
ZMAC: A Fast Tweakable Block Cipher Mode
for Highly Secure Message Authentication

Tetsu Iwata1, Kazuhiko Minematsu2, Thomas Peyrin3,4,5, and Yannick Seurin6

1 Nagoya University, Japan
tetsu.iwata@nagoya-u.jp
2 NEC Corporation, Japan

k-minematsu@ah.jp.nec.com
3 School of Physical and Mathematical Sciences
Nanyang Technological University, Singapore

4 School of Computer Science and Engineering
Nanyang Technological University, Singapore

5 Temasek Laboratories, Nanyang Technological University, Singapore
thomas.peyrin@ntu.edu.sg

6 ANSSI, Paris, France
yannick.seurin@m4x.org

Abstract. We propose a new mode of operation called ZMAC allowing
to construct a (stateless and deterministic) message authentication code
(MAC) from a tweakable block cipher (TBC). When using a TBC with
n-bit blocks and t-bit tweaks, our construction provides security (as
a variable-input-length PRF) beyond the birthday bound with respect
to the block-length n and allows to process n + t bits of inputs per
TBC call. In comparison, previous TBC-based modes such as PMAC1,
the TBC-based generalization of the seminal PMAC mode (Black and
Rogaway, EUROCRYPT 2002) or PMAC_TBC1k (Naito, ProvSec 2015)
only process n bits of input per TBC call. Since an n-bit block, t-bit tweak
TBC can process at most n + t bits of input per call, the efficiency of
our construction is essentially optimal, while achieving beyond-birthday-
bound security. The ZMAC mode is fully parallelizable and can be directly
instantiated with several concrete TBC proposals, such as Deoxys and
SKINNY. We also use ZMAC to construct a stateless and deterministic
Authenticated Encryption scheme called ZAE which is very efficient and
secure beyond the birthday bound.

Keywords: MAC, tweakable block cipher, authenticated encryption

1 Introduction

Block Cipher-Based MACs. A Message Authentication Code (MAC) is a
symmetric-key cryptographic function that ensures the authenticity of messages.
A large family of MACs (such as CBC-MAC [BKR00] or OMAC [IK03]) are
constructed as modes of operation of some underlying block cipher. They are

often provably secure and reasonably efficient, however, they also have inherent
limitations with respect to speed and security. First, such modes cannot process
more than n bits of input per block cipher call, where n is the block-length (in
bits) of the underlying block cipher. Second, most block cipher-based modes
are secure only up to the so-called birthday bound (i.e., up to 2n/2 message
blocks), and very few proposals, such as PMAC_Plus [Yas11], achieve security
beyond the birthday bound (BBB), often at the cost of efficiency. For block ciphers
with block-length 128, birthday-bound security can be deemed to low in many
situations.

For these reasons, a recent popular trend has been to design modes of op-
eration for a stronger primitive, namely tweakable block ciphers (TBCs). In
comparison to traditional block ciphers, TBCs take an extra t-bit input called
the tweak, and should behave as a family of 2t independent block ciphers in-
dexed by the tweak. This primitive was formalized by Liskov et al. [LRW02]
(even though the informal idea surfaced in several papers before), and turns out
to be surprisingly flexible for building various cryptographic functionalities. A
TBC can be either constructed in a generic way from a block cipher through a
mode of operation such as XEX [Rog04], or as a dedicated design such as Three-
fish [FLS+10], SCREAM [GLS+14], Deoxys-BC [JNP14a], Joltik-BC [JNP14b],
KIASU-BC [JNP14c], and SKINNY [BJK+16], these last four examples following
the so-called TWEAKEY framework [JNP14d].

The first construction of a parallelizable7 MAC from a TBC is PMAC1 [Rog04],
derived from the block cipher-based construction PMAC [BR02] by abstracting the
block cipher-based TBC implicitly used in PMAC. Assuming that the underlying
TBC has n-bit blocks and t-bit tweaks, PMAC1 processes n bits of inputs per
TBC call, handles messages of length up to (roughly) 2t n-bit blocks, and is
secure up to the birthday bound (i.e., up to roughly 2n/2 message blocks). This
scheme is simple, efficient and fully parallelizable (all calls to the TBC except
the final one can be made in parallel). For these reasons, it has been adopted
for example by multiple TBC-based submissions to the CAESAR competition
for Authenticated Encryption (AE), e.g. SCREAM [GLS+14], Deoxys [JNP14a],
Joltik [JNP14b], or KIASU [JNP14c].

Several authors have proposed schemes that push security beyond the birth-
day bound. Naito [Nai15] proposed two constructions called PMAC_TBC1k and
PMAC_TBC3k which are reminiscent from PMAC_Plus [Yas11]. As PMAC1, they
allow to process only n bits of inputs per TBC call, but their security is signifi-
cantly higher than for PMAC1: they are secure up to roughly 2n message blocks.
Recently, List and Nandi [LN17] proposed PMAC2x which extends the output size
of Naito’s PMAC_TBC1k scheme from n to 2n bits without harming efficiency nor
security. (They also proposed a minor modification of PMAC_TBC1k with n-bit
outputs called PMACx.) We remark that Minematsu and Iwata [MI17] recently
reported severe flaws in [LN17] (the ePrint version of [LN17] was subsequently
updated in order to fix these flaws).

7 Liskov et al. [LRW02] suggested a MAC construction from a TBC called TBC-MAC,
but the construction is serial.

2

Our Contribution. We propose a new TBC-based MAC called ZMAC. As
PMAC_TBC1k [Nai15] or PMAC2x/PMACx [LN17], it achieves BBB-security (as
a variable-input-length PRF) and it is fully parallelizable. However, our proposal
is more efficient than any of the previous schemes. Specifically, ZMAC processes
n + t bits of inputs per TBC call when using an n-bit block and t-bit tweak
TBC, whereas previous schemes are limited to n bits of inputs per TBC call,
independently of the tweak size (see Table 1 for a comparison with existing
schemes). To the best of our knowledge, this is the first TBC-based MAC that
exploits the full power of the tweak input of the underlying TBC. Note that an
n-bit block, t-bit tweak TBC cannot handle more than n+ t bits of public input
per call, hence the efficiency of our construction is essentially optimal (a few
tweak bits are reserved for domain separation but the impact is very limited). The
tweak-length t of the TBC used in ZMAC can be arbitrary, which is important
since existing dedicated TBCs have various tweak-length, smaller (e.g. Threefish
or KIASU-BC) or larger (e.g. Deoxys-BC or SKINNY) than the block-length n.

Main Ideas of Our Design. Our construction follows the traditional “UHF-
then-PRF” paradigm: first, the message is hashed with a universal hash function
(UHF), and the resulting output is given to a fixed-input-length PRF. Building a
BBB-secure fixed-input-length PRF from a TBC is more or less straightforward
(one can simply use the “XOR of permutations” construction, which has been
extensively analyzed [Luc00, Pat08, Pat13, CLP14]). The most innovative part
of our work lies in the design of our TBC-based UHF, which we call ZHASH.
The structure of our proposal is reminiscent of Naito’s PMAC_TBC1k (and
thus of PMAC_Plus) combined with the XTX tweak extension construction by
Minematsu and Iwata [MI15]. We note that a TBC is often used to abstract
a block cipher-based construction to simplify the security proof, for example
in the case of PMAC and OCB [Rog04], where one can prove the security of
TBC-based abstraction and the construction of TBC itself separately. The TBC-
based abstraction eliminates the handling of masks, which simplifies the security
proof. That is, it is often the case that TBC-based constructions do not have
masks, where the masks are treated as tweaks. With ZMAC, we take the opposite
direction to the common approach. We restore the masks in the construction,
and our scheme explicitly relies on the use of masks together with a TBC.

Application to Deterministic Authenticated Encryption. Following
List and Nandi [LN17], we use ZMAC to construct a (stateless) Deterministic
Authenticated Encryption (DAE) scheme (i.e., a scheme whose security does not
rely on the use of random IVs or nonces8 [RS06]). The resulting scheme, called
ZAE, is BBB-secure and very efficient: it processes on average n(n+ t)/(2n+ t)
input bits per TBC call (this complex form comes from the fact that the MAC,
resp. encryption part processes n+ t, resp. n input bits per TBC call). Note that
when t = 0, this is (unsurprisingly) similar to standard double-pass block cipher-
based DAE schemes (n/2 bits per block cipher call), but as t grows, efficiency
8 DAE implies resistance against nonce-misuse by incorporating the nonce into the
associated data, and thus is also called Misuse-Resistant AE (MRAE).

3

Table 1. Comparison of our designs ZMAC and ZAE with other MAC and DAE
(a.k.a MRAE) schemes. Column “# bits per call” refers to the number of bits of input
processed per primitive call. Notation: n is the block-length of the underlying BC/TBC,
t is the tweak-length of the underlying TBC. NR denotes the nonce-respecting scenario.

Scheme Prim. # bits per call Parallel Security Ref.

Message Authentication Code
CMAC BC n N n/2 [IK03]
PMAC BC n Y n/2 [BR02]
SUM-ECBC BC n/2 N 2n/3 [Yas10]
PMAC_Plus BC n Y 2n/3 [Yas11]
PMAC1 TBC n Y n/2 [Rog04]
PMAC_TBC1k TBC n Y n [Nai15]
PMACx/PMAC2x TBC n Y n [LN17]
ZMAC TBC n+ t Y min{n, (n+ t)/2} Sec. 3

Deterministic Authenticated Encryption
SIV BC n/2 Y n/2 [RS06]
SCT TBC n/2 Y n/2 (n for NR) [PS16]
SIVx TBC n/2 Y n [LN17]
ZAE TBC n(n+ t)/(2n+ t) Y min{n, (n+ t)/2} Sec. 5

approaches n bits per TBC calls, i.e., the efficiency of an online block cipher-based
scheme (which cannot be secure in the DAE sense). We provide a comparison with
other DAE schemes in Table 1. We emphasize that ZAE is a mere combination of
ZMAC with a TBC-based encryption mode called IVCTRT previously proposed
in [PS16] through the SIV composition method [RS06]. Nevertheless, we think
the proposal of a concrete DAE scheme based on ZMAC is quite relevant here,
and helps further illustrate the performance gains allowed by ZMAC (see Table 3
in Section 6).

Future Works. ZMAC achieves optimal efficiency while providing full n-bit
security (assuming t ≥ n). For this reason, it seems that this mode cannot be
substantially improved. However, it would be very interesting to study how
ZMAC’s design can influence ad-hoc TBC constructions: if one could construct
an efficient, BBB-secure n-bit block TBC with a very large tweak (something
which has not been studied much yet), this would lead to extremely efficient
MAC algorithms.

Organization. We give useful definitions in Section 2. Our new mode ZMAC
is defined in Section 3, and its security is analyzed in Section 4. Applications
to Authenticated Encryption are presented in Section 5. Finally, a performance
estimation for ZMAC and ZAE when Deoxys-BC or SKINNY are used to instantiate
the TBC is provided in Section 6.

4

2 Preliminaries

Basic Notation. Let {0, 1}∗ be the set of all finite bit strings. For an integer
n ≥ 0, let {0, 1}n be the set of all bit strings of length n, and ({0, 1}n)+ be the set
of all bit strings of length a (non-zero) positive multiple of n. For X ∈ {0, 1}∗, |X|
is its length in bits, and for n ≥ 1, |X|n = d|X|/ne is its length in n-bit blocks.
The string of n zeros is denoted 0n. The concatenation of two bit strings X and
Y is written X ‖Y , or XY when no confusion is possible. For any X ∈ {0, 1}n
and i ≤ n, let msbi(X), resp. lsbi(X) be the first, resp. last i bits of X. For
non-negative integers a and d with a ≤ 2d − 1, let strd(a) be the d-bit binary
representation of a.

Given a bit string X ∈ {0, 1}i+j , we write

(X[1], X[2]) i,j←− X

where X[1] = msbi(X) and X[2] = lsbj(X). For X ∈ {0, 1}∗, we also define the
parsing into fixed-length subsequences of length n, denoted

(X[1], X[2], . . . , X[m]) n←− X,

where m = |X|n, X[1] ‖X[2] ‖ . . . ‖X[m] = X, |X[i]| = n for 1 ≤ i < m and
0 ≤ |X[m]| ≤ n when |X| > 0. When |X| = 0, we let X[1] n←− X, where X[1] is
the empty string.

Let n and t be positive integers. For any X ∈ {0, 1}∗, we define the “one-zero
padding” ozp(X) to be X if |X| is a positive multiple of (n+ t) and X ‖ 10c for
c = |X| mod (n+ t)−1 otherwise. We stress that ozp(·) is defined with respect to
(n+ t)-bit blocks rather than n-bit blocks, and that the empty string is padded
to 10n+t−1.

For any X ∈ {0, 1}n and Y ∈ {0, 1}t, we define

X ⊕t Y
def=
{

msbt(X)⊕ Y if t ≤ n,
(X ‖ 0t−n)⊕ Y if t > n.

Hence, |X ⊕t Y | = t in both cases and if t = n then X ⊕t Y = X ⊕ Y .
Given a non-empty set X , we let X $← X denote the draw of an element X

uniformly at random in X .

Galois Field. An element a in the Galois field GF(2n) will be interchangeably
represented as an n-bit string an−1 . . . a1a0, a formal polynomial an−1xn−1 +
· · ·+ a1x + a0, or an integer

∑n−1
i=0 ai2i. Hence, by writing 2 · a or 2a when no

confusion is possible, we mean the multiplication of a by 2 = x. This operation
is called doubling. For n = 128, we define the field GF(2n) (as is standard) by
the primitive polynomial x128 + x7 + x2 + x + 1. The doubling 2a over this field
is (a � 1) if msb1(a) = 0 and (a � 1) ⊕ (012010000111) if msb1(a) = 1, where
(a� 1) denotes the left-shift of a by one bit.

5

Keyed Functions and Modes. A keyed function with key space K, domain
X , and range Y is a function F : K ×X → Y. We write FK(X) for F (K,X). If
Mode is a mode of operation for F using a single key K ∈ K for F , we write
Mode[FK] instead of Mode[F]K .

For any keyed function F : K × ({0, 1}n)+ → {0, 1}a for some a, we define
the collision probability of F as

CollF (n,m,m′) def= max
M∈({0,1}n)m

M ′∈({0,1}n)m′

M 6=M ′

Pr[K $← K : FK(M) = FK(M ′)].

Tweakable Blockciphers. A tweakable blockcipher (TBC) is a keyed function
Ẽ : K × T × M → M such that for each (K,T) ∈ K × T , Ẽ(K,T, ·) is a
permutation overM. Here, K is the key and T is a public value called tweak.
Note that a conventional block cipher is a TBC such that the tweak space T is a
singleton. The output Ẽ(K,T,X) of the encryption of X ∈M under key K ∈ K
and tweak T ∈ T may also be written ẼK(T,X) or ẼTK(X). Following [PS16],
when the tweak space of Ẽ is TI = T × I for some I ⊂ N and for some set
T , we call T the effective tweak space of Ẽ, and we write Ẽi(K,T,X) to mean
Ẽ(K, (T, i), X). By convention we also write ẼiK(T,X) or Ẽi,TK (X). The set I is
typically a small set used to generate a small number of distinct TBC instances
in the scheme, something we call domain separation. For T ′ = (T, i) ∈ TI , we call
i ∈ I the domain separation integer of tweak T ′.

Random Primitives. Let X , Y and T be non-empty finite sets. Let Func(X ,Y)
be the set of all functions from X to Y, and let Perm(X) be the set of all
permutations over X . Moreover, let PermT (X) be the set of all functions f :
T × X → X such that for any T ∈ T , f(T, ·) is a permutation over X .

A uniform random function (URF) with domain X and range Y, denoted
R : X → Y, is a random function with uniform distribution over Func(X ,Y).
Similarly, a uniform random permutation (URP) over X , denoted P : X → X , is
a random permutation with uniform distribution over Perm(X). An n-bit URP is
a URP over {0, 1}n. Finally, a tweakable URP (TURP) with tweak space T and
message space X , denoted P̃ : T × X → X , is a random tweakable permutation
with uniform distribution over PermT (X).

Security Notions. We recall standard security notions for (tweakable) block
ciphers and keyed functions.

Definition 1. Let Ẽ : K × T × X → X be a TBC, and let A be an adversary
with oracle access to a tweakable permutation whose goal is to distinguish Ẽ
and a TURP P̃ : T × X → X by oracle access. The advantage of A against
the Tweakable Pseudorandom Permutation-security (or TPRP-security) of Ẽ is
defined as

Advtprp

Ẽ
(A) def=

∣∣∣Pr[K $← K : AẼK ⇒ 1]− Pr[P̃ $← PermT (X) : AP̃ ⇒ 1]
∣∣∣ ,

6

where AẼK ⇒ 1 denotes the event that the final binary decision by A is 1.

We remark that the above definition only allows A to make encryption queries.
If decryption queries are allowed, the corresponding notion is called Strong TPRP
(or STPRP) security. In this paper, we only use TPRP-security for the TBC
underlying our constructions. The standard PRP-security notion for conventional
block ciphers is recovered by letting the tweak space T be a singleton.

Definition 2. For F : K × X → Y, let A be an adversary whose goal is to
distinguish FK and a URF R : X → Y by oracle access. The advantage of A
against the PRF-security of F is defined as

Advprf
F (A) def=

∣∣∣Pr[K $← K : AFK ⇒ 1]− Pr[R $← Func(X ,Y) : AR ⇒ 1]
∣∣∣ .

Moreover, for any F : K ×X → Y and G : K′ ×X → Y, the advantage of A in
distinguishing F and G is defined as

Advdist
F,G (A) def=

∣∣∣Pr[K $← K : AFK ⇒ 1]− Pr[K ′ $← K′ : AGK′ ⇒ 1]
∣∣∣ .

When a cryptographic scheme (or a mode of operation) Mode uses a (T)BC
of block-length n bits, the security bound (i.e., the best advantage for any
adversary with fixed resources) is typically a function of the query complexity
of the adversary (in terms of number q of queries or total number σ of queried
blocks) and n. When this function reaches 1 for query complexity 2n/2, we say
that Mode is secure up to the birthday bound, since this typically arises from the
birthday paradox on the block input of the (T)BC. Conversely, if the advantage
is negligibly small for any adversary of query complexity 2n/2, we say that Mode
is secure beyond the birthday bound (BBB-secure).

3 Specification of ZMAC

3.1 Overview

Let Ẽ : K×TI×{0, 1}n → {0, 1}n be a TBC with tweak space TI = T ×I, where
T = {0, 1}t for some t > 0 and I ⊇ {0, 1, . . . , 9}. We present a construction of
a PRF ZMAC[Ẽ] : K × {0, 1}∗ → {0, 1}2n with variable-input-length and 2n-bit
outputs based on Ẽ.

The ZMAC mode has the following properties, holding for any effective tweak
size t > 0:

1. it uses a single key for calls to Ẽ;
2. the calls to Ẽ are parallelizable;
3. it processes on average n+ t input bits per TBC call;
4. it is provably secure as long as the total length σ of queries in (n + t)-bit

blocks is small compared with 2min{n,(n+t)/2}.

7

ZMAC is more efficient that any previous TBC-based MAC, which process at
most n bits per TBC call (e.g., when t = n, ZMAC is twice faster than PMAC1).
We emphasize that any mode based on an n-bit block, t-bit tweak TBC can
process at most n+t input bits per TBC call, thus ZMAC’s efficiency is essentially
optimal if one wants to achieve any meaningful provable security, since otherwise
there must be some part of the input which is not processed by the TBC.9

Property 4 shows that the security of ZMAC is beyond the birthday bound
with respect to n. In particular, it is n-bit secure when t ≥ n. These properties
demonstrate that ZMAC is the first TBC-based MAC to fully use the power of
the underlying TBC.

We specify ZMAC with 2n-bit outputs, which will be useful for defining our
BBB-secure DAE scheme in Section 5. However, if one simply wants an n-bit-
secure MAC, one can truncate the output of ZMAC to n bits (which saves two
TBC calls in the finalization).

Design Rationale. The structure of ZMAC has some similarities with previous
BBB-secure TBC-based PRF constructions [Nai15, LN17]. However, there are
several innovative features that make ZMAC faster and n-bit secure.

The core idea of [Nai15, LN17] is to start from a TBC-based instantiation of
PHASH, the UHF underlying PMAC [Rog04]. PHASH is quite simple: it simply
XORs together the encryptions ẼK(i,Mi) of message blocks with the index i
of the block as tweak. In order to obtain a 2n-bit output, some linear layer is
applied to all encrypted blocks, as originally introduced by Yasuda [Yas11] in
his PMAC_Plus block cipher-based PRF. This yields a 2n-bit message hash, to
which some finalization function (a fixed-input-length PRF) is applied to obtain
the final output.

Whereas the t-bit tweak in the previous schemes takes as input the index
of each message block, we crucially use both the message space and the tweak
space of the TBC to process n+ t input bits in order to improve efficiency. The
block index is incorporated via (a variant of) a tweak extension scheme called
XTX [MI15], which allows to efficiently update the block index with only two
field doublings, somehow similarly to XEX [Rog04].

The above trick, however, is not enough to achieve BBB-security. Since we
process each (n+ t)-bit input block by one call to an n-bit output TBC, the input
block and the output block are no longer in one-to-one correspondence. Yet the
BBB-security of previous schemes (where each input block is n-bit) crucially relies
on this fact (otherwise, one can find a collision with complexity 2n/2, resulting
in n/2-bit security). Fortunately, this problem can be solved by processing each
(n+ t)-bit input block with a Feistel-like permutation involving one TBC call,
and applying the linear layer to the output of this (n+ t)-bit permutation.

High-Level Structure of ZMAC. ZMAC consists of a hashing part

ZHASH[Ẽ] : K × ({0, 1}n+t)+ → {0, 1}n+t

9 Alternatively, one can combine another large non-linear component such as a field
multiplication with an extra key, however this increases the implementation size.

8

Algorithm ZHASH[ẼK](X)

1. U ← 0n, V ← 0t

2. L` ← Ẽ9
K(0t, 0n)

3. Lr ← Ẽ9
K(0t−11, 0n)

4. (X[1], . . . , X[m]) n+t←−− X
5. for i = 1 to m do
6. (X`, Xr) n,t←−− X[i]
7. S` ← L` ⊕X`

8. Sr ← Lr ⊕t Xr

9. C` ← Ẽ8
K(Sr, S`)

10. Cr ← C` ⊕t Xr

11. U ← 2(U ⊕ C`)
12. V ← V ⊕ Cr

13. (L`, Lr)← (2L`, 2Lr)
14. return (U, V)

Algorithm ZFIN[ẼK](i, U, V)

1. Y [1]← Ẽi
K(V,U)⊕ Ẽi+1

K (V,U)
2. Y [2]← Ẽi+2

K (V,U)⊕ Ẽi+3
K (V,U)

3. Y ← Y [1] ‖Y [2]
4. return Y

Algorithm ZMAC[ẼK](M)

1. X ← ozp(M)
2. (U, V)← ZHASH[ẼK](X)
3. if M ∈ ({0, 1}n+t)+

4. Y ← ZFIN[ẼK](0, U, V)
5. else
6. Y ← ZFIN[ẼK](4, U, V)
7. return Y

Fig. 1. Specification of ZMAC.

and a finalization part

ZFIN[Ẽ] : K × {0, 1}n+t → {0, 1}2n.

Then, ZMAC is defined as the composition of ZHASH and ZFIN. When the input-
length is not a positive multiple of (n+ t) bits, one-zero padding (into (n+ t)-bit
blocks) is applied first. To separate inputs whose length is a positive multiple of
(n+ t) bits or not, we use distinct domain separation integers in ZFIN.

The pseudocode for ZHASH, ZFIN, and ZMAC is shown in Figure 1. It gives
a unified specification that covers both cases t ≤ n and t > n (note that the
only operation which differs in the two cases is the ⊕t operation). We describe
more informally ZHASH separately for t ≤ n and t > n, as well as ZFIN in the
following sections.

3.2 Specification of ZHASH for the Case t ≤ n

We first define ZHASH[Ẽ] when t ≤ n. For simplicity, we assume n+ t is even.
Before processing the input, ZHASH[Ẽ] computes two n-bit initial mask values
L` = Ẽ9

K(0t, 0n) and Lr = Ẽ9
K(0t−11, 0n).

Given input X ∈ ({0, 1}n+t)+, ZHASH[Ẽ] parses X into (n + t)-bit blocks
(X[1], . . . , X[m]), parses each block X[i] as X`[i] = msbn(X[i]) and Xr[i] =
lsbt(X[i]), and computes, for i = 1 to m,

C`[i] = Ẽ8
K(2i−1Lr ⊕t Xr[i], 2i−1L` ⊕X`[i]), (1)

Cr[i] = C`[i]⊕t Xr[i]. (2)

9

ZHASH

X[1]

X` Xr

Ẽ8
K t

L`
Lr

t

2

0n

0t

X[2]

X` Xr

Ẽ8
K t

2 · L`
2 · Lr

t

2

. . .

. . .

X[m]

X` Xr

Ẽ8
K t

2m−1 · L`
2m−1 · Lr

t

2

U

V

Fig. 2. The ZHASH hash function.

Then ZHASH[Ẽ] computes two chaining values, U ∈ {0, 1}n and V ∈ {0, 1}t
defined as

U =
m⊕
i=1

2m−i+1C`[i],

V =
m⊕
i=1

Cr[i].

The final output is (U, V).
As shown in Figure 1, the field doublings are computed in an incremental

manner. Specifically, ZHASH[Ẽ] needs one call to Ẽ and three GF(2n) doublings
to process an (n+ t)-bit block, plus two pre-processing calls to Ẽ. Obviously, the
calls to Ẽ are parallelizable.

3.3 Specification of ZHASH for the Case t > n

The hashing scheme ZHASH[Ẽ] for the case t > n is defined as follows (the two
internal masks L` and Lr are derived and incremented in the same way as in the
case t ≤ n).

– The input X is parsed into (n+ t)-bit blocks as in the case t ≤ n, and each
block is further parsed into n, n, and t− n bit-blocks;

– The first and second n-bit sub-blocks are processed in the same way as in
the case t = n. The third (t− n)-bit sub-block is directly fed to the tweak
input of the TBC as the last (t− n) bits of effective tweak;

– The output consists of two checksums, U ∈ {0, 1}n and V ∈ {0, 1}t, where
(U, msbn(V)) corresponds to the output for the case t = n, and lsbt−n(V)
corresponds to the sum of all third (t− n)-bit sub-blocks.

10

ZFIN

Ẽi
K

U

V Ẽi+1
K

U

V Ẽi+2
K

U

V Ẽi+3
K

U

V

Y [1] Y [2]

Fig. 3. The ZFIN finalization function.

Hence, the computation of V is just written as the sum of all Cr blocks in the
unified specification of Figure 1, since the last (t− n) bits of Cr[i] only contains
the last (t− n) bits of the input block X[i].

3.4 Finalization

The finalization function, denoted by ZFIN[Ẽ], takes the output of ZHASH[Ẽ],
(U, V) ∈ {0, 1}n × {0, 1}t, and generates a 2n-bit output. It is defined as

ZFIN[ẼK](i, U, V) = (ẼiK(U, V)⊕ Ẽi+1
K (U, V) ‖ Ẽi+2

K (U, V)⊕ Ẽi+3
K (U, V)),

where the first argument i is a non-negative integer used for domain separation.
Note that if |i − j| ≥ 4, domain separation integers used for TBC calls in
ZFIN[ẼK](i, ·, ·) and in ZFIN[ẼK](j, ·, ·) are distinct. We use i = 0 when no
padding is applied, i.e., when M ∈ ({0, 1}n+t)+, and i = 4 otherwise.

We remark that ZFIN is close but not identical to finalization functions
used in previous works [Nai15, LN17]. For example, Naito [Nai15] employed
ẼiK(U, V) ⊕ Ẽi+1

K (V,U) for building a PRF with n-bit outputs. One potential
advantage of ZFIN over using two independent instances of Naito’s construction is
that ZFIN can be faster if the algorithm of Ẽ allows to leverage on the similarity
of inputs for computing ẼiK(U, V) and Ẽi+1

K (U, V).

4 The PRF Security of ZMAC

4.1 XT Tweak Extension

Our first step is to recast the use of masks 2i−1L` and 2i−1Lr as a way to extend
the tweak space of Ẽ. More specifically, we observe that the “core” construction
of ZHASH in Eq. (1),

((T, i), X) 7→ Ẽ8
K(2i−1Lr ⊕t T, 2i−1L` ⊕X), (3)

11

keyed by (K, (L`, Lr)), is an instantiation of a CPA-secure variant of a tweak
extension scheme called XTX proposed in [MI15], which allows to extend the
tweak space of Ẽ8 from T = {0, 1}t to TJ = T × J with J = {1, . . . , 2n − 1}.
Following the naming convention for XE and XEX by Rogaway [Rog04] which
defines CPA- and CCA-secure TBCs based on a block cipher, we use XT to
denote the CPA-secure variant of XTX without output mask.

In order to describe the XT construction, we need the notion of partial AXU
hash function introduced by [MI15].

Definition 3. Let H : L×X → Y be a keyed function with key space L, domain
X , and range Y = {0, 1}n × {0, 1}t. We say that H is (n, t, ε)-partial almost-
XOR-universal ((n, t, ε)-pAXU) if for any X 6= X ′, one has

max
δ∈{0,1}n

Pr[L $← L : HL(X)⊕HL(X ′) = (δ, 0t)] ≤ ε.

Now define the XT tweak extension scheme. Let Ẽ : K×T ×{0, 1}n → {0, 1}n
be a TBC with tweak space T = {0, 1}t and let H : L × T ′ → Y be a keyed
function with range Y = {0, 1}n × {0, 1}t. Let XT[Ẽ,H] be the TBC with key
space K × L, tweak space T ′, and message space {0, 1}n defined as

XT[Ẽ,H]K,L(T ′, X) = ẼK(Zr, Z` ⊕X) where HL(T ′) = (Z`, Zr). (4)

The following lemma characterizes the security of XT[P̃, H] where Ẽ is replaced
by a TURP P̃. It is similar to [MI15, Theorem 1] and its proof is deferred to the
full version of the paper.

Lemma 1. Let XT[P̃, H] be defined as above, where P̃ : T × {0, 1}n → {0, 1}n
is a TURP and H is (n, t, ε)-pAXU. Then, for any adversary A making at most
q queries, one has

Advtprp

XT[̃P,H]
(A) ≤ q2ε

2 .

Assume for a moment that L` = Ẽ9
K(0t, 0n) and Lr = Ẽ9

K(0t−11, 0n) are
uniformly random (this will hold once the TBC underlying ZMAC has been
replaced by a TURP later in the security proof). Consider the function H with
key space {0, 1}n × {0, 1}n, domain TJ = T × J with J = {1, . . . , 2n − 1}, and
range {0, 1}n × {0, 1}t defined as

H(L`,Lr)(T, i) = (2i−1L`, 2i−1Lr ⊕t T). (5)

Then observe that the construction of Eq. (3) is exactly XT[Ẽ8, H] with H defined
as above. We prove that H is pAXU in the following lemma.

Lemma 2. Let H be defined as in Eq. (5). Then H is (n, t, 1/2n+min{n,t})-pAXU.

12

Proof. Assume first that t ≤ n. Then, by definition of ⊕t, one has

H(L`,Lr)(T, i) = (2i−1L`, msbt(2i−1Lr)⊕ T).

Hence, we must upper bound

p
def= Pr

(L`,Lr)

[(
(2i−1 + 2j−1)L`, msbt((2i−1 + 2j−1)Lr)⊕ T ⊕ T ′

)
= (δ, 0t)

]
for any distinct inputs (T, i), (T ′, j) ∈ TJ and any δ ∈ {0, 1}n.

If i = j, then necessarily T 6= T ′, and hence

msbt((2i−1 + 2j−1)Lr)⊕ T ⊕ T ′ = T ⊕ T ′ 6= 0t.

Thus the probability p is zero.
If i 6= j, then 2i−1 6= 2j−1. Therefore, 2i−1 + 2j−1 is a non-zero element over

GF(2n) and thus

p = Pr
(L`,Lr)

[(2i−1 + 2j−1)L` = δ, msbt((2i−1 + 2j−1)Lr)⊕ T ⊕ T ′ = 0t]

= Pr
(L`,Lr)

[(2i−1 + 2j−1)L` = δ, msbt((2i−1 + 2j−1)Lr) = T ⊕ T ′]

= 1
2n ·

1
2t = 1

2n+t .

For the case t > n, observe that by definition of ⊕t,

H(L`,Lr)(T, i) = (2i−1L`, (2i−1Lr ‖ 0t−n)⊕ T).

Hence, we can use the previous analysis for the special case t = n, so that p is at
most 1/22n. In all cases, p is at most 1/2n+min{n,t}.

Combining Lemmas 1 and 2, we obtain the following for the construction of
Eq. (3) when Ẽ8

K is replaced by a TURP.

Lemma 3. Let XT[P̃, H] be defined as in Eq. (4) where P̃ : T ×{0, 1}n → {0, 1}n
is a TURP and H is defined as in Eq. (5). Then, for any adversary making at
most q queries,

Advtprp

XT[̃P,H]
(A) ≤ q2

2n+min{n,t}+1 .

4.2 Collision Probability of ZHASH

Let Ẽ′ : K′×TJ×{0, 1}n → {0, 1}n be a TBC with tweak space TJ = T ×J where
T = {0, 1}t and J = {1, . . . , 2n − 1} as before. We define ZHASH[Ẽ′] as shown
in Figure 4 and depicted in Figure 5. Note that, assuming that masking keys
L` and Lr are uniformly random rather than derived through Ẽ9

K , ZHASH[Ẽ] is
exactly ZHASH[XT[Ẽ8, H]], with H defined as in Eq. (5).

Let P̃J : TJ × {0, 1}n → {0, 1}n be a TURP. The following lemma plays a
central role in our security proof.

13

Algorithm ZHASH[Ẽ′K′](X)
(|X| is a positive multiple of n+ t)

1. U ← 0n, V ← 0t

2. (X[1], . . . , X[m]) n+t←−− X
3. for i = 1 to m do
4. (X`, Xr) n,t←−− X[i]
5. C` ← Ẽ′K′((Xr, i), X`)
6. Cr ← C` ⊕t Xr

7. U ← 2(U ⊕ C`)
8. V ← V ⊕ Cr

9. return (U, V)

Fig. 4. Pseudocode for the ZHASH construction using Ẽ′ : K′×TJ ×{0, 1}n → {0, 1}n

with TJ = {0, 1}t × {1, 2, . . . , 2n − 1}.

Lemma 4. For any m,m′ ≤ 2min{n,(n+t)/2}, we have

CollZHASH[̃PJ](n+ t,m,m′) ≤ 4
2n+min{n,t} .

Proof. Without loss of generality, we assume m ≤ m′. Let X = (X[1], . . . , X[m])
and X ′ = (X ′[1], . . . , X ′[m′]) be two distinct messages of (n+ t)-bit blocks. Let
(U, V) = ZHASH[P̃J](X) and (U ′, V ′) = ZHASH[P̃J](X ′) be the outputs. We
define Xr[i], X`[i], C`[i], and Cr[i] following Figure 4 augmented with the loop
index i. Let ∆U = U ⊕U ′, ∆V = V ⊕V ′, etc. A collision of ZHASH[P̃J] outputs
is equivalent to (∆U,∆V) = (0n, 0t).

We perform a case analysis. We first focus on the case t ≤ n, and consider
four sub-cases.

Case 1: m = m′, ∃h ∈ {1, . . . ,m}, X[h] 6= X ′[h], X[i] = X ′[i] for ∀i 6= h. Then
we have

∆U =
⊕

1≤i≤m
2m−i+1∆C`[i] = 2m−h+1∆C`[h],

∆V =
⊕

1≤j≤m
∆Cr[j] = ∆Cr[h].

Since the mapping (X`[i], Xr[i]) 7→ (C`[i], Cr[i]) is a permutation, we have
(C`[h], Cr[h]) 6= (C ′`[h], C ′r[h]) and thus we have either ∆C`[h] 6= 0n or
∆Cr[h] 6= 0t. This implies ∆U 6= 0n or ∆V 6= 0t.

14

ZHASH

X[1]

X` Xr

Ẽ′1
K′

t

2

0n

0t

X[2]

X` Xr

Ẽ′2
K′

t

2

. . .

. . .

X[m]

X` Xr

Ẽ′m
K′

t

2

U

V

Fig. 5. The ZHASH hash function.

Case 2: m = m′, ∃h, s ∈ {1, . . . ,m}, h 6= s, X[h] 6= X ′[h], X[s] 6= X ′[s]. Then
we have

∆U = 2m−h+1∆C`[h]⊕ 2m−s+1∆C`[s]⊕
⊕

1≤i≤m
i 6=h,s

2m−i+1∆C`[i]

︸ ︷︷ ︸
∆1

,

∆V = ∆Cr[h]⊕∆Cr[s]⊕
⊕

1≤i≤m
i 6=h,s

∆Cr[i]

︸ ︷︷ ︸
∆2

.

Observe that ∆1 and ∆2 are functions of variables of the form P̃J ((T, i), X ′′)
where i /∈ {h, s} and T and X ′′ are determined by X and X ′. In particular,
by definition of a TURP, they are independent (as random variables) from
the other terms in the two right-hand sides. Hence, letting λh = 2m−h+1 and
λs = 2m−s+1, and using that since t ≤ n, Cr[i] = msbt(C`[i])⊕Xr[i], we have

{
∆U = 0n
∆V = 0t ⇐⇒

{
λh∆C`[h]⊕ λs∆C`[s] = ∆1
∆Cr[h]⊕∆Cr[s] = ∆2

⇐⇒
{
λh∆C`[h]⊕ λs∆C`[s] = ∆1
msbt(∆C`[h])⊕∆Xr[h]⊕ msbt(∆C`[s])⊕∆Xr[s] = ∆2

⇐⇒
{
λh∆C`[h]⊕ λs∆C`[s] = ∆1
msbt(∆C`[h]⊕∆C`[s]) = ∆2 ⊕∆Xr[h]⊕∆Xr[s].

15

Hence, it follows that

Pr
[
∆U = 0n
∆V = 0t

]
≤ max
δ1∈{0,1}n

δ2∈{0,1}t

Pr
[
λh∆C`[h]⊕ λs∆C`[s] = δ1
msbt(∆C`[h]⊕∆C`[s]) = δ2

]

≤ max
δ1∈{0,1}n

δ2∈{0,1}t

∑
δ3∈{0,1}n

msbt(δ3)=δ2

Pr
[
λh∆C`[h]⊕ λs∆C`[s] = δ1
∆C`[h]⊕∆C`[s] = δ3

]
.

Observe that since h 6= s, λh ⊕ λs 6= 0 and the linear system inside the last
probability above has a unique solution for any pair (δ1, δ3), namely

∆C`[h] = (λsδ3 ⊕ δ1)/(λh ⊕ λs)
∆C`[s] = δ3 ⊕ (λsδ3 ⊕ δ1)/(λh ⊕ λs).

Moreover, the random variables ∆C`[h] and ∆C`[s] are independent (as they
involve distinct tweaks) and their probability distributions are uniform over
either {0, 1}n or {0, 1}n \ {0n}, implying that their point probabilities are at
most 1/(2n − 1). Hence,

Pr
[
∆U = 0n
∆V = 0t

]
≤ max
δ1∈{0,1}n

δ2∈{0,1}t

∑
δ3∈{0,1}n

msbt(δ3)=δ2

1
(2n − 1)2

≤ 2n−t

(2n − 1)2 ≤
4 · 2n−t

22n ≤ 4
2n+t .

Case 3: m′ = m+ 1. Then, isolating the terms corresponding to block indices
m and m+ 1, we have

∆U =
⊕

1≤i≤m
2m−i+1C`[i]⊕

⊕
1≤i≤m+1

2m+1−i+1C ′`[i]

= 2(C`[m] + 2C ′`[m] + C ′`[m+ 1]⊕∆1)

and

∆V =
⊕

1≤≤m
Cr[i]⊕

⊕
1≤i≤m+1

C ′r[i]

= msbt(C`[m] + C ′`[m] + C ′`[m+ 1])⊕∆2,

where ∆1 and ∆2 are independent (as random variables) from C`[m], C ′`[m],
and C ′`[m+ 1]. Hence, exactly as for Case 2, the probability that ∆U = 0n
and ∆V = 0t is at most

max
δ1∈{0,1}n

δ2∈{0,1}t

∑
δ3∈{0,1}n

msbt(δ3)=δ2

Pr
[
C`[m] + 2C ′`[m] + C ′`[m+ 1] = δ1
C`[m] + C ′`[m] + C ′`[m+ 1] = δ3

]
.

16

Letting Y = C`[m] + C ′`[m + 1] and Z = C ′`[m], the linear system in the
probability above becomes {

Y + 2Z = δ1
Y + Z = δ3,

which has a unique solution over GF(2n) for any pair (δ1, δ3). Note that
Y and Z are uniformly random and independent (since Y involves domain
separation integer m+ 1 but Z does not) and hence, the system is satisfied
with probability 1/22n. Therefore,

Pr
[
∆U = 0n
∆V = 0t

]
≤ max
δ1∈{0,1}n

δ2∈{0,1}t

∑
δ3∈{0,1}n

msbt(δ3)=δ2

1
22n = 1

2n+t .

Case 4: m′ ≥ m+ 2. Then, isolating terms corresponding to block indices m′
and m′ − 1, we have

∆U = 2(2C ′`[m′ − 1]⊕ C ′`[m′]⊕∆1),
∆V = msbt(C ′`[m′ − 1]⊕ C ′`[m′])⊕∆2,

where ∆1 and ∆2 are independent of C ′`[m′ − 1] and C ′`[m′]. Moreover,
C ′`[m′ − 1] and C ′`[m′] are independent and uniformly random. Letting Y =
C ′`[m′] and Z = C ′`[m′ − 1], we can apply the same analysis as for Case 3,
and therefore, the collision probability is at most 1/2n+t.

In the above analysis, the collision probability is bounded by 4/2n+t for all
cases, which proves the lemma for the case t ≤ n.

We next consider the case t > n. We let Xw[i] = lsbt−n(X[i]) and Xr[i] =
lsbn(msb2n(X[i])), i.e., the (n + 1)-th to 2n-th bits of X[i]. For V ∈ {0, 1}t,
let V = msbn(V) and W = lsbt−n(V), thus V = (V ‖W). The corresponding
variables are also defined for X ′.

We first focus on the case m = m′. When Xw[i] = X
′
w[i] for all 1 ≤ i ≤ m,

the analysis is the same as the case t ≤ n, since for each i-th input block, P̃J
takes exactly the same values (between X and X ′) for the last (t− n)-bit of T .
Thus the output collision probability (in particular, the first 2n-bit of output
(U, V)) is at most 4/22n.

If there exists an index i such that Xw[i] 6= X
′
w[i] and Xw[j] = X

′
w[j] for all

j 6= i, we have ∆W 6= 0t−n, that is, the non-zero difference in the last (t − n)
bits of ∆V . Hence the collision probability is zero.

If there exist two (or more) distinct indices i, j such that Xw[i] 6= X
′
w[i] and

Xw[j] 6= X
′
w[j], the analysis is almost the same as (the Case 2 of) the case t ≤ n.

The collision probability of (U, V) is at most 1/22n.
Finally, we consider the case m < m′. For both m′ = m+ 1 and m′ ≥ m+ 2,

we can apply the same arguments as the corresponding cases for t ≤ n and
the collision probability of (U, V) is at most 1/22n. Summarizing, the collision
probability of (U, V) is at most 4/22n.

17

We remark that because of Case 1 when t ≤ n, ZHASH[P̃J] is not almost
XOR universal (i.e., the output differential probability is not guaranteed to be
small).

4.3 PRF Security of Finalization

We prove that ZFIN is a fixed-input-length PRF with n-bit security. The key
observation is that, given V ∈ {0, 1}t, ZFIN is reduced to a pair of independent
instances of the sum of two independent random permutations, also called SUM2
by Lucks [Luc00]. More precisely, let SUM2 be a function that maps n-bit input
to n-bit output, such that SUM2(X) def= P1(X) ⊕ P2(X) for X ∈ {0, 1}n, using
two independent n-bit URPs P1 and P2.

On input (U, V), each n-bit output in ZFIN is equivalent to SUM2(U) for two
independent n-bit URPs P1 and P2, and the sampling of the pair of these URPs
is independent for each V ∈ {0, 1}t and for the output blocks, thanks to the
domain separation.

SUM2 has been actively studied and BBB bounds have been proved [Luc00,
BI99]. Among them, Patarin [Pat08, Pat13] has proved that

Advprf
SUM2(A) ≤ O

(q
2n
)
,

for any adversary A using q queries. However, the constant is not known in the
literature. Here, following [PS16], we propose a well-accepted conjecture that
SUM2 is an n-bit secure PRF with a small constant.

Conjecture 1. For any adversary with q queries, Advprf
SUM2(A) ≤ Cq/2n holds for

some small constant C > 0.

For i ∈ {0, 4}, we let ZFINi[ẼK](U, V) = ZFIN[ẼK](i, U, V). Based on Conjec-
ture 1, the following lemma gives the PRF security of ZFINi in the information-
theoretic setting, i.e., when ẼK is replaced by a TURP P̃I : TI×{0, 1}n → {0, 1}n.

Lemma 5. Let A be an adversary against the PRF-security of ZFINi[P̃I] making
at most q queries. Then, for i ∈ {0, 4}, we have

Advprf

ZFINi [̃PI]
(A) ≤

∑
T∈{0,1}t

2CqT
2n ≤ 2Cq

2n ,

where qT denotes the number of queries with V = T .

The proof is obtained by the standard hybrid argument and an observation
that adaptive choice of qT ’s does not help. Lemma 5 shows that ZFIN is a
parallelizable and n-bit secure PRF with (n+ t)-bit inputs using a TBC with
n-bit blocks and t-bit tweaks.

18

Alternative Constructions. We could build the finalization function from
[CDMS10, Min09]. Coron et al. [CDMS10] proposed a 2n-bit SPRP construction
using 3 TBC calls of n-bit block and tweak, and Minematsu [Min09] proposed a
2n-bit SPRP construction using 2 TBC calls with two GF(2n) multiplications.
Both constructions achieve n-bit security with small constants. As they are also
n-bit secure 2n-bit PRFs (via standard PRP-PRF switching), we could use them.
However, they are totally serial, hence if input to MAC is short (say 64 bytes)
and we have a parallel TBC computation unit, this choice of finalization will be
quite slower than ZFIN.

We could also use CENC by Iwata [Iwa06]. In a recent work by Iwata et
al. [IMV16], it is shown that P(X ‖ 0) ⊕ P(X ‖ 1) for X ∈ {0, 1}n−1, called
XORP[1], achieves n-bit PRF-security with constant 1, by making explicit that
this was in fact already proved by Patarin [Pat10]. However, we think the
finalization based on this construction would be slightly more complex than ours.

4.4 PRF Security of ZMAC

We are now ready to state and prove the security result for ZMAC.

Theorem 1. Let A be an adversary against ZMAC[Ẽ] making at most q queries
of total length (in number of (n+ t)-bit blocks) at most σ and running in time at
most time. Then there exists an adversary B against Ẽ making at most σ+4q+2
queries and running in time at most time +O(σ) such that

Advprf

ZMAC[Ẽ]
(A) ≤ Advtprp

Ẽ
(B) + 2.5σ2

2n+min{n,t} + 4Cq
2n ,

where the constant C > 0 is as specified in Conjecture 1.

Proof. Since ZMAC calls the underlying TBC Ẽ with a single key K, we can
replace ẼK by a TURP P̃I : TI ×{0, 1}n → {0, 1}n and focus on the information-
theoretic security of ZMAC[P̃I]. Derivation of the computational counterpart is
standard.

Let G : KG × ({0, 1}n+t)+ → {0, 1}n+t and F : KF × {0, 1}n+t → {0, 1}2n.
Let CW3[GK1 , FK2 , FK3] be the three-key Carter-Wegman construction with
independent keys (K1,K2,K3) as defined by Black and Rogaway [BR05], i.e.,

CW3[GK1 , FK2 , FK3](M) =
{
FK2(GK1(ozp(M))) if M ∈ ({0, 1}n+t)+,
FK3(GK1(ozp(M))) otherwise.

It is easy to see that ZMAC[P̃I] is a instantiation of CW3. Indeed,

ZMAC[P̃I] = CW3
[
ZHASH[P̃I],ZFIN0[P̃I],ZFIN4[P̃I]

]
,

and independence between the three components follows from domain separation
of tweaks which implies that for distinct integers i, j ∈ I, P̃

i

I and P̃
j

I are inde-
pendent TURPs with tweak space T = {0, 1}t. Besides, as already observed in

19

Section 4.2, since the masking keys L` = P̃
9
I(0t, 0n) and Lr = P̃

9
I(0t−11, 0n) are

uniformly random, one has

ZHASH[P̃I] = ZHASH
[
XT[P̃

8
I , H]

]
,

with H as defined by Eq. (5). Hence, by replacing XT[P̃
8
I , H] by a TURP P̃J :

TJ ×{0, 1}n → {0, 1}n and ZFIN0, resp. ZFIN4 by independent random functions
R0, resp. R1 from {0, 1}n+t to {0, 1}n, we have that there exists an adversary
B′ against XT[P̃

8
I , H] making at most σ queries and an adversary B′′ against

ZFIN0/4[P̃I] making at most q queries such that

Advprf

ZMAC[̃PI]
(A) = Advprf

CW3[ZHASH[XT[̃P
8
I ,H]],ZFIN0 [̃PI],ZFIN4 [̃PI]]

(A)

≤ Advprf

CW3[ZHASH[̃PJ],R0,R1]
(A) + Advtprp

XT[̃P
8
I ,H]

(B′)

+ Advprf

ZFIN0 [̃PI]
(B′′) + Advprf

ZFIN4 [̃PI]
(B′′)

≤ Advprf

CW3[ZHASH[̃PJ],R0,R1]
(A) + σ2

2n+min{n,t}+1 + 4Cq
2n , (6)

where the last inequality follows from Lemmas 3 and 5.
From Lemma 2 of [BR05] and Lemma 4, we have

Advprf

CW3[ZHASH[̃PJ],R0,R1]
(A) ≤ max

m1,...,mq

∑
i 6=j

CollZHASH[̃PJ](n+ t,mi,mj)

≤ max
m1,...,mq

∑
i 6=j

4
2n+min{n,t}

≤ 2q2

2n+min{n,t} , (7)

where the maximum is taken over all m1, . . . ,mq such that
∑
imi = σ. Combin-

ing (6) and (7), we obtain the information-theoretic bound.

4.5 Other Variants of ZMAC

ZMAC has a wide range of variants, depending on the required level of security.
We briefly discuss some of them.

Eliminating The Input-Length Effect. ZMAC ensures security as long as
the total number of (n+ t)-bit blocks σ throughout queries is small compared to
2min{n,(n+t)/2}. If one wants to completely remove the effect of the input length as
in [Nai15, LN17] (i.e., to get security as long as the number of queries q is small
compared to 2min{n,(n+t)/2}), we suggest to use ZHASH. The underlying TBC Ẽ
needs to have a tweak space of the form {0, 1}t×J ×I, where J = {1, 2, . . . , B}
for some B > 0 and I is a set of domain separation integers. Here, the effective

20

tweak space of Ẽ is {0, 1}t × J and the effective tweak-length is t′ = t+ log2 B
bits.

For finalization, we can use ZFIN[Ẽ] with an adequate domain separation.
From Lemma 4, the message hashing has a constant collision probability of
4/2n+min{n,t} for both cases of t ≤ n and t > n. The security bounds (for both
t ≤ n and t > n) are O(q2/2n+min{n,t}) plus the PRF bound of ZFIN[Ẽ], thus,
security does not degrade with the total input length.

On the downside, since we waste log2 B effective tweak bits to process the
input block index, this mode processes only n+ t input bits per TBC call rather
than the optimal amount n+ t′. This is a trade-off between efficiency and security.

Birthday Security. If we only require up-to-birthday bound security, then
we could simply use XT[Ẽ] in the same manner to PMAC, that is, the message
hashing is mostly the same as ZHASH, however we XOR all TBC outputs C`
in Figure 1 to form the final n-bit output. The finalization is done by a single
TBC call with an adequate domain separation, and hashing and finalization are
composed by CW3.

From Lemma 3 and the security proof for (TBC-based) PMAC1 found
in [Rog04], this variant has PRF advantage O(σ2/2n+min{n,t} + q2/2n), which is
slightly better than “standard” birthday bound O(σ2/2n). Efficiency is optimal
since n+ t input bits are processed per TBC call for any Ẽ having effective tweak
space of t bits, for any t > 0.

5 Application to Authenticated Encryption: ZAE

As an application of ZMAC, we provide an efficient construction of a Deterministic
Authenticated Encryption (DAE) scheme [RS06] from a TBC called ZAE.

Let us briefly recall the syntax and the security definition for a DAE scheme
(see [RS06] for details). A DAE scheme DAE is a tuple (K,AD,M, C,DAE.Enc,
DAE.Dec), where K, AD, M, and C are non-empty sets and DAE.Enc and
DAE.Dec are deterministic algorithms. The encryption algorithm DAE.Enc takes
as input a key K ∈ K, associated data AD ∈ AD, and a plaintext M ∈ M,
and returns a ciphertext C ∈ C. The decryption algorithm DAE.Dec takes as
input a key K ∈ K, associated data AD ∈ AD, and a ciphertext C ∈ C, and
returns either a message M ∈ M or the special symbol ⊥ indicating that the
ciphertext is invalid. We write DAE.EncK(AD,M), resp. DAE.DecK(AD,C) for
DAE.Enc(K,AD,M), resp. DAE.Dec(K,AD,C). As usual, we require that for
any tuple (K,AD,M) ∈ K ×AD ×M, one has

DAE.Dec(K,AD,DAE.Enc(K,AD,M)) = M.

The associated data AD is authenticated but not encrypted, and may include a
nonce, which is why DAE is sometimes called nonce-misuse resistant authenticated
encryption (MRAE), since for such a scheme the repetition of a nonce does not
hurt authenticity and only allows the adversary to detect repetitions of inputs
(AD,M) to the encryption algorithm.

21

Definition 4. Let DAE be a DAE scheme. The advantage of an adversary A in
breaking the DAE-security of DAE is defined as

Advdae
DAE(A) def=

∣∣∣Pr[K $← K : ADAE.EncK ,DAE.DecK ⇒ 1]− Pr[A$,⊥ ⇒ 1]
∣∣∣ ,

where oracle $(·, ·), on input (AD,M), returns a random bit string of length10

|DAE.EncK(AD,M)|, and oracle ⊥(·, ·) always returns ⊥. The adversary A is not
allowed to repeat an encryption query or to submit a decryption query (AD,C)
if a previous encryption query (AD,M) returned C.

In addition to ZMAC, our construction will rely on a (random) IV-based
encryption (ivE) scheme IVE. Such a scheme consists of a tuple (K, IV,M, C,
IVE.Enc, IVE.Dec), where K, IV ,M, and C are non-empty sets and IVE.Enc and
IVE.Dec are deterministic algorithms. The encryption algorithm IVE.Enc takes
as input a key K ∈ K, an initialization value IV ∈ IV, and a plaintext M ∈M,
and returns a ciphertext C ∈ C. The decryption algorithm IVE.Dec takes as input
a key K ∈ K, an IV IV ∈ IV, and a ciphertext C ∈ C, and returns a message
M ∈M. Given K ∈ K, we let IVE.Enc$

K denote the randomized algorithm which
takes as input M ∈M, draws IV $← IV , computes C = IVE.Enc(K, IV,M), and
returns (IV, C).

Definition 5. Let IVE be an IV-based encryption scheme. The advantage of an
adversary A in breaking the ivE-security of IVE is defined as

Advive
IVE(A) def=

∣∣∣Pr[K $← K : AIVE.Enc$
K ⇒ 1]− Pr[A$ ⇒ 1]

∣∣∣ ,
where oracle $(·), on input M ∈ M, returns a random bit string of length
|IVE.Enc$

K(M)|.

For our purposes, we consider the IV-based encryption mode IVCTRT proposed
in [PS16, Appendix B]. This mode uses a TBC Ẽ with tweak space T ′ = {0, 1}t×I
and message space {0, 1}n, and has 2n-bit IVs. We assume 10 ∈ I as all calls to
Ẽ in IVCTRT will use domain separation integer 10 which is distinct from all
those used in ZMAC. The encryption IVCTRT[ẼK].Enc(IV,M) of a message M
with initialization value IV under key K is defined as follows. The IV and the
message are parsed as

(IV [1], IV [2]) n,n←−− IV
(M [1], . . . ,M [m]) n←−M.

Let IV ′[1] = IV [1] ⊕t 0t, i.e., IV [1] is either padded with zeros up to t bits
when t > n or truncated to t bits when t ≤ n. Then, the ciphertext is C =
(C[1], . . . , C[m]) where X � Y denotes t-bit modular addition,

C[i] = M [i]⊕ Ẽ10
K (IV ′[1] � i, IV [2]) for i = 1, . . . ,m− 1,

C[m] = M [m]⊕ msb|M [m]|(Ẽ10
K (IV ′[1] �m, IV [2])).

10 We assume that the length of DAE.EncK(AD,M) is independent from the key K.

22

Algorithm IVCTRT[ẼK].Enc(IV,M)

1. (IV [1], IV [2]) n,n←−− IV
2. IV [1]← IV [1]⊕t 0t

3. (M [1], . . . ,M [m]) n←−M
4. for i = 1 to m− 1 do
5. C[i]←M [i]⊕ Ẽ10

K (IV [1] � i, IV [2])
6. S ← msb|M [m]|(Ẽ10

K (IV [1] �m, IV [2]))
7. C[m]←M [m]⊕ S
8. C ← (C[1]‖ . . . ‖C[m])
9. return C

Algorithm encode(AD,M)

1. Len← strn/2(|AD|)‖strn/2(|M |)
2. X ← (ozp(AD)‖ozp(M)‖Len)
3. return X

Algorithm ZAE[ẼK].Enc(AD,M)

1. X ← encode(AD,M)
2. IV ← ZMAC[ẼK](X)
3. C ← IVCTRT[ẼK].Enc(IV,M)
4. return C′ = (IV, C)

Algorithm ZAE[ẼK].Dec(AD,C′)

1. (IV, C) 2n,|C′|−2n←−−−−−−− C′

2. M ← IVCTRT[ẼK].Dec(IV, C)
3. X ← encode(AD,M)
4. IV ′ = ZMAC[ẼK](X)
5. if IV ′ = IV then return M
6. else return ⊥

Fig. 6. Pseudocode for the ZAE deterministic authenticated encryption scheme. Algo-
rithm IVCTRT[ẼK].Dec is similar to IVCTRT[ẼK].Enc and hence omitted.

Our TBC-based BBB-secure DAE mode proposal ZAE follows the generic11

SIV construction [RS06], where the PRF is instantiated with ZMAC and the
IV-based encryption mode is instantiated with IVCTRT.

Let Ẽ be a TBC with tweak space T ′ = {0, 1}t × I where I ⊇ {0, 1, . . . , 10}
and message space {0, 1}n. The encryption ZAE[ẼK].Enc(AD,M) of a message
M with associated data AD under key K is the pair C ′ = (IV, C) where

IV = ZMAC[ẼK](encode(AD,M))

C = IVCTRT[ẼK].Enc(IV,M).

The encode function is an injective mapping which pads AD andM independently
using the ozp() function, so that the bit length of the resulting strings are
multiples of (n + t). Then, it concatenates these two strings and appends the
n/2-bit representations of the lengths of AD and M (an n-bit representation
can naturally be used if more than 2n/2 AD and M blocks are possible). The
tag (synthetic IV) is 2n bits, which is inevitable for n-bit security of the SIV
construction, since a collision of two tags would immediately break the scheme.
See Figure 6 for the pseudocode and Figure 7 for a graphical representation of
ZAE.

The security bound for ZAE is given in the following theorem. Here, we
let the length of a query (encryption or decryption) be the block length of
11 The name SIV is used in [RS06] to denote either a generic construction of a DAE

scheme from a PRF and an IV-based encryption scheme, or the block cipher mode of
operation resulting from instantiating the PRF with (a variant of) CMAC and the
encryption scheme with the counter mode.

23

encode(AD,M), where (IV, C) 2n,|C′|−2n←−−−−−− C ′ andM ← IVCTRT[ẼK].Dec(IV, C)
for a decryption query (AD,C ′).

Theorem 2. Let Ẽ be a TBC with tweak space T ′ = {0, 1}t × I and message
space {0, 1}n. Let A be an adversary attacking ZAE[Ẽ] making at most q (en-
cryption or decryption) queries, such that the total length of all its queries is at
most σ blocks of n bits12, and running in time at most time. Then there exists
an adversary B against Ẽ making at most 2σ + 4q + 2 chosen-plaintext queries
and running in time at most time +O(σ) such that

Advdae
ZAE[Ẽ]

(A) ≤ Advtprp

Ẽ
(B) + 3.5σ2

2n+min{n,t} + 4Cq
2n + q

22n ,

where the constant C is from Conjecture 1.

Proof. We prove the information-theoretic security of ZAE[P̃] where P̃ is a TURP
(the computational counterpart is standard). By Theorem 2 of [RS06], there exists
an adversary A′ attacking ZMAC[P̃] and an adversary A′′ attacking IVCTRT[P̃],
both making at most q queries of total length σ, such that

Advdae
ZAE[̃P]

(A) ≤ Advprf

ZMAC[̃P]
(A′) + Advive

IVCTRT[̃P]
(A′′) + q

22n . (8)

According to [PS16, Appendix B], we have

Advive
IVCTRT[̃P]

(A′′) ≤ σ2

2n+min{n,t} .

(In more details, the security bound from [PS16, Appendix B] is σ2/2n+t assuming
IV ′[1] is uniform in {0, 1}t, which is the case here only when t ≤ n. When t > n,
the security bound caps at σ2/22n since only the first n bits of IV ′[1] are random.)
The result follows by combining these two equations with Theorem 1. The query
complexity of B follows from the fact that ZAE makes at most 2 TBC calls per
n-bit block of input and the complexity of ZFIN and masks.

It is to be noted that for the encryption part IVCTRT there is no specific
efficiency benefit in having access to a TBC with a larger tweak input than n bits.
In contrary, for the ZMAC part, there is a direct gain in having a large tweak if
this is not too costly (say much smaller than a factor of two), since this increases
the amount of input bits per TBC call. In order to optimize performance, one
can thus use a TBC with t = n for the encryption part, but switch to a TBC
with t > n for the MAC part of the scheme, since building a TBC with a large
tweak usually leads to (slightly) slower performances than a TBC with a small
tweak [JNP14d].

Another direction to further increase performance of ZAE in practice, without
reducing its security, is to use a counter addition on only min{n, t} bits instead
of t bits, i.e. by redefining X � Y for Y ∈ {1, . . . , 2min{n,t}} to denote

msbmin{n,t}(X) + Y mod 2min{n,t} ‖ lsbt−min{n,t}(X),
12 Note that, for simplicity, the lengths are counted in n-bit blocks.

24

ZAE

M

AD

encode ZMAC

IV [1]

IV [2]

IV [2]

Ẽ10
K

M1

C1

1

t

0

IV [1]

IV [2]

Ẽ10
K

M2

C2

1

. . .

. . .

IV [2]

Ẽ10
K

Mm

Cm

1

Fig. 7. The ZAE deterministic authenticated encryption scheme with associated data.
Note that the n-bit value IV [1] is mapped to the t-bit value IV [1]⊕t 0t to obtain the
initial t-bit counter.

that is, addition over the first min{n, t} bits and the remaining bits intact. One
could even consider having a LFSR-based counter instead of a modular addition
based counter to improve hardware implementations. We have not used these
improvements in ZAE specifications in order to simplify its description.

ZAE compares very favorably with existing TBC-based MRAE solutions both
in terms of efficiency and security. Indeed, it can process n + t message bits
per TBC call for the MAC part, and n bits per TBC call for the encryption
part. Other schemes such as SIV [RS06], SCT [PS16], or SIVx [LN17] can only
handle n message bits per TBC call in the MAC part. Moreover, ZAE is secure
beyond the birthday bound and hence provides better security than SIV (only
birthday security) or SCT (only birthday security in the nonce-misuse setting)
while leading to better performances.

We remark that ZMAC could also be used to improve OCB-like (more precisely
its TBC-based generalization ΘCB [KR11]) or SCT-like designs: by changing
the PMAC-like part that handles the associated data for ZMAC, one would fully
benefit from the efficiency improvement provided by our design.

6 MAC and AE Instances

In this section, we give instantiation examples of ZMAC and ZAE. There are many
possible ways to build a TBC, but in practice block cipher-based constructions

25

are generally less efficient than ad-hoc TBCs. Since our design leverages heavily
the possibilities offered by a large tweak, a candidate such as Threefish [FLS+10]
is not very interesting as it handles only 128 bits of tweak input for a block size of
256/512/1024 bits. The effective efficiency gain would be limited (and Threefish
is much slower than AES on current platforms, due to AES-NI instruction sets).

One could also consider using block ciphers with large keys (in comparison
to their block size), but as remarked in [JNP14d], it remains unclear if one can
generally use the key input of a TBC as tweak input. For example, using AES-256
while allocating half of its key input as tweak is a very bad idea, considering the
related-key attacks against AES-256, such as [BKN09].

Recently, Jean et al. [JNP14d] proposed a framework called TWEAKEY
and a generic construction STK for building ad-hoc tweakable Substitution-
Permutation Network (SPN) ciphers. The authors proposed three TBCs based
on the STK framework, Deoxys-BC [JNP14a], Joltik-BC [JNP14b], and KIASU-
BC [JNP14c], as part of three candidates for CAESAR authenticated encryption
competition [CAE]. In particular, Deoxys-BC is the TBC used in the Deoxys
CAESAR candidate (together with the SCT authenticated encryption mode),
selected for the third round of the competition. Later, SKINNY [BJK+16], a
lightweight family of TBCs based on similar ideas was proposed.

We will study here the performances of ZMAC and ZAE when instantiated
with Deoxys-BC and the 128-bit block versions of SKINNY. Note that for a key
size of 128 bits, both these ciphers offer versions with 128 or 256 bits of tweak
input (respectively Deoxys-BC-256/SKINNY-128-256 and Deoxys-BC-384/SKINNY-
128-384). It is interesting to compare the respective number of rounds (and thus
efficiencies) of these different versions (see Table 2).

Table 2. Number of rounds of Deoxys-BC-256/ Deoxys-BC-384, and SKINNY-128-128/
SKINNY-128-256/ SKINNY-128-384.

TBC t = 0 t = n t = 2n

Deoxys-BC – 14 16
SKINNY 40 48 56

This shows the strength of the ZMAC general design: for practical ad-hoc
TBC constructions, it seems that adding twice more input to the TBC slows
down the primitive by a much smaller factor than 2. Thus, we can expect the
efficiency to improve with the tweak-length.

6.1 Handling the Domain Separation of TBC Instances

In ZMAC and ZAE, we use several independent TBC instances through domain
separation integers. In detail, for ZMAC, one needs one TBC instance (Ẽ9

K) for
the generating the masking keys L` and Lr, one instance (Ẽ8

K) for the hashing

26

part, 4 instances (Ẽ0
K , Ẽ1

K , Ẽ2
K , Ẽ3

K) for the finalization function when the
message is a positive multiple of (n+ t) bits, and 4 instances (Ẽ4

K , Ẽ5
K , Ẽ6

K , Ẽ7
K)

for the finalization function when the message is not a positive multiple of (n+ t)
bits. This sums up to 10 instances. Moreover, ZAE requires one more instance
(Ẽ10

K) for the encryption part.
For all instances, encoding can be achieved by simply reserving 4 bits of the

tweak input of the TBC. This has the advantage of being very simple and elegant,
but it also means that in practice the message block size of ZMAC will be a little
unusual (as the tweak-length is usually a multiple of the block-length).

Another solution is to separate the instances using distinct field multiplications.
This allows the message block size of ZMAC to be a multiple of the TBC block
size. However, the number of distinct multiplications is non-negligible and will
render the implementation much more complex.

Finally, a last solution could be to XOR into the state distinct words that are
dependent of the secret key (for example generated just like the masks L` and Lr,
but with different plaintext inputs). The advantage is that the implementation
is simple and it allows the message block size of ZMAC to be a multiple of the
TBC block size. However, more precomputations will be needed.

All these solutions represent different possible tradeoffs, and we note that
this issue is present for most TBC-based MAC or AE schemes.

6.2 Efficiency Comparisons

In this subsection, we report the efficiency estimates of our operating modes
ZMAC and ZAE, when the TBC is instantiated with Deoxys-BC and SKINNY,
while comparing with existing MAC and AE schemes.

We do not perform a comprehensive comparison with schemes combining a
(T)BC and a 2n-bit algebraic UHFs, such as a 256-bit variant of GMAC [MV04].
In principle such schemes can achieve n-bit security. However, the additional
implementation of an algebraic UHF would require more resources (memory for
software and gates for hardware) than pure (T)BC modes, which is not desirable
for the performance across multiple devices. Moreover, the existence of weak-key
class for the popular polynomial hash functions, such as [HP08, PC15], can be
an issue.

We will consider two scenarios: (1) long messages and (2) long messages
with equally long associated data (AD). For these two scenarios, the cost of the
precomputations or finalizations can be considered negligible (for benchmarking,
we used 65536 bytes for long messages or AD). Moreover, we note that in ZMAC,
the two calls for precomputation can be done in parallel, while the calls in the
finalization function ZFIN can also all be done in parallel. For modern processors,
where parallel encryptions (for bitslice implementations) or pipelined encryptions
(for implementations using the AES-NI instructions set) are by far the most
efficient strategy, having a finalization composed of four parallel encryption calls
(like in ZMAC) or a single one (like in SCT) will not make a big difference in
terms of efficiency.

27

Table 3. Estimated efficiencies (in c/B) of various MAC and AE primitives (for (1)
long messages and (2) long message with equally long AD) on a Intel Skylake processor.
For (2), the input bytes are the sum of message and AD bytes. NR denotes the nonce-
respecting scenario. GCM-SIV is proposed by [GL15]. (?) Performances are reported for
SIV instantiated with a fully parallelizable PRF (e.g., PMAC), while the specifications
from [RS06] use a PRF based on CMAC which has a limited parallelizability.

mode Cipher Long M Long M Security
Long AD

Message Authentication Code
CMAC AES-128 2.68 – 64
PMAC AES-128 0.65 – 64
PMAC1 Deoxys-BC-256 0.87 – 64

PMAC_TBC1k Deoxys-BC-256 0.87 – 128
ZMAC Deoxys-BC-256 0.61 – 128
ZMAC Deoxys-BC-384 0.52 – 128
ZMAC SKINNY-128-256 2.06 – 128
ZMAC SKINNY-128-384 1.60 – 128

(Deterministic) Authenticated Encryption
OCB AES-128 0.65 0.65 64 (NR)
GCM AES-128 0.65 0.65 64 (NR)
ΘCB Deoxys-BC-256 0.87 0.87 128 (NR)
SIV AES-128 1.30? 0.97? 64

GCM-SIV AES-128 0.95 0.80 64
SCT Deoxys-BC-256 1.74 1.30 64 (128 for NR)
SIVx Deoxys-BC-256 1.74 1.30 128
ZAE Deoxys-BC-256 1.48 1.04 128
ZAE Deoxys-BC-384 1.58 1.09 128
ZAE Deoxys-BC-256/Deoxys-BC-384 1.46 1.03 128
ZAE SKINNY-128-256 6.18 4.12 128
ZAE SKINNY-128-256 6.38 3.98 128
ZAE SKINNY-128-256/SKINNY-128-384 5.70 3.64 128

28

On an Intel Skylake processor Intel Core i5-6600, we measure that for long
messages AES-128 runs at 0.65 c/B (cycles/Byte), while Deoxys-BC-256 runs at
0.87 c/B, Deoxys-BC-384 runs at 0.99 c/B, SKINNY-128-256 at 4.12 c/B and
SKINNY-128-384 at 4.8 c/B. However, these numbers assume that the tweak
input of the ciphers is being used as a counter (as in SCT or SIVx). This can
make an important difference depending on the TBC considered, especially for
ciphers with a heavy key schedule. One can observe [BJK+16] that when the
tweak input is considered random (in opposition to being a counter), there is
not much efficiency penalty for SKINNY (probably due to the fact that the best
SKINNY implementations use high-parallelism bitslice strategy). For Deoxys-BC,
we have implemented a random tweak version and compared it with the case
where the tweak is used as a counter. We could observe that in the case of AES-NI
implementations a penalty factor on efficiency of 1.4 must be taken in account
for Deoxys-BC-256, and a factor 1.8 for Deoxys-BC-384. We emphasize that these
penalties will probably not appear for other types of implementations (table or
bitslice implementations).

Taking into account all these considerations, we compare ZMAC and ZAE
efficiencies with its competitors13 in Table 3. One can see that ZMAC is the fastest
MAC, while providing n-bit security. Moreover, ZAE offers better performances
when compared to misuse-resistant competitors, while providing optimal n-bit
security, even in nonce-misuse scenario.

It is interesting to note that, as foreseen in previous section, for ZAE the
maximum speed might be achieved by using a TBC version with a large tweak
for the MAC part, and a TBC version with a small tweak for the encryption part
(typically Deoxys-BC-384 for the MAC part and Deoxys-BC-256 for the encryption
part). This is because ZMAC really benefits from using a TBC with a large tweak,
while the encryption part is not faster when using a TBC with a large tweak
(and a TBC with a large tweak is supposed to be slightly slower).

Acknowledgements

The authors would like to thank the anonymous reviewers of CRYPTO 2017 for
their helpful comments. The first author is supported by JSPS KAKENHI, Grant-
in-Aid for Scientific Research (B), Grant Number 26280045, and the work was
carried out in part while visiting Nanyang Technological University, Singapore.
The third author is supported by the Singapore National Research Foundation
Fellowship 2012 (NRF-NRFF2012-06) and Temasek Labs (DSOCL16194). The
fourth author has been partially supported by the French Agence Nationale de
la Recherche through the BRUTUS project under Contract ANR-14-CE28-0015.
13 We can mention that algebraic UHFs such as GHASH would probably perform twice

slower for a 2n-bit output and current best implementation on latest processors show
that GHASH costs about 1/2 of an AES call. Therefore, we can estimate that ZHASH
instantiated with Deoxys-BC-256 or Deoxys-BC-384 would require a bit more clock
cycles than a 2n-bit version of GHASH, while processing much more data at the same
time (ZHASH can handle n+ t bit per TBC call).

29

References

[BI99] Mihir Bellare and Russell Impagliazzo. A tool for obtaining tighter security
analyses of pseudorandom function based constructions, with applications
to PRP to PRF conversion. IACR Cryptology ePrint Archive, Report
1999/024, 1999. Available at http://eprint.iacr.org/1999/024.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS.
In Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology -
CRYPTO 2016 (Proceedings, Part II), volume 9815 of LNCS, pages 123–153.
Springer, 2016.

[BKN09] Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolić. Distinguisher and
Related-Key Attack on the Full AES-256. In Shai Halevi, editor, Advances
in Cryptology - CRYPTO 2009, volume 5677 of LNCS, pages 231–249.
Springer, 2009.

[BKR00] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The Security of the Cipher
Block Chaining Message Authentication Code. Journal of Computer and
System Sciences, 61(3):362–399, 2000.

[BR02] John Black and Phillip Rogaway. A Block-Cipher Mode of Operation
for Parallelizable Message Authentication. In Lars R. Knudsen, editor,
Advances in Cryptology - EUROCRYPT 2002, volume 2332 of LNCS, pages
384–397. Springer, 2002.

[BR05] John Black and Phillip Rogaway. CBC MACs for Arbitrary-Length Mes-
sages: The Three-Key Constructions. J. Cryptology, 18(2):111–131, 2005.

[CAE] CAESAR: Competition for Authenticated Encryption: Security, Applicabil-
ity, and Robustness. See http://competitions.cr.yp.to/caesar.html.

[CDMS10] Jean-Sébastien Coron, Yevgeniy Dodis, Avradip Mandal, and Yannick
Seurin. A Domain Extender for the Ideal Cipher. In Daniele Micciancio,
editor, Theory of Cryptography Conference - TCC 2010, volume 5978 of
LNCS, pages 273–289. Springer, 2010.

[CLP14] Benoît Cogliati, Rodolphe Lampe, and Jacques Patarin. The Indistin-
guishability of the XOR of k Permutations. In Carlos Cid and Christian
Rechberger, editors, Fast Software Encryption - FSE 2014, volume 8540 of
LNCS, pages 285–302. Springer, 2014.

[FLS+10] Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare,
Tadayoshi Kohno, Jon Callas, and Jesse Walker. The Skein Hash Function
Family. SHA3 Submission to NIST (Round 3), 2010.

[GL15] Shay Gueron and Yehuda Lindell. GCM-SIV: Full Nonce Misuse-Resistant
Authenticated Encryption at Under One Cycle per Byte. In Indrajit
Ray, Ninghui Li, and Christopher Kruegel, editors, ACM Conference on
Computer and Communications Security - CCS 2015, pages 109–119. ACM,
2015.

[GLS+14] Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, Kerem Varici,
François Durvaux, Lubos Gaspar, and Stéphanie Kerckhof. SCREAM and
iSCREAM. Submitted to the CAESAR competition, 2014.

[HP08] Helena Handschuh and Bart Preneel. Key-Recovery Attacks on Universal
Hash Function Based MAC Algorithms. In David Wagner, editor, Advances
in Cryptology - CRYPTO 2008, volume 5157 of LNCS, pages 144–161.
Springer, 2008.

30

http://eprint.iacr.org/1999/024
http://competitions.cr.yp.to/caesar.html

[IK03] Tetsu Iwata and Kaoru Kurosawa. OMAC: One-Key CBC MAC. In
Thomas Johansson, editor, Fast Software Encryption - FSE 2003, volume
2887 of LNCS, pages 129–153. Springer, 2003.

[IMV16] Tetsu Iwata, Bart Mennink, and Damian Vizár. CENC is Optimally Secure.
2016. Available at http://eprint.iacr.org/2016/1087.

[Iwa06] Tetsu Iwata. New Blockcipher Modes of Operation with Beyond the
Birthday Bound Security. In Matthew J. B. Robshaw, editor, Fast Software
Encryption - FSE 2006, volume 4047 of LNCS, pages 310–327. Springer,
2006.

[JNP14a] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Deoxys v1. Submitted to
the CAESAR competition, 2014.

[JNP14b] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Joltik v1. Submitted to
the CAESAR competition, 2014.

[JNP14c] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. KIASU v1. Submitted to
the CAESAR competition, 2014.

[JNP14d] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and Keys for
Block Ciphers: The TWEAKEY Framework. In Palash Sarkar and Tetsu
Iwata, editors, Advances in Cryptology - ASIACRYPT 2014 (Proceedings,
Part II), volume 8874 of LNCS, pages 274–288. Springer, 2014.

[KR11] Ted Krovetz and Phillip Rogaway. The Software Performance of Authenti-
cated-Encryption Modes. In Antoine Joux, editor, Fast Software Encryption
- FSE 2011, volume 6733 of LNCS, pages 306–327. Springer, 2011.

[LN17] Eik List and Mridul Nandi. Revisiting Full-PRF-Secure PMAC and Using
It for Beyond-Birthday Authenticated Encryption. In Helena Handschuh,
editor, Topics in Cryptology - CT-RSA 2017, volume 10159 of LNCS, pages
258–274. Springer, 2017. Full version at http://eprint.iacr.org/2016/
1174.

[LRW02] Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable Block
Ciphers. In Moti Yung, editor, Advances in Cryptology - CRYPTO 2002,
volume 2442 of LNCS, pages 31–46. Springer, 2002.

[Luc00] Stefan Lucks. The Sum of PRPs Is a Secure PRF. In Bart Preneel, editor,
Advances in Cryptology - EUROCRYPT 2000, volume 1807 of LNCS, pages
470–484. Springer, 2000.

[MI15] Kazuhiko Minematsu and Tetsu Iwata. Tweak-Length Extension for Tweak-
able Blockciphers. In Jens Groth, editor, Cryptography and Coding - IMACC
2015, volume 9496 of LNCS, pages 77–93. Springer, 2015.

[MI17] Kazuhiko Minematsu and Tetsu Iwata. Cryptanalysis of PMACx, PMAC2x,
and SIVx. IACR Trans. Symmetric Cryptol., 2017(2), 2017.

[Min09] Kazuhiko Minematsu. Beyond-Birthday-Bound Security Based on Tweak-
able Block Cipher. In Orr Dunkelman, editor, Fast Software Encryption -
FSE 2009, volume 5665 of LNCS, pages 308–326. Springer, 2009.

[MV04] David A. McGrew and John Viega. The Security and Performance of the
Galois/Counter Mode (GCM) of Operation. In Anne Canteaut and Kapalee
Viswanathan, editors, Progress in Cryptology - INDOCRYPT 2004, volume
3348 of LNCS, pages 343–355. Springer, 2004.

[Nai15] Yusuke Naito. Full PRF-Secure Message Authentication Code Based on
Tweakable Block Cipher. In Man Ho Au and Atsuko Miyaji, editors,
ProvSec 2015, volume 9451 of LNCS, pages 167–182. Springer, 2015.

[Pat08] Jacques Patarin. A Proof of Security in O(2n) for the Xor of Two Random
Permutations. In Reihaneh Safavi-Naini, editor, Information Theoretic

31

http://eprint.iacr.org/2016/1087
http://eprint.iacr.org/2016/1174
http://eprint.iacr.org/2016/1174

Security - ICITS 2008, volume 5155 of LNCS, pages 232–248. Springer,
2008. Full version available at http://eprint.iacr.org/2008/010.

[Pat10] Jacques Patarin. Introduction to Mirror Theory: Analysis of Systems
of Linear Equalities and Linear Non Equalities for Cryptography. 2010.
Available at http://eprint.iacr.org/2010/287.

[Pat13] Jacques Patarin. Security in O(2n) for the Xor of Two Random Permu-
tations: Proof with the Standard H Technique. IACR Cryptology ePrint
Archive, Report 2013/368, 2013. Available at http://eprint.iacr.org/
2013/368.

[PC15] Gordon Procter and Carlos Cid. On Weak Keys and Forgery Attacks
Against Polynomial-Based MAC Schemes. J. Cryptology, 28(4):769–795,
2015. Earlier version at FSE 2013.

[PS16] Thomas Peyrin and Yannick Seurin. Counter-in-Tweak: Authenticated
Encryption Modes for Tweakable Block Ciphers. In Matthew Robshaw
and Jonathan Katz, editors, Advances in Cryptology - CRYPTO 2016
(Proceedings, Part I), volume 9814 of LNCS, pages 33–63. Springer, 2016.

[Rog04] Phillip Rogaway. Efficient Instantiations of Tweakable Blockciphers and
Refinements to Modes OCB and PMAC. In Pil Joong Lee, editor, Advances
in Cryptology - ASIACRYPT 2004, volume 3329 of LNCS, pages 16–31.
Springer, 2004.

[RS06] Phillip Rogaway and Thomas Shrimpton. A Provable-Security Treatment of
the Key-Wrap Problem. In Serge Vaudenay, editor, Advances in Cryptology
- EUROCRYPT 2006, volume 4004 of LNCS, pages 373–390. Springer,
2006.

[Yas10] Kan Yasuda. The Sum of CBC MACs Is a Secure PRF. In Josef Pieprzyk,
editor, Topics in Cryptology - CT-RSA 2010, volume 5985 of LNCS, pages
366–381. Springer, 2010.

[Yas11] Kan Yasuda. A New Variant of PMAC: Beyond the Birthday Bound. In
Phillip Rogaway, editor, Advances in Cryptology - CRYPTO 2011, volume
6841 of LNCS, pages 596–609. Springer, 2011.

32

http://eprint.iacr.org/2008/010
http://eprint.iacr.org/2010/287
http://eprint.iacr.org/2013/368
http://eprint.iacr.org/2013/368

	 ZMAC: A Fast Tweakable Block Cipher Mode for Highly Secure Message Authentication
	Introduction
	Preliminaries
	Specification of ZMAC
	Overview
	Specification of ZHASH for the Case t less than n
	Specification of ZHASH for the Case t larger than n
	Finalization

	The PRF Security of ZMAC
	XT Tweak Extension
	Collision Probability of ZHASH
	PRF Security of Finalization
	PRF Security of ZMAC
	Other Variants of ZMAC

	Application to Authenticated Encryption: ZAE
	MAC and AE Instances
	Handling the Domain Separation of TBC Instances
	Efficiency Comparisons

	References

