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Abstract. In structure-preserving cryptography, every building block
shares the same bilinear groups. These groups must be generated for a
specific, a priori fixed security level, and thus it is vital that the security
reduction of all involved building blocks is as tight as possible. In this
work, we present the first generic construction of structure-preserving
signature schemes whose reduction cost is independent of the number
of signing queries. Its chosen-message security is almost tightly reduced
to the chosen-plaintext security of a structure-preserving public-key en-
cryption scheme and the security of Groth-Sahai proof system. Tech-
nically, we adapt the adaptive partitioning technique by Hofheinz (Eu-
rocrypt 2017) to the setting of structure-preserving signature schemes.
To achieve a structure-preserving scheme, our new variant of the adap-
tive partitioning technique relies only on generic group operations in
the scheme itself. Interestingly, however, we will use non-generic opera-
tions during our security analysis. Instantiated over asymmetric bilinear
groups, the security of our concrete scheme is reduced to the external
Diffie-Hellman assumption with linear reduction cost in the security pa-
rameter, independently of the number of signing queries. The signatures
in our schemes consist of a larger number of group elements than those in
other non-tight schemes, but can be verified faster, assuming their secu-
rity reduction loss is compensated by increasing the security parameter
to the next standard level.
Keywords: Structure-preserving signature, Tight reduction, Adaptive
partitioning

1 Introduction

Background. A structure-preserving signature (SPS) scheme [3] is designed
over bilinear groups, and features public keys, messages, and signatures that only
? Supported by DFG grants HO 4534/4-1 and HO 4534/2-2.
?? Supported by the DFG grant HO 4534/4-1.
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consist of source group elements. Furthermore, signature verification only uses
group membership testing and relations that can be expressed as pairing product
equations. Coupled with the Groth-Sahai non-interactive proof system [29] (GS
proofs for short), SPS schemes are a powerful tool in constructing a wide range of
cryptographic applications. Various SPS schemes based on compact standard as-
sumptions exist in the literature [28,3,18,4,2,39,35,33]. When looking at schemes
from standard assumptions, the state-of-the-art scheme in [33] yields signatures
as compact as consisting of six source group elements.

In this paper, we address the tightness of security proofs for SPS schemes
with compact parameters, i.e., constant-size signatures and standard (non q-
type) assumptions. Formally, a security reduction constructs an adversary A on
a computational assumption out of an adversary A′ on the security of a crypto-
graphic scheme. If we let ε and t denote the success probability and runtime of
A, and ε′ and t′ the success probability and runtime of A′, then we define the
security loss of the reduction, or simply the reduction cost, as (ε′t)/(εt′) [19].
The reduction is tight if the security loss is a small constant or almost tight if
it grows only (as a preferably small function) in the security parameter λ. In
particular, we are concerned with the independence of the security loss from the
number qs of A′’s signing queries in a chosen-message attack. We note that in
practice, qs can be as large as 230 while λ is typically 128.

The only tightly secure SPS under compact assumptions is that by Hofheinz
and Jager [32]. Their tree-based construction, however, yields unacceptably large
signatures consisting of hundreds of group elements. For other SPS schemes
under compact assumptions the security is proven using a hybrid argument that
repeat reductions in qs. Thus, their security loss is O(qs) [2,39] or even O(q2s)
[35], as shown in Table 1.

The non-tightness of security reductions does not necessarily mean the exis-
tence of a forger with reduced complexity, but the security guarantees given by
non-tight reductions are quantitatively weaker than those given by tight reduc-
tions. Recovering from the security loss by increasing the security parameter is
not a trivial solution when bilinear groups are involved. The security in source
and target groups should be balanced, and computational efficiency is influenced
by the choice of curves, pairings, and parameters such as embedding degrees, and
the presence of dedicated techniques. In practice, an optimal setting for a tar-
geted security parameter is determined by actual benchmarks, e.g., [26,6,23],
and only standard security parameters such as 128, 192, and 256, have been
investigated. One would thus have to hop to the next standard security level
to offset the security loss in reality. Besides, we stress that increasing the secu-
rity parameter for a building block in structure-preserving cryptography is more
costly than usual as it results in losing efficiency in all other building blocks
using the same bilinear groups. Thus, the demand for tight security is stronger
in structure-preserving cryptography.

Even in ordinary (i.e. non-structure-preserving) signature schemes, most of
the constructions satisfying tight security are either in the random oracle model,
e.g. [11,34,21,1], rely on q-type or strong RSA assumptions, e.g., [15,40], or lead
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Reference |M| |σ| |pk| Sec. Loss Assumptions

HJ [32] 1 10d+ 6 13 8 DLIN
ACDKNO [2] (n1, 0) (7, 4) (5, n1 + 12) O(qs) SXDH,XDLIN1

ACDKNO [2] (n1, n2) (8, 6) (n2 + 6, n1 + 13) O(qs) SXDH,XDLIN1

LPY [39] (n1, 0) (10, 1) (16, 2n1 + 5) O(qs) SXDH,XDLIN2

KPW [35] (n1, 0) (6, 1) (0, n1 + 6) O(q2s) SXDH
KPW [35] (n1, n2) (7, 3) (n2 + 1, n1 + 7) O(q2s) SXDH
JR [33] (n1, 0) (5, 1) (0, n1 + 6) O(qs log qs) SXDH
Ours (Sect. 4.2) (n1, 0) (13, 12) (18, n1 + 11) O(λ) SXDH
Ours (Sect. 4.3) (n1, n2) (14, 14) (n2 + 19, n1 + 12) O(λ) SXDH

Table 1: Object sizes and loss of security among structure-preserving signature
schemes with assumptions in the standard model. Smallest possible parameters are
set to parameterized assumptions. Notation (x, y) means x and y elements in G1 and
G2, respectively. The |M|, |σ|, |pk| columns mean the number of messages, the number
of group elements in a signature, and the number of group elements in a public key,
respectively. The “Sec. Loss” column means reduction costs. The “Assumptions” col-
umn means the underlying assumptions for proving security. For HJ, parameter d limits
number of signing to 2d. Parameters qs and λ represent number of signing queries and
security parameter, respectively.

to large signatures and/or keys, e.g., [20,37]. Hofheinz presented the first tightly
secure construction with compact signatures and keys under a standard compact
assumption over bilinear groups [30]. However, his construction can only be used
to sign integer messages (and not group elements or, e.g., its own public key),
so it is not structure-preserving.

Our Contributions. We propose the first (almost) tightly secure SPS schemes
with constant number of group elements in signatures. Our schemes are proven
secure based on standard assumptions (e.g., the symmetric external Diffie-Hell-
man (SXDH) assumption). Concretely, we first present a generic construction
of an almost tightly secure SPS scheme from a structure-preserving public-key
encryption secure against chosen-plaintext attacks and the GS proof system.
With ElGamal encryption and the GS proofs over asymmetric pairing groups, we
obtain concrete SPS schemes with compact signature size whose unforgeability
against adaptive chosen-message attacks (UF-CMA) is reduced from the SXDH
assumption with security loss of O(λ), which is independent of qs.

The primary benefit of our tightly secure SPS schemes is their availability
in structure-preserving cryptography under the current standard security level.
For a system modularly built with structure-preserving building blocks, a com-
pact and tightly secure SPS scheme has been a missing piece, since other useful
building blocks, such as one-time signatures and commitments, are known to be
tightly secure. Plugging in our scheme, one can increase the proven security in
applications of structure-preserving cryptography such as blind signatures [3],
group signatures [39], and unlinkable redactable signatures [17] used in anony-
mous credential systems.
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Reference |M| #(s.mult) #(PPEs) #(Pairings)

in signing Plain Batched

KPW [35]
(n1, 0)

(6, 1) 3 n1 + 11 n1 + 10
JR [33] (6, 1) 2 n1 + 8 n1 + 6
Ours (Sect. 4.2) (15, 15) 15 n1 + 57 n1 + 16

KPW [35]
(n1, n2)

(8, 3.5) 4 n1 + n2 + 15 n1 + n2 + 14
Ours (Sect. 4.3) (17.5, 16) 16 n1 + n2 + 61 n1 + n2 + 18

Table 2: Comparison of factors relevant to computational efficiency against SPS
schemes having smallest signature sizes. Third column indicates number of scalar mul-
tiplications in G1 and G2 for signing. Multi-scalar multiplication is counted as 1.5. For
JR, a constant pairing is included. Column “Batched” shows the number of pairings
in a verification when pairing product equations are merged into one by using a batch
verification technique [13].

The second benefit of our result is the removal of qs from the security bound,
which aims to simplify the systems design. With previous schemes, there are
trade-offs among security, efficiency, and usability; if one desires stronger security
guarantees without sacrificing efficiency, a rigid limitation has to be put on the
number of signatures per public key, or, if more flexibility on the number of
possible signatures is important in considered applications, one has to take the
risk with weaker security guarantees or less efficiency. With our schemes, one
no longer needs to fix qs in advance and can focus on desirable security and
permissible efficiency for the targeted system.

Nevertheless, the performance as a stand-alone signature scheme is of a con-
cern. We summarise several parameters that dominate the space and computa-
tion costs in Tables 1 and 2. The bare numbers in the tables imply that our
schemes are outperformed by those in the literature if they are used at the
same security level. Taking the security loss into consideration, however, the
tightness of our schemes offsets the difference in terms of computational com-
plexity. We elaborate this point in the following. Though concrete complexity
varies widely depending on platforms and implementations, it is safe to say
that computing a pairing in the 192-bit security level is slowed by a factor of
δ := 6 to 7 on ordinary personal computers [8,23] and δ := 9 to 12 on proces-
sors for embedded systems [5,27,42] compared to those in the 128-bit security
level. According to the number of pairings in Table 2, our scheme for bilateral
messages at the 128-bit security level verifies a signature with batch verification
4.6 < δ(n1+n2+14)/(n1+n2+18) < 9.3 times faster than the KPW scheme at
the 192-bit security setting for offsetting its security loss of 60 bits. Applying the
same argument to the case of unilateral messages, ours in the 128-bit security
level will be 2.2 < δ(n1 + 6)/(n1 + 16) < 4.5 times faster compared to the JR
scheme in the 192-bit security level.

We note that the above simple argument ignores dedicated techniques for
computing pairing products, e.g., [41], and costs for subtle computations. It
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may not be fair to ignore the concrete security loss in our schemes, which can be
as large as 13 bits at the 128-bit security level, as mentioned in Section 4. Never-
theless, taking into account the fact that the performance gap between different
security levels will be larger than those shown in the above benchmarks pub-
lished previously [36] (i.e., slowdown factor δ in the above argument will be much
larger), even the simple estimation is aimed to show the practical significance of
tightly secure schemes.

Technical Overview. Eliminating any representation-dependent computation
in the construction is a crucial technical challenge. Towards this goal, we adapt
the “adaptive partitioning” technique of Hofheinz [31] (which in turn builds upon
[20]) to the setting of structure-preserving signatures. Thus, in our security proof,
we gradually transform the conditions necessary for a successful forgery until a
valid forgery is impossible. This will require O(λ) game hops, thus leading to a
security loss independent of the number of adversarial signing queries.

Concretely, in the scheme itself, we require that every valid signature must
carry an (encrypted) “authentication tag” Z = X, where X ∈ G is a fixed group
element. We will gradually transform this requirement Z = X into the following
combination of requirements on the authentication tag Z∗ from a valid forgery:
(a) We must have Z∗ = X ·M∗, where X ∈ G is a fixed random group element,

and M∗ ∈ G is the signed message in the forgery.
(b) Also, we must have Z∗ = X ·Mi for some previously signed message Mi.
Since we may assume M∗ /∈ {Mi} in the (non-strong) existential unforgeability
experiment, any attempted forgery will thus be invalid.

The key technique to establishing these modified requirements is a “partition-
ing argument” similar to the one from [31]. That is, in the proof, we will enforce
more and more dependencies of the authentication tag Z on the bit representa-
tion of M. Note that this bit representation is not used in the real scheme; this
would in fact be problematic in the context of structure-preserving construc-
tions. For instance, to establish a dependence of Z on the k-th bit bM of the bit
representation of M, we proceed as follows:
1. First, we “partition” the set of all messages into two subsets, depending on
bM. This means that signatures issued by the experiment now carry (an
encryption of) bM in a special component. The reason for this partitioning is
that we can now, depending on the encrypted bM, use different verification
rules.

2. We guess the encrypted bit b∗ from the forgery, and change the encrypted Z
in issued signatures for all bM 6= b∗. (This change can be justified by setting
up things such that Z can only be retrieved from a signature if the encrypted
bit b is equal to b∗. If b 6= b∗, then Z is hidden, and can hence be modified in
issued signatures.) This introduces a dependence of Z in issued signatures
on bM.

However, the encrypted bit b∗ from the forgery is not necessarily identical to bM∗
(since this property cannot be easily enforced in a structure-preserving way). As
a consequence, we cannot force the adversary to respect the additional depen-
dencies in his forgery. Yet, we will show that we can force the adversary to reuse
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one Z = X ·Mi from a signing query. This leads to requirement (b) in verification
forgeries, and requirement (a) will finally be enforced by a regular GS proof in
signatures (that GS proof is simulated in all intermediate steps).

This line of reasoning borrows from Chen and Wee’s [20] general idea of es-
tablishing tight security through a repeated partitioning of the message space
(resp. identity space in an identity-based encryption scheme) into two sets,
each time adjusting signatures for messages from one of the two sets in the
process. However, their approach, as well as other follow-up approaches (e.g.,
[14,38,7,30,25]) embeds the partitioning already in the scheme (in the sense that
the scheme must already contain all potentially possible “partitioning rules,”
for instance according to each message bit). Since these rules in the mentioned
schemes are based on the message bits (or an algebraic predicate on the discrete
logarithm of the message [30]), this would not lead to a structure-preserving
scheme.

Instead, we adapt the “adaptive partitioning” (AP) technique of Hofheinz [31],
in which the partitioning is performed dynamically, through an encrypted parti-
tioning bit embedded in signatures. This allows us to separate partitioning from
the way messages are bound to signatures in the scheme. We thus bind a message
through an authentication tag, as mentioned above, that is more algebraic and
admits structure-preserving GS proofs. The encrypted partitioning bit is fixed
to a constant in the real scheme and turned into a variable only in the security
proof where non-generic computations are allowed.

In adapting AP to our setting, we face two difficulties, however: the parti-
tioning used in AP is bit-based (which is incompatible with our requirement of a
structure-preserving scheme), and its complexity leads to comparatively complex
schemes. More specifically, AP leads to several expensive “OR”-proofs in cipher-
texts, resp. signatures. As a consequence, the (encryption) schemes in [31] are
not competitive in complexity to non-tightly secure schemes, even when taking
into account a potentially larger security level for non-tightly secure schemes. On
the other hand, our signature schemes are carefully designed so that GS proofs
in signatures are done only for less costly linear relations (except for one crucial
“OR”-proof). We further use optimization techniques of Escala and Groth [24]
to reduce the size of GS proofs in our instantiation.

Moreover, AP crucially relies on the bit representation of messages (resp. en-
cryption tags that are hash values in [31]). In particular, the encryption scheme
from [31] is not structure-preserving. For our purposes, we thus have to modify
this technique to work with group elements instead of hash values. This leads
to a very simple and clean structure-preserving signature scheme whose security
proof still crucially uses the bit representation of group elements. We find this
property surprising and conceptually interesting.

Open Problems. While being compact and tightly secure, our concrete SPS
schemes contain a moderate number of group elements in a signature. We leave
as an open problem to design more compact SPSes with even smaller number
of group elements. Another interesting open problem is to decrease the security
loss from O(λ) to O(1).
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Organization. The rest of the paper is organized as follows. After introducing
notations, security definitions, and building blocks in Section 2, we present our
generic construction and its security proof in Section 3. We discuss an instanti-
ation over asymmetric bilinear groups in Section 4.

2 Preliminaries

2.1 Notations

For an integer p, define Zp as the residual ring Z/pZ. If B is a set, then x←$ B
denotes the process of sampling an element x from set B uniformly at random. All
our algorithms are probabilistic polynomial time (p.p.t. for short) unless stated
otherwise. If A is an algorithm, then a ←$ A(b) denotes the random variable,
which is defined as the output of A on input b. To make the randomness explicit,
we use the notation a← A(b; ρ) meaning that the algorithm is executed on input
b and randomness ρ. Note that A’s execution is now deterministic.

We say that a function ε is negligible in security parameter λ if, for all
constant c > 0 and all sufficiently large λ, ν(λ) < λ−c holds.

2.2 Pairing Groups and Diffie-Hellman Assumptions

Let PGGen be an algorithm that on input security parameter λ returns a descrip-
tion par = (p,G1,G2,GT , e, G1, G2) of pairing groups, where p is a poly(λ)-bit
prime, G1, G2, GT are cyclic groups of order p, G1 and G2 are generators of G1

and G2, respectively, and e : G1 × G2 → GT is an efficiently computable non-
degenerate bilinear map. GT := e(G1, G2) is a generator in GT . Pairing group
par is said to be a Type-III asymmetric pairing group if G1 6= G2, and there
does not exist an efficiently computable isomorphism between G1 and G2. When
distinction between source groups is not important, we use G and G to represent
G1 and/or G2, and their default generator, respectively. When a group element
is given to an algorithm as an input, its membership to the intended group must
be tested, but we make it implicit throughout the paper for conciseness of the
description.

Our instantiation in Section 4 is based on the following standard assumption
over asymmetric pairing groups.

Definition 1 (Decisional Diffie-Hellman assumption). The decisional
Diffie-Hellman assumption (DDHs) holds relative to PGGen in group Gs (s ∈
{1, 2, T}) if, for all p.p.t. adversaries A, advantage function

AdvddhsPGGen(A) := |Pr[A(par, G
a
s , G

b
s, G

ab
s ) = 1]− Pr[A(par, Gas , Gbs, Gcs) = 1]|

is negligible in security parameter λ, where the probability is taken over par ←$

PGGen(1λ), a, b, c ←$ Zp. The SXDH assumption holds relative to PGGen if for
all p.p.t. adversaries A, advantage function AdvsxdhPGGen(A) := max(Advddh1PGGen(A),
Advddh2PGGen(A)) is negligible.
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2.3 Structure-preserving Signatures

Definition 2 (Structure-preserving signature scheme). An SPS scheme
SPS with respect to PGGen is a tuple of algorithms SPS = (Gen,Sign,Ver):
– The key generation algorithm Gen(par) takes par ←$ PGGen(1λ) as input

and returns a public/secret key pair, (pk, sk), where pk ∈ Gnpk for some
npk ∈ poly(λ). Message space M := Gn for some constant n ∈ poly(λ) is
implicitly determined by pk.

– The signing algorithm Sign(sk,M) returns a signature σ ∈ Gnσ for some
nσ ∈ poly(λ).

– The deterministic verification algorithm Ver(pk,M, σ) solely evaluates pair-
ing product equations and returns 1 (accept) or 0 (reject).

(Perfect correctness.) For all (pk, sk) ←$ Gen(par), all messages M ∈ M,
and all σ ←$ Sign(sk,M), Ver(pk,M, σ) = 1 holds.

Though our final goal is to achieve security against adaptive chosen-message
attacks, we use the following slightly relaxed notion in the generic construction.

Definition 3 (UF-XCMA Security). A signature scheme SPS is unforgeable
against auxiliary chosen-message attacks (UF-XCMA-secure) for relation R if,
for all p.p.t. adversaries A, advantage function

Advuf-xcma
SPS (A) := Pr

[
Ver(M∗, σ∗) = 1

∣∣∣∣ par←$ PGGen(1λ);
(M∗, σ∗)←$ AInit,Sign(·,·)(par)

]
is negligible in security parameter λ where
– Init runs (pk, sk)←$ Gen(par), initializes QM with ∅, and returns pk to A,
– Sign(M,m) checks if R(M,m) = 1, runs σ ←$ Sign(sk,M), adds the M to
QM, and returns σ to A, and

– Ver(M∗, σ∗) returns 1 if M∗ /∈ QM and 1 = Ver(pk,M∗, σ∗), or returns 0,
otherwise.

As we are concerned with structure-preserving schemes, we fix R(M,m) to
a relation that returns 1 iff M = Gm where G is a generator in a group. This
relation is sufficient for our purpose, that is, combining with a partial one-time
signature scheme described below. By letting R be a constant function R = 1,
we obtain a standard notion of unforgeability against chosen-message attacks
(UF-CMA-secure) and denote its advantage function by Advuf-cma

SPS (A). UF-XCMA
is slightly stronger than unforgeability against extended random message attacks
(UF-XRMA) introduced by Abe et al.[2]. While UF-XRMA is relative to a pre-
liminary fixed algorithm that chooses messages to sign, it is the adversary that
selects messages in UF-XCMA. Thus, UF-XCMA implies UF-XRMA.

From UF-XCMA to UF-CMA. In this paper, we focus on constructing UF-XCMA
secure structure-preserving signature and then transform it to a UF-CMA secure
SPS by using a partial one-time signature (POS) scheme [12,2] in the standard
way [2,35]. POS is also known as two-tier signature schemes and is a variation
of one-time signatures where parts of keys are updated after every signing. Here
we recall useful definitions of POS and the transform.
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Definition 4 (Partial One-Time Signature Scheme [12]). A partial one-
time signature scheme POS with respect to PGGen is a set of polynomial-time
algorithms (G,Update,S,V) that, for par←$ PGGen(1λ):

– G(par) generates a long-term public key pk and secret key sk , and implicitly
defines the associated message space Mo and the one-time public key space
Kopk .

– Update(par) takes par as input, and outputs a one-time key pair (opk , osk).
– S(sk , osk ,M) outputs a signature σ on message M based on sk and osk .
– V(pk , opk ,M, σ) outputs 1 for acceptance or 0 for rejection.

(Perfect correctness.) For all (pk, sk)←$ G(par), all (opk , osk)←$ Update(par),
all messages M ∈M, and all σ ←$ S(sk, osk ,M), V(pk, opk ,M, σ) = 1 holds.

POS is structure-preserving if pk , opk , M, and σ consist only elements of G,
and V evaluates group membership testing and pairing product equations.

We require POS to be unforgeable against one-time non-adaptive chosen-
message attacks (OT-nCMA), which is defined as follows.

Definition 5 (OT-nCMA Security). A POS scheme is unforgeable against
one-time non-adaptive chosen-message attacks (OT-nCMA) if for any algorithm
A, the following advantage function Advncma

POS (A) is negligible in λ,

Advncma
POS (A) := Pr

[
Ver(opk∗,M∗, σ∗) = 1

∣∣∣∣ par←$ PGGen(1λ);
(opk∗, σ∗,M∗)←$ AInit,Sign(·)(par)

]
where
– Init runs (pk, sk)←$ G(par), initializes QM with ∅, and returns pk to A.
– Sign(M) runs (opk , osk) ←$ Update(par) and σ ←$ S(sk , osk ,M), and then

returns (opk , σ) to A, and records (opk ,M, σ) to the list QM.
– Ver(opk∗, σ∗,M∗) returns 1 if there exists (opk∗,M, σ) ∈ QM and M∗ 6= M

and 1 = V(pk , opk∗,M∗, σ∗), or returns 0, otherwise.

Let POS := (G,Update,S,V) be a structure-preserving partially one-time
signature scheme with message space M and one-time public key space Kopk ,
and xSPS := (Gen′,Sign′,Ver′) be a structure-preserving signature scheme with
message space Kopk . The transformed UF-CMA secure SPS scheme, SPS :=
(Gen,Sign,Ver), is defined as follows.

Gen(par):
(pk1, sk1)←$ G(par)
(pk2, sk2)←$ Gen′(par)
pk := (pk1, pk2)
sk := (sk1, sk2)
Return (pk, sk)

Sign(sk,M):
(opk , osk)←$ Update(par)
σ1 ←$ S(sk1, osk ,M)
σ2 ←$ Sign′(sk2, opk)
Return (opk , σ1, σ2)

Ver(pk,M, σ):
Parse σ = (opk , σ1, σ2)
If V(pk1, opk ,M, σ1) = 1
∧Ver′(pk2, opk , σ2) = 1
then return 1
Else return 0

The correctness and structure-preserving property of SPS are implied by
those of POS and xSPS in a straightforward way. The following theorem ([2,
Theorem 3]) states UF-CMA security of SPS.
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Theorem 1. If POS is OT-nCMA secure and xSPS is UF-XRMA secure, then
SPS defined as above is UF-CMA secure. In particular, for all adversaries A
against UF-CMA security of SPS, there exist adversaries B against OT-nCMA
security of POS and C against UF-XRMA security of xSPS with running times
T(A) ≈ T(B) ≈ T(C) and Advuf-cma

SPS (A) ≤ Advncma
POS (B) + Advuf-xcma

xSPS (C).

2.4 Public-Key Encryption Schemes

Definition 6 (Public-key encryption). A Public-Key Encryption scheme con-
sists of algorithms PKE := (GenP,Enc,Dec):
– The key generation algorithm GenP(par) takes par ←$ PGGen(1λ) as input

and generates a pair of public and secret keys (pk, sk). Message spaceM is
implicitly defined by pk.

– The encryption algorithm Enc(pk,M) returns a ciphertext ct.
– The deterministic decryption algorithm Dec(sk, ct) returns a message M.

(Perfect correctness.) For all par ←$ PGGen(1λ), (pk, sk) ←$ GenP(par),
messages M ∈M, and ct←$ Enc(pk,M), Dec(sk, ct) = M holds.

Definition 7 (IND-mCPA Security [9]). A PKE scheme PKE is indistinguish-
able against multi-instance chosen-plaintext attack (IND-mCPA-secure) if for any
qe ≥ 0 and for all adversaries A with access to oracle Enc at most qe times the
following advantage function Advmcpa

PKE (A) is negligible,

Advmcpa
PKE (A) :=

∣∣∣∣Pr [b′ = b

∣∣∣∣par←$ PGGen(1λ); (pk, sk)←$ GenP(par);
b←$ {0, 1}; b′ ←$ AEnc(·,·)(pk)

]
− 1

2

∣∣∣∣ ,
where Enc(M0,M1) runs ct∗ ←$ Enc(pk,Mb), and returns ct∗ to A.

Some public-key encryption schemes, e.g., ElGamal encryption [22] and Lin-
ear encryption [16], are structure-preserving and satisfy IND-mCPA security with
tight reductions to compact assumptions such as DDH and the Decision Linear
assumption [16], respectively (cf. [32]).

2.5 The Groth-Sahai Proof System

We recall the Groth-Sahai proof system and its properties as a commit-and-prove
scheme. We follow definitions by Escala and Groth in [24] in a simplified form
that is sufficient for our purpose. For a given pairing group par ←$ PGGen(1λ),
the GS proof system is a non-interactive zero-knowledge proof (NIZK) system for
satisfiability of a set of equations over par. Let Lpar be a family of NP languages
defined over par. For a language L ∈ Lpar, let RL := {(x, ω) : x ∈ L and ω ∈
W (x)} be a witness relation, where W (x) is the set of witnesses for x ∈ L. As
our construction fixes the language in advance, it is sufficient for our purpose to
define the proof system to be specific to L as follows.

Definition 8 (The Groth-Sahai Proof System). The Groth-Sahai commit-
and-prove system for par ←$ PGGen(1λ) and L ∈ Lpar consists of p.p.t. algo-
rithms GS := (BG,Com,P,V) that:
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– BG(par) is a binding common reference string generation algorithm that out-
puts crs.

– Com(crs, ω; r) is a commitment algorithm that outputs a commitment c for
given witness ω with randomness r ← Rc and crs.

– P(crs, (x, c), (ω, r)) is a prover algorithm that returns a proof ρ on (x, ω) ∈
RL ∧ c = Com(crs, ω; r).

– V(crs, x, c, ρ) is a deterministic verification algorithm that returns 0 (reject)
or 1 (accept).

(Perfect correctness.) For all par ←$ PGGen(1λ), crs ←$ BG(par), (x, ω) ∈
RL, and r ∈ Rc, V(crs, x, c,P(crs, (x, c), (ω, r))) = 1 holds, where c← Com(crs,
ω; r).

When witness ω consists of several objects and only part of them are committed
to c, commitments for the remaining part of the witness is prepared by P and
included in the proof.

The following properties of the GS proof system are used in this paper. For
fully formal treatment, we refer to [24].

Definition 9 (Security properties of the Groth-Sahai proof system).
The following properties hold for all par←$ PGGen(1λ),
– Perfect Soundness. For all crs ∈ BG(par), all x /∈ L, all c, and all ρ, we

have V(crs, x, c, ρ) = 0.
– CRS Indistinguishability. There exists a algorithm HG, called the hiding

common reference string generator that, for all adversaries A, the following
advantage function is negligible,

AdvcrsindGS (A) :=

∣∣∣∣∣∣Pr
b′ = b

∣∣∣∣∣∣
par←$ PGGen(1λ);
crs0 ←$ BG(par); (crs1, trap)←$ HG(par);
b←$ {0, 1}; b′ ←$ A(crsb)

− 1

2

∣∣∣∣∣∣ .
– Dual-mode Commitment. For all crs ∈ BG(par), Com is perfectly bind-

ing. Namely, for all w0 6= w1, we have {c0 ← Com(crs, w0; r0)}
⋂
{c1 ←

Com(crs, w1; r1)} = ∅ (where the sets are taken over r0, r1 ∈ Rc).
For all (crs, trap) ∈ HG(par), Com is perfectly hiding. Namely, for all

ω0 6= ω1, the following two distributions are identical: {c0 ← Com(crs, ω0; r0)}
and {c1 ← Com(crs, ω1; r1)}, where r0, r1 ∈ Rc.

– Perfect Zero-knowledge. There exists a simulator Sim := (SimCom,SimP)
such that, for all (crs, trap) ∈ HG(par), and (x, ω) ∈ RL, the following two
distributions are identical:

{(c, ρ) | r ←$ Rc; c← Com(crs, ω; r); ρ←$ P(crs, (x, c), (ω, r))}, and
{(c′, ρ′) | (c′, γ)←$ SimCom(crs, trap); ρ′ ←$ SimP(crs, trap, γ)}.

Since the above distributions are identical, it also holds for reused commit-
ment and multiple adaptively chosen statements x that involve the same wit-
ness and commitment. This implies perfect witness indistinguishability: for
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ω and ω′ with (x, ω) ∈ RL and (x, ω′) ∈ RL the following two distributions
are identical:

{(c, ρ) | r ←$ Rc; c← Com(crs, ω; r); ρ←$ P(crs, x, (ω, r))}, and
{(c′, ρ′) | r′ ←$ Rc; c′ ← Com(crs, ω′; r′); ρ′ ←$ P(crs, x, (ω′, r′))}.

The GS proof system is structure-preserving for proving satisfiability of linear
multi-scalar multiplication equations (MSEs) and a non-linear quadratic equa-
tion (QE). Regarding security, it is known that its CRS indistinguishability is
tightly reduced to the SXDH assumption (cf. Theorem 5).

3 Generic Construction

In this section, we focus on a generic construction of a UF-XCMA-secure SPS
scheme, xSPS. By coupling it with an off-the-shelf structure-preserving POS
scheme, we obtain a UF-CMA-secure SPS scheme via Theorem 1.

3.1 Scheme Description

Let par ←$ PGGen(1λ) be a set of system parameters. We represent a source
group and its generator by G and G, respectively. Let PKE := (GenP,Enc,Dec)
be a PKE scheme, and GS := (BG,Com,P,V) be the Groth-Sahai proof system
for languages L0 and L1 defined below. Our SPS scheme xSPS := (Gen,Sign,Ver)
is defined in Figure 1.

The correctness of xSPS is implied by that of the Groth-Sahai proof system,
and the structure-preserving property is implied by that of the PKE scheme and
the Groth-Sahai proof system.

Remark 1 (Role of proof ρ0). The main role is to bind a message into a signature.
In the real scheme, it is just a proof of the signing key x0 in ct0 (and c0) since
x1 is fixed to 0. Yet the proof is bound to message M through randomness r1
used for committing to x1. In the security proof, it can be seen as an encrypted
one-time message authentication code (MAC) of M and forces the adversary to
reuse given signatures since, intuitively, the adversary cannot generate a new
MAC for hidden keys x0 and x1.

Remark 2 (Role of proof ρ1). ρ1 is used for partitioning. It proves that two
ciphertexts ct0 and ct1 are consistent (namely, the same plaintext is encrypted)
or the plaintext in the ciphertext ct2 is committed to in c2. In the real scheme,
ρ1 proves the consistency of double encryption ct0 and ct1. In the security proof,
ρ1 enables us to achieve two (seemingly incompatible) functionalities under a
binding mode CRS. One is forcing the adversary to use consistent ciphertexts in
its forgery. A simulator guesses z∗2 in the forgery and makes x2 6= z∗2 hold. The
other is letting the simulator use inconsistent ciphertexts in a special situation
achieved using a partitioning technique (see Section 3.2 for more details). In that
situation, the simulator can make x2 = z2 hold and use a real witness of ρ0.
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Gen(par):
crs0, crs1 ←$ BG(par); For i = 0, 1, 2 : (pki, ski)←$ GenP(par)
x0 ←$ Zp; x1 := x2 := 0 ∈ Zp; r0, r1, r2, t0, t1, t2, t3 ←$ Rc
c0 ← Com(crs0, x0; r0); c1 ← Com(crs0, x1; r1); c2 ← Com(crs1, x2; r2)
k0 ← Com(crs1, sk0; t0); k1 ← Com(crs1, sk1; t1); k2 ← Com(crs1, sk2; t2)
k3 ← Com(crs0, sk0; t3)
pk := (crs0, crs1, (pki, ci)0≤i≤2, (ki)0≤i≤3); sk := ((ski, xi, ri)0≤i≤2, (ti)0≤i≤3))
Return (pk, sk)

Sign(sk,M ∈ G):
z0 := z1 := x0; z2 := 0; For i = 0, 1, 2 : cti ←$ Enc(pki, G

zi)
ins0 := (pk0, ct0,M); cv0 := (c0, c1, k3);w0 := (x0, x1, sk0);R0 := (r0, r1, t3)
ins1 := (pki, cti)0≤i≤2; cv1 := (c2, (ki)0≤i≤2); w1 := (x2, (ski)0≤i≤2)
R1 := (r2, (ti)0≤i≤2)
ρ0 ←$ P(crs0, (ins0, cv0), (w0, R0)) //Prove that ins0 ∈ L0 and w0 is committed to in cv0

ρ1 ←$ P(crs1, (ins1, cv1), (w1, R1)) //Prove that ins1 ∈ L1 and w1 is committed to in cv1

Return σ := (ct0, ct1, ct2, ρ0, ρ1)

Ver(pk,M, σ):
Parse σ := ((cti)0≤i≤2, ρ0, ρ1)
ins0 := (pk0, ct0,M); cv0 := (c0, c1, k3); ins1 := (pki, cti)0≤i≤2; cv1 := (c2, k0, k1, k2)
Return (V(crs0, ins0, cv0, ρ0) ∧ V(crs1, ins1, cv1, ρ1))

Languages:
L0 := { (pk0, ct0,M) | ∃x0, x1 ∈ Zp, sk0 ∈ SK s.t.

Gz0 = Gx0Mx1 ∧Gz0 = Dec(sk0, ct0) ∧ (pk0, sk0) ∈ GenP(par)}
L1 := { (pki, cti)0≤i≤2 | ∃x2 ∈ Zp, sk0, sk1, sk2 ∈ SK s.t.

((z0 − z1)(x2 − z2) = 0) ∧2
i=0 (G

zi = Dec(ski, cti) ∧ (pki, ski) ∈ GenP(par))}

Fig. 1: Our signature scheme xSPS.

Remark 3 (On the range of z2). The range of z2 is Zp since z2 is the plaintext
of ct2. Readers might think we should bind z2 on {0, 1} by using a Groth-
Sahai proof since the simulator in the security proof guesses z∗2 in the forgery
as explained in the previous remark. This is not the case. In fact, even if an
adversary uses z∗2 such that z∗2 /∈ {0, 1}, it has no advantage because the simualtor
uses x2 such that x2 ∈ {0, 1} in the security proof. Value z2 affects ρ1. However,
to make a valid forgery by using x2 = z∗2 as a witness in ρ1, adversaries have
no choice but to use z∗2 ∈ {0, 1} as long as x2 ∈ {0, 1}. Accordingly, we do not
need to bind z2 on {0, 1}. This intuition is implemented formally in the proof of
Lemma 14.

Remark 4 (On verifying correctness of pk). Verifying correctness of commitment
ki with respect to ski is not necessary for achieving UF-CMA security where keys
are generated honestly by definition. But it may have to be verified (once for
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all at the time of publishing pk) if the scheme is used in an application where
signers can be corrupted at the time of key generation.

Remark 5 (On XCMA and CMA security of xSPS). We prove that xSPS is
UF-XCMA for efficiency though, in fact, we can prove xSPS is UF-CMA. When
we prove UF-CMA, a simulator does not have exponents of queried messages,
but the simulator must generate proofs ρ0 for x1 6= 0 under the binding mode
crs0 in the security proof (see Section 3.3 for details). This is achievable if ρ0
is generated as a proof of “pairing product equations (PPEs)” (in both the real
and simulated schemes). If the simulator has exponents, then ρ0 is generated as
a proof of “(linear) multiscalar multiplication equations”, which is more efficient
than that of PPEs. We not only upgrade UF-XCMA to UF-CMA but also achieve
an SPS scheme for vector messages by combining our xSPS with (partial) one-
time signature at very low cost [2]. Thus, we select the UF-XCMA-secure scheme.
See also Section 4 for efficiency.

3.2 Overview of Security Proof

Our main goal is to implement an additional check of A’s forgery σ∗ := (ct∗0, ct
∗
1,

ct∗2, ρ
∗
0, ρ
∗
1). We not only verify Groth-Sahai proofs, but also check Z∗0 ∈ {Gx0 ·

Mx1
i }

qs
i=1 for Z∗0 ← Dec(sk0, ct

∗
0). That is, we will force A to reuse an Mi in

queried messages for Z∗0 (we will set x1 := 1 to achieve this during the game
transitions). With crs0 for ρ∗0 being in the perfect soundness mode, A is forced
to fulfill Gz

∗
0 = Gx0 ·M∗. This leads to a contradiction and A never wins.

To change the success forgery condition, we replace the value z0 := x0 in
signatures of the signing oracle and the additional forgery check with a value
z0 := RFk(µ|k) where RFk : {0, 1}k → Zp is truly random, and µ|k is the k-bit
prefix of a random binary encoding µ ∈ {0, 1}L of a signed message M ∈ G,
where L is the smallest even integer that is equal to or larger than the bit size
of p. Note that encoding µ appears only in the security proof (not in the real
scheme). We start with RF0(ε) := x0 for the empty string ε. We will introduce
more dependencies of z0 on x2 and z∗2 in ct∗2.

To increase the entropy of z0 (this will make z0 unpredictable for M∗ and
force A to reuse z0 from the signing oracle) and eventually set z0 := RFL(µ),
we replace z0 := RFk(µ|k) with z0 := RFk+1(µ|k+1) step by step. At each step,
we partition the signature space into two halves according to the (k + 1)-th bit
of µ. The partitioning bit is dynamically changed by z∗2 hidden in ct∗2. At the
beginning of the game, the simulator guesses the bit z∗2 used in a forgery and
aborts if the guess is incorrect (z∗2 is accessible with the decryption key sk2).
Signature queries are created with a case distinction depending on the (k+1)-th
bit µ[k+ 1] of µ. If µ[k+ 1] is equal to the guessed z∗2 from the forgery, nothing
is changed in the signing process. However, if µ[k + 1] is different from z∗2 , we
use another independent random function RF′k and set z1 := RF′k(µ|k) in the
generated signature (i.e., more randomness is supplied).

Note that at this point, we want to change the encrypted values z0, z1 in the
generated signature, while being able to decrypt the value z∗0 from the forgery
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(to implement the additional check mentioned above). Intuitively, we can do so
since the proved statement (z0− z1)(x2− z2) = 0 guarantees a consistent double
encryption with z0 = z1 precisely when x2 6= z2. Hence, if we initially set up
x2 as 1− z∗2 (using our guess for z∗2), it is possible for the simulator to generate
inconsistent double encryptions (with z0 6= z1) whenever µ[k+1] = z2 6= z∗2 . On
the other hand, a decryption key for either z∗0 or z∗1 can be used to implement
the final check on the adversary’s forgery (since z∗0 = z∗1). These observations
enable a Naor-Yung-like double encryption argument to modify the z0, z1 values
in all generated signatures with µ[k + 1] 6= z∗2 .

After the above transition is iterated, all signatures are generated with (or
checked for) z0 := z1 := RFL(µ) for a truly random function RFL. At this
point, we can replace z0 and z1 with z0 := z1 := RFL(µ) +m since RFL(µ) is
an independently and uniformly random element.

We can replace z0 := z1 := RFL(µ) +m with z0 := z1 := x+m in a similar
way to the case from RF0(ε) = x to RFL(µ) (see the proof for details). Thus,
we can force A to reuse an Mi in queried messages for Z∗0 , as we explained at
the beginning of this section.

3.3 Security Proof

Theorem 2. If PKE is IND-mCPA-secure and GS is a Groth-Sahai proof sys-
tem, then xSPS (defined in Section 3.1) is UF-XCMA-secure. Particularly, for
all adversaries A, there exist adversaries B1 and B2 with running time T(B1) ≈
T(A) ≈ T(B2) and

Advuf-xcma
xSPS (A) ≤ (8L+ 6)AdvcrsindGS (B1) + 12L · Advmcpa

PKE (B2) +
4Lqs
p

,

where L is the smallest even integer that is equal or larger than the bit size of p.

Proof. Let A be an adversary against UF-XCMA security of xSPS. We prove
Theorem 2 via Games G0-G3 defined in Figure 2. We use AdvGi to denote the
advantage of A in Game Gi.

G0 is the real attack game. We have lemmata below.

Lemma 1. AdvG0 = Advuf-cma
xSPS (A).

Lemma 2 (G0 to G1). There exist adversaries B1 against CRS indistinguisha-
bility of GS and B2 against IND-mCPA security of PKE with running times
T(A) ≈ T(B1) ≈ T(B2) and AdvG0 ≤ AdvG1 + (4L + 3) · AdvcrsindGS (B1) +
6L · Advmcpa

PKE (B2) + 2Lqs
p .

We prove Lemma 2 in Section 3.4.

Lemma 3 (G1 to G2). AdvG1 = AdvG2.

Proof. The changes in G2 are:



16 M. Abe, D. Hofheinz, R. Nishimaki, M. Ohkubo, J. Pan

Init: // G1-2 , G2-3
crs0 ←$ BG(par)

(crs0, trap0)←$ HG(par)

crs1 ←$ BG(par)
For j = 0, 1, 2 : (pkj , skj)←$ GenP(par)

x0 ←$ Zp; x1 := 0 ∈ Zp; x1 := 1
x2 := 0 ∈ Zp
For j = 0, 1:

rj ←$ Rc; cj ← Com(crs0, xj ; rj)

(cj , γj)←$ SimCom(crs0, trap0)

r2 ←$ Rc; c2 ← Com(crs1, x2; r2)
For j = 0, 1, 2:

tj ←$ Rc, kj ← Com(crs1, skj ; tj)

t3 ←$ Rc, k3 ← Com(crs0, sk0; t3)

(k3, γ2)←$ SimCom(crs0, trap0)

pk := (crs0, crs1, (pkj , cj)0≤j≤2, (kj)0≤j≤3)
sk := ((skj , xj , rj)0≤j≤2, (tj)0≤j≤3))
Return pk

Ver(M∗, σ∗) : // G1-3
Parse σ∗ := ((ct∗j )0≤j≤2, ρ

∗
0, ρ
∗
1)

Z∗0 ← Dec(sk0, ct
∗
0)

If Z∗0 /∈ {Z0,j}qsj=1 then return 0

Return (M∗ /∈ QM) ∧ (Ver(pk,M∗, σ∗) = 1)

Sign(Mi ∈ G,mi ∈ Zp): // G1-2 , G2 ,

G3

// (Mi,mi) is the i-th query (1 ≤ i ≤ qs)
If Mi 6= Gmi

1 then return ⊥
z0,i := z1,i := x0; z2,i := 0

z0,i := z1,i := F(Mi)

z0,i := z1,i := F(Mi) +mi

z0,i := z1,i := x0 +mi

For j = 0, 1, 2:
Zj,i := G

zj,i
1 ; ctj ←$ Enc(pkj , Zj,i)

ins0 := (pk0, ct0,M); cv0 := (c0, c1, k3)
w0 := (x0, x1, sk0);R0 := (r0, r1, t3)
ins1 := (pki, cti)0≤i≤2

cv1 := (c2, (ki)0≤i≤2)
w1 := (x2, (ski)0≤i≤2)
R1 := (r2, (ti)0≤i≤2)
// Prove ins0 ∈ L0

ρ0 ←$ P(crs0, (ins0, cv0), (w0, R0))

ρ0 ←$ SimP(crs0, trap0, ins0, γ0, γ1, γ2)

// Prove ins1 ∈ L1

ρ1 ←$ P(crs1, (ins1, cv1), (w1, R1))
Return σ := ((ctj)0≤j≤2, ρ0, ρ1)

Fig. 2: Games G0-G3 for the proof of Theorem 2. Boxed code is only executed in the
games marked in the same box style at the top right of every procedure. Non-boxed
code is always run. F : G → Zp is a truly random function. L0 and L1 are languages
defined in Section 3.1.

– Switching x1 from 0 to 1: since c1 is already simulated and is independent
of x1 in G1, pk is distributed identically in both G1 and G2.

– Switching Z0 and Z1 from G
F(Mj)
1 to GF(Mj)

1 ·Mj : since F is a truly random
function, {GF(Mj)

1 }qsj=1 and {GF(Mj)
1 ·Mj}qsj=1 are distributed identically.

Thus, games G1 and G2 are identical.

Lemma 4 (G2 to G3). There exist adversaries B1 against CRS indistinguisha-
bility of GS and B2 against IND-mCPA security of PKE with running times
T(A) ≈ T(B1) ≈ T(B2) and AdvG2 ≤ AdvG3 + (4L + 3) · AdvcrsindGS (B1) +
6L · Advmcpa

PKE (B2) + 2Lqs
p .

After switching z0,i and z1,i from F(Mi) to F(Mi) + mi in G2, G3 switches
them from F(Mi) +mi to x0 +mi, which is exactly the step from G0 to G1, but
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in a reverse direction. The proof of Lemma 4 is similar to that of Lemma 2. The
details are found in the full version of this paper.

Lemma 5 (G3). AdvG3 = 0.

Proof. In G3, crs0 ←$ BG(par) is in the binding mode. By the perfect soundness,
Z∗0 = Gx0

1 · M∗ if V(crs0, (pk0, ct
∗
0,M

∗), (c0, c1, k3), ρ
∗
0) = 1. Since M∗ /∈ QM,

Z∗0 /∈ {Z0,j = G
F(Mj)
1 ·Mj}qsj=1 always holds and Ver(M∗, σ∗) outputs 0.

Summarizing Lemmata 1-5, we have Theorem 2.

3.4 From G0 to G1: Proof of Lemma 2

In this section, we prove Lemma 2. The proof proceeds via Games H0-H3 and
H4,0-H4,L defined in Figure 4 and Figure 3 gives an overview of the game tran-
sitions. The advantage of A in Game Hi is denoted by AdvHi.

Game crs0 crs1 z0,i = z1,i ρ0 Additional forgery check Reduction
H0 B B x0 real - ≡ G0

H1 B B x0 real Z∗0 ∈ {G
x0}qsi=1 Soundness

H2 H B x0 real Z∗0 ∈ {G
x0}qsi=1 CRS IND

H3 H B x0 sim Z∗0 ∈ {G
x0}qsi=1 ZK

H4,0 H H RF0(ε) := x0 sim Z∗0 ∈ {G
x0}qsi=1 CRS IND

H4,k H H RFk(µi|k) sim Z∗k mod 2 ∈ {G
RFk(µi|k)}qsi=1 Loop

H4,k+1 H H RFk+1(µi|k+1) sim Z∗(k+1) mod 2 ∈ {G
RFk+1(µi|k+1)}qsi=1

H4,L H H RFL(µi|L) sim Z∗0 ∈ {G
RFL(µi|L)}qsi=1 Loop END

G1 H B F(Mi) := RFL(µi|L) sim Z∗0 ∈ {G
RFL(µi|L)}qsi=1 CRS IND

Fig. 3: Overview of transitions in Lemma 2. In the “crs0” and “crs1” columns,
“B” (resp. “H”) means that commitments are perfectly binding and proofs are per-
fectly sound (resp. commitments are perfectly hiding and proofs are perfectly zero-
knowledge). In the “ρ0” column, “real” (resp. “sim”) means that proofs are generated
by using the real witness w0 (resp. the trapdoor trap). In the “reduction” column,
we write what kind of security is used. “Soundness” (resp. “ZK”) means the perfect
soundness (resp. zero-knowledge) of the Groth-Sahai proof system.

We define H0 := G0 and have lemmata as follows.

Lemma 6 (H0). AdvH0 = AdvG0.

Lemma 7 (H0 to H1). AdvH1 = AdvH0.

Proof. In H1, crs0 ←$ BG(par) is in the binding mode and the GS proof for L0

is perfectly sound. Then Z∗0 = Gx0 holds if ρ0 is accepted. Thus, H1 and H0 are
identical.
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Init: // H2-(4,L) , H3-(4,L) , H4,(0-L)

crs0 ←$ BG(par)

(crs0, trap0)←$ HG(par)

crs1 ←$ BG(par)

(crs1, trap1)←$ HG(par)

For j = 0, 1, 2 : (pkj , skj)←$ GenP(par)
x0 ←$ Zp; x1 := 0 ∈ Zp; x2 := 0 ∈ Zp
For j = 0, 1:

rj ←$ Rc; cj ← Com(crs0, xj ; rj)

(cj , γj)←$ SimCom(crs0, trap0)

r2 ←$ Rc; c2 ← Com(crs1, x2; r2)
For j = 0, 1, 2:

tj ←$ Rc, kj ← Com(crs1, skj ; tj)

t3 ←$ Rc, k3 ← Com(crs0, sk0; t3)

(k3, γ2)←$ SimCom(crs0, trap0)

pk := (crs0, crs1, (pkj , cj)0≤j≤2, (kj)0≤j≤3)
sk := ((skj , xj , rj)0≤j≤2, (tj)0≤j≤3))
Return pk

Sign(Mi,mi): // H3-(4,L) , H4,k

//(Mi,mi) is the i-th query (1 ≤ i ≤ qs)
// µi is the binary encoding of Mi
If Mi 6= Gmi then return ⊥
z0,i := z1,i := x0; z2,i := 0

z0,i := z1,i := RFk(µi|k)
For j = 0, 1, 2:

Zj,i := Gzj,i ; ctj ←$ Enc(pkj , Zj,i)

ins0 := (pk0, ct0,M); cv0 := (c0, c1, k3)
w0 := (x0, x1, sk0);R0 := (r0, r1, t3)
ins1 := (pki, cti)0≤i≤2

cv1 := (c2, (ki)0≤i≤2)
w1 := (x2, (ski)0≤i≤2)
R1 := (r2, (ti)0≤i≤2)
// Prove ins0 ∈ L0

ρ0 ←$ P(crs0, (ins0, cv0), (w0, R0))

ρ0 ←$ SimP(crs0, trap0, ins0, γ0, γ1, γ2)

// Prove ins1 ∈ L1

ρ1 ←$ P(crs1, (ins1, cv1), (w1, R1))
Return σ := ((ctj)0≤j≤2, ρ0, ρ1)

Ver(M∗, σ∗) : // H1-3 , H4,k

Parse σ∗ := ((ct∗j )0≤j≤2, ρ
∗
0, ρ
∗
1)

Z∗0 ← Dec(sk0, ct
∗
0); If Z∗0 6= Gx0 then return 0

Z∗kmod 2 ← Dec(skkmod 2, ct
∗
kmod 2); If Z

∗
kmod 2 /∈ {GRFk(µj |k)}qsj=1 then return 0

Return (M∗ /∈ QM) ∧ (Ver(pk,M∗, σ∗) = 1)

Fig. 4: Games H0-H3 and H4,0-H4,L for the proof of Lemma 2. RFk : {0, 1}k → Zp is
a truly random function. µi|k is the first k bits of µi.

Lemma 8 (H1 to H2). There exists an adversary B against CRS indistinguisha-
bility with running time T(B) ≈ T(A) and AdvcrsindGS (B) ≥ |AdvH2 −AdvH1|.

Proof. Games H2 and H1 only differ in the distribution of crs0 returned by
Init, namely, crs0 is in the hiding or binding mode. From that, we obtain a
straightforward reduction to CRS indistinguishability of GS.

Lemma 9 (H2 to H3). AdvH3 = AdvH2.

Proof. Instead of using the prover algorithm P, H3 generates ρ0 and relevant
commitments with the zero-knowledge simulator, Sim. By the perfect zero-know-
ledge property, H3 = H2.

In H4,0, we syntactically define x0 by RF0(ε) which is a fixed random element
from Zp, and we have

Lemma 10 (H3 to H4,0). There exists an adversary B against CRS indistin-
guishability of GS with running time T(B) ≈ T(A) and AdvcrsindGS (B) ≥ |AdvH4,0−
AdvH3|.
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Proof. The only difference between H4,0 and H3 is the simulation of crs1, which
is generated by either BG (in H3) or HG (in H4,0) since RF0(ε) = x0 and µj |0 =
ε for all j ∈ [qs]. From that, we obtain a straightforward reduction to CRS
indistinguishability of GS.

Lemma 11 (H4,k to H4,k+1). There exist adversaries B1 against CRS indis-
tinguishability of GS and B2 against IND-mCPA security of PKE with running
times T(B1) ≈ T(B2) ≈ T(A) and AdvH4,k − AdvH4,k+1 ≤ 4AdvcrsindGS (B1) +
6Advmcpa

PKE (B2) + 2qs
p

Proof. We define the games between H4,k and H4,k+1 in Figure 5.

Lemma 12 (H4,k to H4,k,1). AdvH4,k,1 = AdvH4,k.

Proof. In H4,k,1, x2 is switched from 0 to 1 − β, where β ←$ {0, 1}. Though
x2 6= z2,i may happen in H4,k,1, still z0,i = z1,i holds and hence ins1 is in L1

in both games. Thus commitment c2 ←$ Com(crs1, x2) and proofs ρ1 distribute
identically in both games due to the witness indistinguishability under crs1
generated by HG(par). Thus, AdvH4,k,1 = AdvH4,k.

Lemma 13 (H4,k,1 to H4,k,2). There exists an adversary B against IND-mCPA
security of PKE with running time T(B) ≈ T(A) and Advmcpa

PKE (B) ≥ |AdvH4,k,2−
AdvH4,k,1|.

Proof. In H4,k,2, ct2 encrypts Z2,i = Gµi[k+1], instead of Z2,i = G0. Observe that
sk2 is used only in making commitment k2 and proof ρ1 with crs1 generated
by HG(par) in both games. Thus we can construct a straightforward reduction
to bound the difference by IND-mCPA security of PKE by using perfect zero-
knowledge simulator Sim for making ρ1 and relevant commitments.

Lemma 14 (H4,k,2 to H4,k,3). AdvH4,k,3 = 1
2AdvH4,k,2.

Proof. In H4,k,3, β and b are independent of adversary’s view and chosen uni-
formly at random. c2 perfectly hides β since crs1 is generated by HG(par) and the
simulation of Sign is independent of β. Thus, the event Abort is independent
of adversary’s success event and

Pr[Abort] = Pr[(z∗2 ∈ {0, 1}) ∧ z∗2 = 1− β] + Pr[z∗2 /∈ {0, 1} ∧ b = 0]

=
1

2
Pr[z∗2 ∈ {0, 1}] +

1

2
(1− Pr[z∗2 ∈ {0, 1}]) =

1

2
,

where z∗2 is the discrete log of Z∗2 based on G and independent of b. This only
halves A’s advantage. We note that, for all accepted forgeries in Games H4,k,3

to H4,k,8, the following equation holds:

z∗2 6= x2. (1)



20 M. Abe, D. Hofheinz, R. Nishimaki, M. Ohkubo, J. Pan

Init: // H4,k,(1-9)

(crs0, trap0)←$ HG(par); (crs1, trap1)←$ HG(par)
For j = 0, 1, 2 : (pkj , skj)←$ GenP(par)
x0 ←$ Zp; x1 := 0 ∈ Zp;
x2 := 0; β ←$ {0, 1}; x2 := 1− β
For j = 0, 1:

(cj , γj)←$ SimCom(crs0, trap0)

r2 ←$ Rc; c2 ← Com(crs1, x2; r2)
For j = 0, 1, 2:

tj ←$ Rc, kj ← Com(crs1, skj ; tj)

(k3, γ2)←$ SimCom(crs0, trap0)
pk := (crs0, crs1, (pkj , cj)0≤j≤2, (kj)0≤j≤3)
sk := ((skj , xj , rj)0≤j≤2, (tj)0≤j≤3))
Return pk

Sign(Mi,mi): // H4,k,(2-8) , H4,k,(4-10) ,

H4,k,(6-10)
// (Mi,mi) is the i-th query (1 ≤ i ≤ qs)
// µi is the binary encoding of Mi
If Mi 6= Gmi then return ⊥
z2,i := 0; z2,i := µi[k + 1] ∈ Zp

z0,i := RFk(µi|k); z0,i := RFk+1(µi|k+1)

z1,i := RFk(µi|k); z1,i := RFk+1(µi|k+1)

For j = 0, 1, 2:
Zj,i := Gzj,i ; ctj ←$ Enc(pkj , Zj,i)

ins0 := (pk0, ct0,M)
ins1 := (pki, cti)0≤i≤2

cv1 := (c2, (ki)0≤i≤2)
w1 := (x2, (ski)0≤i≤2)
R1 := (r2, (ti)0≤i≤2)
ρ0 ←$ SimP(crs0, trap0, ins0, γ0, γ1, γ2)
ρ1 ←$ P(crs1, (ins1, cv1), (w1, R1))

Return σ := ((ctj)0≤j≤2, ρ0, ρ1)

Ver(M∗, σ∗) : // H4,k,(1-4) , H4,k,(3-7) , H4,k,(5-6) , H4,k,(7-10)

Parse σ∗ := ((ct∗j )0≤j≤2, ρ
∗
0 , ρ
∗
1)

Z∗2 ← Dec(sk2, ct
∗
2); b←$ {0, 1}

Abort := (Z∗2 ∈ {1, G} ∧ Z
∗
2 = G1−β) ∨ (Z∗2 /∈ {1, G} ∧ b = 0)

If Abort = 1 then return 0

Z∗k mod 2 ← Dec(skk mod 2, ct
∗
k mod 2); If Z

∗
k mod 2 /∈ {G

RFk(µj |k)}qsj=1 then return 0

Z∗1−(k mod 2) ← Dec(sk1−(k mod 2), ct
∗
1−(k mod 2)); If Z

∗
1−(k mod 2) /∈ {G

RFk(µj |k)}qsj=1 then return 0

Z∗1−(k mod 2) ← Dec(sk1−(k mod 2), ct
∗
1−(k mod 2)); If Z

∗
1−(k mod 2) /∈ {G

RFk+1(µj |k+1)}qsj=1

then return 0

Return (M∗ /∈ QM) ∧ (Ver(pk,M∗, σ∗) = 1)

Fig. 5: Games H4,k,1-H4,k,10 for the proof of Lemma 11. µ[k] is the k-th bit of µ and
µ|k is the first k bits of µ. RFk+1 : {0, 1}k+1 → Zp is a truly random functions (defined
by Equation (2)).

In the following games, we define the random function:

RFk+1(µ|k+1) :=

{
RFk(µ|k)
RF′k(µ|k)

(µ[k + 1] = β)
(µ[k + 1] = 1− β) , (2)

where RFk and RF′k are two independent random functions from {0, 1}k → Zp.
By the definition, we note that RFk+1 : {0, 1}k+1 → Zp is a random function.

Lemma 15 (H4,k,3 to H4,k,4). There exists an adversary B against IND-mCPA
security of PKE with running time T(B) ≈ T(A) and Advmcpa

PKE (B) ≥ |AdvH4,k,4−
AdvH4,k,3|.
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Proof. In game H4,k,4, x2 = z2,i holds if µi[k + 1] 6= β; otherwise z0,i = z1,i. If
µi[k + 1] = β, then z0,i = z1,i = RFk(µi|k), otherwise x2 = z2,i = 1 − β by
Equation (2). Thus, in either case, (z0,i − z1,i)(x2 − z2,i) = 0 holds and ins1 ∈
L1. Another difference between AdvH4,k,3 and H4,k,4 is that ct1 is a ciphertext
either of Z1,i = GRFk+1(µi|k+1) (in H4,k,4) or Z1,i = GRFk(µi|k) (in AdvH4,k,3).
Moreover, sk1 is used only for making k1 and ρ1 with respect to crs1 generated
by HG(par) in both games. Thus, as well as Lemma 13, we can construct a
straightforward reduction to bound this difference by IND-mCPA-security of PKE
using Sim for simulating ρ1 and relevant commitments. Lemma 15 is concluded.

Lemma 16 (H4,k,4 to H4,k,5). There exists an adversary B against CRS in-
distinguishability of GS with running time T(B) ≈ T(A) and 2AdvcrsindGS (B) ≥
|AdvH4,k,5 −AdvH4,k,4|.

Proof. In H4,k,5, Ver rejects a forgery if Z∗1−(kmod 2) /∈ {G
RFk(µj |k)}qsj=1 instead

of using Z∗kmod 2. In these games, Equation (1) holds and we can switch crs1 to
be binding and argue that Z∗kmod 2 = Z∗1−(kmod 2) by z∗2 6= x2 and the perfect
soundness of GS for language L1. More formally, we prove that via the game
sequence in Figure 6. As shown in Lemma 15, ins1 is always in L1 and we can

Init: // H′1-2
(crs0, trap0)←$ HG(par)

(crs1, trap1)←$ HG(par); crs1 ←$ BG(par)

For j = 0, 1, 2 : (pkj , skj)←$ GenP(par)
x0 ←$ Zp; x1 := 0 ∈ Zp;
β ←$ {0, 1}; x2 := 1− β
For j = 0, 1: (cj , γj)←$ SimCom(crs0, trap0)
r2 ←$ Rc; c2 ← Com(crs1, x2; r2)
For j = 0, 1, 2:

tj ←$ Rc, kj ← Com(crs1, skj ; tj)

(k3, γ2)←$ SimCom(crs0, trap0)
pk := (crs0, crs1, (pkj , cj)0≤j≤2, (kj)0≤j≤3)
sk := ((skj , xj , rj)0≤j≤2, (tj)0≤j≤3))
Return pk

Ver(M∗, σ∗) : // H′1 , H′2-3
Parse σ∗ := ((ct∗j )0≤j≤2, ρ

∗
0 , ρ
∗
1)

Z∗2 ← Dec(sk2, ct
∗
2); b←$ {0, 1}

Abort := (Z∗2 = G1−β) ∨ (Z∗2 /∈ {1, G} ∧ b = 0)
If Abort = 1 then return 0
Z∗k mod 2 ← Dec(skk mod 2, ct

∗
k mod 2)

If Z∗k mod 2 /∈ {G
RFk(µj |k)}qsj=1 then return 0

Z∗1−(k mod 2) ← Dec(sk1−(k mod 2), ct
∗
1−(k mod 2))

If Z∗1−(k mod 2) /∈ {G
RFk(µj |k)}qsj=1 then return 0

Return (M∗ /∈ QM) ∧ (Ver(pk,M∗, σ∗) = 1)

Fig. 6: Games H′1-H′3 for the proof of Lemma 16.

construct a straightforward reduction to show that there exists an adversary B
against CRS indistinguishability of GS with

AdvcrsindGS (B) ≥ |AdvH′1 −AdvH4,k,4|.

Since crs1 is binding in both H′1 and H′2, by the perfect soundness of GS and
Equation (1), Z∗kmod 2 = Z∗1−(kmod 2) holds if ρ

∗
1 gets verified. Hence, the changes

between H′1 and H′2 are only conceptual, and thus AdvH′2 = AdvH′1. By the
CRS indistinguishability of GS, we have AdvcrsindGS (B) ≥ |AdvH′3 −AdvH′2|. It is
clear that AdvH′3 = AdvH4,k,5
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Lemma 17 (H4,k,5 to H4,k,6). There exists an adversary B against IND-mCPA
security of PKE with running time T(B) ≈ T(A) and Advmcpa

PKE (B) ≥ |AdvH4,k,6−
AdvH4,k,5|.

Proof. In H4,k,6, z0,i = z1,i is used as w1. It holds that (z0,i− z1,i)(x2− z2,i) = 0
and ins1 ∈ L1 as the case in H4,k,5. In the signing oracle of H4,k,6, ct0 encrypts
Z0,i = GRFk+1(µi|k+1) instead of Z0,i = GRFk(µi|k). Observe that sk0 is used
only in making k0 and ρ1 with crs1 generated by HG(par) in both games. We
thus can construct a straightforward reduction to bound the difference between
H4,k,5 and H4,k,6 by IND-mCPA security using zero-knowledge simulator Sim for
making ρ1 and relevant commitments.

Lemma 18 (H4,k,6 to H4,k,7). AdvH4,k,6 ≤ AdvH4,k,7 +
qs
p .

Proof. According to Equation (2), the difference between H4,k,6 and H4,k,7 is
that the accepted forgery with a Z∗1−(kmod 2) in either:

Z6 := {GRFk(µj |k)}qsj=1

= {GRFk(µj |k) : µj [k + 1] = β}qsj=1︸ ︷︷ ︸
=:S1

∪{GRFk(µj |k) : µj [k + 1] = 1− β}qsj=1

(in H4,k,6)

or

Z7 := {GRFk+1(µj |k+1)}qsj=1 = S1∪{GRF′k(µj |k) : µj [k+1] = 1−β}qsj=1(in H4,k,7).

We note that, for those messages M where µ[k + 1] = 1 − β and µ|k ∈ CM :=
{µj |k : µj [k + 1] = β}qsj=1, the value GRFk(µ|k) ∈ S1. Namely,

S ′ := S1
⋂
{GRFk(µj |k) : µj [k + 1] = 1− β}qsj=1

= {GRFk(µj |k) : µj [k + 1] = 1− β ∧ µj |k ∈ CM}qsj=1.

We note that S ′ is not empty, since each element GRFk(µj |k) depends on k-bit
prefix of µj . Thus, we can rewrite

Z6 = S1 ∪ {GRFk(µj |k) : µj [k + 1] = 1− β ∧ µj |k /∈ CM}qsj=1︸ ︷︷ ︸
=:S2

.

We define the following game H4,k,6′ between H4,k,6 and H4,k,7. H4,k,6′ simulates
Init and Sign as in H4,k,6, but differs in simulating Ver, where it only accepts
forgery with Z∗1−(kmod 2) ∈ S1. Precisely, H4,k,6′ simulates Ver as follows:
– Parse σ∗ := ((ct∗j )0≤j≤2, ρ

∗
0, ρ
∗
1).

– Z∗2 ← Dec(sk2, ct
∗
2). If Z∗2 6= Gβ then return 0.

– Z∗1−(kmod 2) ← Dec(sk1−(kmod 2), ct
∗
1−(kmod 2)). If Z

∗
1−(kmod 2) /∈ S1 then re-

turn 0.
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– Return (M∗ /∈ QM) ∧ (Ver(pk,M∗, σ∗) = 1).
We note that the value RFk(µ|k) is perfectly hidden from A for µ[k + 1] =

1 − β and µ|k /∈ CM since A only learns RF′k(µ|k) from Sign by Equation
(2) and RF and RF′ are two independent random functions. Thus, even an
unbounded adversary A can output a value in S2 with probability at most qs/p
and the following holds,

AdvH4,k,6 −AdvH4,k,6′ ≤
qs
p
.

Compared to H4,k,6′ , there are more valid forgeries in H4,k,7 and we have

AdvH4,k,6′ ≤ AdvH4,k,7.

Thus, AdvH4,k,6 −AdvH4,k,7 ≤ qs
p and we conclude the lemma.

Lemma 19 (H4,k,7 to H4,k,8). AdvH4,k,8 = 2AdvH4,k,7.

Proof. H4,k,8 accepts a forgery no matter if Abort = 1 or not. By the same
argument as in Lemma 14, this doubles the advantage of A.

Note that we have stopped using sk2 in H4,k,8. In H4,k,9, ct2 encrypts Z2,i =
G0 instead of Z2,i = Gµi[k+1]. By the same argument as Lemma 13, we have

Lemma 20 (H4,k,8 to H4,k,9). There exists an adversary B against IND-mCPA
security of PKE with running time T(B) ≈ T(A) and Advmcpa

PKE (B) ≥ |AdvH4,k,9−
AdvH4,k,8|.

Lemma 21 (H4,k,9 to H4,k,10). AdvH4,k,10 = AdvH4,k,9.

Proof. In H4,k,10, x2 is switched from 1 − β to 0 and ρ1 is generated by using
P instead of Sim. Since crs1 is generated by HG(par), c2 ←$ Com(crs1, x2) is
distributed the same in both H4,k,9 and H4,k,10. So is ρ1 by the perfect zero-
knowledge property. Thus, AdvH4,k,10 = AdvH4,k,19.

Lemma 22 (H4,k,10 to H4,k+1). AdvH4,k+1 = AdvH4,k,10.

Proof. H4,k,10 simulates Init and Ver the same as in H4,k and z0,i = z1,i =
RFk+1(µi|k+1). Thus, AdvH4,k,10 = AdvH4,k+1.

From Lemmata 12 to 17, we have

AdvH4,k−2AdvH4,k,6 ≤ |AdvH4,k−2AdvH4,k,6| ≤ 4AdvcrsindGS (B1)+5Advmcpa
PKE (B2).

From Lemmata 19 to 22, we have

2AdvH4,k,7 −AdvH4,k+1 ≤ |2AdvH4,k,7 −AdvH4,k+1| ≤ Advmcpa
PKE (B2).

As 2AdvH4,k,6 ≤ 2AdvH4,k,7 +
2qs
p (Lemma 18), we conclude Lemma 11 as

AdvH4,k −AdvH4,k+1 ≤ 4AdvcrsindGS (B1) + 6Advmcpa
PKE (B2) + 2qs/p.



24 M. Abe, D. Hofheinz, R. Nishimaki, M. Ohkubo, J. Pan

We syntactically define F(Mi) := RFL(µi) in G1 since the binary represen-
tation of a group element is unique and have

Lemma 23 (H4,L to G1). There exists an adversary B against CRS indistin-
guishability of GS with running time T(B) ≈ T(A) and AdvcrsindGS (B) ≥ |AdvG1−
AdvH4,L|.

Proof. We note that L is the smallest even integer that is equal or larger than
the bit size of p (namely, L mod 2 = 0). The only difference between G1 and
H4,L is the simulation of crs1, which is generated by either BG (in G1) or HG (in
H4,L) since F(Mi) = RFL(µi). From that, we obtain a straightforward reduction
to CRS indistinguishability of GS.

Combining Lemma 6 to 11 and Lemma 23, we have AdvG0 ≤ AdvG1 +
3AdvcrsindGS (B1)+L · (4AdvcrsindGS (B1)+6Advmcpa

PKE (B2)+ 2qs
p ) and conclude Lemma 2.

4 Instantiation

We instantiate our generic construction in Type-III bilinear groups under the
SXDH assumption. Throughout this section, we denote group elements in G1

with plain upper-case letters, such as X, and elements in G2 such letters with
tilde, such as X̃. By G and G̃, we denote generators for G1 and G2, respectively.
Scalar values in Zp are denoted with lower-case letters. We may also put a tilde
to scalar values or other objects when they are related to group elements in G2

in a way that is clear from the context.
We begin with optimizations in Section 4.1 made on top of the generic con-

struction. We then present a concrete scheme for signing unilateral messages in
Section 4.2 and for bilateral messages in Section 4.3 followed by full details of
the Groth-Sahai proofs in Section 4.4.

4.1 ElGamal Encryption with Common Randomness

Observe that relation (z0− z1)(x2− z2) = 0 in L1 is a quadratic equation and it
can be proved efficiently by a GS proof if z0 and z1 are committed in the same
group and z2 is committed in the other group. Relevant encryptions should follow
the deployment of groups. We thus build the first two ciphertexts, ct0 and ct1
in G1, and ct2 in G2.

To gain efficiency, we consider using the same randomness for making ct0
and ct1. For this to be done without spoiling the security proof, it is sufficient
that one of the ciphertext ctb is perfectly simulated given the other cipher-
text ct1−b. Formally, we assume that there exists a function, say SimEnc, such
that, for any key pairs (pk, sk) ←$ GenP(par) and (pk′, sk′) ←$ GenP(par), any
messages m and m′ in the legitimate message space, and any randomness s,
it holds that Enc(pk′,m′; s) = SimEnc(sk′,m′,Enc(pk,m; s)). In [10], Bellare et
al. formally defined such a property as reproducibility. Given reproducible PKE
and its ciphertext ctb ←$ Enc(pkb, G

zb ; s), we can compute another ciphertext
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ct1−b ←$ SimEnc(sk1−b, G
z1−b , ctb) without knowing skb or s. All reduction steps

with respect to the CPA security of PKE go through using SimEnc and simulated
GS proofs. Precisely, we use SimEnc in Lemma 15 to compute ct0 from given ct1.
Similar adjustment applies to Lemma 17.

As shown in [10], ElGamal encryption (EG) is reproducible. Let (y,Gy) and
(y′, Gy

′
) ∈ Zp × G1 be two key pairs of ElGamal encryption. Given cipher-

text (M · (Gy)s, Gs) of message M with s and public key Gy, one can compute
(M ′ · (Gs)y′ , Gs) for any M ′ using secret key y′. It is exactly the same cipher-
text obtained from the regular encryption with common randomness s. We thus
encrypt z0 and z1 with ElGamal encryption in G1 using the same randomness
and removing redundant Gs. For encrypting z2, we also use ElGamal but in G2.
Bellare et al. show that the multi-message chosen-plaintext security for each en-
cryption holds under the DDH assumption in respective groups, which is directly
implied by the SXDH assumption [9]. We thus have:

Theorem 3. For all adversaries A against IND-mCPA security of EG, there
exists an adversary C against the SXDH assumption with running time T(C) ≈
T(A) and Advmcpa

PKE (A) ≤ 2AdvsxdhPGGen(C) + 1
p .

4.2 Concrete Scheme for Unilateral Messages

We present a concrete scheme, SPSu1, for signing messages in G1. We use a
structure-preserving one-time signature scheme, POSu1, taken from the results
of Abe et al. [2], and the SXDH-based instantiation of GS proof system. The
description of POSu1 is blended into the description of SPSu1. For the GS proofs,
however, we only show concrete relations in this section and present details of
computation in Section 4.4.

We use notations [x]i and [x̃]1 as a shorthand of Com(crsi, x) and Com(c̃rs1, x),
respectively. We abuse these notations to present witnesses in a relation. It is
indeed useful to keep track which CRS and which source group is used to commit
to a witness. This notational convention is used in the rest of the paper.

Scheme SPSu1: Let par := (p,G1,G2,GT , e,G, G̃) be a description of Type-III
bilinear groups generated by PGGen(1λ).

SPSu1.Gen(par). Generates crs0, and (crs1, c̃rs1) as shown in (13). Picks x0 ←$

Zp and set x1 = x2 := 0. Generates three ElGamal keys Ỹ0 := G̃y0 , Ỹ1 := G̃y1 ,
and Y2 := Gy2 where yi ←$ Zp for i = 0, 1, 2. Then computes commitments

[x0]0 := Com(crs0, x0; rx00), [x1]0 := Com(crs0, x1; rx10),

[y0]0 := Com(crs0, y0; ry00), [x̃2]1 := Com(c̃rs1, x2; rx21),

[y0]1 := Com(crs1, y0; ry01), [y1]1 := Com(crs1, y1; ry11),

[ỹ2]1 := Com(c̃rs1, y2; ry21)

as shown in Equation (14). Generates a persistent key pair of POSu1 by w ←$

Z∗p, γi ←$ Z∗p, G̃r := G̃w, and G̃i := G̃γir for i = 1, . . . , n1. Outputs pk and
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sk defined as pk := (G, G̃, crs0, crs1, c̃rs1, Ỹ0, Ỹ1, Y2, [x0]0, [x1]0, [x̃2]1, [y0]0, [y0]1,
[y1]1, [ỹ2]1, G̃r, G̃1, . . . , G̃n1

), and sk := (x0, y0, y1, y2, rx00
, rx10

, rx21
, ry00 , ry01 ,

ry11 , ry21 , w, γ1, . . . , γn1), where par and pk are implicitly included in pk and sk,
respectively.

SPSu1.Sign(sk,M). Given sk as defined above and M =: (M1, . . . ,Mn1
) ∈ Gn1

1 ,
proceeds as follows.

- Generate one-time POSu1 key pair α ←$ Z∗p and Ã := G̃α, and compute a
one-time signature, (Z,R), by

Z := Gα−ρw and R := Gρ
n1∏
i=1

M−γii , (3)

where w, γ1, . . . , γn1
are taken from sk, and ρ is chosen uniformly from Zp.

- Encrypt z0 = z1 := x0, and z2 := 0 as (Ẽz0 , Ẽz1 , Ẽs) := (G̃z0 Ỹ s0 , G̃
z1 Ỹ s1 ,

G̃s) and (Ez2 , Et) := (Gz2Y t2 , G
t), where s, t←$ Zp.

- Commit to z0, z1, and z2 by [z0]0, [z0]1, [z1]1, and [z̃2]1, as described in
equation (14).

- Using crs0, commitments [x0]0, [x1]0, and [y0]0 in pk, and default commit-
ment [1]0 computed with randomness 0 ∈ Zp, as shown in equation (15),
compute GS proofs ρ0,0 and ρ0,1 for relations

ρ0,0 : G̃[z0]0(G̃−1)[x0]0(Ã−1)[x1]0 = 1, and (linear MSE in G2) (4)

ρ0,1 : Ẽ[1]0
z0 (G̃−1)[z0]0(Ẽ−1s )[y0]0 = 1 (linear MSE in G2) (5)

that correspond to clauses G̃z0 = G̃x0 · M̃x1 for M̃ := Ã and (Ẽz0 , Ẽs) ∈
Enc(Ỹ0, G̃

z0) in L0, respectively. Correctness of ElGamal secret-key is im-
plicit by the use of [y0]0 in pk. This completes the proof for L0.

- Similarly, using (crs1, c̃rs1) and default commitments [1]1 and [1̃]1, computes
GS proofs ρ1,0, ρ1,1, ρ1,2, and ρ1,3 for relations

ρ1,0 : ([x̃2]1 − [z̃2]1)([z0]1 − [z1]1) = 0, (non-linear QE) (6)

ρ1,1 : Ẽ[1]1
z0 (G̃−1)[z0]1(Ẽ−1s )[y0]1 = 1, (linear MSE in G2) (7)

ρ1,2 : Ẽ[1]1
z1 (G̃−1)[z1]1(Ẽ−1s )[y1]1 = 1, and (linear MSE in G2) (8)

ρ1,3 : E[1̃]1
z2 (G−1)[z̃2]1(E−1t )[ỹ2]1 = 1, (linear MSE in G1) (9)

that correspond to clauses in L1 except for the correctness of ElGamal keys
that is implicitly done by the use of commitments [y0]1, [y1]1, and [ỹ2]1 in
pk. This completes the proof for L1.

- Output a signature σ := (Ã, Z,R, Ẽz0 , Ẽz1 , Ẽs, Ez2 , Et, [z0]0, [z0]1, [z1]1, [z̃2]1,
ρ0,0, ρ0,1, ρ1,0, ρ1,1, ρ1,2, ρ1,3).

SPSu1.Ver(pk,M, σ). Return 1 if all the following verifications are passed. Return
0, otherwise.
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- Verify signature (Z,R) of POSu1 for M = (M1, . . . ,Mn1
) with one-time key

Ã by

e(G, Ã) = e(Z, G̃) e(R, G̃r)

n1∏
i=1

e(Mi, G̃i). (10)

- Verify all GS proofs ρ0,0, ρ0,1, ρ1,0, ρ1,1, ρ1,2, ρ1,3 with commitments [z0]0,
[z0]1, [z1]1, [z̃2]1, and ciphertext Ẽz0 , Ẽz1 , Ẽs, Ez2 , Et in σ, using [x0]0,
[x1]0, [y0]0, [x̃2]1, [y0]1, [y1]1, [ỹ2]1 in pk, as expressed in equations (17)
and (19). Default commitments [1]1 and [1̃]1 are built on-the-fly following
equation (15).

This completes the description of SPSu1.

Performance. In Tables 1 and 2, we summarize the performance of SPSu1.
Since computational cost largely depends on available resources and implemen-
tation, we only present basic dominant parameters. In bach verification, we con-
sider the most aggressive case where all equations are wrapped into one. See
Section 4.4 for more details about batch verification.

Security. Regarding POSu1 used in the above construction, the following state-
ment is proven in [2].

Theorem 4 ([2]). POSu1 is OT-nCMA secure if the DDH2 assumption holds
with respect to PGGen. In particular, for all polynomial-time algorithms A there
exists a polynomial-time algorithm B with T(A) ≈ T(B) and Advncma

POSu1(A) ≤
Advddh2PGGen(B) + 1/p.

With asymmetric pairing groups, CRS indistinguishability of GS proof sys-
tem is tightly reduced from the SXDH assumption. Namely, the following theo-
rem holds.

Theorem 5 ([29]). For all adversaries A against CRS indistinguishability of
GS, there exists an adversary B with running time T(B) ≈ T(A) and AdvcrsindGS (A) ≤
2 · AdvsxdhPGGen(B).

Combining Theorems 1, 2, 3, 4, and 5, we have the following theorem.

Theorem 6. SPSu1 is UF-CMA if the SXDH assumption holds with respect
to PGGen. In particular, for any polynomial-time algorithm A, there exists a
polynomial-time algorithm B that runs in almost the same as A and

Advuf-cma
SPSu1 (A) ≤ (40L+ 13) · AdvsxdhPGGen(B) +

4L(qs + 3) + 1

p
. (11)

If we have L = log2 p = 256 for the targeted 128-bit security level, for
instance, the security loss of SPSu1 is approximately in 13 bits (213.3).
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4.3 Concrete Scheme for Bilateral Messages

To sign bilateral messages (M1,M2) ∈ Gn1
1 ×Gn2

2 , we use SPSu1 in the previous
section to sign M1 ∈ Gn1

1 and combine it with another POS, say POSu2, that
signs M2 ∈ Gn2

2 . Since a one-time public key of POSu2 is in G1, it can be
appended to M1 and authenticated by SPSu1 by extending the message space to
Gn1+1

2 . The signing and verification procedure of POSu2 is analogous to POSu1
shown in the construction of SPSu1 with G1 and G2 interchanged. POSu2 is
OT-nCMA if DDH1 holds. Therefore, for the resulting scheme, that we denote
SPSb, the following theorem holds by combining Theorem 6 and Theorem 4 for
POSu2.

Performance. Regarding the performance of SPSb, the only difference from
SPSu2 is the cost due to POSu2. Concrete numbers obtained by inspection of
the scheme are shown in Tables 1 and 2.

Security. Theorem 4 holds for POSu2 under the DDH1 assumption. Combining
it with Theorem 6, we obtain the following.

Theorem 7. SPSb is UF-CMA if the SXDH assumption holds with respect to
PGGen. In particular, for any polynomial-time algorithm A, there exists an al-
gorithm B with T(B) ≈ T(A) and

Advuf-cma
SPSb (A) ≤ (40L+ 14) · AdvsxdhPGGen(B) +

4L(qs + 3) + 2

p
. (12)

4.4 Specific Groth-Sahai Proofs under SXDH

Among wide variations of relations that are provable with GS proofs, our in-
stantiation involves only three types of relations; linear multiscalar multiplica-
tion equations (MSEs) in G1 and G2, and non-linear quadratic equations (QEs).
Witnesses are committed in either G1 or G2 depending on the relations to prove.
We summarize the space and computation complexity in Table 3 and give details
in the sequel.

CRS Generation: Our construction includes three independent common ref-
erence strings, crs0 and (crs1, c̃rs1) generated in the binding mode as

crs0 :=

(
G Q0

U0 V0

)
, crs1 :=

(
G Q1

U1 V1

)
, c̃rs1 :=

(
G̃ Q̃1

Ũ1 Ṽ1

)
, (13)

where, for χ0, ξ0, χ1, ξ1, χ̃1, ξ̃1 ←$ Z∗p, Qi := Gχi , Ui := Gξi , Vi := Gχi ξi for
i = 0, 1 and Q̃1 := G̃χ̃1 , Ũ1 := G̃ξ̃1 , Ṽ1 := G̃χ̃1 ξ̃1 .

Scalar Commitments: To commit to x ∈ Zp under crsi, compute

[x]i := Com(crsi, x; r) := (Uxi G
r, (ViG)

xQri ), (14)
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Object #(elements) #(s.mult) Verification

#(equations) #(pairings)

CRS in G1 (3, 0) (3, 0) - -
CRS in G2 (0, 3) (0, 3) - -
Commitment [w] for w ∈ Zp (2, 0) (3, 0) - -
Commitment [w̃] for w ∈ Zp (0, 2) (0, 3) - -
Commitment [b] for b ∈ {0, 1} (2, 0) (2, 0) - -
Commitment [b̃]for b ∈ {0, 1} (0, 2) (0, 2) - -
Proof of linear MSE in G1 (1, 0) (1.5, 0) 2 4
Proof of linear MSE in G2 (0, 1) (0, 1.5) 2 4
Proof of non-linear QE (2, 2) (3, 3) 4 16

Table 3: Sizes and computational costs for GS proofs in the SXDH assumption setting
for relations used in our construction. Default generators G and G̃ are not included
in CRS. Column #(s.mult) indicates number of scalar multiplications in G1 and G2

for generating object by counting multi-scalar multiplication as 1.5. Linear MSE and
non-linear QE are specific to relations in Equation (4) to (9).

where r ∈ Zp is a fresh randomness. A default commitment of 1 ∈ Zp uses 0 ∈ Zp
as a randomness, namely,

[1]i := Com(crsi, 1; 0) := (Ui, ViG). (15)

Commitment [x̃]1 is computed analogously using elements in c̃rs1.

Proof of Scalar MSE: Proof ρ0,0 for relation (4) as a linear MSE in G1 consists
of a single element π0,0 ∈ G2 computed as

π0,0 := G̃rz0 (G̃−1)rx0 (Ã−1)rx1 , (16)

where rz0 , rx0
, and rx1

are random coins used to commit to z0, x0, x1 by [z̃0]0,
[x̃0]0, [x̃1]0, respectively. It is verified by evaluating

e(Cz0,1, G̃) e(Cx0,1, G̃
−1) e(Cx1,1, Ã

−1) = e(G, π0,0), and

e(Cz0,2, G̃) e(Cx0,2, G̃
−1) e(Cx1,2, Ã

−1) = e(Q0, π0,0),
(17)

where (Cx,1, Cx,2) := [x]0 for x ∈ {z0, x0, x1}, and G̃ and Q0 are taken from crs0.
Proofs ρ0,1, ρ1,1, and ρ1,2, are for linear MSEs in exactly the same form as

equation (4). They are generated and verified in the same manner as above.

Proof of Non-Linear QE: Proof ρ1,0 for non-linear QE (6) consists of (θ1,0,1,
θ1,0,2, π1,0,1, π1,0,2) ∈ G2

1 ×G2
2 that, ψ ←$ Zp,

θ1,0,1 := U
z0(rx2−rz2 )−z1(rx2−rz2 )
1 G(x2−z2)(z0−z1)−ψ,

θ1,0,2 := (V1G)
z0(rx2−rz2 )−z1(rx2−rz2 )Q

(x2−z2)(z0−z1)−ψ
1 ,

π1,0,1 := Ũ
x2(rz0−rz1 )−z2(rz0−rz1 )
1 G̃ψ, and

π1,0,2 := (Ṽ1G̃)
x2(rz0−rz1 )−z2(rz0−rz1 ) Q̃ψ1 ,

(18)
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where rx is a random coin used to commit to x. The verification evaluates

e(Cz0,1C
−1
z1,1

, D̃x2,1) e(Cz0,1C
−1
z1,1

, D̃−1z2,1) = e(G, π1,0,1) e(θ1,0,1, G̃),

e(Cz0,2C
−1
z1,2

, D̃x2,1) e(Cz0,2C
−1
z1,2

, D̃−1z2,1) = e(Q1, π1,0,1) e(θ1,0,2, G̃),

e(Cz0,1C
−1
z1,1

, D̃x2,2) e(Cz0,1C
−1
z1,1

, D̃−1z2,2) = e(G, π1,0,2) e(θ1,0,1, Q̃1), and

e(Cz0,2C
−1
z1,2

, D̃x2,2) e(Cz0,2C
−1
z1,2

, D̃−1z2,2) = e(Q1, π1,0,2) e(θ1,0,2, Q̃1),

(19)

where (Cx,1, Cx,2) := [x]1 for x ∈ {z0, z1}, (D̃y,1, D̃y,2) := [ỹ]1 for y ∈ {x2, z2},
and other group elements are taken from (crs1, c̃rs1).

Batch Verification: The number of pairing computations in equations (17)
and (19) can be reduced when verifying proofs ρ0,0, ρ0,1, ρ1,0, ρ1,1, ρ1,2 and ρ1,3
at once by batch verification. By merging pairings with respect to G, G̃, Q0, Q1,
Q̃1, Ã, Ẽz0 , Ẽs, D̃x2,1, D̃x2,2, D̃z2,1, D̃z2,2, Ẽz1 , Ez2 , and Et, we have a single
pairing product equation consisting of 15 pairings. It will be merged further with
the verification equations for the POS part that includes pairings involving G
and G̃. For SPSu1, the batch verification equation consists of n1 + 16 pairings,
of which n1 + 1 pairings are from POSu1. For SPSb, it consists of n1 + n2 + 18
pairings, of which n1 + n2 + 3 pairings are from POSb.
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