldwasser, Yael Tauman Kalai, Raluca Ada Popa, Vinod Vaikun-
tanathan, and Nickolai Zeldovich. How to run turing machines on encrypted
data. In CRYPTO, 2013.

[42] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-
based encryption for fine-grained access control of encrypted data. In ACM
CCS, pages 89–98, 2006.

[43] Pavel Hubácek and Daniel Wichs. On the communication complexity of
secure function evaluation with long output. In ITCS, pages 163–172, 2015.

[44] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new repre-
sentation with applications to round-efficient secure computation. In FOCS,
pages 294–304, 2000.

[45] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptog-
raphy with constant computational overhead. In ACM STOC, 2008.

[46] Yuval Ishai, Omkant Pandey, and Amit Sahai. Public-coin differing-inputs
obfuscation and its applications. In TCC, 2015.

[47] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas
Zacharias. Delegatable pseudorandom functions and applications. In ACM
CCS, 2013.

[48] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguisha-
bility obfuscation for turing machines with unbounded memory. In STOC,
2015.

[49] Huijia Lin. Indistinguishability obfuscation from constant-degree graded
encoding schemes. In EUROCRYPT, pages 28–57, 2016.

[50] Huijia Lin, Rafael Pass, Karn Seth, and Sidharth Telang. Output-
compressing randomized encodings and applications. In TCC-I, 2016.

[51] Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation
from ddh-like assumptions on constant-degree graded encodings. In FOCS,
2016.

[52] Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for multi-
linear maps: Cryptanalysis of indistinguishability obfuscation over GGH13.
In CRYPTO, pages 629–658, 2016.

[53] Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfusca-
tion from semantically-secure multilinear encodings. In CRYPTO, 2014.

[54] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EURO-
CRYPT, pages 457–473, 2005.

[55] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation:
deniable encryption, and more. In ACM STOC, 2014.

[56] Joe Zimmerman. How to obfuscate programs directly. In EUROCRYPT,
2015.

