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Abstract. A software watermarking scheme allows one to embed a
“mark” into a program without significantly altering the behavior of the
program. Moreover, it should be difficult to remove the watermark with-
out destroying the functionality of the program. Recently, Cohen et al.
(STOC 2016) and Boneh et al. (PKC 2017) showed how to watermark
cryptographic functions such as PRFs using indistinguishability obfusca-
tion. Notably, in their constructions, the watermark remains intact even
against arbitrary removal strategies. A natural question is whether we
can build watermarking schemes from standard assumptions that achieve
this strong mark-unremovability property.

We give the first construction of a watermarkable family of PRFs
that satisfy this strong mark-unremovability property from standard
lattice assumptions (namely, the learning with errors (LWE) and the
one-dimensional short integer solution (SIS) problems). As part of our
construction, we introduce a new cryptographic primitive called a translu-
cent PRF. Next, we give a concrete construction of a translucent PRF
family from standard lattice assumptions. Finally, we show that using our
new lattice-based translucent PRFs, we obtain the first watermarkable
family of PRFs with strong unremovability against arbitrary strategies
from standard assumptions.

1 Introduction

A software watermarking scheme enables one to embed a “mark” into a program
such that the marked program behaves almost identically to the original program.
At the same time, it should be difficult for someone to remove the mark without
significantly altering the behavior of the program. Watermarking is a powerful
notion that has many applications for digital rights management, such as tracing
information leaks or resolving ownership disputes. Although the concept itself
is quite natural, and in spite of its numerous potential applications, a rigorous
theoretical treatment of the notion was given only recently [6,31,7].

Constructing software watermarking with strong security guarantees has
proven difficult. Early works on cryptographic watermarking [35,40,36] could only
achieve mark-unremovability against adversaries who can only make a restricted
set of modifications to the marked program. The more recent works [21,12]
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that achieve the strongest notion of unremovability against arbitrary adversarial
strategies all rely on heavy cryptographic tools, namely, indistinguishability
obfuscation [6,23]. In this paper, we focus on constructions that achieve the
stronger notion of mark-unremovability against arbitrary removal strategies.

Existing constructions of software watermarking [35,40,36,21,12] with formal
security guarantees focus primarily on watermarking cryptographic functions.
Following [21,12], we consider watermarking for PRFs. In this work, we give the
first watermarkable family of PRFs from standard assumptions that provides mark-
unremovability against arbitrary adversarial strategies. All previous watermarking
constructions [21,12] that could achieve this notion relied on indistinguishability
obfuscation. As we discuss in Section 1.2, this notion of software watermarking
shares some similarities with program obfuscation, so it is not entirely surprising
that existing constructions rely on indistinguishability obfuscation.

To construct our watermarkable family of PRFs, we first introduce a new
cryptographic primitive we call translucent constrained PRFs. We then show how
to use translucent constrained PRFs to build a watermarkable family of PRFs.
Finally, we leverage a number of lattice techniques (outlined in Section 2) to
construct a translucent PRF. Putting these pieces together, we obtain the first
watermarkable family of PRFs with strong mark-unremovability guarantees from
standard assumptions. Thus, this work broadens our abilities to construct software
watermarking, and we believe that by leveraging and extending our techniques,
we will see many new constructions of cryptographically-strong watermarking for
new functionalities (from standard assumptions) in the future.

1.1 Background

The mathematical foundations of digital watermarking were first introduced
by Barak et al. [6,7] in their seminal work on cryptographic obfuscation. Un-
fortunately, their results were largely negative, for they showed that assuming
indistinguishability obfuscation, then certain forms of software watermarking
cannot exist. Central to their impossibility result is the assumption that the
underlying watermarking scheme is perfect functionality-preserving. This require-
ment stipulates that the input/output behavior of the watermarked program
is identical to the original unmarked program on all input points. By relaxing
this requirement to allow the watermarked program to differ from the original
program on a small number (i.e., a negligible fraction) of the points in the domain,
Cohen et al. [21] gave the first construction of an approximate functionality-
preserving watermarking scheme for a family of pseudorandom functions (PRFs)
using indistinguishability obfuscation.

Watermarking circuits. A watermarking scheme for circuits consists of two
algorithms: a marking algorithm and a verification algorithm. The marking
algorithm is a keyed algorithm takes as input a circuit C and outputs a new
circuit C ′ such that on almost all inputs x, C ′(x) = C(x). In other words, the
watermarked program preserves the functionality of the original program on
almost all inputs. The verification algorithm then takes as input a circuit C ′ and
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either outputs “marked” or “unmarked.” The correctness requirement is that any
circuit output by the marking algorithm should be regarded as “marked” by the
verification algorithm. A watermarking scheme is said to be publicly-verifiable if
anyone can test whether a circuit is watermarked or not, and secretly-verifiable
if only the holder of the watermarking key is able to test whether a program is
watermarked.

The primary security property a software watermarking scheme must satisfy
is unremovability, which roughly says that given a watermarked circuit C, the
adversary cannot produce a new circuit C̃ whose functionality is similar to C,
and yet is not considered to be marked from the perspective of the verification
algorithm. The definition can be strengthened by also allowing the adversary to
obtain marked circuits of its choosing. A key source of difficulty in achieving unre-
movability is that we allow the adversary complete freedom in crafting its circuit C̃.
All existing constructions of watermarking from standard assumptions [35,40,36]
constrain the output or power of the adversary (e.g., the adversary’s output must
consist of a tuple of group elements). In contrast, the works of Cohen et al. [21],
Boneh et al. [12], and this work protect against arbitrary removal strategies.

A complementary security property to unremovability is unforgeability, which
says that an adversary who does not possess the watermarking secret key is unable
to construct a new program (i.e., one sufficiently different from any watermarked
programs the adversary might have seen) that is deemed to be watermarked
(from the perspective of the verification algorithm). As noted by Cohen et al. [21],
unforgeability and unremovability are oftentimes conflicting requirements, and
depending on the precise definitions, may not be simultaneously satisfiable. In
this work, we consider a natural setting where both conditions are simultaneously
satisfiable (and in fact, our construction achieves exactly that).

Watermarking PRFs. Following Cohen et al. [21] and Boneh et al. [12], we
focus on watermarking cryptographic functions, specifically PRFs, in this work.
Previously, Cohen et al. [21] demonstrated that many natural classes of functions,
such as any efficiently learnable class of functions, cannot be watermarked. A
canonical and fairly natural class of non-learnable functionalities are cryptographic
ones. Moreover, watermarking PRFs already suffices for a number of interesting
applications; we refer to [21] for the full details.

Building software watermarking. We begin by describing the high-level
blueprint introduced by Cohen et al. [21] for constructing watermarkable PRFs.1

To watermark a PRF F with key k, the marking algorithm first evaluates the PRF
on several (secret) points h1, . . . , hd to obtain values t1, . . . , td. Then, the marking
algorithm uses the values (t1, . . . , td) to derive a (pseudorandom) pair (x∗, y∗).
The watermarked program is a circuit C that on all inputs x 6= x∗, outputs
F (k, x), while on input x∗, it outputs the special value y∗. To test whether a
program C ′ is marked or not, the verification algorithm first evaluates C ′ on
the secret points h1, . . . , hd. It uses the function evaluations to derive the test

1There are numerous technicalities in the actual construction, but these are not essential
to understanding the main intuition.
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pair (x∗, y∗). Finally, it evaluates the program at x∗ and outputs “marked” if
C ′(x∗) = y∗; otherwise, it outputs “unmarked.” For this scheme to be secure
against arbitrary removing strategies, it must be the case that the watermarked
circuit C hides the marked point x∗ from the adversary. Moreover, the value y∗

at the “reprogrammed” point should not be easily identifiable. Otherwise, an
adversary can trivially defeat the watermarking scheme by simply producing a
circuit that behaves just like C, but outputs ⊥ whenever it is queried on the
special point x∗. In some sense, security requires that the point x∗ is carefully
embedded within the description of the watermarked program such that no
efficient adversary is able to identify it (or even learn partial information about
it). This apparent need to embed a secret within a piece of code is reminiscent of
program obfuscation, so not surprisingly, the existing constructions of software
watermarking all rely on indistinguishability obfuscation.

Puncturable and programmable PRFs. The starting point of our construc-
tion is the recent watermarking construction by Boneh et al. [12] (which follows
the Cohen et al. [21] blueprint sketched above). In their work, they first introduce
the notion of a private puncturable PRF. In a regular puncturable PRF [14,33,15],
the holder of the PRF key can issue a “punctured” key skx∗ such that skx∗ can
be used to evaluate the PRF everywhere except at a single point x∗. In a private
puncturable PRF, the punctured key skx∗ also hides the punctured point x∗.
Intuitively, private puncturing seems to get us partway to the goal of constructing
a watermarkable family of PRFs according to the above blueprint. After all, a
private puncturable PRF allows issuing keys that agree with the real PRF almost
everywhere, and yet, the holder of the punctured key cannot tell which point
was punctured. Unfortunately, standard puncturable PRFs do not provide an
efficient algorithm for testing whether a particular point is punctured or not,
and thus, we do not have a way to determine (given just oracle access to the
program) whether the program is marked or not.

To bridge the gap between private puncturable PRFs and watermarkable
PRFs, Boneh et al. introduced a stronger notion called a private programmable
PRF, which allows for arbitrary reprogramming of the PRF value at the punctured
point. This modification allows them to instantiate the Cohen et al. blueprint
for watermarking. However, private programmable PRFs seem more difficult to
construct than a private puncturable PRF, and the construction in [12] relies on
indistinguishability obfuscation. In contrast, Boneh et al. [10] as well as Canetti
and Chen [19] have recently showed how to construct private puncturable PRFs
(and in the case of [19], private constrained PRFs for NC1) from standard lattice
assumptions.

1.2 Our Contributions

While the high-level framework of Cohen et al. [21] provides an elegant ap-
proach for building watermarkable PRFs (and by extension, other cryptographic
functionalities), realizing it without relying on some form of obfuscation is chal-
lenging. Our primary contribution in this work is showing that it is possible
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to construct a watermarkable family of PRFs (in the secret-key setting) while
only relying on standard lattice assumptions (namely, on the subexponential
hardness of LWE and 1D-SIS). Thus, this work gives the first construction of
a mathematically-sound watermarking construction for a nontrivial family of
cryptographic primitives from standard assumptions. In this section, we give a
brief overview of our main construction and results. Then, in Section 2, we give a
more detailed technical overview of our lattice-based watermarking construction.

Relaxing programmability. The work of Boneh, Lewi, and Wu [12] introduces
two closely-related notions: private puncturable PRFs and private programmable
PRFs. Despite their similarities, private programmable PRFs give a direct con-
struction of watermarking while private puncturable PRFs do not seem sufficient.
In this work, we take a “meet-in-the-middle” approach. First, we identify an
intermediate notion that interpolates between private puncturable PRFs and
private programmable PRFs. For reasons described below, we refer to our new
primitive as a private translucent PRF. The advantages to defining this new no-
tion are twofold. First, we show how to augment and extend the Boneh et al. [10]
private puncturable PRF to obtain a private translucent PRF from standard
lattice assumptions. Second, we show that private translucent PRFs still suffice
to instantiate the rough blueprint in [21] for building cryptographic watermarking
schemes. Together, these ingredients yield the first (secretly-verifiable) water-
markable family of PRFs from standard assumptions.2

Private translucent PRFs. The key cryptographic primitive we introduce in
this work is the notion of a translucent puncturable PRF. To keep the description
simple, we refer to it as a “translucent PRF” in this section. As described above,
private translucent PRFs interpolate between private puncturable PRFs and
private programmable PRFs. We begin by describing the notion of a (non-private)
translucent PRF. A translucent PRF consists of a set of public parameters pp
and a secret testing key tk. Unlike standard puncturable and programmable
PRFs, each translucent PRF (specified by (pp, tk)) defines an entire family of
puncturable PRFs over a domain X and range Y , and which share a common set
of public parameters. More precisely, translucent PRFs implement a SampleKey
algorithm which, on input the public parameters pp, samples a PRF key k from
the underlying puncturable PRF family. The underlying PRF family associated
with pp is puncturable, so all of the keys k output by SampleKey can be punctured.

The defining property of a translucent PRF is that when a punctured key
skx∗ (derived from some PRF key k output by SampleKey) is used to evaluate the
PRF at the punctured point x∗, the resulting value lies in a specific subset S ⊂ Y .
Moreover, when the punctured key skx∗ is used to evaluate at any non-punctured
point x 6= x∗, the resulting value lies in Y\S with high probability. The particular
subset S is global to all PRFs in the punctured PRF family, and moreover, is
uniquely determined by the public parameters of the overall translucent PRF.

2Another approach for building a watermarkable family of PRFs is to directly construct
a private programmable PRF (from standard assumptions) and then invoke the
construction in [12]. We discuss this approach at the end of this section.
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The second requirement we require of a translucent PRF is that the secret testing
key tk can be used to test whether a particular value y ∈ Y lies in the subset S
or not. In other words, given only the evaluation output of a punctured key skx∗
on some input x, the holder of the testing key can efficiently tell whether x = x∗

(without any knowledge of skx∗ or its associated PRF key k).

In a private translucent PRF, we impose the additional requirement that
the underlying puncturable PRF family is privately puncturable (that is, the
punctured keys also hide the punctured point). An immediate consequence of
the privacy requirement is that whenever a punctured key is used to evaluate
the PRF at a punctured point, the output value (contained in S) should look
indistinguishable from a random value in the range Y. If elements in S are
easily distinguishable from elements in Y \S (without tk), then an adversary can
efficiently test whether a punctured key is punctured at a particular point x, thus
breaking privacy. In particular, this means that S must be a sparse hidden subset
of Y such that anyone who does not possess the testing key tk cannot distinguish
elements in S from elements in Y . Anyone who possesses the testing key, however,
should be able to tell whether a particular element is contained in S or not.
Moreover, all of these properties should hold even though it is easy to publicly
sample elements from S (the adversary can always sample a PRF key k using
SampleKey, puncture k at any point x∗, and then evaluate the punctured key
at x∗). Sets S ⊂ Y that satisfy these properties were referred to as “translucent
sets” in the work of Canetti et al. [20] on constructing deniable encryption. In
our setting, the outputs of the punctured PRF keys in a private translucent PRF
precisely implement a translucent set system, hence the name “translucent PRF.”

From private translucency to watermarking. Once we have a private
translucent PRF, it is fairly straightforward to obtain from it a family of wa-
termarkable PRFs. Our construction roughly follows the high-level blueprint
described in [21]. Take any private translucent PRF with public parameters pp
and testing key tk. We now describe a (secretly-verifiable) watermarking scheme
for the family of private puncturable PRFs associated with pp. The watermarking
secret key consists of several randomly chosen domain elements h1, . . . , hd ∈ X
and the testing key tk for the private translucent PRF. To watermark a PRF key
k (output by SampleKey), the marking algorithm evaluates the PRF on h1, . . . , hd
and uses the outputs to derive a special point x∗ ∈ X . The watermarked key
skx∗ is the key k punctured at the point x∗. By definition, this means that if the
watermarked key skx∗ is used to evaluate the PRF at x∗, then the resulting value
lies in the hidden sparse subset S ⊆ Y specific to the private translucent PRF.

To test whether a particular program (i.e., circuit) is marked, the verification
algorithm first evaluates the circuit at h1, . . . , hd. Then, it uses the evaluations
to derive the special point x∗. Finally, the verification algorithm evaluates the
program at x∗ to obtain a value y∗. Using the testing key tk, the verification
algorithm checks to see if y∗ lies in the hidden set S associated with the public
parameters of the private translucent PRF. Correctness follows from the fact that
the punctured key is functionality-preserving (i.e., computes the PRF correctly
at all but the punctured point). Security of the watermarking scheme follows
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from the fact that the watermarked key hides the special point x∗. Furthermore,
the adversary cannot distinguish the elements of the hidden set S from random
elements in the range Y . Intuitively then, the only effective way for the adversary
to remove the watermark is to change the behavior of the marked program on
many points (i.e., at least one of h1, . . . , hd, x

∗). But to do so, we show that
such an adversary necessarily corrupts the functionality on a noticeable fraction
of the domain. In Section 6, we formalize these notions and show that every
private translucent PRF gives rise to a watermarkable family of PRFs. In fact,
we show that starting from private translucent PRFs, we obtain a watermarkable
family of PRFs satisfying a stronger notion of mark-unremovability security
compared to the construction in [12]. We discuss this in greater detail in Section 6
(Remark 6.8).

Message-embedding via t-puncturing. Previous watermarking construc-
tions [21,12] also supported a stronger notion of watermarking called “message-
embedding” watermarking. In a message-embedding scheme, the marking algo-
rithm also takes as input a message m ∈ {0, 1}t and outputs a watermarked
program with the message m embedded within it. The verification algorithm is
replaced with an extraction algorithm that takes as input a watermarked program
(and in the secret-key setting, the watermarking secret key), and either outputs
“unmarked” or the embedded message. The unremovability property is strength-
ened to say that given a program with an embedded message m, the adversary
cannot produce a similar program on which the extraction algorithm outputs
something other than m. Existing watermarking constructions [21,12] leverage
reprogrammability to obtain a message-embedding watermarking scheme—that
is, the program’s outputs on certain special inputs are modified to contain a
(blinded) version of m (which the verification algorithm can then extract).

A natural question is whether our construction based on private translucent
PRFs can be extended to support message-embedding. The key barrier seems
to be the fact that private translucent PRFs do not allow much flexibility in
programming the actual value to which a punctured key evaluates on a punctured
point. We can only ensure that it lies in some translucent set S. To achieve
message-embedding watermarking, we require a different method of embedding
the message. Our solution contains two key ingredients:

– First, we introduce a notion of private t-puncturable PRFs, which is a natural
extension of puncturing where the punctured keys are punctured on a set
of exactly t points in the domain rather than a single point. Fortunately,
for small values of t (i.e., polynomial in the security parameter), our private
translucent PRF construction (Section 5) can be modified to support keys
punctured at t points rather than a single point. The other properties of
translucent PRFs remain intact (i.e., whenever a t-punctured key is used to
evaluate at any one of the t punctured points, the result of the evaluation
lies in the translucent subset S ⊂ Y).

– To embed a message m ∈ {0, 1}t, we follow the same blueprint as before, but
instead of deriving a single special point x∗, the marking algorithm instead

derives 2 · t (pseudorandom) points x
(0)
1 , x

(1)
1 , . . . , x

(0)
t , x

(1)
t . The watermarked
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key is a t-punctured key, where the t points are chosen based on the bits
of the message. Specifically, to embed a message m ∈ {0, 1}t into a PRF

key k, the marking algorithm punctures k at the points x
(m1)
1 , . . . , x

(mt)
t . The

extraction procedure works similarly to the verification procedure in the basic
construction. It first evaluates the program on the set of (hidden) inputs,

and uses the program outputs to derive the values x
(b)
i for all i = 1, . . . , t and

b ∈ {0, 1}. For each index i = 1, . . . , t, the extraction algorithm tests whether

the program’s output at x
(0)
i or x

(1)
i lies within the translucent set S. In this

way, the extraction algorithm is able to extract the bits of the message.

Thus, without much additional overhead (i.e., proportional to the bit-length of
the embedded messages), we obtain a message-embedding watermarking scheme
from standard lattice assumption.

Constructing translucent PRFs. Another technical contribution in this work
is a new construction of a private translucent PRF (that supports t-puncturing)
from standard lattice assumptions. The starting point of our private translucent
PRF construction is the private puncturable PRF construction of Boneh et al. [10].
We provide a detailed technical overview of our algebraic construction in Section 2,
and the concrete details of the construction in Section 5. Here, we provide some
intuition on how we construct a private translucent PRF (for the simpler case
of puncturing). Recall first that the construction of Boneh et al. gives rise to a
PRF with output space Zmp . In our private translucent PRF construction, the
translucent set is chosen to be a random noisy 1-dimensional subspace within Zmp .
By carefully exploiting the specific algebraic structure of the Boneh et al. PRF, we
ensure that whenever an (honestly-generated) punctured key is used to evaluate
on a punctured point, the evaluation outputs a vector in this random subspace
(with high probability). The testing key simply consists of a vector that is
essentially orthogonal to the hidden subspace. Of course, it is critical here that
the hidden subspace is noisy. Otherwise, since the adversary is able to obtain
arbitrary samples from this subspace (by generating and puncturing keys of its
own), it can trivially learn the subspace, and thus, efficiently decide whether a
vector lies in the subspace or not. Using a noisy subspace enables us to appeal to
the hardness of LWE and 1D-SIS to argue security of the overall construction.
We refer to the technical overview in Section 2 and the concrete description in
Section 5 for the full details.

An alternative approach. An alternative method for constructing a water-
markable family of PRFs is to construct a private programmable PRF from
standard assumptions and apply the construction in [12]. For instance, suppose
we had a private puncturable PRF with the property that the value obtained
when using a punctured key to evaluate at a punctured point varies depending on
the randomness used in the puncturing algorithm. This property can be used to
construct a private programmable PRF with a single-bit output. Specifically, one
can apply rejection sampling when puncturing the PRF to obtain a key with the
desired value at the punctured point. To extend to multiple output bits, one can
concatenate the outputs of several single-bit programmable PRFs. In conjunction
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with the construction in [12], this gives another approach for constructing a
watermarkable family of PRFs (though satisfying a weaker security definition as
we explain below). The existing constructions of private puncturable PRFs [10,19],
however, do not naturally satisfy this property. While the puncturing algorithms
in [10,19] are both randomized, the value obtained when using the punctured
key to evaluate at the punctured point is independent of the randomness used
during puncturing. Thus, this rejection sampling approach does not directly yield
a private programmable PRF, but may provide an alternative starting point for
future constructions.

In this paper, our starting point is the Boneh et al. [10] private puncturable
PRF, and one of our main contributions is showing how the “matrix-embedding-
based” constrained PRFs in [17,10] (and described in Section 2) can be used
to construct watermarking.3 One advantage of our approach is that our private
translucent PRF satisfies key-injectivity (a property that seems non-trivial to
achieve using the basic construction of private programmable PRFs described
above). This property enables us to achieve a stronger notion of security for
watermarking compared to that in [12]. We refer to Section 4 (Definition 4.14)
and Remark 6.8 for a more thorough discussion. A similar notion of key-injectivity
was also needed in [21] to argue full security of their watermarking construction.
Moreover, the translucent PRFs we support allow (limited) programming at
polynomially-many points, while the rejection-sampling approach described above
supports programming of at most logarithmically-many points. Although this
distinction is not important for watermarking, it may enable future applications
of translucent PRFs. Finally, we note that our translucent PRF construction can
also be viewed as a way to randomize the constraining algorithm of the PRF
construction in [17,10], and thus, can be combined with rejection sampling to
obtain a programmable PRF.

Open problems. Our work gives a construction of secretly-verifiable watermark-
able family of PRFs from standard assumptions. Can we construct a publicly-
verifiable watermarkable family of PRFs from standard assumptions? A first step
might be to construct a secretly-verifiable watermarking scheme that gives the
adversary access to an “extraction” oracle. The only watermarking schemes (with
security against arbitrary removal strategies) that satisfy either one of these
goals are due to Cohen et al. [21] and rely on indistinguishability obfuscation.
Another direction is to explore additional applications of private translucent
PRFs and private programmable PRFs. Can these primitives be used to base
other cryptographic objects on standard assumptions?

1.3 Additional Related Work

Much of the early (and ongoing) work on digital watermarking have focused on
watermarking digital media, such as images or video. These constructions tend
to be ad hoc, and lack a firm theoretical foundation. We refer to [22] and the

3In contrast, the Canetti-Chen constrained PRF construction [19] builds on secure
modes of operation of the Gentry et al. multilinear map [26].
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references therein for a comprehensive survey of the field. The work of Hopper,
Molnar, and Wagnar [31] gives the first formal and rigorous definitions for a digital
watermarking scheme, but they do not provide any concrete constructions. In the
same work, Hopper et al. also introduce the formal notion of secretly-verifiable
watermarking, which is the focus of this work.

Early works on cryptographic watermarking [35,40,36] gave constructions
that achieved mark-unremovability against adversaries who could only make a
restricted set of modifications to the marked program. The work of Nishimaki [36]
showed how to obtain message-embedding watermarking using a bit-by-bit embed-
ding of the message within a dual-pairing vector space (specific to his particular
construction). Our message-embedding construction in this paper also takes
a bit-by-bit approach, but our technique is more general: we show that any
translucent t-puncturable PRF suffices for constructing a watermarkable family
of PRFs that supports embedding t-bit messages.

In a recent work, Nishimaki, Wichs, and Zhandry [37] show how to construct a
traitor tracing scheme where arbitrary data can be embedded within a decryption
key (which can be recovered by a tracing algorithm). While the notion of message-
embedding traitor tracing is conceptually similar to software watermarking,
the notions are incomparable. In a traitor-tracing scheme, there is a single
decryption key and a central authority who issues the marked keys. Conversely,
in a watermarking scheme, the keys can be chosen by the user, and moreover,
different keys (implementing different functions) can be watermarked.

PRFs from LWE. The first PRF construction from LWE was due to Banerjee,
Peikert, and Rosen [5]. Subsequently, [11,4] gave the first lattice-based key-
homomorphic PRFs. These constructions were then generalized to the setting
of constrained PRFs in [17,3,10]. Recently, Canetti and Chen [19] showed how
certain secure modes of operation of the multilinear map by Gentry et al. [26] can
be used to construct a private constrained PRF for the class of NC1 constraints
(with hardness reducing to the LWE assumption).

ABE and PE from LWE. The techniques used in this work build on a series
of works in the areas of attribute-based encryption [39] and predicate encryp-
tion [13,32] from LWE. These include the attribute-based encryption constructions
of [1,28,9,30,18,16], and predicate encryption constructions of [2,24,29].4

2 Construction Overview

In this section, we give a technical overview of our private translucent t-puncturable
PRF from standard lattice assumptions. As described in Section 1, this directly
implies a watermarkable family of PRFs from standard lattice assumptions. The
formal definitions, constructions and accompanying proofs of security are given
in Sections 4 and 5. The watermarking construction is given in Section 6.

4We note that the LWE-based predicate encryption constructions satisfy a weaker
security property (compared to [13,32]) sometimes referred to as weak attribute-hiding.
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The LWE assumption. The learning with errors (LWE) assumption [38],
parameterized by n,m, q, χ, states that for a uniformly random vector s ∈ Znq
and a uniformly random matrix A ∈ Zn×mq , the distribution (A, sTA + eT ) is
computationally indistinguishable from the uniform distribution over Zn×mq ×Zmq ,
where e is sampled from a (low-norm) error distribution χ. To simplify the
presentation in this section, we will ignore the precise generation and evolution
of the error term e and just refer to it as “noise.”

Matrix embeddings. The starting point of our construction is the recent
privately puncturable PRF of Boneh, Kim, and Montgomery [10], which itself
builds on the constrained PRF construction of Brakerski and Vaikuntanathan [17].
Both of these constructions rely on the matrix embedding mechanism introduced
by Boneh et al. [9] for constructing attribute-based encryption. In [9], an input
x ∈ {0, 1}ρ is embedded as the vector

sT
(
A1 + x1 ·G | · · · | Aρ + xρ ·G

)
+ noise ∈ Zmρq , (2.1)

where A1, . . . ,Aρ ∈ Zn×mq are uniformly random matrices, s ∈ Znq is a uniformly
random vector, and G ∈ Zn×mq is a special fixed matrix (called the “gadget
matrix”). Embedding the inputs in this way enables homomorphic operations on
the inputs while keeping the noise small. In particular, given an input x ∈ {0, 1}ρ
and any polynomial-size circuit C : {0, 1}ρ → {0, 1}, there is a public operation
that allows computing the following vector from Eq. (2.1):

sT
(
AC + C(x) ·G

)
+ noise ∈ Zmq , (2.2)

where the matrix AC ∈ Zn×mq depends only on the circuit C, and not on the
underlying input x. Thus, we can define a homomorphic operation Evalpk on the
matrices A1, . . . ,Aρ where on input a sequence of matrices A1, . . . ,Aρ and a
circuit C, Evalpk(C,A1, . . . ,Aρ)→ AC .

A puncturable PRF from LWE. Brakerski and Vaikuntanathan [17] showed
how the homomorphic properties in [9] can be leveraged to construct a (single-
key) constrained PRF for general constraints. Here, we provide a high-level
description of their construction specialized to the case of puncturing. First, let
eq be the equality circuit where eq(x∗, x) = 1 if x∗ = x and 0 otherwise. The
public parameters5 of the scheme in [17] consist of randomly generated matrices
A0,A1 ∈ Zn×mq for encoding the PRF input x and matrices B1, . . .Bρ ∈ Zn×mq

for encoding the punctured point x∗. The secret key for the PRF is a vector
s ∈ Znq . Then, on input a point x ∈ {0, 1}ρ, the PRF value at x is defined to be

PRF(s, x) := bsT ·Aeq,xep where Aeq,x := Evalpk(eq,B1, . . . ,Bρ,Ax1
, . . . ,Axρ),

5Since a constrained PRF is a secret-key primitive, we can always include the public
parameters as part of the secret key. However, in the lattice-based constrained PRF
constructions [17,3,10], the public parameters can be sampled once and shared across
multiple independent secret keys. Our construction of translucent PRFs will rely on
choosing the public parameter matrices to have a certain structure that is shared
across multiple secret keys.
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where A0,A1,B1, . . . ,Bρ ∈ Zn×mq are the matrices in the public parameters,
and b·ep is the component-wise rounding operation that maps an element in Zq
to an element in Zp where p < q. By construction, Aeq,x is a function of x.

To puncture the key s at a point x∗ ∈ {0, 1}ρ, the construction in [17] gives
out the vector

sT ·
(
A0 + 0 ·G | A1 + 1 ·G | B1 + x∗1 ·G | · · · | Bρ + x∗ρ ·G

)
+ noise. (2.3)

To evaluate the PRF at a point x ∈ {0, 1}ρ using a punctured key, the user first
homomorphically evaluates the equality circuit eq on input (x∗, x) to obtain the
vector sT

(
Aeq,x + eq(x∗, x) ·G

)
+ noise. Rounding down this vector yields the

correct PRF value whenever eq(x∗, x) = 0, or equivalently, whenever x 6= x∗,
as required for puncturing. As shown in [17], this construction yields a secure
(though non-private) puncturable PRF from LWE with some added modifications.

Private puncturing. The reason the Brakerski-Vaikuntanathan puncturable
PRF described here does not provide privacy (that is, hide the punctured point)
is because in order to operate on the embedded vectors, the evaluator needs to
know the underlying inputs. In other words, to homomorphically compute the
equality circuit eq on the input (x∗, x), the evaluator needs to know both x and x∗.
However, the punctured point x∗ is precisely the information we need to hide.
Using an idea inspired by the predicate encryption scheme of Gorbunov et al. [29],
the construction of Boneh et al. [10] hides the point x∗ by first encrypting it using
a fully homomorphic encryption (FHE) scheme [25] before applying the matrix
embeddings of [9]. Specifically, in [10], the punctured key has the following form:

sT ·
(
A0 + 0 ·G | A1 + 1 ·G | B1 + ct1 ·G | · · · | Bz + ctz ·G

| C1 + sk1 ·G | · · · | Cτ + skτ ·G
)

+ noise,

where ct1, . . . , ctz are the bits of an FHE encryption ct of the punctured point x∗,
and sk1, . . . , skτ are the bits of the FHE secret key sk. Given the ciphertext ct,
the evaluator can homomorphically evaluate the equality circuit eq and obtain an
FHE encryption of eq(x∗, x). Next, by leveraging an “asymmetric multiplication
property” of the matrix encodings, the evaluator is able to compute the inner
product between the encrypted result with the decryption key sk.6 Recall that for
lattice-based FHE schemes (e.g. [27]), decryption consists of evaluating a rounded
inner product of the ciphertext with the decryption key. Specifically, the inner
product between the ciphertext and the decryption key results in q

2 + e ∈ Zq for
some “small” error term e.

6Normally, multiplication of two inputs requires knowledge of both of the underlying
inputs. The “asymmetry” in the embedding scheme of [9] enables multiplications to
be done even if only one of the values to be multiplied is known to the evaluator. In
the case of computing an inner product between the FHE ciphertext and the FHE
secret key, the evaluator knows the bits of the ciphertext, but not the FHE secret key.
Thus, the asymmetry enables the evaluator to homomorphically evaluate the inner
product without knowledge of the FHE secret key.

12



Thus, it remains to show how to perform the rounding step in the FHE
decryption. Simply computing the inner product between the ciphertext and the
secret key results in a vector

sT
(
AFHE,eq,x +

(q
2
· eq(x∗, x) + e

)
·G
)

+ noise,

where e is the FHE noise (for simplicity, by FHE, we always refer to the specific
construction of [27] and its variants hereafter). Even though the error e is small,
neither s nor G are low-norm and therefore, the noise does not simply round away.
The observation made in [10], however, is that the gadget matrix G contains
some low-norm column vectors, namely the identity matrix I as a submatrix. By
restricting the PRF evaluation to just these columns and sampling the secret
key s from the low-norm noise distribution, they show that the FHE error term
sT · e · I can be rounded away. Thus, by defining the PRF evaluation to only take
these specific column positions of

PRF(s, x) := bsTAFHE,eq,xep,

it is possible to recover the PRF evaluation from the punctured key if and only
if eq(x∗, x) = 0.7

Trapdoor at punctured key evaluations. We now describe how we extend the
private puncturing construction in [10] to obtain a private translucent puncturable
PRF where a secret key can be used to test whether a value is the result of
using a punctured key to evaluate at a punctured point. We begin by describing
an alternative way to perform the rounding step of the FHE decryption in the
construction of [10]. First, consider modifying the PRF evaluation at x ∈ {0, 1}ρ
to be

PRF(s, x) := bsTAFHE,eq,x ·G−1(D)ep,
where D ∈ Zn×mq is a public binary matrix and G−1 is the component-wise bit-
decomposition operator on matrices in Zn×mq .8 The gadget matrix G is defined
so that for any matrix A ∈ Zn×mq , G ·G−1(A) = A. Then, if we evaluate the
PRF using the punctured key and multiply the result by G−1(D), we obtain the
following:(

sT
(
AFHE,eq,x +

(q
2
· eq(x∗, x) + e

)
·G
)

+ noise

)
G−1(D)

= sT
(
AFHE,eq,xG

−1(D) +
(q

2
· eq(x∗, x) + e

)
·D
)

︸ ︷︷ ︸
ÃFHE,eq,x

+noise′

= sT ÃFHE,eq,x + noise′

7To actually show that the challenge PRF evaluation is pseudorandom at the punctured
point, additional modifications must be made such as introducing extra randomizing
terms and collapsing the final PRF evaluation to be field elements instead of vectors.
We refer to [10] for the full details.

8Multiplying by the matrix G−1(D) can be viewed as an alternative way to restrict
the PRF to the column positions corresponding to the identity submatrix in G.
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Since D is a low-norm (in fact, binary) matrix, the FHE error component
sT · e ·D is short, and thus, will disappear when we round. Therefore, whenever
eq(x∗, x) = 0, we obtain the real PRF evaluation.

The key observation we make is that the algebraic structure of the PRF
evaluation allows us to “program” the matrix ÃFHE,eq,x whenever eq(x∗, x) = 1
(namely, when the punctured key is used to evaluate at the punctured point). As
described here, the FHE ciphertext decrypts to q/2+e when the message is 1 and
e when the message is 0 (where e is a small error term). In the FHE scheme of [27]
(and its variants), it is possible to encrypt scalar elements in Zq, and moreover,
to modify the decryption operation so that it outputs the encrypted scalar
element (with some error). In other words, decrypting a ciphertext encrypting
w ∈ Zq would yield a value w + e for some small error term e. Then, in the
PRF construction, instead of encrypting the punctured point x∗, we encrypt a
tuple (x∗, w) where w ∈ Zq is used to program the matrix ÃFHE,eq,x.9 Next, we
replace the basic equality function eq in the construction with a “scaled” equality
function that on input (x, (x∗, w)), outputs w if x = x∗, and 0 otherwise. With
these changes, evaluating the punctured PRF at a point x now yields:10

sT
(
AFHE,eq,xG

−1(D) + (w · eq(x∗, x) + e) ·D
)

+ noise.

Since w can be chosen arbitrarily when the punctured key is constructed, a natural
question to ask is whether there exists a w such that the matrix AFHE,eq,xG

−1(D)+
w ·D has a particular structure. This is not possible if w is a scalar, but if there
are multiple w’s, this becomes possible.

To support programming of the matrix ÃFHE,eq,x, we first take N = m · n
(public) binary matrices D` ∈ {0, 1}n×m where the collection {D`}`∈[N ] is a basis
for the module Zn×mq (over Zq). This means that any matrix in Zn×mq can be
expressed as a unique linear combination

∑
`∈[N ] w`D` where w = (w1, . . . , wN ) ∈

ZNq are the coefficients. Then, instead of encrypting a single element w in each
FHE ciphertext, we encrypt a vector w of coefficients. The PRF output is then a
sum of N different PRF evaluations:

PRF(s, x) :=

∑
`∈[N ]

sTAFHE,eq`,xG
−1(D`)


p

,

where the `th PRF evaluation is with respect to the circuit eq` that takes as
input a pair (x, (x∗,w)) and outputs w` if x = x∗ and 0 otherwise. If we now
consider the corresponding computation using the punctured key, evaluation at
x yields the vector∑

`∈[N ]

sT
(
AFHE,eq`,xG

−1(D`) + (w` · eq(x∗, x) + e) ·D`

)
+ noise (2.4)

9A similar construction is used in [10] to show security. In their construction, they
sample and encrypt a random set of w’s and use them to blind the real PRF value at
the punctured point.

10To reduce notational clutter, we redefine the matrix AFHE,eq,x here to be the matrix
associated with homomorphic evaluation of the scaled equality-check circuit.
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The key observation is that for any matrix W ∈ Zn×mq , the puncturing algorithm

can choose the coefficients w ∈ ZNq so that

W =

∑
`∈[N ]

AFHE,eq`,x
∗G−1(D`)

+
∑
`∈[N ]

w` ·D`. (2.5)

Next, we choose W to be a lattice trapdoor matrix with associated trapdoor z
(i.e., Wz = 0 mod q). From Eq. (2.4) and Eq. (2.5), we have that whenever a
punctured key is used to evaluate the PRF at the punctured point, the result is
a vector of the form

⌊
sTW

⌉
p
∈ Zmp . Testing whether a vector y is of this form

can be done by computing the inner product of y with the trapdoor vector z and
checking if the result is small. In particular, when y = bsTWep, we have that〈

bsTWep, z
〉
≈ bsTWzep = 0.

In our construction, the trapdoor matrix W is chosen independently of the
PRF key s, and included as part of the public parameters. To puncture a key s,
the puncturing algorithm chooses the coefficients w such that Eq. (2.5) holds.
This allows us to program punctured keys associated with different secret keys
si to the same trapdoor matrix W. The underlying “translucent set” then is
the set of vectors of the form bsTi Wep. Under the LWE assumption, this set is
indistinguishable from random. However, as shown above, using a trapdoor for
W, it is easy to determine if a vector lies in this set. Thus, we are able to embed
a noisy hidden subspace within the public parameters of the translucent PRF.

We note here that our construction is not expressive enough to give a pro-
grammable PRF in the sense of [12], because we do not have full control of
the value y ∈ Zmp obtained when using the punctured key to evaluate at the
punctured point. We only ensure that y lies in a hidden (but efficiently testable)
subspace of Zmp . As we show in Section 6, this notion suffices for watermarking.

Puncturing at multiple points. The construction described above yields a
translucent puncturable PRF. As noted in Section 1, for message-embedding
watermarking, we require a translucent t-puncturable PRF. While we can trivially
build a t-puncturable PRF from t instances of a puncturable PRF by xoring the
outputs of t independent puncturable PRF instances, this construction does not
preserve translucency. Notably, we can no longer detect whether a punctured key
was used to evaluate the PRF at one of the punctured points. Instead, to preserve
the translucency structure, we construct a translucent t-puncturable PRF by
defining it to be the sum of multiple independent PRFs with different (public)
parameter matrices, but sharing the same secret key. Then, to puncture at t
different points we first encrypt each of the t punctured points x∗1, . . . , x

∗
t , each

with its own set of coefficient vectors w1, . . . ,wt to obtain t FHE ciphertexts
ct1, . . . , ctt. The constrained key then contains the following components:

sT ·
(
A0 + 0 ·G | A1 + 1 ·G | B1,1 + ct1,1 ·G | · · · | Bt,z + ctt,z ·G

| C1 + sk1 ·G | · · · | Cτ + skτ ·G
)

+ noise.
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To evaluate the PRF at a point x ∈ {0, 1}ρ using the constrained key, one
evaluates the PRF on each of the t instances, that is, for all i ∈ [t],

sT

∑
`∈[N ]

AFHE,eq`,i,xG
−1(D`) + eq(x∗i , x) ·

∑
`∈[N ]

wi,` ·D`

+ noise′.

The output of the PRF is the (rounded) sum of these evaluations:

sT

∑
i∈[t]
`∈[N ]

(
AFHE,eq`,i,xG

−1(D`)
)

+
∑
i∈[t]

eq(x∗i , x) ·
∑
`∈[N ]

wi,` ·D`


+ noise′.

Similarly, the real value of the PRF is the (rounded) sum of the t independent
PRF evaluations:

PRF(s, x) :=

sT
∑
i∈[t]
`∈[N ]

AFHE,eq`,i,xG
−1(D`)


p

.

If the point x is not one of the punctured points, then eq(x∗i , x) = 0 for all i ∈ [t]
and one recovers the real PRF evaluation at x. If x is one of the punctured points
(i.e., x = x∗i for some i ∈ [t]), then the PRF evaluation using the punctured key
yields the vector

sT

∑
i∈[t]
`∈[N ]

(
AFHE,eq`,i,xG

−1(D`)
)

+ eq(x∗i , x) ·
∑
`∈[N ]

wi,` ·D`

+ noise′.

and as before, we can embed trapdoor matrices Wi∗ for all i∗ ∈ [t] by choosing
the coefficient vectors wi∗ = (wi∗,1, . . . , wi∗,N ) ∈ ZNq accordingly:11

Wi∗ =
∑
i∈[t]
`∈[N ]

(
AFHE,eq`,i,x

∗
i∗

G−1(D`)
)

+
∑
`∈[N ]

wi∗,` ·D`.

A technical detail. In the actual construction in Section 5.1, we include an
additional “auxiliary matrix” Â in the public parameters and define the PRF
evaluation as the vector

PRF(s, x) :=

sT

Â +
∑
i∈[t]
`∈[N ]

AFHE,eq`,i,xG
−1(D`)



p

.

11For the punctured keys to hide the set of punctured points, we need a different
trapdoor matrix for each punctured point. We provide the full details in Section 5.
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The presence of the additional matrix Â does not affect pseudorandomness, but
facilitates the argument for some of our other security properties. We give the
formal description of our scheme as well as the security analysis in Section 5.

3 Preliminaries

We begin by introducing some of the notation we use in this work. For an integer
n ≥ 1, we write [n] to denote the set of integers {1, . . . , n}. For a distribution D,
we write x← D to denote that x is sampled from D; for a finite set S, we write

x
r← S to denote that x is sampled uniformly from S. We write Funs[X ,Y] to

denote the set of all functions mapping from a domain X to a range Y. For a
finite set S, we write 2S to denote the power set of S, namely the set of all subsets
of S.

Unless specified otherwise, we use λ to denote the security parameter. We
say a function f(λ) is negligible in λ, denoted by negl(λ), if f(λ) = o(1/λc)
for all c ∈ N. We say that an event happens with overwhelming probability
if its complement happens with negligible probability. We say an algorithm is
efficient if it runs in probabilistic polynomial time in the length of its input. We
use poly(λ) to denote a quantity whose value is bounded by a fixed polynomial
in λ, and polylog(λ) to denote a quantity whose value is bounded by a fixed
polynomial in log λ (that is, a function of the form logc λ for some c ∈ N). We
say that a family of distributions D = {Dλ}λ∈N is B-bounded if the support of
D is {−B, . . . , B − 1, B} with probability 1. For two families of distributions

D1 and D2, we write D1
c
≈ D2 if the two distributions are computationally

indistinguishable (that is, no efficient algorithm can distinguish D1 from D2,

except with negligible probability). We write D1
s
≈ D2 if the two distributions

are statistically indistinguishable (that is, the statistical distance between D1

and D2 is negligible).

Vectors and matrices. We use bold lowercase letters (e.g., v,w) to denote
vectors and bold uppercase letter (e.g., A,B) to denote matrices. For two vectors
v,w, we write IP(v,w) = 〈v,w〉 to denote the inner product of v and w. For a
vector s or a matrix A, we use sT and AT to denote their transposes, respectively.
For an integer p ≤ q, we define the modular “rounding” function

b·ep : Zq → Zp that maps x→ b(p/q) · xe

and extend it coordinate-wise to matrices and vectors over Zq. Here, the opera-
tion b·e is the rounding operation over the real numbers.

In the full version of this paper [34], we also review the definition of a pseudo-
random function and provide some background on the lattice-based techniques
that we use in this work.

4 Translucent Constrained PRFs

In this section, we formally define our notion of a translucent constrained PRFs.
Recall first that in a constrained PRF [14], the holder of the master secret key
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for the PRF can issue constrained keys which enable PRF evaluation on only the
points that satisfy the constraint. Now, each translucent constrained PRF actually
defines an entire family of constrained PRFs (see the discussion in Section 1.2
and Remark 4.2 for more details). Moreover, this family of constrained PRFs
has the special property that the constraining algorithm embeds a hidden subset.
Notably, this hidden subset is shared across all PRF keys in the constrained
PRF family; the hidden subset is specific to the constrained PRF family, and is
determined wholly by the parameters of the particular translucent constrained
PRF. This means that whenever an (honestly-generated) constrained key is used
to evaluate at a point that does not satisfy the constraint, the evaluation lies
within this hidden subset. Furthermore, the holder of the constrained key is
unable to tell whether a particular output value lies in the hidden subset or not.
However, anyone who possesses a secret testing key (specific to the translucent
constrained PRF) is able to identify whether a particular value lies in the hidden
subset or not. In essence then, the set of outputs of all of the constrained keys
in a translucent constrained PRF system defines a translucent set in the sense
of [20]. We now give our formal definitions.

Definition 4.1 (Translucent Constrained PRF). Let λ be a security param-
eter. A translucent constrained PRF with domain X and range Y is a tuple of al-
gorithms ΠTPRF = (TPRF.Setup,TPRF.SampleKey,TPRF.Eval,TPRF.Constrain,
TPRF.ConstrainEval,TPRF.Test) with the following properties:

– TPRF.Setup(1λ) → (pp, tk): On input a security parameter λ, the setup
algorithm outputs the public parameters pp and a testing key tk.

– TPRF.SampleKey(pp) → msk: On input the public parameter pp, the key
sampling algorithm outputs a master PRF key msk.

– TPRF.Eval(pp,msk, x)→ y: On input the public parameters pp, a master PRF
key msk and a point in the domain x ∈ X , the PRF evaluation algorithm
outputs an element in the range y ∈ Y.

– TPRF.Constrain(pp,msk, S) → skS: On input the public parameters pp, a
master PRF key msk and a set of points S ⊆ X , the constraining algorithm
outputs a constrained key skS.

– TPRF.ConstrainEval(pp, skS , x) → y: On input the public parameters pp, a
constrained key skS, and a point in the domain x ∈ X , the constrained
evaluation algorithm outputs an element in the range y ∈ Y.

– TPRF.Test(pp, tk, y′)→ {0, 1}: On input the public parameters pp, a testing
key tk, and a point in the range y′ ∈ Y, the testing algorithm either accepts
(with output 1) or rejects (with output 0).

Remark 4.2 (Relation to Constrained PRFs). Every translucent constrained PRF
defines an entire family of constrained PRFs. In other words, every set of pa-
rameters (pp, tk) output by the setup function TPRF.Setup of a translucent
constrained PRF induces a constrained PRF family (in the sense of [14, §3.1])
for the same class of constraints. Specifically, the key-generation algorithm
for the constrained PRF family corresponds to running TPRF.SampleKey(pp).
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The constrain, evaluation, and constrained-evaluation algorithms for the con-
strained PRF family correspond to TPRF.Constrain(pp, ·), TPRF.Eval(pp, ·, ·), and
TPRF.ConstrainEval(pp, ·, ·), respectively.

Correctness. We now define two notions of correctness for a translucent con-
strained PRF: evaluation correctness and verification correctness. Intuitively,
evaluation correctness states that a constrained key behaves the same as the
master PRF key (from which it is derived) on the allowed points. Verification
correctness states that the testing algorithm can correctly identify whether a
constrained key was used to evaluate the PRF at an allowed point (in which
case the verification algorithm outputs 0) or at a restricted point (in which case
the verification algorithm outputs 1). Like the constrained PRF constructions
of [17,10], we present definitions for the computational relaxations of both of
these properties.

Definition 4.3 (Correctness Experiment). Fix a security parameter λ, and
let ΠTPRF be a translucent constrained PRF (Definition 4.1) with domain X and
range Y. Let A = (A1,A2) be an adversary and let S ⊆ 2X be a set system. The
(computational) correctness experiment ExptΠTPRF,A,S is defined as follows:

Experiment ExptΠTPRF,A,S(λ):

1. (pp, tk)← TPRF.Setup(1λ)
2. msk← TPRF.SampleKey(pp)
3. (S, stA)← A1(1λ, pp) where S ∈ S
4. Output (x, S) where x← A2(stA, sk) and sk← TPRF.Constrain(pp,msk, S)

Definition 4.4 (Correctness). Fix a security parameter λ, and let ΠTPRF be
a translucent constrained PRF with domain X and range Y. We say that ΠTPRF

is correct with respect to a set system S ⊆ 2X if it satisfies the following two
properties:

– Evaluation correctness: For all efficient adversaries A and setting (x, S)←
ExptΠTPRF,A,S(λ), then

x ∈ S and TPRF.ConstrainEval(pp, skS , x) 6= TPRF.Eval(pp,msk, x)

with probability negl(λ).
– Verification correctness: For all efficient adversaries A and taking (x, S)←

ExptΠTPRF,A,S(λ), then

x ∈ X \ S and TPRF.Test(pp, tk,TPRF.ConstrainEval(pp, skS , x)) = 1

with probability 1− negl(λ). Conversely,

x ∈ S and TPRF.Test(pp, tk,TPRF.ConstrainEval(pp, skS , x)) = 1

with probability negl(λ).

19



Remark 4.5 (Selective Notions of Correctness). In Definition 4.3, the adversary is
able to choose the set S ∈ S adaptively, that is, after seeing the public parameters
pp. We can define a weaker (but still useful) notion of selective correctness, where
the adversary is forced to commit to its set S before seeing the public parameters.
The formal correctness conditions in Definition 4.4 remain unchanged. For certain
set systems (e.g., when all sets S ∈ S contain a polynomial number of points),
complexity leveraging [8] can be used to boost a scheme that is selectively correct
into one that is also adaptively correct, except under a possibly super-polynomial
loss in the security reduction. For constructing a watermarkable family of PRFs
(Section 6), a selectively-correct translucent PRF already suffices.

Translucent puncturable PRFs. A special case of a translucent constrained
PRF is a translucent puncturable PRF. Recall that a puncturable PRF [14,33,15]
is a constrained PRF where the constrained keys enable PRF evaluation at
all points in the domain X except at a single, “punctured” point x∗ ∈ X . We
can generalize this notion to a t-puncturable PRF, which is a PRF that can be
punctured at t different points. Formally, we define the analog of a translucent
puncturable and t-puncturable PRFs.

Definition 4.6 (Translucent t-Puncturable PRFs). We say that a translu-
cent constrained PRF over a domain X is a translucent t-puncturable PRF if it
is constrained with respect to the set system S(t) = {S ⊆ X : |S| = |X | − t}. The
special case of t = 1 corresponds to a translucent puncturable PRF.

4.1 Security Definitions

We now introduce several security requirements a translucent constrained PRF
should satisfy. First, we require that Eval(pp,msk, ·) implements a PRF whenever
the parameters pp and msk are honestly generated. Next, we require that given
a constrained key skS for some set S, the real PRF values Eval(pp,msk, x) for
points x /∈ S remain pseudorandom. This is the notion of constrained pseudo-
randomness introduced in [14]. Using a similar argument as in [10, Appendix A],
it follows that a translucent constrained PRF satisfying constrained pseudoran-
domness is also pseudorandom. Finally, we require that the key skS output by
Constrain(pp,msk, S) hides the constraint set S. This is essentially the privacy
requirement in a private constrained PRF [12].

Definition 4.7 (Pseudorandomness). Let λ be a security parameter, and
let ΠTPRF be a translucent constrained PRF with domain X and range Y. We
say that ΠTPRF is pseudorandom if for (pp, tk) ← TPRF.Setup(1λ), the tuple
(KeyGen,Eval) is a secure PRF, where KeyGen(1λ) outputs a fresh draw k ←
TPRF.SampleKey(pp) and Eval(k, x) outputs TPRF.Eval(pp, k, x). Note that we
implicitly assume that the PRF adversary in this case also is given access to the
public parameters pp.

Definition 4.8 (Constrained Pseudorandomness Experiment). Fix a se-
curity parameter λ, and let ΠTPRF be a translucent constrained PRF with domain
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X and range Y. Let A = (A1,A2) be an adversary, S ⊆ 2X be a set sys-
tem, and b ∈ {0, 1} be a bit. The constrained pseudorandomness experiment

CExpt
(b)
ΠTPRF,A,S(λ) is defined as follows:

Experiment CExpt
(b)
ΠTPRF,A,S(λ):

1. (pp, tk)← TPRF.Setup(1λ)
2. msk← TPRF.SampleKey(pp)

3. (S, stA)← ATPRF.Eval(pp,msk,·)
1 (1λ, pp) where S ∈ S

4. Output b′ ← ATPRF.Eval(pp,msk,·),Ob(·)
2 (stA, sk) where

sk← TPRF.Constrain(pp,msk, S) and the challenge oracle Ob is defined as
follows:
– O0(·) = TPRF.Eval(pp,msk, ·)
– O1(·) = f(·) where f

r← Funs[X ,Y] is chosen (and fixed) at the beginning
of the experiment.

Definition 4.9 (Constrained Pseudorandomness [14, adapted]). Fix a
security parameter λ, and let ΠTPRF be a translucent constrained PRF with
domain X and range Y. We say that an adversary A is admissible for the
constrained pseudorandomness game if all of the queries x that it makes to the
evaluation oracle TPRF.Eval satisfy x ∈ S and all of the queries it makes to the
challenge oracle (O0 or O1) satisfy x /∈ S.12 Then, we say that ΠTPRF satisfies
constrained pseudorandomness if for all efficient and admissible adversaries A,∣∣∣Pr

[
CExpt

(0)
ΠTPRF,A,S(λ) = 1

]
− Pr

[
CExpt

(1)
ΠTPRF,A,S(λ) = 1

]∣∣∣ = negl(λ).

Theorem 4.10 (Constrained Pseudorandomness Implies Pseudorandom-
ness [10]). Let ΠTPRF be a translucent constrained PRF. If ΠTPRF satisfies con-
strained pseudorandomness (Definition 4.9), then it satisfies pseudorandomness
(Definition 4.7).

Proof. Follows by a similar argument as that in [10, Appendix A].

Definition 4.11 (Privacy Experiment). Fix a security parameter λ, and
let ΠTPRF be a translucent constrained PRF with domain X and range Y. Let
A = (A1,A2) be an adversary, S ⊆ 2X be a set system, and b ∈ {0, 1} be a bit.

The privacy experiment PExpt
(b)
ΠTPRF,A,S(λ) is defined as follows:

Experiment PExpt
(b)
ΠTPRF,A,S(λ):

1. (pp, tk)← TPRF.Setup(1λ)

12In the standard constrained pseudorandomness game introduced in [14], the adversary
is also allowed to make evaluation queries on values not contained in S. While our
construction can be shown to satisfy this stronger property, this is not needed for our
watermarking construction. To simplify the presentation and security analysis, we
work with this weaker notion here.
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2. (S0, S1, stA)← A1(1λ, pp) where S0, S1 ∈ S
3. skb ← TPRF.Constrain(pp,msk, Sb) where msk← TPRF.SampleKey(pp)
4. Output b′ ← A2(stA, skb)

Definition 4.12 (Privacy [12, adapted]). Fix a security parameter λ. Let
ΠTPRF to be a translucent constrained PRF with domain X and range Y. We
say that ΠTPRF is private with respect to a set system S ⊆ 2X if for all efficient
adversaries A,∣∣∣Pr

[
PExpt

(0)
ΠTPRF,A,S(λ) = 1

]
− Pr

[
PExpt

(1)
ΠTPRF,A,S(λ) = 1

]∣∣∣ = negl(λ).

Remark 4.13 (Selective vs. Adaptive Security). We say that a scheme satisfying
Definition 4.9 or Definition 4.12 is adaptively secure if the adversary chooses the
set S (or sets S0 and S1) after seeing the public parameters pp for the translucent
constrained PRF scheme. As in Definition 4.5, we can define a selective notion of
security where the adversary commits to its set S (or S0 and S1) at the beginning
of the game before seeing the public parameters.

Key injectivity. Another security notion that becomes useful in the context
of watermarking is the notion of key injectivity. Intuitively, we say a family
of PRFs satisfies key injectivity if for all distinct PRF keys k1 and k2 (not
necessarily uniformly sampled from the key-space), the value of the PRF under
k1 at any point x does not equal the value of the PRF under k2 at x with
overwhelming probability. We note that Cohen et al. [21] introduce a similar,
though incomparable, notion of key injectivity13 to achieve their strongest notions
of watermarking (based on indistinguishability obfuscation). We now give the
exact property that suffices for our construction:

Definition 4.14 (Key Injectivity). Fix a security parameter λ and let ΠTPRF

be a translucent constrained PRF with domain X . Take (pp, tk)← TPRF.Setup(1λ),
and let K = {Kλ}λ∈N be the set of possible keys output by TPRF.SampleKey(pp).
Then, we say that ΠTPRF is key-injective if for all keys msk1,msk2 ∈ K, and any
x ∈ X ,

Pr[TPRF.Eval(msk1, x) = TPRF.Eval(msk2, x)] = negl(λ),

where the probability is taken over the randomness used in TPRF.Setup.

5 Translucent Puncturable PRFs from LWE

In this section, we describe our construction of a translucent t-puncturable PRF.
After describing the main construction, we state the concrete correctness and

13Roughly speaking, Cohen et al. [21, Definition 7.1] require that for a uniformly random
PRF key k, there does not exist a key k′ and a point x where PRF(k, x) = PRF(k′, x).
In contrast, our notion requires that any two PRF keys do not agree at any particular
point with overwhelming probability.
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security theorems for our construction. We defer their formal proofs to the full
version [34]. Our scheme leverages a number of parameters (described in detail at
the beginning of Section 5.1). We give concrete instantiations of these parameters
based on the requirements of the correctness and security theorems in Section 5.2.

5.1 Main Construction

In this section, we formally describe our translucent t-puncturable PRF (Defini-
tion 4.6). Let λ be a security parameter. Additionally, we define the following
scheme parameters:

– (n,m, q, χ) - LWE parameters
– ρ - length of the PRF input
– p - rounding modulus
– t - the number of punctured points (indexed by i)
– N - the dimension of the coefficient vectors w1, . . . ,wt (indexed by `). Note

that N = m · n.
– Btest - norm bound used by the PRF testing algorithm

Let ΠHE = (HE.KeyGen,HE.Enc,HE.Enc,HE.Dec) be the (leveled) homomorphic
encryption scheme with plaintext space {0, 1}ρ × ZNq . We define the following
additional parameters specific to the FHE scheme:

– z - bit-length of a fresh FHE ciphertext (indexed by j)
– τ - bit-length of the FHE secret key (indexed by k)

Next, we define the equality-check circuit eq` : {0, 1}ρ×{0, 1}ρ×ZNq → Zq where

eq`(x, (x
∗,w)) =

{
w` if x = x∗

0 otherwise,
(5.1)

as well as the circuit C
(`)
Eval : {0, 1}z×{0, 1}ρ → {0, 1}τ for homomorphic evaluation

of eq`:

C
(`)
Eval(ct, x) = HE.Eval(eq`(x, ·), ct). (5.2)

Finally, we define the following additional parameters for the depths of these two
circuits:

– deq - depth of the equality-check circuit eq`
– d - depth of the homomorphic equality-check circuit C

(`)
Eval

For ` ∈ [N ], we define the matrix D` to be the `th elementary “basis matrix” for
the Zq-module Zn×mq . More concretely,

D`[a, b] =

{
1 if am+ b = `

0 otherwise.
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In other words, each matrix D` has its `th component (when viewing the matrix
as a collection of N = mn entries) set to 1 and the remaining components set
to 0.

Translucent PRF construction. The translucent t-puncturable PRF ΠTPRF =
(TPRF.Setup,TPRF.Eval,TPRF.Constrain,TPRF.ConstrainEval,TPRF.Test) with
domain {0, 1}ρ and range Zmp is defined as follows:

– TPRF.Setup(1λ): On input the security parameter λ, the setup algorithm
samples the following matrices uniformly at random from Zn×mq :

• Â: an auxiliary matrix used to provide additional randomness
• {Ab}b∈{0,1}: matrices to encode the bits of the input to the PRF
• {Bi,j}i∈[t],j∈[z]: matrices to encode the bits of the FHE encryptions of

the punctured points
• {Ck}k∈[τ ]: matrices to encode the bits of the FHE secret key

It also samples trapdoor matrices (Wi, zi) ← TrapGen(1n, q) for all i ∈ [t].
Finally, it outputs the public parameters pp and testing key tk:

pp =
(
Â, {Ab}b∈{0,1}, {Bi,j}i∈[t],j∈[z], {Ck}k∈[τ ], {Wi}i∈[t]

)
tk = {zi}i∈[t].

– TPRF.SampleKey(pp): On input the public parameters pp, the key generation
algorithm samples a PRF key s← χn and sets msk = s.

– TPRF.Eval(pp,msk, x): On input the public parameters pp, the PRF key
msk = s, and an input x = x1x2 · · ·xρ ∈ {0, 1}ρ, the evaluation algorithm
first computes

B̃i,` ← Evalpk
(
C`,Bi,1, . . . ,Bi,z,Ax1 , . . . ,Axρ ,C1, . . . ,Cτ

)
for all i ∈ [t] and ` ∈ [N ], and where C` = IP ◦ C(`)

Eval. Finally, the evaluation
algorithm outputs the value

yx =

sT

Â +
∑
i∈[t]
`∈[N ]

B̃i,` ·G−1(D`)



p

.

– TPRF.Constrain(pp,msk,T):14 On input the public parameters pp, the PRF
key msk = s and the set of points T = {x∗i }i∈[t] to be punctured, the
constraining algorithm first computes

B̃i,i∗,` ← Evalpk(C`,Bi,1, . . . ,Bi,z,Ax∗
i∗,1

, . . . ,Ax∗
i∗,ρ

,C1, . . . ,Cτ )

for all i, i∗ ∈ [t] and ` ∈ [N ] where C` = IP ◦ C(`)
Eval. Then, for each

i∗ ∈ [t], the puncturing algorithm computes the (unique) vector wi∗ =

14For notational convenience, we modify the syntax of the constrain algorithm to take
in a set T of t punctured points rather than a set of allowed points.
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(wi∗,1, . . . , wi∗,N ) ∈ ZNq where

Wi∗ = Â +
∑
i∈[t]
`∈[N ]

B̃i,i∗,` ·G−1(D`) +
∑
`∈[N ]

wi∗,` ·D`.

Next, it samples an FHE key HE.sk ← HE.KeyGen(1λ, 1deq , 1ρ+N ), and for
each i ∈ [t], it constructs the ciphertext cti ← HE.Enc(HE.sk, (x∗i ,wi)) and
finally, it defines ct = {cti}i∈[t]. It samples error vectors e0 ← χm, e1,b ← χm

for b ∈ {0, 1}, e2,i,j ← χm for i ∈ [t] and j ∈ [z], and e3,k ← χm for k ∈ [τ ]
and computes the vectors

âT = sT Â + eT0
aTb = sT (Ab + b ·G) + eT1,b ∀b ∈ {0, 1}
bTi,j = sT (Bj + cti,j ·G) + eT2,i,j ∀i ∈ [t],∀j ∈ [z]

cTk = sT (Ck + HE.skk ·G) + eT3,k ∀k ∈ [τ ].

Next, it sets enc =
(
â, {ab}b∈{0,1}, {bi,j}i∈[t],j∈[z], {ck}k∈[τ ]

)
. It outputs the

constrained key skT = (enc, ct).
– TPRF.ConstrainEval(pp, skT, x): On input the public parameters pp, a con-

strained key skT = (enc, ct), where enc =
(
â, {ab}b∈{0,1}, {bi,j}i∈[t],j∈[z],

{ck}k∈[τ ]
)
, ct = {cti}i∈[t], and a point x ∈ {0, 1}ρ, the constrained evaluation

algorithm computes

b̃i,` ← Evalct((cti, x), C`,bi,1, . . . ,bi,z,ax1 , . . . ,axρ , c1, . . . , cτ )

for i ∈ [t] and ` ∈ [N ], and where C`(ct, x) = IP ◦ C(`)
Eval. Then, it computes

and outputs the value

yx =

â +
∑
i∈[t]
`∈[N ]

b̃Ti,` ·G−1(D`)


p

.

– TPRF.Test(pp, tk,y): On input the testing key tk = {zi}i∈[t] and a point
y ∈ Zmp , the testing algorithm outputs 1 if 〈y, zi〉 ∈ [−Btest, Btest] for some
i ∈ [t] and 0 otherwise.

Correctness theorem. We now state that under the LWE and 1D-SIS assump-
tions (with appropriate parameters), our translucent t-puncturable PRF ΠTPRF

satisfies (selective) evaluation correctness and verification correctness (Defini-
tion 4.4, Remark 4.5). We give the formal proof in the full version [34].

Theorem 5.1 (Correctness). Fix a security parameter λ, and define parame-
ters n,m, p, q, χ, t, z, τ, Btest as above. Let B be a bound on the error distribution

χ, and suppose Btest = B(m + 1), p = 2ρ
(1+ε)

for some constant ε > 0, and
q

2pmB > B ·mO(d). Then, take m′ = m · (3 + t · z + τ) and β = B ·mO(d). Under

the LWEn,m′,q,χ and 1D-SIS-Rm′,p,q,β assumptions, ΠTPRF is (selectively) correct.
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Security theorems. We now state that under the LWE assumption (with appro-
priate parameters), our translucent t-puncturable PRF ΠTPRF satisfies selective
constrained pseudorandomness (Definition 4.9), selective privacy (Definition 4.12)
and weak key-injectivity (Definition 4.14). We give the formal proofs in the full
version [34]. As a corollary of satisfying constrained pseudorandomness, we have
that ΠTPRF is also pseudorandom (Definition 4.7, Theorem 4.10).

Theorem 5.2 (Constrained Pseudorandomness). Fix a security parameter
λ, and define parameters n,m, p, q, χ, t, z, τ as above. Let m′ = m·(3+t(z+1)+τ),
m′′ = m · (3 + t · z + τ) and β = B ·mO(d) where B is a bound on the error
distribution χ. Then, under the LWEn,m′,q,χ and 1D-SIS-Rm′′,p,q,β assumptions,
ΠTPRF satisfies selective constrained pseudorandomness (Definition 4.9).

Corollary 5.3 (Pseudorandomness). Fix a security parameter λ, and define
the parameters n,m, p, q, χ, t, z, τ as above. Under the same assumptions as in
Theorem 5.2, ΠTPRF satisfies selective pseudorandomness (Definition 4.7).

Theorem 5.4 (Privacy). Fix a security parameter λ, and define parameters
n,m, q, χ, t, z, τ as above. Let m′ = m · (3 + t(z + 1) + τ). Then, under the
LWEn,m′,q,χ assumption, and assuming the homomorphic encryption scheme ΠHE

is semantically secure, ΠTPRF is selectively private (Definition 4.12).

Theorem 5.5 (Key-Injectivity). If the bound B on the error distribution χ
satisfies B < p̂/2 where p̂ is the smallest prime dividing the modulus q, and
m = ω(n), then the translucent t-puncturable PRF ΠTPRF satisfies key-injectivity
(Definition 4.14).

5.2 Concrete Parameter Instantiations

In this section, we give one possible instantiation for the parameters for the
translucent t-puncturable PRF construction in Section 5.1. We choose our param-
eters so that the underlying LWE and 1D-SIS assumptions that we rely on are
as hard as approximating worst-case lattice problems to within a subexponential

factor 2Õ(n1/c) for some constant c (where n is the lattice dimension). Fix a
constant c and a security parameter λ.

– We set the PRF input length ρ = λ. Then, the depth deq of the equality
check circuit eq` satisfies deq = O(log ρ) = O(log λ).

– We set the lattice dimension n = λ2c.
– The noise distribution χ is set to be the discrete Gaussian distribution
DZ,
√
n. Then the FHE ciphertext length z and the FHE secret key length

τ is determined by poly(λ, deq, ρ, log q) = poly(λ). The depth of the FHE
equality check circuit is d = poly(deq, log z) = polylog(λ). Finally, we set
Btest = B · (m+ 1).

– We set q > mO(d) in order to invoke correctness and security of the leveled
homomorphic encryption scheme and the matrix embeddings. We refer to the
full version [34] for more details. Furthermore, for the 1D-SIS-R assumption,
we need q to be the product of λ primes p1, . . . , pλ. For each i ∈ [λ], we set

the primes pj = 2O(n1/2c) such that p1 < · · · < pλ.
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– We set p = 2n
1/2c+ε

for any ε > 0, so the condition in Theorem 5.1 is satisfied.
– We set m = Θ(n log q), and Btest = B · (m+ 1). For these parameter settings,

mO(d) = mpolylog(λ) and q = 2Õ(n1/2c) = 2Õ(λ).

Under these parameter setting, the private translucent t-puncturable PRF in
Section 5.1 is selectively secure assuming the polynomial hardness of approx-
imating worst-case lattice problems over an n-dimensional lattice to within a

subexponential approximation factor 2Õ(n1/2c). Using complexity leveraging [8],
the same construction is adaptively secure assuming subexponential hardness of
the same worst-case lattice problems.

6 Watermarkable PRFs from Translucent PRFs

In this section, we formally introduce the notion of a watermarkable family of
PRFs. Our definitions are adapted from those of [21,12]. Then, in Section 6.2, we
show how to construct a secretly-extractable, message-embedding watermarkable
family of PRFs from translucent t-puncturable PRFs. Combined with our concrete
instantiation of translucent t-puncturable PRFs from Section 5, this gives the
first watermarkable family of PRFs (with security against arbitrary removal
strategies) from standard assumptions.

6.1 Watermarking PRFs

We begin by introducing the notion of a watermarkable PRF family.

Definition 6.1 (Watermarkable Family of PRFs [12, adapted]). Fix a
security parameter λ and a message space {0, 1}t. Then, a secretly-extractable,
message-embedding watermarking scheme for a PRF ΠPRF = (PRF.KeyGen,PRF.Eval)
is a tuple of algorithms ΠWM = (WM.Setup,WM.Mark,WM.Extract) with the fol-
lowing properties:

– WM.Setup(1λ)→ msk: On input the security parameter λ, the setup algorithm
outputs the watermarking secret key msk.

– WM.Mark(msk, k,m) → C: On input the watermarking secret key msk, a
PRF key k (to be marked), and a message m ∈ {0, 1}t, the mark algorithm
outputs a marked circuit C.

– WM.Extract(msk, C ′)→ m: On input the master secret key msk and a circuit
C ′, the extraction algorithm outputs a string m ∈ {0, 1}t ∪ {⊥}.

Definition 6.2 (Circuit Similarity). Fix a circuit class C on n-bit inputs. For
two circuits C,C ′ ∈ C and for a non-decreasing function f : N → N, we write
C ∼f C ′ to denote that the two circuits agree on all but an 1/f(n) fraction of
inputs. More formally, we define

C ∼f C ′ ⇐⇒ Pr
x

r←{0,1}n
[C(x) 6= C ′(x)] ≤ 1/f(n)

We also write C �f C ′ to denote that C and C ′ differ on at least a 1/f(n)
fraction of inputs.
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Correctness. The correctness property for a watermarking scheme for a PRF
family consists of two requirements which we state below.

Definition 6.3 (Watermarking Correctness). Fix a security parameter λ.
We say that a watermarking scheme ΠWM = (WM.Setup,WM.Mark,WM.Extract)
for a PRF ΠPRF = (PRF.KeyGen,PRF.Eval) with domain {0, 1}n is correct if for
all messages m ∈ {0, 1}t, and setting msk←WM.Setup(1λ), k ← PRF.KeyGen(1λ),
and C ←WM.Mark(msk, k,m), the following two properties hold:

– Functionality-preserving: C(·) ∼f PRF.Eval(k, ·) where 1/f(n) = negl(λ)
with overwhelming probability.

– Extraction correctness: Pr[WM.Extract(msk, C) = m] = 1− negl(λ).

Security. Following [21,12], we introduce two different security notions for a
watermarking scheme: unremovability and unforgeability. We begin by defining
the watermarking experiment.

Definition 6.4 (Watermarking Experiment [12, adapted]). Fix a security
parameter λ. Let ΠWM = (WM.Setup,WM.Mark,WM.Extract) be a watermarking
scheme for a PRF ΠPRF = (PRF.KeyGen,PRF.Eval) with key-space K, and let A
be an adversary. Then the watermarking experiment ExptΠWM,A(λ) proceeds as

follows. The challenger begins by sampling msk←WM.Setup(1λ). The adversary
A is then given access to the following oracles:

– Marking oracle. On input a message m ∈ {0, 1}t and a PRF key k ∈ K,
the challenger returns the circuit C ←WM.Mark(msk, k,m) to A.

– Challenge oracle. On input a message m ∈ {0, 1}t, the challenger samples a
key k ← PRF.KeyGen(1λ), and returns the circuit C ←WM.Mark(msk, k,m)
to A.

Finally, A outputs a circuit C ′. The output of the experiment, denoted ExptΠWM,A(λ),
is WM.Extract(msk, C ′).

Definition 6.5 (Unremovability [21,12]). Fix a security parameter λ. For
a watermarking scheme ΠWM = (WM.Setup,WM.Mark,WM.Extract) for a PRF
ΠPRF = (PRF.KeyGen,PRF.Eval) and an adversary A, we say that A is unremoving-
admissible if the following conditions hold:

– The adversary A makes exactly one query to the challenge oracle.
– The circuit C̃ that A outputs satisfies C̃ ∼f Ĉ, where Ĉ is the circuit output

by the challenge oracle and 1/f = negl(λ).

Then, we say that ΠWM is unremovable if for all efficient and unremoving-
admissible adversaries A,

Pr[ExptΠWM,A(λ) 6= m̂] = negl(λ),

where m̂ is the message A submitted to the challenge oracle in ExptΠWM,A(λ).
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Definition 6.6 (δ-Unforgeability [21,12]). Fix a security parameter λ. For a
watermarking scheme ΠWM = (WM.Setup,WM.Mark,WM.Extract) for a PRF
ΠPRF = (PRF.KeyGen,PRF.Eval) and an adversary A, we say that A is δ-
unforging-admissible if the following conditions hold:

– The adversary A does not make any challenge oracle queries.
– The circuit C̃ that A outputs satisfies C̃ 6∼f C` for all ` ∈ [Q], where Q is

the number of queries A made to the marking oracle, C` is the output of the
marking oracle on the `th query, and 1/f > δ. Moreover, C̃ 6∼f PRF.Eval(k`, ·),
where k` is the key the adversary submitted on its `th query to the marking
oracle.

Then, we say that ΠWM is δ-unforgeable if for all efficient and δ-unforging-
admissible adversaries A,

Pr[ExptΠWM,A(λ) 6= ⊥] = negl(λ).

Remark 6.7 (Giving Access to an Extraction Oracle). As noted in [21], in the
secret-key setting, the watermarking security game (Definition 6.4) can be aug-
mented to allow the adversary oracle access to an extraction oracle (which
implements WM.Extract(msk, ·)). It is an open problem to construct secretly-
extractable watermarking from standard assumptions where the adversary is
additionally given access to a extraction oracle. The only known constructions
today [21] rely on indistinguishability obfuscation.

Remark 6.8 (Marking Oracle Variations). In the watermarking security game
(Definition 6.4), the adversary can submit arbitrary keys (of its choosing) to
the marking oracle. Cohen et al. [21] also consider a stronger notion where
the adversary is allowed to submit arbitrary circuits (not corresponding to any
particular PRF) to the marking oracle. However, in this model, they can only
achieve lunch-time security (i.e., the adversary can only query the marking oracle
before issuing its challenge query). In the model where the adversary can only
query the marking oracle on valid PRF keys, their construction achieves full
security (assuming the PRF family satisfies a key-injectivity property). Similarly,
our construction achieves full security in this model (in the secret-key setting),
and also relies on a key-injectivity property on the underlying PRF. Our notion
is strictly stronger than the notion in [12]. In the Boneh et al. model [12], the
adversary cannot choose the key for the marking oracle. Instead, the marking
oracle samples a key (honestly) and gives both the sampled key as well as the
watermarked key to the adversary. In contrast, in both our model as well as
that in [21], the adversary is allowed to see watermarked keys on arbitrary keys
of its choosing. The key difference in our security analysis that enables us to
achieve this stronger security notion (compared to [12]) is the new key-injectivity
property on the underlying translucent PRF. Instantiating the construction
in [12] with a private programmable PRF satisfying key-injectivity should also
yield a watermarkable family of PRFs under our strengthened definition.

In the full version of this paper [34], we further compare our correctness and
security notions to those considered in previous work [21,12].
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6.2 Watermarking Construction

In this section, we show how any translucent t-puncturable PRF can be used to
obtain a watermarkable family of PRFs. Combined with our construction of a
translucent t-puncturable PRF from Section 5.1, we obtain the first watermarkable
family of PRFs from standard assumptions.

Construction 6.9 Fix a security parameter λ and a positive real value δ < 1
such that d = λ/δ = poly(λ). Let {0, 1}t be the message space for the watermarking
scheme. Our construction relies on the following two ingredients:

– Let ΠTPRF be a translucent t-puncturable PRF (Definition 4.6) with key-space
K, domain {0, 1}n, and range {0, 1}m.

– Let ΠPRF be a secure PRF with domain ({0, 1}m)d and range ({0, 1}n)2t.

We require n,m, t = ω(log λ). The secretly-extractable, message-embedding wa-
termarking scheme ΠWM = (WM.Setup,WM.Mark,WM.Extract) for the PRF
associated with ΠTPRF is defined as follows:

– WM.Setup(1λ): On input the security parameter λ, the setup algorithm runs

(pp, tk)← TPRF.Setup(1λ). Next, for each j ∈ [d], it samples hj
r← {0, 1}n.

It also samples a key k∗ ← PRF.KeyGen(1λ). Finally, it outputs the master
secret key msk = (pp, tk, h1, . . . , hd, k

∗).
– WM.Mark(msk, k,m): On input the master secret key msk = (pp, tk, h1, . . . , hd, k

∗),
a PRF key k ∈ K to be marked, and a message m ∈ {0, 1}t, the marking
algorithm proceeds as follows:
1. For each j ∈ [d], set yj ← TPRF.Eval(pp, k, hj). Let y = (y1, . . . , yd).

2. Compute points x =
(
x
(0)
1 , x

(1)
1 , . . . , x

(0)
t , x

(1)
t

)
← PRF.Eval(k∗,y).

3. Compute the t-punctured key skS ← TPRF.Constrain(pp, k, S), where the

set S is given by S = {x ∈ {0, 1}n : x 6= x
(mi)
i ∀i ∈ [t]},

4. Output the circuit C where C(·) = TPRF.ConstrainEval(pp, skS , ·).
– WM.Extract(msk, C): On input the master secret key msk = (pp, tk, h1, . . . , hd, k)

and a circuit C : {0, 1}n → {0, 1}m, the extraction algorithm proceeds as
follows:

1. Compute points x =
(
x
(0)
1 , x

(1)
1 , . . . , x

(0)
t , x

(1)
t

)
← PRF.Eval(k∗, C(h1), . . . , C(hd)).

2. For each i ∈ [t], and b ∈ {0, 1}, compute z
(b)
i = TPRF.Test(pp, tk, C(x

(b)
i )).

3. If there exists some i for which z
(0)
i = z

(1)
i , output ⊥. Otherwise, output

the message m ∈ {0, 1}t where mi = 0 if z
(0)
i = 1 and mi = 1 if z

(1)
i = 1.

Security analysis. We now state the correctness and security theorems for our
construction, but defer their formal proofs to the full version of this paper [34].

Theorem 6.10. If ΠTPRF is a secure translucent t-puncturable PRF, and ΠPRF

is a secure PRF, then the watermarking scheme in Construction 6.9 is correct.

Theorem 6.11. If ΠTPRF is a selectively-secure translucent t-puncturable PRF,
and ΠPRF is secure, then the watermarking scheme in Construction 6.9 is unre-
movable.
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Theorem 6.12. If ΠTPRF is a selectively-secure translucent t-puncturable PRF,
and ΠPRF is secure, then the watermarking scheme in Construction 6.9 is δ-
unforgeable.
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