
The first collision for full SHA-1

Marc Stevens1, Elie Bursztein2, Pierre Karpman1, Ange Albertini2, and
Yarik Markov2

1 CWI Amsterdam
2 Google Research
info@shattered.io

https://shattered.io

Abstract. SHA-1 is a widely used 1995 NIST cryptographic hash func-
tion standard that was officially deprecated by NIST in 2011 due to
fundamental security weaknesses demonstrated in various analyses and
theoretical attacks.
Despite its deprecation, SHA-1 remains widely used in 2017 for document
and TLS certificate signatures, and also in many software such as the
GIT versioning system for integrity and backup purposes.
A key reason behind the reluctance of many industry players to replace
SHA-1 with a safer alternative is the fact that finding an actual collision
has seemed to be impractical for the past eleven years due to the high
complexity and computational cost of the attack.
In this paper, we demonstrate that SHA-1 collision attacks have finally
become practical by providing the first known instance of a collision.
Furthermore, the prefix of the colliding messages was carefully chosen so
that they allow an attacker to forge two distinct PDF documents with the
same SHA-1 hash that display different arbitrarily-chosen visual contents.
We were able to find this collision by combining many special cryptanalytic
techniques in complex ways and improving upon previous work. In total
the computational effort spent is equivalent to 263.1 calls to SHA-1’s
compression function, and took approximately 6 500 CPU years and 100
GPU years. While the computational power spent on this collision is
larger than other public cryptanalytic computations, it is still more than
100 000 times faster than a brute force search.

Keywords: Hash function, cryptanalysis, collision attack, collision ex-
ample, differential path construction.

1 Introduction

A cryptographic hash function H ∶ {0,1}∗ → {0,1}n is a function that
computes for any arbitrarily long message M a fixed-length hash value of
n bits. It is a versatile cryptographic primitive used in many applications
including digital signature schemes, message authentication codes, pass-
word hashing and content-addressable storage. The security or even the

https://shattered.io

proper functioning of many of these applications rely on the assumption
that it is practically impossible to find collisions, i.e. two distinct messages
x, y that hash to the same value H(x) = H(y). When the hash function
behaves in a “sufficently random” way, the expected number of calls to H
(or in practice its underlying fixed-size function) to find a collision using
an optimal generic algorithm is

√

π/2 ⋅ 2n/2 (see e.g. [33, App. A]); an
algorithm that is faster at finding collisions for H is then a collision attack
for this function.

A major family of hash function is “MD-SHA”, which includes MD5,
SHA-1 and SHA-2 that all have found widespread use. This family origi-
nally started with MD4 [36] in 1990, which was quickly replaced by MD5
[37] in 1992 due to serious attacks [9, 11]. Despite early known weaknesses
of its underlying compression function [10], MD5 was widely deployed
by the software industry for over a decade. The MD5CRK project that
attempted to find a collision for MD5 by brute force was halted early
in 2004, when Wang and Yu produced explicit collisions [49], found by
a groundbreaking attack that pioneered new techniques. In a major de-
velopment, Stevens et al. [45] later showed that a more powerful type of
attack (the so-called chosen-prefix collision attack) could be performed
against MD5. This eventually led to the forgery of a Rogue Certification
Authority that in principle completely undermined HTTPS security [46]
in 2008. Despite this, even in 2017 there are still issues in deprecating
MD5 for signatures [18].

Currently, the industry is facing a similar challenge in the depreca-
tion of SHA-1, a 1995 NIST standard [31]. It is one of the main hash
functions of today, and it also has been facing important attacks since
2005. Based on previous successful cryptanalysis [5, 3, 4] of SHA-0 [30]
(SHA-1’s predecessor, that only differs by a single rotation in the message
expansion function), Wang et al. [48] presented in 2005 the very first
collision attack on SHA-1 that is faster than brute-force. This attack,
while groundbreaking, was purely theoretical as its expected cost of 269

calls to SHA-1’s compression function was practically out-of-reach.

Therefore, as a proof of concept, many teams worked on generating
collisions for reduced versions of the function: 64 steps [8] (with a cost of
235 SHA-1 calls), 70 steps [7] (cost 244 SHA-1), 73 steps [15] (cost 250.7

SHA-1) and finally 75 steps [16] (cost 257.7 SHA-1) using extensive GPU
computation power.

In 2013, building on these advances and a novel rigorous framework
for analyzing SHA-1, the current best collision attack on full SHA-1 was
presented by Stevens [43] with an estimated cost of 261 calls to the

2

SHA-1 compression function. Nevertheless, a publicly known collision still
remained out of reach. This was also highlighted by Schneier [38] in 2012,
when he estimated the cost of a SHA-1 collision attack to be around
US$ 700 K in 2015, down to about US$ 173 K in 2018 (using calculations
by Walker based on a 261 attack cost [43], Amazon EC2 spot prices and
Moore’s Law), which he deemed to be within the resources of criminals.

More recently, a collision for the full compression function underlying
SHA-1 was obtained by Stevens et al. [44] using a start-from-the-middle
approach and a highly efficient GPU framework (first used to mount a
similar freestart attack on the function reduced to 76 steps [21]). This
required only a reasonable amount of GPU computation power, about 10
days using 64 GPUs, equivalent to approximately 257.5 calls to SHA-1 on
GPU. Based on this attack, the authors projected that a collision attack
on SHA-1 may cost between US$ 75 K and US$ 120 K by renting GPU
computing time on Amazon EC2 [39] using spot-instances, which is signif-
icantly lower than Schneier’s 2012 estimates. These new projections had
almost immediate effect when CABForum Ballot 152 to extend issuance
of SHA-1 based HTTPS certificates was withdrawn [13], and SHA-1 was
deprecated for digital signatures in the IETF’s TLS protocol specification
version 1.3.

Unfortunately CABForum restrictions on the use of SHA-1 only apply
to actively enrolled Certification Authority certificates and not on any
other certificates, e.g. retracted CA certificates that are still supported by
older systems (and CA certificates have indeed been retracted for continued
use of SHA-1 certificates to serve to these older systems unchecked by
CABForum regulations1), and certificates for other TLS applications
including up to 10% of credit card payment systems [47, 29]. It thus
remains in widespread use across the software industry for, e.g., digital
signatures of software, documents, and many other applications, most
notably in the GIT versioning system.

It is well worth noting that academic researchers have not been the
only ones to compute (and exploit) hash function collisions. Nation-state
actors [34, 25, 24] have been linked to the highly advanced espionage
malware “Flame” that was found targeting the Middle-East in May 2012.
As it turned out, it used a forged signature to infect Windows machines via
a man-in-the-middle attack on Windows Update. Using a new technique of
counter-cryptanalysis that is able to expose cryptanalytic collision attacks
given only one message from a colliding message pair, it was proven that

1 For instance, SHA-1 certificates are still being sold by CloudFlare at the time of
writing: https://www.cloudflare.com/ssl/dedicated-certificates/

3

https://www.cloudflare.com/ssl/dedicated-certificates/

the forged signature was made possible by a then secret chosen-prefix
attack on MD5 [42, 12].

2 Our contributions

Table 1: Colliding message blocks for SHA-1.

CV0 4e a9 62 69 7c 87 6e 26 74 d1 07 f0 fe c6 79 84 14 f5 bf 45

M
(1)
1 7f 46 dc 93 a6 b6 7e 01 3b 02 9a aa 1d b2 56 0b

45 ca 67 d6 88 c7 f8 4b 8c 4c 79 1f e0 2b 3d f6

14 f8 6d b1 69 09 01 c5 6b 45 c1 53 0a fe df b7

60 38 e9 72 72 2f e7 ad 72 8f 0e 49 04 e0 46 c2

CV
(1)
1 8d 64 d6 17 ff ed 53 52 eb c8 59 15 5e c7 eb 34 f3 8a 5a 7b

M
(1)
2 30 57 0f e9 d4 13 98 ab e1 2e f5 bc 94 2b e3 35

42 a4 80 2d 98 b5 d7 0f 2a 33 2e c3 7f ac 35 14

e7 4d dc 0f 2c c1 a8 74 cd 0c 78 30 5a 21 56 64

61 30 97 89 60 6b d0 bf 3f 98 cd a8 04 46 29 a1

CV2 1e ac b2 5e d5 97 0d 10 f1 73 69 63 57 71 bc 3a 17 b4 8a c5

CV0 4e a9 62 69 7c 87 6e 26 74 d1 07 f0 fe c6 79 84 14 f5 bf 45

M
(2)
1 73 46 dc 91 66 b6 7e 11 8f 02 9a b6 21 b2 56 0f

f9 ca 67 cc a8 c7 f8 5b a8 4c 79 03 0c 2b 3d e2

18 f8 6d b3 a9 09 01 d5 df 45 c1 4f 26 fe df b3

dc 38 e9 6a c2 2f e7 bd 72 8f 0e 45 bc e0 46 d2

CV
(2)
1 8d 64 c8 21 ff ed 52 e2 eb c8 59 15 5e c7 eb 36 73 8a 5a 7b

M
(2)
2 3c 57 0f eb 14 13 98 bb 55 2e f5 a0 a8 2b e3 31

fe a4 80 37 b8 b5 d7 1f 0e 33 2e df 93 ac 35 00

eb 4d dc 0d ec c1 a8 64 79 0c 78 2c 76 21 56 60

dd 30 97 91 d0 6b d0 af 3f 98 cd a4 bc 46 29 b1

CV2 1e ac b2 5e d5 97 0d 10 f1 73 69 63 57 71 bc 3a 17 b4 8a c5

We are the first to exhibit an example collision for SHA-1, presented in
Table 1, thereby proving that theoretical attacks on SHA-1 have now be-
come practical. Our work builds upon the best known theoretical collision
attack [43] with estimated cost of 261 SHA-1 calls. This is an identical-
prefix collision attack, where a given prefix P is extended with two distinct
near-collision block pairs such that they collide for any suffix S:

SHA-1 (P ∣∣M
(1)
1 ∣∣M

(1)
2 ∣∣S) = SHA-1 (P ∣∣M

(2)
1 ∣∣M

(2)
2 ∣∣S) . (1)

4

Table 2: Identical prefix of our collision.

25 50 44 46 2d 31 2e 33 0a 25 e2 e3 cf d3 0a 0a %PDF-1.3.%......

0a 31 20 30 20 6f 62 6a 0a 3c 3c 2f 57 69 64 74 .1 0 obj.<</Widt

68 20 32 20 30 20 52 2f 48 65 69 67 68 74 20 33 h 2 0 R/Height 3

20 30 20 52 2f 54 79 70 65 20 34 20 30 20 52 2f 0 R/Type 4 0 R/

53 75 62 74 79 70 65 20 35 20 30 20 52 2f 46 69 Subtype 5 0 R/Fi

6c 74 65 72 20 36 20 30 20 52 2f 43 6f 6c 6f 72 lter 6 0 R/Color

53 70 61 63 65 20 37 20 30 20 52 2f 4c 65 6e 67 Space 7 0 R/Leng

74 68 20 38 20 30 20 52 2f 42 69 74 73 50 65 72 th 8 0 R/BitsPer

43 6f 6d 70 6f 6e 65 6e 74 20 38 3e 3e 0a 73 74 Component 8>>.st

72 65 61 6d 0a ff d8 ff fe 00 24 53 48 41 2d 31 ream......$SHA-1

20 69 73 20 64 65 61 64 21 21 21 21 21 85 2f ec is dead!!!!!./.

09 23 39 75 9c 39 b1 a1 c6 3c 4c 97 e1 ff fe 01 .#9u.9...<L.....

The computational effort spent on our attack is estimated to be
equivalent to 263.1 SHA-1 calls (see Section 6). There is certainly a gap
between the theoretical attack as presented in [43] and our executed
practical attack that was based on it. Indeed, the theoretical attack’s
estimated complexity does not include the inherent relative loss in efficiency
when using GPUs, nor the inefficiency we encountered in actually launching
a large scale computation distributed over several data centers. Moreover,
the construction of the second part of the attack was significantly more
complicated than could be expected from the literature.

To find the first near-collision block pair (M
(1)
1 ,M

(2)
1) we employed

the open-source code from [43], which was modified to work with our
prefix P given in Table 2, and for large scale distribution over several data

centers. To find the second near-collision block pair (M
(1)
2 ,M

(2)
2) that

leads to the collision was more challenging, as the attack cost is known to
be significantly higher, but also because of additional obstacles.

In Section 5 we will discuss in particular the process of building the
second near-collision attack. Essentially we followed the same steps as
was done for the first near-collision attack [43], combining many existing
cryptanalytic techniques. Yet we further employed the SHA-1 collision
search GPU framework from Karpman et al. [21] to achieve a significantly
more cost efficient attack.

We also describe two new additional techniques used in the construction
of the second near-collision attack. The first allowed us to use additional
differential paths around step 23 for increased success probability and
more degrees of freedom without compromising the use of an early-stop

5

technique. The second was necessary to overcome a serious problem of
an unsolvable strongly over-defined system of equations over the first few
steps of SHA-1’s compression function that threatened the feasibility of
finishing this project.

As can be deduced from Equation 1, our example colliding files only
differ in two successive random-looking message blocks generated by
our attack. We exploit these limited differences to craft two colliding
PDF documents containing arbitrary distinct images. Examples can be
downloaded from https://shattered.io. PDFs with the same MD5 hash
have previously been constructed by Gebhardt et al. [14] by exploiting so-
called Indexed Color Tables and Color Transformation functions. However,
this method is not effective for many common PDF viewers that lack
support for these functionalities. Our PDFs rely on distinct parsings
of JPEG images, similar to Gebhardt et al.’s TIFF technique [14] and
Albertini et al.’s JPEG technique [1]. Yet we improved upon these basic
techniques using very low-level “wizard” JPEG features such that these
work in all common PDF viewers, and even allow very large JPEGs that
can be used to craft multi-page PDFs. This overall approach and the
technical details will be described in a separate article [2].

The remainder of this paper is organized as follows. We first give
a brief description of SHA-1 in Section 3. Then, we give a high-level
overview of our attack in Section 4, followed by Section 5 that details
the entire process and the cryptanalytic techniques employed, where we
also highlight improvements with respect to previous work. Finally, we
discuss the large-scale distributed computations required to find the two
near-collision block pairs in Section 6. The parameters used to find the
second colliding block are given in the appendix, in Section A.

3 The SHA-1 hash function

We provide a brief description of SHA-1 as defined by NIST [31]. SHA-1
takes an arbitrary-length message and computes a 160-bit hash. It divides
the (padded) input message into k blocks M1, . . . ,Mk of 512 bits. The
160-bit internal state CVj of SHA-1, called the chaining value, is initialized
to a predefined initial value CV0 = IV . Each message block is then fed to
a compression function h that updates the chaining value, i.e. CVj+1 =
h(CVj ,Mj+1), for 0 ≤ j < k, where the final CVk is output as the hash.

The compression function h takes a 160-bit chaining value CVj and a
512-bit message block Mj+1 as inputs, and outputs a new 160-bit chaining
value CVj+1. It mixes the message block into the chaining value as follows,

6

https://shattered.io

operating on words, simultaneously seen as 32-bit strings and as elements
of Z/232Z: the input chaining value is parsed as five words a, b, c, d, e, and
the message block as 16 words m0, . . . ,m15. The latter are expanded into
80 words using the following recursive linear equation:

mi = (mi−3 ⊕mi−8 ⊕mi−14 ⊕mi−16)
↺1, for 16 ≤ i < 80.

Starting from (A−4,A−3,A−2,A−1,A0) ∶= (e↺2, d↺2, c↺2, b, a), each mi is
mixed into an intermediate state over 80 steps i = 0, . . . ,79:

Ai+1 = A
↺5
i + ϕi(Ai−1,A

↻2
i−2 ,A

↻2
i−3) +A

↻2
i−4 +Ki +mi,

where ϕi and Ki are predefined Boolean functions and constants:

step i ϕi(x, y, z) Ki

0 ≤ i < 20 ϕIF = (x ∧ y) ∨ (¬x ∧ z) 0x5a827999

20 ≤ i < 40 ϕXOR = x⊕ y ⊕ z 0x6ed9eba1

40 ≤ i < 60 ϕMAJ = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) 0x8f1bbcdc

60 ≤ i < 80 ϕXOR = x⊕ y ⊕ z 0xca62c1d6

After the 80 steps, the new chaining value is computed as the sum of
the input chaining value and the final intermediate state:

CVj+1 = (a +A80, b +A79, c +A
↻2
78 , d +A

↻2
77 , e +A

↻2
76).

4 Overview of our SHA-1 collision attack

We illustrate our attack from a high level in Figure 1. Starting from
identical chaining values for two messages, we use two pairs of blocks. The
differences in the first block pair cause a small difference in the output
chaining value, which is canceled by the difference in the second block pair,
leading again to identical chaining values and hence a collision (indicated
by (2)). We employ differential paths that are a precise description of
differences in state words and message words and of how these differences
should propagate through the 80 steps.

Note that although the first five state words are fixed by the chaining
value, one can freely modify message words and thus directly influence
the next sixteen state words. Moreover, with additional effort this can
be extended to obtain limited influence over another eight state words.
However, control over the remaining state words (indicated by (1)) is
very hard and thus requires very sparse target differences that correctly

7

Fig. 1: Attack overview

propagate with probability as high as possible. Furthermore, these need to
be compatible with differences in the expanded message words. The key
solution is the concept of local collisions [5], where any state bit-difference
introduced by a perturbation message bit-difference is to be canceled in
the next five steps using correction message bit-differences.

To ensure all message word bit differences are compatible with the
linear message expansion, one uses a disturbance vector (DV) [5] that
is a correctly expanded message itself, but where every “1” bit marks
the start of a local collision. The selection of a good disturbance vector
has a very high impact on the overall attack cost. As previously shown
by Wang et al. [48], the main reason of using two block pairs (i.e. to
search for a near-collision over a first message block, that is completed
to a full collision over a second) instead of only one is that this choice
alleviates an important restriction on the disturbance vector, namely that
there are no state differences after the last step. Similarly, it may be
impossible to unite the input chaining value difference with the local
collisions for an arbitrary disturbance vector. This was solved by Wang
et al. [48] by crafting a tailored differential path (called the non-linear
(NL) path, indicated by (3)) that over the first 16 steps connects the
input chaining value differences to the local collision differences over the
remaining steps (called the linear path, referring to the linear message
expansion dictating the local collision positions).

One has to choose a good disturbance vector, then craft a non-linear
differential path for each of the two near-collision attacks (over the first
and second message blocks), determine a system of equations over all
steps and finally find a solution in the form of a message block pair (as
indicated by (4A) and (4B)). Note that one can only craft the non-linear
path for the second near-collision attack once the chaining values resulting

8

from the first block pair are known. This entire process including our
improvements is described below.

5 Near-collision attack procedure

DV selection
Craft non-
linear path

Determine
attack

conditions

Find
additional
conditions

Fix
solvability
first steps

Find
speed-ups

(boomerangs)

Write attack
algorithm

Run attack

Fig. 2: The main steps for each near-collision attack.

This section describes the overall procedure of each of the two near-
collision attacks. Since we relied on our modification of Stevens’ public
source-code [43, 17] for the first near-collision attack, we focus on our
extended procedure for our second near-collision attack. As shown in
Figure 2, this involves the following steps that are further detailed below:

1. selection of the disturbance vector (same for both attacks);
2. construction of the non-linear differential path;
3. determine attack conditions over all steps;
4. find additional conditions beyond the fixed differential path for early-

stop;
5. if necessary fix solvability of attack conditions over the first few steps;
6. find message modification rules to speed-up collision search;
7. write the attack algorithm;
8. finally, run the attack to find a near-collision block pair.

5.1 Disturbance Vector selection

The selection of which disturbance vector to use is a major choice, as it
directly determines many aspects of the collision attack. These include the
message XOR differences, but also in theory the optimal attack choices
over the linear path, including the optimal set of candidate endings for
the non-linear path together with optimal linear message-bit equations
that maximize the success probability over the linear part.

9

Historically several approaches have been used to analyze a disturbance
vector to estimate attack costs over the linear part. Initially, the Hamming
weight of the DV that counts the active number of local collisions was
used (see e.g. [4, 35]). For the first theoretical attack on SHA-1 with cost
269 SHA-1-calls by Wang et al. [48] a more refined measure was used,
that counts the number of bit-conditions on the state and message bits
that ensure that the differential path would be followed. This was later
refined by Yajima et al. [51] to a more precise count by exploiting all
possible so-called bit compressions and interactions through the Boolean
functions. However, this approach does not allow any difference in the
carry propagation, which otherwise could result in alternate differential
paths that may improve the overall success probability. Therefore, Mendel
et al. [28] proposed to use the more accurate probability of single local
collisions where carry propagations are allowed, in combination with known
local collision interaction corrections.

The current state-of-the-art is joint-local-collision analysis (JLCA)
introduced by Stevens [43, 41] which given sets of allowed differences for
each state word Ai and message word mi (given by the disturbance vector)
computes the exact optimal success probability over the specified steps by
exhaustively evaluating all differential paths with those allowed differences.
This approach is very powerful as it also provides important information
for the next steps, namely the set of optimal chaining value differences
(by considering arbitrary high probability differences for the last five Ais)
and the set of optimal endings for the non-linear path, together with
a corresponding set of message-bit equations, using which the optimal
highest success probability of the specified steps can actually be achieved.
The best theoretical collision attack on SHA-1 with cost 261 SHA-1 calls
[43] was built using this analysis. As we build upon this collision attack,
we use the same disturbance vector, named II(52,0) by Manuel [26] and
originally described by Jutla and Patthak [20].

5.2 Construction of a non-linear differential path

Once the disturbance vector and the corresponding linear part of the
differential path have been fixed, the next step consists in finding a
suitable non-linear path connecting the chaining value pair (with fixed
differences) to the linear part. This step needs to be done separately for
each near-collision attack of the full collision attack2.
2 We eventually produced two message block pair solutions for the first near-collision

attack. This provided a small additional amount of freedom in the search for the
non-linear path of the second block.

10

As explained for instance in [43], in the case of the first near-collision
attack, the attacker has the advantage of two additional freedoms. Firstly,
an arbitrary prefix can be included before the start of the attack to pre-
fulfill a limited number of conditions on the chaining value. This allows
greater freedom in constructing the non-linear path as this does not have
to be restricted to a specific value of the chaining value pair, whereas
the non-linear path for the second near-collision attack has to start from
the specific given value of input chaining value pair. Secondly, it can use
the entire set of output chaining value differences with the same highest
probability. The first near-collision attack is not limited to a particular
value and succeeds when it finds a chaining value difference in this set,
whereas the second near-collision attack has to cancel the specific difference
in the resulting chaining value pair. Theory predicts the first near-collision
attack to be at least a factor six faster than the second attack [43]. For our
collision attack it is indeed the second near-collision attack that dominates
the overall attack complexity.

Historically, the first non-linear paths for SHA-1 were hand-crafted by
Wang et al.. Several algorithms were subsequently developed to automati-
cally search for non-linear paths for MD5, SHA-1, and other functions of
the MD-SHA family. The first automatic search for SHA-1 by De Cannière
and Rechberger [8] was based on a guess-and-determine approach. This
approach tracks the allowed values of each bit pair in the two related
compression function computations. It starts with no constraints on the
values of these bit pairs other than the chaining value pair and the linear
part differences. It then repeatedly restricts values on a selected bit pair
and then propagates this information via the step function and linear
message expansion relation, i.e., it determines and eliminates previously-
allowed values for other bit pairs that are now impossible due the added
restriction. Whenever a contradiction occurs, the algorithm backtracks
and chooses a different restriction on the last selected bit pair.

Another algorithm for SHA-1 was introduced by Yajima et al. [52]
that is based on a meet-in-the-middle approach. It starts from two fully-
specified differential paths; the first is obtained from a forward expansion
of the input chaining value pair, whereas the other is obtained from a
backward expansion of the linear path. It then tries to connect these two
differential paths over the remaining five steps in the middle by recursively
iterating over all solutions over a particular step.

A similar meet-in-the-middle algorithm was independently first devel-
oped for MD5 and then adapted to SHA-1 by Stevens et al. [45, 41, 17],
which operates on bit-slices and is more efficient. The open-source Hash-

11

Clash project [17] seems to be the only publicly available non-linear path
construction implementation, which we improved as follows. Originally, it
expanded a large set of differential paths step by step, keeping only the
best N paths after each step, for some user-specified number N . However,
there might be several good differential paths that result in the same
differences and conditions around the connecting five steps, where either
none or all lead to fully-connected differential paths. Since we only need
the best fully-connected differential path we can find, we only need to
keep a best differential path from each subset of paths with the same
differences and conditions over the last five steps that were extended. So
to remove this redundancy, for each step we extend and keep, say, the
4N best paths, then we remove all such superfluous paths, and finally
keep at most N paths. This improvement led to a small but very welcome
reduction in the amount of differential path conditions under the same
path construction parameter choices, but also allowed a better positioning
of the largest density of sufficient conditions for the differential path.

Construction of a very good non-linear path for the second near-
collision attack using our improved HashClash version took a small effort
with our improvements, yet even allowed us to restrict the section with
high density of conditions to just the first six steps. However, to find a
very good non-linear differential path that is also solvable turned out to
be more complicated. Our final solution is described in Section 5.5, which
in the end did allow us to build our attack on the best non-linear path we
found without any compromises. The fixed version of this best non-linear
path is presented in Figure 3, Section A.

5.3 Determine attack conditions

Having selected the disturbance vector and constructed a non-linear path
that bridges into the linear part, the next step is to determine the entire
system of equations for the attack. This system of equations is expressed
entirely over the computation of message M (1), and not over M (2), and
consists of two types of equations:

1. Linear equations over message bits. These are used to control the
additive signs of the message word XOR differences implied by the
disturbance vector. Since there are many different “signings” over the
linear part with the same highest probability, instead of one specific
choice one uses a linear hull that captures many choices to reduce the
amount of necessary equations.

12

2. Linear equations over state bits given by a fixed differential path up to
some step i (that includes the non-linear path). These control whether
there is a difference in a state bit and which sign it has, furthermore
they force target differences in the outputs of the Boolean functions
ϕi.

We determine this entire system by employing our implementation
of joint-local-collision analysis that has been improved as follows. JLCA
takes input sets of allowed differences for each Ai and mi and exhaustively
analyzes the set of differential paths with those allowed differences, which
originally is only used to analyze the linear part. We additionally provide
it with specific differences for Ai and mi as given by the non-linear path,
so we can run JLCA over all 80 steps and have it output an optimal fixed
differential path over steps 0, . . . , 22 together with an optimal set of linear
equations over message bits over the remaining steps. These are optimal
results since JLCA guarantees these lead to the highest probability that is
possible using the given allowed differences, but furthermore that a largest
linear hull is used to minimize the amount of equations.

Note that having a fixed differential path over more steps directly
provides more state bit equations which is helpful in the actual collision
search because we can apply an early-stop technique. However, this also
adds further restrictions on Ai limiting a set of allowed differences to a
single specific difference. In our case limiting A24 would result, besides a
drop in degrees of freedom, in a lower overall probability, thus we only use
a fixed differential path up to step 22, i.e., up to A23. Below in Section 5.4
we show how we compensated for fewer state equations that the actual
collision search uses to early stop.

5.4 Find additional state conditions

As explained in Section 5.3, the system of equations consists of linear
equations over (expanded) message bits and linear equations over state
bits. In the actual collision search algorithm, we depend on these state
bit equations to stop computation on a bad current solution as early as
possible and start backtracking. These state bit equations are directly
given by a fixed differential path, where every bit difference in the state
and message is fixed. Starting from step 23 we allow several alternate
differential paths that increase success probability, but also allow distinct
message word differences that lead to a decrease in the overall number of
equations. Each alternate differential path depends on its own (distinct)
message word differences and leads to its own state bit equations. To

13

find additional equations, we also consider linear equations over state
and message bits around steps 21–25. Although in theory these could be
computed by JLCA by exhaustively reconstructing all alternate differential
paths and then determining the desired linear equations, we instead took a
much simpler approach. We generated a large amount of random solutions
of the system of equations up to step 31 using an unoptimized general
collision search algorithm. We then proceeded to exhaustively test potential
linear equations over at most four state bits and message bits around steps
21–25, which is quite efficient as on average only two samples needed to
be checked for each bad candidate. The additional equations we found
and used for the collision search are shown in Table 4, Section A.

5.5 Fix solvability over the first steps

This step is not required when there are sufficient degrees of freedom
in the non-linear part, as was the case in the first-block near-collision
attack. As already noted, in the case of the second-block near-collision
attack, the non-linear path has to start will a fully-fixed chaining value
and has significantly more conditions in the first steps. As a result, the
construction of a very good and solvable non-linear differential path for the
second near-collision attack turned out to be quite complex. Our initially
constructed paths unfortunately proved to be unsolvable over the first few
steps. We tried several approaches including using the guess-and-determine
non-linear path construction to make corrections as done by Karpman
et al. [21], as well as using worse differential path construction parameters,
but all these attempts led to results that not only were unsatisfactory but
that even threatened the feasibility of the second near-collision attack.
Specifically, both approaches led to differential paths with a significantly
increased number of conditions, bringing the total number of degrees of
freedom critically low. Moreover, the additional conditions easily conflicted
with candidate speed-up measures named “boomerangs” necessary to bring
the attack’s complexity down to a feasible level. Our final solution was to
encode this problem into a satisfiability (SAT) problem and use a SAT
solver to find a drop-in replacement differential path over the first eight
steps that is solvable.

More specifically, we adapted the SHA-1 SAT system generator from
Nossum3 [32] (initially used to compute reduced-round practical preimages)
to generate two independent 8-step compression function computations,
which we then linked by adding constraints that set the given input

3 https://github.com/vegard/sha1-sat

14

https://github.com/vegard/sha1-sat

chaining value pair, the message XOR differences over m0, . . . ,m7, the
path differences of A4, . . . ,A8 and the path conditions of A5, . . . ,A8. In
effect, we allowed complete freedom over A1, A2, A3 and some freedom
over A4. All solutions were exhaustively generated by MiniSAT4 and then
converted into drop-in replacement paths, from which we kept the one
with fewest conditions.

This allowed us to build our attack on the best non-linear path we
found without any compromises and the corrected non-linear path is
presented in Figure 3, Section A. Note that indeed the system of equations
is over-defined: over the first five steps, there are only 15 state bits without
an equation, while at the same time there are 23 message equations.

5.6 Find message modifications to speed-up collision search

To speed-up the collision search significantly, it is important to employ
message modification rules, that make small changes in the current message
block that do not affect any bit involved with the state and message-bit
equations up to some step n (with sufficiently high probability). This
effectively allows such a message modification rule to be applied to one
solution up to step n to generate several solutions up to the same step
with almost no additional cost, thereby significantly reducing the average
cost to generate solutions up to step n.

The first such speed-up technique that was developed in attacks of the
MD-SHA family was called neutral bits, introduced by Biham and Chen
to improve attacks on SHA-0 [3]. A message bit is neutral up to a step
n if flipping this bit causes changes that do not interact with differential
path conditions up to step n with high probability. As the diffusion of
SHA-0/SHA-1’s step function is rather slow, it is not hard to find many
bits that are neutral for a few steps.

A nice improvement of the original neutral bits technique was ulti-
mately described by Joux and Peyrin as “boomerangs” [19]. It consists in
carefully selecting a few bits that are all flipped together in such a way
that this effectively flips, say, only one state bit in the first 16 steps, and
such that the diffusion of uncontrollable changes is significantly delayed.
This idea can be instantiated efficiently by flipping together bits that
form a local collision for the step function. This local collision will eventu-
ally introduce uncontrollable differences through the message expansion;
however, these do not appear immediately, and if all conditions for the
local collision to be successful are verified, the first few steps after the

4 http://minisat.se/

15

http://minisat.se/

introduction of its initial perturbation will be free of any difference. Joux
and Peyrin then noted that sufficient conditions for the local collision
can be pre-satisfied when creating the initial partial solution, effectively
leading to probability-one local collisions. This leads to a few powerful
message modification rules that are neutral up to very late steps.

A closely-related variant of boomerangs is named advanced message
modification by Wang et al. in their attack of the MD-SHA family (see
e.g. [48]). While the objective of this technique is also to exploit the
available freedom in the message, it applies this in a distinct way by
identifying ways of interacting with an isolated differential path condition
with high probability. Then, if an initial message pair fails to verify a
condition for which a message modification exists, the bits of the latter
are flipped, so that the resulting message pair now verifies the condition
with high probability.

In our attack, we used both neutral bits and boomerangs as message
modification rules. This choice was particularly motivated by the ability to
efficiently implement these speed-up techniques on GPUs, used to compute
the second block of the collision, similar to [21, 44].

Our search process for finding the neutral bits follows the one described
in [44]. Potential boomerangs are selected first, one being eligible if its
initial perturbation does not interact with differential path conditions
and if the corrections of the local collision do not break some linear
message-bit-relation (this would typically happen if an odd number of
bits to be flipped are part of such a relation). The probability with
which a boomerang eventually interacts with path conditions is then
evaluated experimentally by activating it on about 4 000 independent
partial solutions; the probability threshold used to determine up to which
step a boomerang can be used is set to 0.9, meaning that it can be used to
generate an additional partial solution at step n from an existing one if it
does not interact with path conditions up to step n with probability more
than 0.1. Once boomerangs have been selected, the sufficient conditions
necessary to ensure that their corresponding local collisions occur with
probability 1 are added to the differential path, and all remaining free
message bits are tested for neutrality using the same process (i.e., a bit
is only eligible if flipping it does not trivially violate path conditions or
make it impossible to later satisfy message-bit-relations, and its quality is
evaluated experimentally).

The list of neutral bits and boomerangs used for the second block of
the attack is given in Section A. There are 51 neutral bits, located on

16

message words m11 to m15, and three boomerangs each made of a single
local collision started on m6 (for two of them) or m9.

5.7 Attack implementation

A final step in the design of the attack is to implement it. This is needed for
obvious reasons if the goal is to find an actual collision as we do here, but
it is also a necessary step if one wishes to obtain a precise estimate of the
complexity of the attack. Indeed, while the complexity of the probabilistic
phase of the attack can be accurately computed using JLCA (or can also
be experimentally determined by sampling many mock partial solutions),
there is much more uncertainty as to “where” this phase actually starts.
In other words, it is hard to exactly predict how effective the speed-up
techniques can be without actually implementing them. The only way
to determine the real complexity of an attack is then to implement it,
measure the rate of production of partial solutions up to a step where
there is no difference in the differential path for five consecutive state
words, and use JLCA to compute the exact probability of obtaining a
(near-)collision over the remaining steps.

The first near-collision block pair of the attack was computed with
CPUs, using an adapted version of the HashClash software [17]. As the
original code was not suitable to run on a large scale, a significant effort
was spent to make it efficient on the hundreds of cores necessary to obtain
a near-collision in reasonable time. The more expensive computation of
the second block was done on GPUs, based on the framework used by
Karpman et al. [21], which we briefly describe below.

The main structure used in this framework consists in first generating
base solutions on CPUs that fix the sixteen free message words, and then
to use GPUs to extend these to partial solutions up to a late step, by
only exploiting the freedom offered by speed-up techniques (in particular
neutral bits and boomerangs). These partial solutions are then sent back
to a CPU to check if they result in collisions.

The main technical difficulty of this approach is to make the best
use of the power offered by GPUs. Notably, their programming model
differs from the one of CPUs in how diverse the computations run on
their many available cores can be: on a multicore CPU, every core can be
used to run an independent process; however, even if a recent GPU can
feature many more cores than a CPU (for instance, the Nvidia GTX 970
used in [21, 44] and the initial implementation of this attack features
1664 cores), they can only be programmed at the granularity of warps
made of 32 threads, which must then run the same code. Furthermore,

17

divergence in the control flow of threads of a single warp is dealt with
by serializing the diverging computations; for instance, if a single thread
takes a different branch than the rest of the warp in an if statement,
all the other threads become idle while it is taking its own branch. This
limitation would make a näıve parallel implementation of the usage of
neutral bits rather inefficient, and there is instead a strong incentive to
minimize control-flow divergence when implementing the attack.

The approach taken by Karpman et al. [21] to limit the impact of
the inherent divergence in neutral bit usage is to decompose the attack
process step by step and to use the fair amount of memory available on
recent GPUs to store partial solutions up to many different steps in shared
buffers. In a nutshell, all threads of a single warp are asked to load their
own partial solution up to a certain state word Ai, and they will together
apply all neutral bits available at this step, each time checking if the
solution can be validly extended to a solution up to Ai+1; if and only if
this is the case, this solution is stored in the buffer for partial solutions
up to Ai+1, and this selective writing operation is the only moment where
the control flow of the warps may diverge.

To compute the second block pair of the attack, and hence obtain a full
collision, we first generated base solutions consisting of partial solutions up
to A14 on CPU, and used GPUs to generate additional partial solutions up
to A26. These were further probabilistically extended to partial solutions
up to A53, still using GPUs, and checking whether they resulted in a
collision was finally done on a CPU. The probability of such a partial
solution to also lead to a collision can be computed by JLCA to be equal
to 2−27.8, and 2−48.7 for partial solutions up to A33 (these probabilities
could in fact both be reduced by a factor 20.6; however, the ones indicated
here correspond to the attack we carried out). On a GTX 970, a prototype
implementation of the attack produced partial solutions up to A33 at a
rate of approximately 58 100 per second, while the full SHA-1 compression
function can be evaluated about 231.8 times per second on the same GPU.
Thus, our attack has an expected complexity of 264.7 on this platform.

Finally, adapting the prototype GPU implementation to a large-scale
infrastructure suitable to run such an expensive computation also required
a fair amount of work.

6 Computation of the collision

This section gives some details about the computation of the collision and
provides a few comparisons with notable cryptographic computations.

18

6.1 Units of complexity

The complexity figures given in this section follow the common practice
in the cryptanalysis of symmetric schemes of comparing the efficiency of
an attack to the cost of using a generic algorithm achieving the same
result. This can be made by comparing the time needed, with the same
resources, to e.g. compute a collision on a hash function by using a
(memoryless) generic collision search versus by using a dedicated process.
This comparison is usually expressed by dividing the time taken by the
attack, e.g. in core hours, by the time taken to compute the attacked
primitive once on the same platform; the cost of using a generic algorithm
is then left implicit. This is for instance how the figure of 264.7 from
Section 5.7 has been derived.

While this approach is reasonable, it is far from being as precise as
what a number such as 264.7 seems to imply. We discuss below a few of its
limitations.

The impact of code optimization. An experimental evaluation of the
complexity of an attack is bound to be sensitive to the quality of the
implementation, both of the attack itself and of the reference primitive
used as a comparison. A hash function such as SHA-1 is easy to implement
relatively efficiently, and the difference in performance between a reference
and optimized implementation is likely to be small. This may however
not be true for the implementation of an attack, which may have a
more complex structure. A better implementation may then decrease the
“complexity” of an attack without any cryptanalytical improvements.

Although we implemented our attack in the best way we could, one
cannot exclude that a different approach or some modest further optimiza-
tions may lead to an improvement. However, barring a radical redesign,
the associated gain should not be significant; the improvements brought
by some of our own low-level optimizations was typically of about 15%.

The impact of the attack platform. The choice of the platform used
to run the attack may have a more significant impact on its evaluated
complexity. While a CPU is by definition suitable to run general-purpose
computations, this is not the case of e.g. GPUs. Thus, the gap between how
fast a simple computation, such as evaluating the compression function
of SHA-1, and a more complex one, such as our attack, need not be the
same on the two kinds of architectures. For instance, the authors of [21]
noticed that their 76-step freestart attack could be implemented on CPU (a
3.2 GHz Haswell Core i5) for a cost equivalent to 249.1 compression function

19

computations, while this increased to 250.25 on their best-performing
GTX 970, and 250.34 on average.

This difference leads to a slight paradox: from an attacker’s point of
view, it may seem best to implement the attack on a CPU in order to
be able to claim a better attack complexity. However, a GPU being far
more powerful, it is actually much more efficient to run it on the latter:
the attack of [21] takes only a bit more than four days to run on a single
GTX 970, which is much less than the estimated 150 days it would take
using a single quad-core CPU.

We did not write a CPU (resp. GPU) implementation of our own
attack for the search of the second (resp. first) block, and are thus unable
to make a similar comparison for the present full hash function attack.
However, as we used the same framework as [21], it is reasonable to assume
that the gap would be of the same order.

How to pick the best generic attack. As we pointed out above, the
common methodology for measuring the complexity of an attack leaves
implicit the comparison with a generic approach. This may introduce a
bias in suggesting a strategy for a generic attacker that is in fact not
optimal. This was already hinted in the previous paragraph, where we
remarked that an attack may seem to become worse when implemented on
a more efficient platform. In fact, the underlying assumption that a generic
attacker would use the same platform as the one on which the cryptanalytic
attack is implemented may not always be justified: for instance, even if the
latter is run on a CPU, there is no particular reason why a generic attacker
would not use more energy-efficient GPUs or FPGAs. It may thus be hard
to precisely estimate the absolute gain provided by a cryptanalytic attack
compared to the best implementation of a generic algorithm with identical
monetary and time resources, especially when these are high.

The issues raised here could all be addressed in principle by carefully
implementing, say van Oorschot and Wiener’s parallel collision search on
a cluster of efficient platforms [33]. However, this is usually not done in
practice, and we made no exception in our case.

Despite the few shortcomings of this usual methodology used to evalu-
ate the complexity of attacks, it remains in our opinion a reliable measure
thereof, that allows to compare different attack efforts reasonably well.
For want of a better one, it is also the approach used in this paper.

20

6.2 The computation

The major challenge when running our near-collision attacks distributed
across the world was to adapt it into a distributed computation model
which pursues two goals: the geographically distributed workers should
work independently without duplication of work, and the number of the
wasted computational time due to worker’s failures should be minimized.
The first goal required storage with the ability endure high loads of requests
coming from all around the globe. For the second goal, the main sources
of failures we found were preemption by higher-priority workers and bugs
in GPU hardware. To diminish the impact of these failures, we learned to
predict failures in the early stages of computation and terminated workers
without wasting significant amounts of computational time.

First near-collision attack. The first phase of the attack, corresponding
to the generation of first-block near collisions, was run on a heterogeneous
CPU cluster hosted by Google, spread over eight physical locations. The
computation was split into small jobs of expected running time of one
hour, whose objectives were to compute partial solutions up to step 61.
The running time of one hour proved to be the best choice to be resilient
against various kind of failures (mostly machine failure, preemption by
other users of the cluster, or network issues), while limiting the overhead
of managing many jobs. A MapReduce paradigm was used to collect the
solutions of a series of smaller jobs; in hindsight, this was not the best
approach, as it introduced an unnecessary bottleneck in the reduce phase.

The first first-block near collision was found after spending about
3583 core years that had produced 180 711 partial solutions up to step
61. A second near collision block was then later computed; it required an
additional 2987 core years and 148 975 partial solutions.

There was a variety of CPUs involved in this computation, but it
is reasonable to assume that they all were roughly equivalent in perfor-
mance. On a single core of a 2.3 GHz Xeon E5-2650v3, the OpenSSL
implementation of SHA-1 can compute up to 223.3 compression functions
per second. Taking this as a unit, the first near-collision block required an
effort equivalent to 260 SHA-1 compression function calls, and the second
first block required 259.75.

Second near-collision attack. The second more expensive phase of
the attack was run on a heterogeneous cluster of K20, K40 and K80 GPUs,
also hosted by Google. It corresponded to the generation of a second-block
near-collision leading to a full collision.

21

The overall setup of the computation was similar to the one of the
first block, except that it did not use a MapReduce approach and resorted
to using simpler queues holding the unprocessed jobs. A worker would
then select a job, potentially produce one or several partial solutions up
to step 61, and die on completion.

The collision was found after 369 985 partial solutions had been pro-
duced5. The production rates of partial 61-step solutions of the different
devices used in the cluster were of 0.593 per hour for the K80 (which
combines two GPU chips on one card), 0.444 for the K40 and 0.368 for the
K20. The time needed for a homogeneous cluster to produce the collision
would then have been of 114 K20-years, 95 K40-years or 71 K80-years.

The rate at which these various devices can compute the compression
function of SHA-1 is, according to our measurements, 231.1 s−1 for the
K20, 231.3 s−1 for the K40, and 231 s−1 for the K80 (230 s−1 per GPU). The
effort of finding the second block of the collision for homogeneous clusters,
measured in number of equivalent calls to the compression function, is
thus equal to 262.8 for the K20 and K40 and 262.1 for the K80.

Although a GTX 970 was only used to prototype the attack, we can
also consider its projected efficiency and measure the effort spent for the
attack w.r.t. this GPU. From the measured production rate of 58 100 step
33 solutions per second, we can deduce that 0.415 step 61 solutions can
be computed per hour on average. This leads to a computational effort of
102 GPU years, equivalent to 263.4 SHA-1 compression function calls.

The monetary cost of computing the second block of the attack by
renting Amazon instances can be estimated from these various data. Using
a p2.16xlarge instance, featuring 16 K80 GPUs and nominally costing
US$ 14.4 per hour would cost US$ 560 K for the necessary 71 device years.
It would be more economical for a patient attacker to wait for low “spot
prices” of the smaller g2.8xlarge instances, which feature four K520
GPUs, roughly equivalent to a K40 or a GTX 970. Assuming thusly an
effort of 100 device years, and a typical spot price of US$ 0.5 per hour,
the overall cost would be of US$ 110 K.

Finally, summing the cost of each phase of the attack in terms of
compression function calls, we obtain a total effort of 263.1, including the
redundant second near-colliding first block and taking the figure of 262.8

for the second block collision. This should however not be taken as an
absolute number; depending on luck and equipment but without changing
any of the cryptanalytical aspects of our attack, it is conceivable that the

5 We were quite lucky in that respect. The expected number required is about 2.5
times more than that.

22

spent effort could have been anywhere from, say, 262.3 to 265.1 equivalent
compression function calls.

6.3 Complexity comparisons

We put our own result into perspective by briefly comparing its complexity
to a few other relevant cryptographic computations.

Comparison with MD5 and SHA-0 collisions. An apt comparison
is first to consider the cost of computing collisions for MD5 [37], a once
very popular hash function, and SHA-0 [30], identical to SHA-1 but for
a missing rotation in the message expansion. The most efficient known
identical-prefix collision attacks for these three functions are all based on
the same series of work from Wang et al. from the mid-2000s [49, 50, 48],
but have widely varying complexities.

The best current identical-prefix collision attacks on MD5 are due
to Stevens et al., and require the equivalent of about 216 compression
function calls [46]. Furthermore, in the same paper, chosen-prefix collisions
are computed for a cost equivalent to about 239 calls, increasing to 249

calls for a three-block chosen-prefix collision as was generated on 200 PS3s
for the rogue Certification Authority work.

Though very similar to SHA-1, SHA-0 is much weaker against colli-
sion attacks. The best current such attack on SHA-0 is due to Manuel
and Peyrin [27], and requires the equivalent of about 233.6 calls to the
compression function.

Identical-prefix collisions for MD5 and SHA-0 can thus be obtained
within a reasonable time by using very limited computational power, such
as a decent smartphone.

Comparison with RSA modulus factorization and prime field
discrete logarithm computation. Some of the most expensive attacks
implemented in cryptography are in fact concerned with establishing
records of factorization and discrete logarithm computations. We believe
that it is instructive to compare the resources necessary in both cases.
As an example, we consider the 2009 factorization of a 768-bit RSA
modulus from Kleinjung et al. [22] and the recent 2016 discrete logarithm
computation in a 768-bit prime field from Kleinjung et al. [23].

The 2009 factorization required about 2000 core years on a 2.2 GHz
AMD Opteron of the time. The number of single instructions to have been
executed is estimated to be of the order of 267 [22]6.

6 Note that the comparison between factorization and discrete logarithm computation
mentioned in [23] gives for the former a slightly lower figure of about 1700 core years.

23

The 2016 discrete logarithm computation was a bit more than three
times more expensive, and required about 5300 core years on a single core
of a 2.2 GHz Xeon E5-2660 [23].

In both cases, the overall computational effort could have been de-
creased by reducing the time that was spent collecting relations [22, 23].
However, this would have made the following linear-algebra step harder
to manage and a longer computation in calendar time. Kleinjung et al.
estimated that a shorter sieving step could have resulted in a discrete
logarithm computation in less than 4000 core years [23].

To compare the cost of the attacks, we can estimate how many SHA-1
(compression function) calls can be performed in the 5300 core years of the
more expensive discrete logarithm record [23]. Considering again a 2.3 GHz
Xeon E5-2650 (slightly faster than the CPU used as a unit by Kleinjung
et al.) running at about 223.3 SHA-1 calls per second, the overall effort
of [23] is equivalent to approximately 260.6 SHA-1 calls. It is reasonable
to expect that even on an older processor the performance of running
SHA-1 would not decrease significantly; taking the same base figure per
core would mean that the effort of [22] is equivalent to approximately
258.9 ∼ 259.2 SHA-1 calls.

In absolute value, this is less than the effort of our own attack, the
more expensive discrete logarithm computation being about five times
cheaper7, and less than twice more expensive than computing a single
first-block near collision. However, the use of GPUs for the computation
of the second block of our attack allowed both to significantly decrease the
calendar time necessary to perform the computation, and its efficiency in
terms of necessary power: as an example, the peak power consumption of
a K40 is only 2.5 times the one of a 10-core Xeon E5-2650, yet it is about
25 times faster at computing the compression function of SHA-1 than
the whole CPU, and thence 10 times more energy-efficient overall. The
energy required to compute a collision using GPUs is thus about twice
less than the one required for the discrete logarithm computation8. As a
conclusion, computing a collision for SHA-1 seems to need slightly more
effort than 768-bit RSA factorization or prime-field discrete logarithm
computation but, if done on GPUs, the amount of resources necessary to
do so is slightly less.

7 But now is also a good time to recall that directly comparing CPU and GPU cost is
tricky.

8 This is assuming that the total energy requirements scale linearly with the consump-
tion of the processing units.

24

Acknowledgements. We thank the anonymous reviewers for their help-
ful comments, and Michael X. Lyons for pointing out a few minor incon-
sistencies between the presented differential path and the actual colliding
blocks.

References

[1] Albertini, A., Aumasson, J., Eichlseder, M., Mendel, F., Schläffer, M.: Malicious
Hashing: Eve’s Variant of SHA-1. In: Joux, A., Youssef, A.M. (eds.) SAC 2014.
Lecture Notes in Computer Science, vol. 8781, pp. 1–19. Springer (2014)

[2] Albertini, A., al.: Exploiting identical-prefix hash function collisions. Draft (2017)
[3] Biham, E., Chen, R.: Near-Collisions of SHA-0. In: Franklin, M.K. (ed.) CRYPTO.

Lecture Notes in Computer Science, vol. 3152, pp. 290–305. Springer (2004)
[4] Biham, E., Chen, R., Joux, A., Carribault, P., Lemuet, C., Jalby, W.: Collisions

of SHA-0 and Reduced SHA-1. In: Cramer [6], pp. 36–57
[5] Chabaud, F., Joux, A.: Differential Collisions in SHA-0. In: Krawczyk, H. (ed.)

CRYPTO. Lecture Notes in Computer Science, vol. 1462, pp. 56–71. Springer
(1998)

[6] Cramer, R. (ed.): EUROCRYPT, Lecture Notes in Computer Science, vol. 3494.
Springer (2005)

[7] De Cannière, C., Mendel, F., Rechberger, C.: Collisions for 70-Step SHA-1: On
the Full Cost of Collision Search. In: Adams, C.M., Miri, A., Wiener, M.J. (eds.)
SAC. Lecture Notes in Computer Science, vol. 4876, pp. 56–73. Springer (2007)

[8] De Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results
and Applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT. Lecture Notes in
Computer Science, vol. 4284, pp. 1–20. Springer (2006)

[9] den Boer, B., Bosselaers, A.: An Attack on the Last Two Rounds of MD4. In:
Feigenbaum, J. (ed.) CRYPTO. Lecture Notes in Computer Science, vol. 576, pp.
194–203. Springer (1991)

[10] den Boer, B., Bosselaers, A.: Collisions for the Compression Function of MD5. In:
Helleseth, T. (ed.) EUROCRYPT. Lecture Notes in Computer Science, vol. 765,
pp. 293–304. Springer (1993)

[11] Dobbertin, H.: Cryptanalysis of MD4. In: Gollmann, D. (ed.) FSE. Lecture Notes
in Computer Science, vol. 1039, pp. 53–69. Springer (1996)

[12] Fillinger, M., Stevens, M.: Reverse-Engineering of the Cryptanalytic Attack Used
in the Flame Super-Malware. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT.
Lecture Notes in Computer Science, vol. 9453, pp. 586–611. Springer (2015)

[13] Forum, C.: Ballot 152 - Issuance of SHA-1 certificates through 2016. Cabforum
mailing list (2015), https://cabforum.org/pipermail/public/2015-October/

006081.html

[14] Gebhardt, M., Illies, G., Schindler, W.: A note on practical value of single hash
collisions for special file formats. NIST First Cryptographic Hash Workshop (Oct
2005)

[15] Grechnikov, E.: Collisions for 72-step and 73-step sha-1: Improvements in the
method of characteristics. Cryptology ePrint Archive, Report 2010/413 (2010)

[16] Grechnikov, E., Adinetz, A.: Collision for 75-step sha-1: Intensive parallelization
with gpu. Cryptology ePrint Archive, Report 2011/641 (2011)

[17] Hashclash project webpage (Retrieved May 2017), https://marc-stevens.nl/p/
hashclash/

25

https://cabforum.org/pipermail/public/2015-October/006081.html
https://cabforum.org/pipermail/public/2015-October/006081.html
https://marc-stevens.nl/p/hashclash/
https://marc-stevens.nl/p/hashclash/

[18] InfoWorld: Oracle to java devs: Stop signing jar files with md5 (January 2017)
[19] Joux, A., Peyrin, T.: Hash Functions and the (Amplified) Boomerang Attack. In:

Menezes, A. (ed.) CRYPTO. Lecture Notes in Computer Science, vol. 4622, pp.
244–263. Springer (2007)

[20] Jutla, C.S., Patthak, A.C.: A Matching Lower Bound on the Minimum Weight of
SHA-1 Expansion Code. IACR Cryptology ePrint Archive 2005, 266 (2005)

[21] Karpman, P., Peyrin, T., Stevens, M.: Practical free-start collision attacks on
76-step SHA-1. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO. Lecture Notes in
Computer Science, vol. 9215, pp. 623–642. Springer (2015)

[22] Kleinjung, T., Aoki, K., Franke, J., Lenstra, A.K., Thomé, E., Bos, J.W., Gaudry,
P., Kruppa, A., Montgomery, P.L., Osvik, D.A., te Riele, H.J.J., Timofeev, A.,
Zimmermann, P.: Factorization of a 768-Bit RSA Modulus. In: Rabin, T. (ed.)
CRYPTO 2010. Lecture Notes in Computer Science, vol. 6223, pp. 333–350.
Springer (2010)

[23] Kleinjung, T., Diem, C., Lenstra, A.K., Priplata, C., Stahlke, C.: Computation
of a 768-Bit Prime Field Discrete Logarithm. In: Coron, J., Nielsen, J.B. (eds.)
EUROCRYPT. Lecture Notes in Computer Science, vol. 10210, pp. 185–201 (2017)

[24] Lab, C.: skywiper (a.k.a. flame a.k.a. flamer): A complex malware for targeted
attacks. Laboratory of Cryptography and System Security, Budapest University
of Technology and Economics (May 31, 2012)

[25] Lab, K.: The flame: Questions and answers. Securelist blog (May 28, 2012)
[26] Manuel, S.: Classification and generation of disturbance vectors for collision attacks

against SHA-1. Des. Codes Cryptography 59(1-3), 247–263 (2011)
[27] Manuel, S., Peyrin, T.: Collisions on SHA-0 in One Hour. In: Nyberg, K. (ed.)

FSE. Lecture Notes in Computer Science, vol. 5086, pp. 16–35. Springer (2008)
[28] Mendel, F., Pramstaller, N., Rechberger, C., Rijmen, V.: The impact of carries

on the complexity of collision attacks on SHA-1. In: Robshaw, M.J.B. (ed.) FSE.
Lecture Notes in Computer Science, vol. 4047, pp. 278–292. Springer (2006)

[29] third author’s mum, T.: Sha-1 is still being used. Personnal communication
[30] National Institute of Standards and Technology: FIPS 180: Secure Hash Standard

(May 1993)
[31] National Institute of Standards and Technology: FIPS 180-1: Secure Hash Standard

(April 1995)
[32] Nossum, V.: SAT-based preimage attacks on SHA-1. Master’s thesis, University

of Oslo (2012)
[33] van Oorschot, P.C., Wiener, M.J.: Parallel Collision Search with Cryptanalytic

Applications. J. Cryptology 12(1), 1–28 (1999)
[34] Post, T.W.: U.s., israel developed flame computer virus to slow iranian nuclear

efforts, officials say (June 2012)
[35] Pramstaller, N., Rechberger, C., Rijmen, V.: Exploiting coding theory for collision

attacks on SHA-1. In: Smart, N.P. (ed.) Cryptography and Coding, 10th IMA
International Conference. Lecture Notes in Computer Science, vol. 3796, pp. 78–95.
Springer (2005)

[36] Rivest, R.L.: The MD4 message digest algorithm. In: Menezes, A., Vanstone,
S.A. (eds.) CRYPTO. Lecture Notes in Computer Science, vol. 537, pp. 303–311.
Springer (1990)

[37] Rivest, R.L.: RFC 1321: The MD5 Message-Digest Algorithm (April 1992)
[38] Schneier, B.: When will we see collisions for sha-1? Blog (2012)
[39] Services, A.W.: Amazon EC2 – Virtual Server Hosting. aws.amazon.com (Retrieved

Jan 2016)

26

[40] Shoup, V. (ed.): CRYPTO, Lecture Notes in Computer Science, vol. 3621. Springer
(2005)

[41] Stevens, M.: Attacks on Hash Functions and Applications. Ph.D. thesis, Leiden
University (June 2012)

[42] Stevens, M.: Counter-Cryptanalysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO.
Lecture Notes in Computer Science, vol. 8042, pp. 129–146. Springer (2013)

[43] Stevens, M.: New Collision Attacks on SHA-1 Based on Optimal Joint Local-
Collision Analysis. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT. Lecture
Notes in Computer Science, vol. 7881, pp. 245–261. Springer (2013)

[44] Stevens, M., Karpman, P., Peyrin, T.: Freestart collision for full SHA-1. In: Fischlin,
M., Coron, J.S. (eds.) EUROCRYPT. Lecture Notes in Computer Science, vol.
9665, pp. 459–483. Springer (2016)

[45] Stevens, M., Lenstra, A.K., de Weger, B.: Chosen-Prefix Collisions for MD5
and Colliding X.509 Certificates for Different Identities. In: Naor, M. (ed.) EU-
ROCRYPT. Lecture Notes in Computer Science, vol. 4515, pp. 1–22. Springer
(2007)

[46] Stevens, M., Sotirov, A., Appelbaum, J., Lenstra, A.K., Molnar, D., Osvik, D.A.,
de Weger, B.: Short Chosen-Prefix Collisions for MD5 and the Creation of a Rogue
CA Certificate. In: Halevi, S. (ed.) CRYPTO. Lecture Notes in Computer Science,
vol. 5677, pp. 55–69. Springer (2009)

[47] ThreadPost: Sha-1 end times have arrived (January 2017)
[48] Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup [40],

pp. 17–36
[49] Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer [6],

pp. 19–35
[50] Wang, X., Yu, H., Yin, Y.L.: Efficient collision search attacks on SHA-0. In: Shoup

[40], pp. 1–16
[51] Yajima, J., Iwasaki, T., Naito, Y., Sasaki, Y., Shimoyama, T., Peyrin,

T., Kunihiro, N., Ohta, K.: A strict evaluation on the number of
conditions for SHA-1 collision search. IEICE Transactions 92-A(1), 87–
95 (2009), http://search.ieice.org/bin/summary.php?id=e92-a_1_87&

category=A&year=2009&lang=E&abst=

[52] Yajima, J., Sasaki, Y., Naito, Y., Iwasaki, T., Shimoyama, T., Kunihiro, N., Ohta,
K.: A new strategy for finding a differential path of SHA-1. In: Pieprzyk, J.,
Ghodosi, H., Dawson, E. (eds.) ACISP. Lecture Notes in Computer Science, vol.
4586, pp. 45–58. Springer (2007)

27

http://search.ieice.org/bin/summary.php?id=e92-a_1_87&category=A&year=2009&lang=E&abst=
http://search.ieice.org/bin/summary.php?id=e92-a_1_87&category=A&year=2009&lang=E&abst=

Table 3: Meaning of the bit difference symbols, for a symbol located on
At[i]. The same symbols are also used for m.

Symbol Condition on (A,Ã) Symbol Condition on (A,Ã)

⋅ At[i] = Ãt[i] ☆ At[i] = Ãt[i] = At−1[i]

● At[i] ≠ Ãt[i] ★ At[i] = Ãt[i] ≠ At−1[i]

▴ At[i] = 0, Ãt[i] = 1 ◇ At[i] = Ãt[i] = (A
↻2

t−1)[i]

▾ At[i] = 1, Ãt[i] = 0 ◆ At[i] = Ãt[i] ≠ (A
↻2

t−1)[i]

▿ At[i] = Ãt[i] = 0 ◽ At[i] = Ãt[i] = (A
↻2

t−2)[i]

▵ At[i] = Ãt[i] = 1 ◾ At[i] = Ãt[i] ≠ (A
↻2

t−2)[i]

∗ No condition on At[i], Ãt[i]

Table 4: Additional necessary conditions used for A22 to A26.

A22[27]⊕m23[27] = A21[29]⊕ 1
A24[27]⊕m25[27] = A23[29]
A25[28]⊕m25[27] = A23[30]⊕ 1
A26[27]⊕m27[27] = A25[29]
⎧
⎪⎪
⎨
⎪⎪
⎩

A25[29]⊕m23[27] = A24[31] if A24[30] = m23[30]

A24[31] = m23[30] if A24[30] ≠ m23[30]

A The attack parameters

The first block of the attack uses the same path and conditions as the one
given in [43, Section 5], which we refer to for a description. This section
gives the differential path, linear (message) bit-relations and neutral bits
used in our second-block near-collision attack.

We use the notation of Table 3 to represent signed differences of the
differential path and to indicate the position of neutral bits.

We give the differential path of the second block up to A23 in Figure 3.
We also give necessary conditions for A22 to A26 in Table 4, which are
required for all alternate differential paths allowed. In order to maximize
the probability, some additional conditions are also imposed on the message.
These message-bit-relations are given in Table 5. The rest of the path can
then be determined from the disturbance vector.

We also give the list of the neutral bits used in the attack. There are 51
of them over the seven message words m11 to m15, distributed as follows
(visualized in Figure 4):

28

i Ai mi

-4 ▵▵▿▿▵▵▵▿▿▿▵▿▵▿▿▵▿▵▵▿▵▿▿▵▵▵▵▿▵▵▾▵

-3 ▿▵▵▵▵▿▵▵▿▿▿▵▵▵▵▵▵▿▵▿▵▵▿▿▵▵▿▵▴▿▿▵

-2 ▵▿▵▿▵▵▵▵▿▿▵▿▿▿▿▵▿▵▵▿▿▵▿▿▿▵▿▵▿▵▵▵

-1 ▵▵▵▵▵▵▵▵▵▵▵▿▵▵▿▵▿▵▿▵▿▿▵▾▴▵▴▾▿▿▵▿

0 ▵▿▿▿▵▵▿▵▿▵▵▿▿▵▿▿▵▵▿▾▴▾▾▿▿▿▴▾▿▾▾▵ ▿▿▵⋅▴▴▿▿▿▵⋅ ⋅▿▵▵▵▿▿⋅ ⋅ ⋅▵▵▵▵▵▵▿▵▿▴▵

1 ▴▿▴▾▿▾▵▿▵▵▿⋅▾▴▴▵▵▴▵⋅ ⋅▿▿▴▿▴▾▿▿▴▾▿ ▾▾▿▵▿⋅ ⋅▿▿▿▿▵▿▿⋅ ⋅▵▿▿▵▵▿▿▿▵⋅ ⋅▴▵▿⋅▵

2 ▿▾▿▵▿▵▵▿▿▵▾▾▾▿▵▿▿▵▴▵▾▵▵▴▾▵⋅▴▾▾⋅▿ ▾▵▾▴⋅▴▿▵▿▿▵▿▵▵▵▿▵▵▵▵▿⋅▿▵▵⋅▵▾▾▾▿▿

3 ▵▿▵▿▿▿▵▴▿▵▿▿▿▿▿▵▴▴▴▾▿▵▵▵▿▴▿▿▵▿▿▿ ⋅▿▴▾▴▾▿▿▿▿▵▿▵▿▵▵▵▵▵⋅ ⋅ ⋅ ⋅ ▵▿▿▵⋅ ⋅▾▿▵

4 ⋅ ▿▿▾▵▴▾▾▾▾▾▾▾▾▾▾▾▾▾▾⋅▿▵▾▵▴▵▾⋅▵▵▾ ●▵▴▴▴▴▵▿▵▿▵▿▿⋅▿⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ▴▾▵▴▵

5 ⋅ ▴▿▿▿▵▵▿▿▿▵▵▿▿▵▿▿▿▵▿▿⋅ ⋅ ⋅▴▴⋅ ⋅ ⋅▾▵▿ ⋅▿▴⋅ ⋅ ⋅ ⋅ ▿▵▿▵▵▿⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ▵⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ▴⋅▵⋅▵

6 ▿▾▿▿⋅▿⋅▵▵▿▵▵▵▵▵▵▵▵▿▿▿▵⋅ ⋅▿▿▴▴⋅▿⋅▴ ⋅ ⋅▾⋅ ⋅▴⋅ ▿▴▴▴⋅ ⋅

7 ⋅ ▾▿▴▿▿⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ▿⋅▴▿▿▵⋅▴ ●▾▾⋅▾▾⋅ ▾⋅▾⋅▿

8 ⋅ ⋅ ⋅ ▴⋅▿⋅ ▾⋅ ⋅▵⋅▴ ⋅ ⋅ ⋅ ⋅ ▴▾⋅ ▾⋅

9 ⋅ ▾⋅▵⋅ ▵⋅ ⋅▾ ●▴⋅▿⋅ ▾⋅▵⋅ ⋅

10 ☆▵⋅▵⋅▵⋅ ▿⋅ ⋅ ⋅ ● ⋅▴▴⋅▾⋅ ▾▴▴⋅ ⋅

11 ⋅ ▿▴▵⋅ ▴⋅▾▴⋅ ▾⋅ ⋅

12 ▵⋅ ⋅ ⋅▿⋅ ★⋅ ● ⋅▾▴▴▴⋅ ▴▾⋅ ⋅ ⋅

13 ▴⋅ ⋅ ⋅▵⋅ ● ⋅▾▴⋅ ▾⋅ ⋅ ⋅ ⋅

14 ⋅ ⋅ ▴⋅ ★⋅ ▾▴⋅ ⋅

15 ▾⋅▵⋅▵⋅ ☆☆ ● ⋅▴▴▴⋅ ▴⋅ ⋅ ⋅ ⋅

16 ▾▴▿⋅▿⋅ ★⋅ ⋅ ⋅ ⋅ ⋅ ▾⋅ ▴▾⋅ ⋅ ⋅

17 ▾⋅ ⋅▵⋅ ☆⋅ ⋅▴▾▴▴⋅ ▴⋅ ⋅ ⋅ ⋅

18 ▾⋅▾▿⋅ ▴⋅ ▴⋅▴⋅ ⋅

19 ▾⋅ ⋅ ⋅ ◾ ⋅ ▾▾▾⋅ ▴⋅ ⋅ ⋅ ⋅

20 ▾⋅▾⋅◇ ⋅ ● ⋅▴▾▾⋅ ▴▴▾⋅ ⋅

21 ⋅ ⋅ ⋅ ⋅ ☆⋅ ●▴▾⋅▴⋅ ⋅

22 ⋅ ⋅ ▾⋅ ● ⋅▴▴⋅ ▴⋅ ⋅

23 ▾⋅ ⋅ ⋅ ◽ ⋅ ★

Fig. 3: The differential path of the second block up to A23.

29

Table 5: Linear part message-bit-relations for the second block path.

m23[27]⊕m23[28] = 1 m23[30]⊕m24[3] = 1 m23[30]⊕m28[28] = 1
m23[4] = 0 m24[28] = 0 m24[29] = 0
m24[2] = 0 m26[28]⊕m26[29] = 1 m27[29] = 0

m28[27] = 0 m28[4]⊕m32[29] = 0 m36[4]⊕m44[28] = 1
m38[4]⊕m44[28] = 0 m39[30]⊕m44[28] = 1 m40[3]⊕m44[28] = 0
m40[4]⊕m44[28] = 1 m41[29]⊕m41[30] = 0 m42[28]⊕m44[28] = 0

m43[28]⊕m44[28] = 0 m43[29]⊕m44[28] = 1 m43[4]⊕m47[29] = 0
m44[28]⊕m44[29] = 1 m45[29]⊕m47[29] = 0 m46[29]⊕m47[29] = 0
m48[4]⊕m52[29] = 0 m50[29]⊕m52[29] = 0 m51[29]⊕m52[29] = 0
m54[4]⊕m60[29] = 1 m56[29]⊕m60[29] = 1 m56[4]⊕m60[29] = 0

m57[29]⊕m60[29] = 1 m59[29]⊕m60[29] = 0 m67[0]⊕m72[30] = 1
m68[5]⊕m72[30] = 0 m70[1]⊕m71[6] = 1 m71[0]⊕m76[30] = 1
m72[5]⊕m76[30] = 0 m73[2]⊕m78[0] = 1 m74[1]⊕m75[6] = 1
m74[7]⊕m78[0] = 0 m75[1]⊕m76[6] = 1 m76[0]⊕m76[1] = 1

m76[3] = 1 m77[0]⊕m77[1] = 0 m77[0]⊕m77[2] = 1
m77[8] = 0 m78[3] = 1 m78[7] = 0
m79[2] = 0 m79[4] = 1

m11: ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ●●●●●●●●● ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
m12: ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ●●●●●●●●●●●●●●●● ⋅ ⋅ ● ⋅ ⋅
m13: ⋅ ● ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ●● ⋅ ●●●●●●●●● ⋅ ⋅ ⋅ ⋅ ⋅
m14: ⋅ ●●●●● ⋅● ⋅ ⋅ ⋅ ⋅
m15: ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ● ⋅ ●●●●●● ⋅ ⋅ ⋅ ⋅ ⋅

Fig. 4: The 51 single neutral bits used in the second block attack.

– m11: bit positions (starting with the least significant bit at zero) 7, 8,
9, 10, 11, 12, 13, 14, 15

– m12: positions 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
– m13: positions 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 30
– m14: positions 4, 6, 7, 8, 9, 10
– m15: positions 5, 6, 7, 8, 9, 10, 12

Not all of the neutral bits of the same word (say m13) are neutral up to
the same point. Their repartition in that respect is as follows, a graphical
representation being also given in Figure 5.

– Bits neutral up to A14 (included): m11[9,10,11,12,13,14,15],
m12[2,14,15,16,17,18,19,20], m13[12,16]

– Bits neutral up toA15 (included): m11[7,8], m12[9,10,11,12,13], m13[15,30]
– Bits neutral up to A16 (included): m12[5,6,7,8], m13[10,11,13]
– Bits neutral up to A17 (included): m13[5,6,7,8,9], m14[10]

30

A14 ∶ m11: ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ●●●●●●● ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
m12: ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ●●●●●●● ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ● ⋅ ⋅
m13: ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ● ⋅ ⋅ ⋅ ● ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

A15 ∶ m11: ⋅ ●● ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
m12: ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ●●●●● ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
m13: ⋅ ● ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ● ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

A16 ∶ m12: ⋅ ●●●● ⋅ ⋅ ⋅ ⋅ ⋅
m13: ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ● ⋅ ●● ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

A17 ∶ m13: ⋅ ●●●●● ⋅ ⋅ ⋅ ⋅ ⋅
m14: ⋅ ● ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

A18 ∶ m14: ⋅ ● ⋅ ●● ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
m15: ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ● ⋅ ● ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

A19 ∶ m14: ⋅ ● ⋅ ⋅ ⋅ ● ⋅ ⋅ ⋅ ⋅
m15: ⋅ ●●●●● ⋅ ⋅ ⋅ ⋅ ⋅

Fig. 5: The 51 single neutral bits regrouped by up to where they are
neutral.

– Bits neutral up to A18 (included): m14[6,7,9], m15[10,12]
– Bits neutral up to A19 (included): m14[4,8], m15[5,6,7,8,9]

A bit neutral to Ai is then used to produce partial solutions at Ai+1. One
should also note that this list only includes a single bit per neutral bit
group, and some additional flips may be necessary to preserve message-
bit-relations.

Out of the three boomerangs used in the attack, one first introduced
a perturbation on m9 on bit 7, and the other two on m6, on bit 6 and on
bit 8. All three boomerangs then introduce corrections to ensure a local
collision. Because these local collisions happen in the first round, where
the Boolean function is ϕIF, only two corrections are necessary for each of
them.

The lone boomerang introduced on m9 is neutral up to A22, and the
couple introduced on m6 are neutral up to A25. The complete sets of
message bits defining all of them are shown in Figure 6, using a “difference
notation”.

31

m06: ⋅ ★⋅▴⋅ ⋅ ⋅ ⋅ ⋅ ⋅
m07: ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ☆⋅▵⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
m08: ⋅
m09: ⋅ ◆ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
m10: ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ◇ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
m11: ⋅ ☆⋅▵⋅ ⋅ ⋅ ⋅
m12: ⋅
m13: ⋅
m14: ⋅ ◇ ⋅ ⋅ ⋅ ⋅ ⋅

Fig. 6: Boomerang local collision patterns using symbols. The first pertur-
bation difference is highlighted with a black symbol. Associated correcting
differences are identified with the corresponding white symbol.

32

	The first collision for full SHA-1

