
A Formal Treatment of Multi-key Channels

Felix Günther and Sogol Mazaheri

Cryptoplexity, Technische Universität Darmstadt, Germany
guenther@cs.tu-darmstadt.de sogol.mazaheri@cryptoplexity.de

Abstract. Secure channel protocols protect data transmission over a
network from being overheard or tampered with. In the common ab-
straction, cryptographic models for channels involve a single key for en-
suring the central security notions of confidentiality and integrity. The
currently developed next version of the Transport Layer Security proto-
col, TLS 1.3, however introduces a key updating mechanism in order to
deploy a sequence of multiple, possibly independent encryption keys in
its channel sub-protocol. This design aims at achieving forward security,
protecting prior communication after long-term key corruption, as well
as security of individual channel phases even if the key in other phases is
leaked (a property we denote as phase-key insulation). Neither of these
security aspects has been treated formally in the context of cryptographic
channels so far, leading to a current lack of techniques to evaluate such
channel designs cryptographically.
We approach this gap by introducing the first formal model of multi-key
channels, where sender and receiver can update their shared secret key
during the lifetime of the channel without interrupting the communi-
cation. We present modular, game-based notions for confidentiality and
integrity, integrating forward security and phase-key insulation as two
advanced security aspects. As we show, our framework of notions on the
lower end of its hierarchy naturally connects to the existing notions of
stateful encryption established for single-key channels. Like for classical
channels, it further allows for generically composing chosen-ciphertext
confidentiality from chosen-plaintext confidentiality and ciphertext in-
tegrity. We instantiate the strongest security notions in our model with
a construction based on authenticated encryption with associated data
and a pseudorandom function. Being comparatively close, our construc-
tion additionally enables us to discuss the TLS 1.3 record protocol design.

1 Introduction

Secure channel protocols are at the heart of today’s communication infrastruc-
ture, protecting data in transit in countless connections each day. Major ex-
amples include the Transport Layer Security (TLS) protocol [22] securing the
Web, the Secure Shell (SSH) protocol [48] enabling secure remote logins, and
the Internet Protocol Security (IPsec) protocol [34] protecting, e.g., tunneled
network-to-network connections.

1

1.1 Secure Cryptographic Channels

In the cryptographic realm, the established game-based abstraction of secure
channels is that of stateful encryption, introduced by Bellare, Kohno, and Nam-
prempre [9]. Stateful encryption first of all inherits the classical security require-
ments of (non-stateful) encryption: confidentiality and integrity. Confidentiality
of encryption, first formalized by Goldwasser and Micali [31], intuitively de-
mands that the content of transmitted messages remains secret. Integrity, in
parts concurrently introduced by Katz and Yung [33], Bellare and Rogaway [11],
and Bellare and Namprempre [10], in contrast ensures that an adversary cannot
forge ciphertexts that, on decryption, lead to (meaningful) messages. In order
to provide secure communication through a sequence of messages, stateful en-
cryption schemes go beyond these standard requirements and moreover protect
against reordering, dropping, and replays of messages transmitted in a channel.
On a constructive level, channels to this extend incorporate authenticated en-
cryption with associated data (AEAD) schemes [44] as an essential cryptographic
building block, integrated with message-order and error handling.

Starting from and partially building upon the work by Bellare, Kohno, and
Namprempre, various extensions and adaptations of (game-based) channel mod-
els have been proposed. For example, Kohno, Palacio, and Black [35] define a hi-
erarchy of channels with varying resilience against replays, reordering, or message
dropping. In order to capture potential padding of messages before encryption,
Paterson, Ristenpart, and Shrimpton [42] introduce the notion of length-hiding
authenticated encryption. Motivated by practical attacks due to implicit infor-
mation leakage through different error messages or different timings of an error
message, e.g., caused by either a MAC or a decryption failure, Boldyreva et
al. [17] discuss decryption algorithms that distinguish more than a single error
message. They also study the effects of multiple error messages on the generic
relation between confidentiality and integrity established earlier by Bellare and
Namprempre [10]. In order to capture fragmented delivery of ciphertexts as it
arises in real-world attacks on secure channels (cf. [3]), Boldyreva et al. [16] and
Albrecht et al. [2] consider stateful encryption with ciphertext fragmentation.
Going one step further, Fischlin et al. [29] additionally study plaintext fragmen-
tation to capture scenarios where channels are required to process a stream of
data. Finally, protocols in practice usually establish a bi-directional communi-
cation channel, a setting whose security was recently studied by Marson and
Poettering [39].

1.2 Multi-key Channels

In all cryptographic models of secure channels established so far, security orig-
inates from a single, symmetric key shared between the two endpoints of the
channel. The upcoming version of the TLS protocol, TLS 1.3 [43], whose speci-
fication is currently being developed, however deviates from this paradigm and
instead deploys a sequential series of multiple keys. The TLS 1.3 channel (the

2

so-called record protocol) as usual begins with deriving an initial key for encryp-
tion and decryption of messages. As a novel component, both parties are further
able to trigger key updates, leading to a key switch according to a pre-defined
schedule while maintaining channel’s operation. One particular motivation for
this approach is that long-lived TLS connections may exhaust the cryptographic
limits of some algorithms on how much data can be safely encrypted under a
single key (cf. [43, Section 5.5], [38]).

A more general, major reason for refreshing the key used in a secure channel
and specifically TLS 1.3 is forward security, a notion primarily known from and
well-established in the context of key exchange protocols [32,23,19]. When using
the same key throughout the lifetime of a channel, an attacker that learns this
key (e.g., through cryptanalysis or even temporary break-in into the system) im-
mediately compromises the confidentiality of previous and the integrity of future
communication. In contrast, forward security demands that even if key material
is leaked at some point, previous communication remains secure. Forward-secure
symmetric encryption in the non-stateful setting is considered understood and
in particular can be built from forward-secure pseudorandom bit generator [13]
or, more generally, through re-keying [1]. In the context of secure channels, a
formal treatment of forward security is however lacking so far.

Beyond forward security, a second security property arises for secure channels
(in particular in the design of TLS 1.3) which we refer to as phase-key insulation.
While forward security targets a full compromise (and prior security), phase-key
insulation is concerned with the temporary compromise of a channel in the form
of leaking the key used in a certain time period (phase), but not in others.
Such temporary compromise might, e.g., result from differing strengths of key
material used to derive some of the phase keys (as is the case for keys established
in the TLS 1.3 key exchange [37,27,28]) or from storing the currently active key
in less secure memory for efficiency reasons. A secure channel with phase-key
insulation should then uphold confidentiality and integrity in uncompromised
phases, even if the key of prior or later phases is revealed. Moreover, security
should be retained even if the attacker learned a phase’s key while that phase
was still active.

As we will see, phase-key insulation orthogonally complements the notion
of forward security, which is only concerned with a posteriori leakage of keys.
Requiring it furthermore introduces new pitfalls in the design of secure chan-
nels. For example, the initial draft design of the TLS 1.3 record protocol with
key updates enabled truncation attacks in non-compromised phases that would
go unnoticed during the further execution of the protocol, as Fournet and the
miTLS [40] team discovered [30]. We hence consider it being crucial to establish
a formal understanding of channels using multiple keys, which is lacking at this
point, in order to allow thorough analyses of proposed protocols and means for
evaluating their provable security guarantees.

3

1.3 Our Contributions

In this work we initiate the study of channels that employ a sequence of multiple
keys. To this end, we introduce a formalization of suchmulti-key channels and set
up an according framework of game-based security notions. We then analyze the
relations between our security notions as well as connections to the established
notions for stateful encryption and finally provide a generic construction of a
provably secure multi-key channel.

Following the game-based tradition in modeling channels, our formalism
builds upon and extends that of Bellare, Kohno, and Namprempre [9] and Bel-
lare and Yee [13]. More specifically, our notion of multi-key channels augments
that of regular stateful encryption in three aspects. Obviously, we first of all
consider a sequence of keys to be used for encryption and decryption. Secondly,
switches between these keys are initiated through a specific key-update algo-
rithm which makes the channel proceed from one phase to the next. Lastly, we
separate two hierarchies of keys by additionally considering a level of master
secret keys which, also evolving over time, are used to derive the channel key for
each phase. As we will discuss, this carefully crafted syntax and key hierarchy
in particular allows us to quite closely model the key schedule of the TLS 1.3
record protocol draft [43].

We then define security of multi-key channels via a a framework of notions.
Beyond capturing the classical requirements of confidentiality and integrity, our
notions modularly integrate the advanced security properties of forward secu-
rity and phase-key insulation arising in the context of multi-key channels. The
core technical challenge here is to appropriately capture the desired security
properties while excluding trivial attacks in the stateful multi-key setting. We
furthermore modularize the adversary’s capability to proceed a channel to a next
phase through key updates. Thereby, our framework elegantly also captures the
single-key variants of our security notions, i.e., the cases where a multi-key chan-
nel only operates in a single phase.

Our single-key security notions enable us to provide a formal link to the estab-
lished stateful-encryption notions for regular channels. We show that analogous
notions in both models are essentially equivalent (modulo the differences in syn-
tax) by providing natural, generic transforms between each pair of corresponding
confidentiality and integrity notions. Furthermore, we establish separations that
give rise to a hierarchy of our security notions and in particular establish for-
ward security and phase-key insulation as independent security properties. To
complete the picture of relations, we also translate the classical composition re-
sult for symmetric encryption by Bellare and Namprempre [10] to the setting of
multi-key channels, showing that chosen-plaintext confidentiality combined with
ciphertext integrity implies the stronger chosen-ciphertext notion of confiden-
tiality.

Finally, we instantiate our model by providing a construction of a multi-
key channel from a nonce-based authenticated encryption with associated data
(AEAD) scheme and a pseudorandom function. To ensure both forward security
and phase-key insulation, we match suitable techniques established for forward-

4

secure key generation and for ensuring causal integrity. Leveraging our composi-
tion theorem, we then prove that our construction meets our strongest confiden-
tiality and integrity notions for multi-key channels. Coming back to the initial
motivation from real-world protocol design, we compare our construction with
the draft design of the TLS 1.3 record protocol.

1.4 Related Work

Beyond the preceding works on secure channels discussed earlier, there has been
substantial work on mostly the handshake but also the record protocol of the
TLS 1.3 drafts; see Paterson and van der Merwe [41] for an overview. Badertscher
et al. [4] analyze an early draft of the TLS 1.3 record protocol without key
updates in the constructive cryptography setting. Bellare and Tackmann [12]
analyze the multi-user security of the AES-GCM as authenticated-encryption
building block of TLS 1.3. Bhargavan et al. [14,15] provide verified implementa-
tions of the TLS 1.3 record protocol.

Our notion of phase-key insulation is similar in spirit to, and hence bor-
rows its name from, the notion of key insulation introduced in the public-key
setting [24,25] and also transferred to (non-stateful) symmetric encryption [26].
Beyond treating (phase-)key insulation in the different context of secure chan-
nels, our notion permits more fine-grained corruption of keys. It thereby enables
studying the interaction of forward secrecy and phase-key insulation in a single,
modular framework.

2 Multi-key Channels

We begin with defining the syntax and correctness of multi-key channels, focusing
on their functionality in this section; we will treat their security in Section 3. In
Figure 1 we exemplify the operations of a multi-key channel and already hint at
their expected security.

Like a regular, single-key channel (abstractly modeled as stateful encryp-
tion [9]), a multi-key channel is used by a sender to transform a sequence of
messages m1,m2, . . . ∈ {0, 1}∗ into a corresponding sequence of ciphertexts c1,
c2, . . . ∈ {0, 1}∗ using a sending algorithm Send.1 The receiver then sequentially
uses a corresponding Recv algorithm on each transmitted ciphertext to recover
the sent message sequence.

In addition to regular channels, both sender and receiver can decide to up-
date their keys used for sending and receiving, thereby switching to the next
phase of the multi-key channel. In our model, we consider a two-level hierarchy
for key derivation. On the first level, the complete multi-key channel is boot-
strapped from a single, initial master secret key generated upon initialization of
the channel. Master secret keys are furthermore evolved when switching to the
1 In order to make explicit that a secure multi-key channel might only provide integrity
but no confidentiality, we choose to make use of the more general terms “sending”
and “receiving” instead of “encryption” and “decryption”.

5

msk0 msk1 msk2 msk3 msk4

corrupted
K0 K1 K2 K3 K4

revealed

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13

Send Send Send Send Send

m1 m2 m3 m4 m5 m6 m7

Recv Recv Recv

t = 0 t = 1 t = 2 t = 3 t = 4

Fig. 1: Illustration of the behavior of a multi-key channel (cf. Definition 1). The
beginning of a new phase t is indicated by the derivation of a phase key Kt from
the corresponding master secret key mskt. The phase key Kt is then used to send
and receive in-order messages resp. ciphertexts via algorithms Send and Recv in
this phase.
In this example, the phase key K1 of phase 1 is revealed and the master secret
key msk3 is corrupted. The affected phases 1 resp. 3 and following are marked in
hatched-pattern red (with lines towards top right for the effects of the revealed K1
and toward bottom right for the effects of the corrupted msk3). For security
(cf. Section 3), a forward-secure and phase-key–insulated multi-key channel is
demanded to provide security in the non-affected phases 0 and 2, marked by
non-hatched green areas.

next phase, following a deterministic key schedule to derive the master secret
key mskt+1 for phase t+1 from the master secret key mskt of the previous phase.
On the second level, the actual phase key Kt used in the channel for sending and
receiving messages in a phase t is derived (again deterministically) from that
phase’s master secret key mskt.

Although Figure 1 depicts only a single key schedule with the phase keys
forwarded to both the Send and Recv algorithms of that phase, in a real execution
of the channel, the key updates and derivations are invoked independently on
the sending and receiving side. For correct functionality, the key updates need
to be aligned in order to process sent and received ciphertexts under matching
keys on both sides. In practice, key updates may be either delivered alongside
of the messages transmitted in a channel (and hence potentially authenticated)
or in an out-of-band manner, e.g., via a separate control channel, and with their

6

position in the channel’s ciphertext sequence not being explicitly authenticated.2
In our abstraction of multi-key channels, we do not rely on the authenticity of
the key-update signaling (in particular, we will later allow adversaries to tamper
with the timing of key updates) but leave it up to the channel to ensure their
correct position with respect to the transmitted ciphertexts.

We now define the syntax and correctness of multi-key channels capturing
the given intuition.

Definition 1 (Syntax of multi-key channels). A multi-key channel Ch =
(Init,Send,Recv,Update) with associated sending and receiving state space SS
resp. SR, master secret key space MSK, phase key space K, error space E with
E∩{0, 1}∗ = ∅, and maximum number maxmsg ∈ N∪{∞} of messages supported
per phase consists of four efficient algorithms defined as follows.

– Init(1λ) $−→ (msk0,K0, stS,0, stR,0). This probabilistic algorithm is composed of
three algorithms:
• MasterKeyGen(1λ) $−→ msk0. On input security parameter 1λ, this proba-
bilistic algorithm outputs an initial master secret key msk0 ∈MSK.

• KeyDerive(msk)→ K. On input a master secret key msk, this determinis-
tic algorithm outputs a phase key K ∈ K. The initial phase key is derived
as K0 ← KeyDerive(msk0).

• StateGen(1λ) → (stS,0, stR,0). On input 1λ, this deterministic algorithm
outputs initial sending and receiving states stS,0 ∈ SS resp. stR,0 ∈ SR.

– Send(stS,t,Kt,m) $−→ (st′S,t, c). On input of a sending state stS,t ∈ SS, a
key Kt ∈ K, and a messagem ∈ {0, 1}∗, this (possibly) probabilistic algorithm
outputs an updated state st′S,t ∈ SS and a ciphertext (or error symbol) c ∈
{0, 1}∗ ∪ E.

– Recv(stR,t,Kt, c) → (st′R,t,m). On input of a receiving state stR,t ∈ SR, a
key Kt ∈ K, and a ciphertext c ∈ {0, 1}∗, this deterministic algorithm outputs
an updated state st′R,t ∈ SR and a message (or error symbol) m ∈ {0, 1}∗∪E.

– Update(mskt, stS,t/stR,t)→ (mskt+1,Kt+1, stS,t+1/stR,t+1). This determinis-
tic algorithm is composed of the following two algorithms:
• MasterKeyUp(mskt) → mskt+1. On input of a master secret key mskt ∈
MSK, this deterministic algorithm outputs a master secret key mskt+1 ∈
MSK for the next phase.

• StateUp(stS,t/stR,t)→ stS,t+1/stR,t+1. On input of a sending or receiving
state stS,t ∈ SS resp. stR,t ∈ SR, this deterministic algorithm derives the
next phase’s state stS,t+1 ∈ SS, resp. stR,t+1 ∈ SR.

It further employs the (same) deterministic algorithm KeyDerive as given for
Init to derive an updated phase key Kt+1 ∈ K as Kt+1 ← KeyDerive(mskt+1).

We call a channel with a deterministic Send algorithm a deterministic multi-
key channel.
2 In the context of TLS 1.3, for example, both variants have been discussed. The
current draft design [43] specifies that key update notifications are transmitted (and
authenticated) within the data channel.

7

Shorthand notation. Given a sending state stS ∈ SS , a phase key K ∈ K, an
integer ` ≥ 0, and a vector of messages m = (m1, . . . ,m`) ∈ ({0, 1}∗)`, let
(st′S , c) $←− Send(stS ,K,m) be shorthand for the sequential execution (st1

S , c1) $←−
Send(st0

S ,K,m1), . . . , (st`S , c`) $←− Send(st`−1
S ,K,m`) with c = (c1, . . . , c`), st0

S =
stS , and st′S = st`S . For ` = 0 we define c to be the empty vector and the final
state st`S = st′S to be the initial state stS . We use an analogous notation for the
Recv algorithm.

Correctness of multi-key channels intuitively guarantees that if at the receiver
side the keys are updated only after having received all messages sent in the
previous phase, then the received messages are equal to those sent in the entire
communication.

Definition 2 (Correctness of multi-key channels). Let t ∈ N and (msk0,
K0, stS,0, stR,0) $←− Init(1λ). Let m0, . . . ,mt ∈ {0, 1}∗∗ be t+1 vectors of messages
of lengths |mi| ≤ maxmsg (for i ∈ {0, . . . , t}). Let c0, . . . , ct ∈ {0, 1}∗∗ be the
corresponding ciphertext vectors output by Send given that Update is invoked
between each sending of two subsequent message sequences, i.e., such that for
k = 0, . . . , t, (st′S,k, ck) $←− Send(stS,k,Kk,mk) and for k = 0, . . . , t− 1, (mskk+1,
Kk+1, stS,k+1)← Update(mskk, st′S,k).

Now let m′0, . . . ,m′t ∈ {0, 1}∗∗ be the results of receiving these ciphertexts
with likewise interleaved Update invocations on the receiver’s side, i.e., for k =
0, . . . , t, let (st′R,k,m′k)← Recv(stR,k,Kk, ck) and for k = 0, . . . , t−1, let (mskk+1,
Kk+1, stR,k+1)← Update(mskk, st′R,k).

We say that a multi-key channel Ch is correct if for any choice of t, m0, . . . ,
mt, and all choices of the randomness in the channel algorithm it holds that
m0 = m′0, . . . , mt = m′t.

2.1 Syntax Rationale

The syntax of a cryptographic component defines its design space and also drives
the security properties it may achieve. Before we continue with defining security
for multi-key channels, let us pause to provide some rationale for our choices in
the given syntax.

Probabilistic vs. deterministic Send. At first glance, the modeling of secure chan-
nels in form of stateful encryption [9] may appear as merely a stateful variant of
authenticated encryption. For authenticated encryption (optionally with associ-
ated data), the established notion is a deterministic one [44], where encryption
instead of fresh randomness takes a (unique) nonce. One major motivation for
this approach is that (good) randomness may be hard to obtain in practice, e.g.,
due to design flaws or implementation bugs in random number generators, or
limited system entropy available. Ideally, one hence bootstraps an encryption
scheme from a (short) random key and then only relies on a unique nonce (e.g.,
a counter) for message encryption.3

3 See the work originating from [46] on (nonce-misuse) resistance to non-unique nonces.

8

The same argument in principle applies to secure channels, yielding the ques-
tion whether the Send algorithm should be fixed as deterministic. As we will see
next, our security model allows us to seamlessly capture the desired security
properties for channels with probabilistic and deterministic Send at the same
time. We hence decided to stay in line with previous formalizations of channels
(including [9,42,16,29]) and use the more generic syntax with (possibly) proba-
bilistic Send. Nevertheless, we deem a deterministic multi-key channel to be the
more desirable variant in practice. Indeed, the generic construction we provide
in Section 4 is deterministic.

Inputs to key updates. We define updates of master secret and phase keys (via
MasterKeyUp and KeyDerive) to be deterministically derived from the initial
master secret key msk0. They are hence necessarily equivalent (in each phase)
on the sender and receiver side.

A design alternative would be to also include the current state in the deriva-
tion, enabling keys to be influenced by, e.g., the message history. We however
decided to focus on deterministic updates from msk0, for mainly two reasons
(besides significantly reducing the security model’s complexity). First, this ap-
proach captures the concept of separating key derivation from message sending,
in particular if master secrets are kept in more secure memory. Second, the syn-
tax is compliant with both theoretical concepts for forward-secret encryption [13]
as well as the practical key schedule employed in TLS 1.3 [43]. Note that, still,
channels can for example take the message history into account within the Send
and Recv algorithms.

3 Security Notions for Multi-key Channels

Classically, two security properties are expected from a secure channel. Con-
fidentiality aims at protecting the content of transported messages from being
read by eavesdroppers or active adversaries on the network. In contrast, integrity
ensures that messages are received unmodified and in correct order, i.e., without
messages being reordered or intermediate messages being dropped. We take up
these notions in the context of multi-key channels and extend them to capture
two more advanced security aspects arising in this scenario which we denote as
forward security and phase-key insulation.

Forward security, as established also in other settings, is concerned with the
effects of leaking a channel’s master secret key on prior communication. The
notion aims at situations where all key material of a communication partner
becomes known to an attacker, e.g., through a break-in into a system or exfiltra-
tion of secrets. Following common terminology, we demand that a forward-secure
multi-key channel upholds both confidentiality and integrity for messages sent
in phases before corruption of a master secret key took place, even if one end-
point of the channel is still processing data in these phases when the corruption
happens. Naturally, as the deterministic key schedule implies that the current
and any future phase’s key can be derived from a master secret key, we however

9

cannot expect confidentiality or integrity for messages sent from the point of
corruption on.

Phase-key insulation in contrast captures the selective leakage of some phases’
keys while the master secret key remains uncompromised. Such leakage may be
due to cryptanalysis of some of these keys, partial misuse of the key material, or
temporary compromise. In particular, it reflects that the master secret key of a
channel may be stored in more secure memory (e.g., trusted hardware) while the
current phase key potentially resides in lesser secured memory for performance
reasons. From a phase-key–insulated multi-key channel we demand, on a high
level, that confidentiality and integrity in a certain phase is not endangered by
the leakage of keys in prior or later phases.

3.1 Confidentiality

The established way of modeling confidentiality for channels is by demanding
that the encryptions of two (left and right) sequences of messages are indis-
tinguishable [31,9]. Formally, an adversary sequentially inputs pairs of mes-
sagesm0,m1 of its choice to a sending oracle OSend and is given the encryption cb
of always either the first or the second message depending on an initially fixed,
random challenge bit b $←− {0, 1}. The adversary’s task is to finally determine b.
Hence, the corresponding security notion is established under the name of indis-
tinguishability under chosen-plaintext attacks (IND-CPA). In the stronger setting
of chosen-ciphertext attacks (IND-CCA), the adversary is additionally given a re-
ceiving oracle ORecv with the limitation that it may not query it on challenge
ciphertexts, in a way to be defined later.

In the multi-key setting however, the advanced security aspects of forward
security and particularly phase-key insulation render it impossible to use a single
challenge bit throughout all phases. An adversary that adaptively learns keys for
some phases is immediately able to learn whether the left or the right messages
were encrypted in these phases. If this would be a fixed choice for all phases,
the adversary could also tell which messages were encrypted in all other phases.
In our formalization of multi-key confidentiality we hence deploy a separate
challenge bit bi for each phase i, chosen independently at random. This allows
us to capture the expected insulation of phases against compromises in other
phases and, ultimately, later corruption.

We define confidentiality in a modular notion s-IND-kATK through the exper-
iment Expts-IND-kATK

Ch,A given in Figure 2. The experiment is parameterized with s,
k, and ATK.

– The parameter s specifies the advanced security aspects captured in the no-
tion and can be either empty or take one of the values ki, fs, or fski. As
expected, fs indicates that the notion ensures forward security and ki de-
notes that the notion demands phase-key insulation; for fski both properties
are integrated. Forward security is modeled through allowing the adversary
to corrupt the master secret key at some point through a corruption ora-
cle OCorrupt. When ensuring phase-key insulation, the adversary is given a

10

Expts-IND-kATK
Ch,A (1λ):

1 (msk0, K0, stS , stR) $←− Init(1λ)
2 tS ← 0, tR ← 0
3 b0

$←− {0, 1}
4 i0 ← 0, j0 ← 0
5 sync← 1
6 tcorr ← +∞
7 Rev ← ∅
8 (t, b) $←− A(1λ)OLoR,[ORecv]ATK=CCA,[OUpdate]k=mk,[OReveal]s∈{ki,fski},[OCorrupt]s∈{fs,fski}

9 if t > max(tS , tR) then
10 return 0
11 return ((bt = b) ∧ (t 6∈ Rev) ∧ (t < tcorr))

If A queries OLoR(m0, m1):
12 if |m0| 6= |m1| then
13 return
14 itS ← itS + 1
15 (stS , C[tS][itS]) $←−

Send(stS , KtS , mbtS
)

16 if tR > tS and tS /∈ Rev then
17 sync← 0
18 return C[tS][itS]

If A queries ORecv(c):
19 jtR ← jtR + 1
20 (stR, m)← Recv(stR, KtR , c)
21 if (tR > tS or jtR > itR

or c 6= C[tR][jtR])
and tR /∈ Rev then

22 sync← 0
23 if sync = 0 then
24 return m
25 else
26 return

If A queries OUpdate(role):
27 (msktrole+1, Ktrole+1, strole)←

Update(msktrole , strole)
28 if role = R and tS ≥ tR and jtR < itR

and tR /∈ Rev then
29 sync← 0
30 trole ← trole + 1
31 stbegin

role,trole
← strole

32 if role = S then
33 btS

$←− {0, 1}

If A queries OReveal(t, role):
34 if t > trole then
35 return
36 Rev ← Rev ∪ {t}
37 return (stbegin

role,t, Kt)

If A queries OCorrupt(role):
38 if tcorr < +∞ then
39 return (stbegin

role,tcorr
, msktcorr)

40 tcorr ← trole
41 return (stbegin

role,trole
, msktrole)

Fig. 2: Security experiment for confidentiality (sIND-kATK) of a multi-key chan-
nel Ch. An adversary A has only access to an oracle [OX]c if the condition c is
satisfied.

11

reveal oracle OReveal which allows it to selectively learn the keys of some
phases.

– Via the parameter k, we capture both single-key (sk) and multi-key (mk)
security notions in a single experiment. To model the single-key setting, we
simply drop the adversary’s capability to proceed to a next phase via an
OUpdate oracle, essentially restricting it to a single phase (and hence key).

– Finally, the parameter ATK distinguishes between chosen-plaintext (ATK =
CPA) and chosen-ciphertext (ATK = CCA) attacks. While the adversary
always has access to a left-or-right encryption oracle OLoR, the receiving
oracle ORecv is only available for notions with CCA attacks.

The adversary finally has to output a phase t and a bit guess b and wins if the
challenge bit used in phase t by the left-or-right oracle OLoR is equal to b and
the targeted challenge phase t is neither revealed nor affected by corruption (i.e.,
t < tcorr , where tcorr is the corrupted phase, initialized to infinity).

In order to prevent trivial attacks, we have to restrict the output of adver-
sarial queries to the receiving oracle ORecv in the setting of chosen-ciphertext
attacks. Obviously, if ORecv outputs the message decrypted on input the un-
modified challenge ciphertext sequence, the challenge bit used in OLoR would
be immediately distinguishable. Still, as the Recv algorithm is stateful, we must
allow the adversary to first make this algorithm proceed to a certain, potentially
vulnerable state, before mounting its attack. For this purpose, we follow Bellare
et al. [9] in suppressing the output of the Recv algorithm as long as the adver-
sary’s inputs to ORecv are in sync with the challenge ciphertext sequence output
by OLoR. As soon as synchronization is lost though, ORecv returns the output of
the receiving algorithm Recv to the adversary.

Defining what it means to be in sync now becomes the crucial task in defin-
ing CCA security: we want to make the security notion as strong as possible
without allowing trivial attacks. Intuitively, ORecv stays in sync (denoted by a
flag sync = 1) and decryptions are suppressed as long as the adversary forwards
ciphertexts to ORecv that are obtained from OLoR in the same phase. So far,
this is essentially a transcription of the stateful encryption definition of CCA
security (IND-sfCCA [9]) to the multi-key setting with multiple phases. When
targeting forward security and phase-key insulation, we however also need to
consider how to define synchronization in phases where the adversary knows the
key. Obviously, in such phases we cannot demand that a channel can strictly
distinguish adversarial encryptions from the honest ciphertext sequence gener-
ated in OLoR as the adversary may simply replicate the latter’s behavior. We
accordingly do not consider synchronization to become lost in revealed phases.
Still, we demand that a secure channel notices modifications later in uncom-
promised phases. Moreover, it should even detect truncations at the end of an
uncompromised phase if the next phase’s key is revealed, latest when the chan-
nel recovers from temporary compromise and enters the next, uncompromised
phase.4 We hence, additionally to the regular stateful encryption setting, define
4 Recall that we consider key updates to be unauthenticated, possibly transmitted
out-of-band.

12

synchronization to be lost if the receiver proceeds from an uncompromised phase
to the next phase without having received all sent ciphertexts, or if the sender
issues a ciphertext in a phase when the receiver already proceeded to the next
phase.

In the following we describe the functionality and purpose of the oracles in
the multi-key confidentiality experiment in Figure 2 in detail.
– The OLoR oracle can be queried with a pair of messages (m0,m1) of equal

length. It responds with the output of Send on message mbtS
, where btS is

the challenge bit for the current sending phase tS .
If the receiver already proceeded to a later phase, the sent message cannot
be received correctly anymore. As long as the key of the sender’s phase is
unrevealed, we hence declare synchronization to be lost (setting sync ← 0).
The restriction to uncompromised phases is necessary to prevent trivial at-
tacks where the adversary leverages the phase key to, e.g., make the receiver
process more messages than sent earlier to cover up the mismatch.

– The ORecv oracle can only be queried if ATK = CCA. On input a ciphertext c,
ORecv computes the corresponding messages obtained under Recv. In case the
receiving oracle is ahead in phase, has received more messages than sent, or
c deviates from the corresponding sent ciphertext, synchronization is lost
(again, to ignore trivial forgeries, as long the receiver’s current phase is
unrevealed). Finally, if still in sync, ORecv suppresses the message output
and returns an according flag to the adversary A. Otherwise it provides A
with the obtained message m.

– The OUpdate oracle is only available if k = mk. Using the oracle, the adversary
can separately make both the sender or receiver proceed to the next phase,
updating their master secret, phase key, and state. If the sender side is up-
dated, a new challenge bit for the new phase is chosen at random. Moreover,
the experiment goes out of sync if the receiver side is updated too soon, i.e.,
without having received all sent ciphertexts, and the receiver’s phase is not
revealed.

– The OReveal oracle can be used by the adversary to obtain the key of any
phase t (along with this phase’s initial sender resp. receiver state) and is ac-
cessible if s ∈ {ki, fski}. Phase t is then added to a set of revealed phases Rev.

– The OCorrupt oracle is provided if s ∈ {fs, fski}. Upon the first call, the adver-
sary obtains for a chosen role role the current phase’s master secret key and
initial state. This phase is then recorded as the phase of corruption tcorr for
later comparison. If a corruption has already taken place (i.e., tcorr < +∞),
the adversary can obtain the other role’s initial state in the corrupted phase
via a further OCorrupt call. For simplicity, we assume the state to be empty in
phases not yet entered. Observe that it suffices to consider a single point in
time for corruption, as later master keys are deterministically derived from
the corrupted one.

Definition 3 (s-IND-kATK Security). Let Ch = (Init,Send,Recv,Update) be
a multi-key channel and experiment Expts-IND-kATK

Ch,A (1λ) for an adversary A be
defined as in Figure 2.

13

The security experiment is parameterized in three directions: s, k, and ATK.
The parameter s indicates the advanced security aspects and can take one of
the values ki (phase-key–insulated), fs (forward-secure), fski (forward-secure and
phase-key–insulated), or the empty string5 (plain / neither forward-secure nor
phase-key–insulated). The parameter k integrates both single-key (sk) and multi-
key (mk) security notions in a single experiment. Finally, the parameter ATK dis-
tinguishes between chosen-plaintext (ATK = CPA) and chosen-ciphertext (ATK =
CCA) security.

Within the experiment the adversary A always has access to a left-or-right
sending oracle OLoR. Moreover, A has access to a receiving oracle ORecv if ATK =
CCA, an update oracle OUpdate if k = mk, a key-reveal oracle OReveal if s ∈
{ki, fski}, and finally a corruption oracle OCorrupt if s ∈ {fs, fski}.

We say that the channel Ch provides indistinguishability under multi-key
(resp. single-key) chosen-plaintext (resp. chosen-ciphertext) attacks (s-IND-kCPA
resp. s-IND-kCCA for k = mk resp. k = sk), potentially with forward security
(if s ∈ {fs, fski}) and/or phase-key insulation (if s ∈ {ki, fski}) if for all PPT
adversaries A the following advantage function is negligible in the security pa-
rameter:

Advs-IND-kATK
Ch,A (λ) := Pr

[
Expts-IND-kATK

Ch,A (1λ) = 1
]
− 1

2 .

Our generic confidentiality notion in Definition 3 captures as its weakest vari-
ant indistinguishability under single-key chosen-plaintext attacks (IND-skCPA)
and as its strongest variant indistinguishability under multi-key chosen-ciphertext
attacks with forward security and phase-key insulation (fski-IND-mkCCA). We
discuss the relations among these notions in more detail in Section 3.4.

3.2 Integrity

Integrity is traditionally defined in two flavors: integrity of plaintexts (INT-PTXT)
and integrity of ciphertexts (INT-CTXT) [10], with according stateful-encryption
analogs INT-sfPTXT [18] and INT-sfCTXT [9]. Integrity of plaintexts intuitively
ensures that no adversary is able to make the receiver output a valid message
that differs from the previously sent (sequence of) messages. The stronger notion
of ciphertext integrity ensures that no adversary can make the receiver output
any valid, even recurring message by inputting a forged or modified ciphertext.

Similarly to confidentiality, we define a modular multi-key integrity notion
s-INT-kATK, given through the experiment Expts-INT-kATK

Ch,A in Figure 3. Again,
the notion is parameterized to integrate forward security and phase-key insula-
tion (via s), the single- and multi-key setting (via k), as well as the two attack
targets, ATK = PTXT and ATK = CTXT. An adversary A against the experi-
ment Expts-INT-kATK

Ch,A has access to a sending oracle OSend (in contrast to confi-
dentiality without left-or-right functionality), one of two receiving oracles OATK

Recv
depending on ATK, and—depending on the advanced security properties and
5 For legibility, we also drop the leading dash in a notion s-IND-kATK if s is the empty
string and simply write IND-kATK in this case.

14

Expts-INT-kATK
Ch,A (1λ):

1 (msk0, K0, stS , stR) $←− Init(1λ)
2 tS ← 0, tR ← 0
3 i0 ← 0, j0 ← 0
4 sync← 1
5 win← 0
6 tcorr ← +∞
7 Rev ← ∅
8 A(1λ)OSend,OATK

Recv,[OUpdate]k=mk,[OReveal]s∈{ki,fski},[OCorrupt]s∈{fs,fski}

9 return win

If A queries OSend(m):
10 itS ← itS + 1
11 (stS , C[tS][itS]) $←− Send(stS , KtS , m)
12 M[tS][itS]← m
13 if tR > tS and tS /∈ Rev then
14 sync← 0
15 return C[tS][itS]

If A queries OPTXT
Recv (c):

16 jtR ← jtR + 1
17 (stR, m)← Recv(stR, KtR , c)
18 if m 6= M[tR][jtR] and m /∈ E

and tR /∈ Rev
and tR < tcorr then

19 win← 1
20 return m

If A queries OCTXT
Recv (c):

21 jtR ← jtR + 1
22 (stR, m)← Recv(stR, KtR , c)
23 if (tR > tS or jtR > itR

or c 6= C[tR][jtR])
and tR /∈ Rev then

24 sync← 0
25 if sync = 0 and m /∈ E

and tR /∈ Rev
and tR < tcorr then

26 win← 1
27 return m

If A queries OUpdate(role):
28 (msktrole+1, Ktrole+1, strole)←

Update(msktrole , strole)
29 if role = R and tS ≥ tR and jtR < itR

and tR /∈ Rev then
30 sync← 0
31 trole ← trole + 1
32 stbegin

role,trole
← strole

If A queries OReveal(t, role):
33 if t > trole then
34 return
35 Rev ← Rev ∪ {t}
36 return (stbegin

role,t, Kt)

If A queries OCorrupt(role):
37 if tcorr < +∞ then
38 return (stbegin

role,tcorr
, msktcorr)

39 tcorr ← trole
40 return (stbegin

role,trole
, msktrole)

Fig. 3: Security experiment for integrity (sINT-kATK) of a multi-key channel Ch.
An adversary A has only access to an oracle [OX]c if the condition c is satisfied.

15

key setting captured—oracles OUpdate (without setting a new challenge bit), and
OReveal and OCorrupt, identical to those for confidentiality. In the integrity experi-
ment, the adversary does not provide a particular challenge output, but instead
needs to trigger a winning flag win to be set within the experiment run.

Beyond the sending oracle OSend only taking and encrypting a single message,
the major difference to the confidentiality setting lies in the definition of theOATK

Recv
oracle, which in particular comprises the winning condition check. Depending on
the attack target, the adversary has access to either the OPTXT

Recv or the OCTXT
Recv

variant of the receiving oracle. Both oracles first of all obtain a ciphertext c
and provide the adversary A with the decrypted message m output by Recv on
that ciphertext. Beyond this, they differ in assessing whether A has succeeded
in breaking plaintext resp. ciphertext integrity (in which case they set win← 1):

– The OPTXT
Recv oracle declares the adversary successful if the received messagem

differs from the corresponding sent message in this phase and position, given
that the current receiving phase is neither revealed nor corrupted.

– The OCTXT
Recv in contrast for winning requires that, on input an out-of-sync

ciphertext in a phase neither revealed nor corrupted, Recv outputs a valid
message m, i.e., m /∈ E is not an error message.
In the same way as for confidentiality, synchronization is considered to be
lost on an ORecv oracle call if the receiving oracle, in a non-revealed phase, is
ahead of the sending oracle in phase or message count, or if c deviates from
the corresponding sent message. Furthermore, synchronization may be lost
by non-aligned key updates on both sides of the channel, captured in OSend
and OUpdate as in the confidentiality experiment (cf. Figure 2).

Definition 4 (s-INT-kATK Security). Let Ch = (Init,Send,Recv,Update) be
a multi-key channel and experiment Expts-INT-kATK

Ch,A (1λ) for an adversary A be
defined as in Figure 3. The security experiment is parameterized via s, k, and
ATK. Parameters s and k are as for confidentiality in Definition 3. The parame-
ter ATK distinguishes between plaintext integrity (ATK = PTXT) and ciphertext
integrity (ATK = CTXT).

Within the experiment the adversary A has always access to a sending oracle
OSend and a receiving oracle OATK

Recv (the latter differs depending on ATK). More-
over, A has access to an update oracle OUpdate if k = mk, a key-reveal oracle
OReveal if s ∈ {ki, fski}, and finally a corruption oracle OCorrupt if s ∈ {fs, fski}.

We say that Ch provides multi-key (resp. single-key) integrity of plaintexts
(resp. ciphertexts) (s-INT-kPTXT resp. s-INT-kCTXT for k = mk resp. k = sk),
potentially with forward security (if s ∈ {fs, fski}) and/or phase-key insulation
(if s ∈ {ki, fski}) if for all PPT adversaries A the following advantage function
is negligible in the security parameter:

Advs-INT-kATK
Ch,A (λ) := Pr

[
Expts-INT-kATK

Ch,A (1λ) = 1
]
.

Remark 1. Note that the advanced properties of forward security and phase-key
insulation are only reasonable to consider in the multi-key setting (k = mk).

16

Indeed, for the single-key setting (k = sk), the plain, fs, ki, and fski flavors of
each notion collapse to being equivalent. For this, observe that an adversary in
the single-key setting, lacking access to the OUpdate oracle, is restricted to the
initial phase tS = tR = 0. At the same time, in order to win in this phase
(by outputting a confidentiality guess resp. breaking integrity), it must neither
reveal nor corrupt either of the parties. Hence, it effectively cannot make use of
the OReveal and OCorrupt queries, rendering both non-effective. Consequently, we
can focus on only the plain version of our single-key security notions.

3.3 Modeling Rationale

As for the definition of syntax, there are choices to make when defining security
for multi-key channels. Before further studying the relations among the confi-
dentiality and integrity notions just set up, let us hence provide some rationale
for aspects of our security model.

LoR vs. IND$. In our confidentiality experiment, the adversary is challenged
to (be unable to) distinguish encryptions of left-or-right (LoR) messages. In the
stateless authenticated-encryption setting particularly for AEAD schemes [44],
the established notion for defining confidentiality instead is the stronger indis-
tinguishability from random strings (IND$) [45].6

It might seem natural to adopt the strong IND$ confidentiality for channels
from its common building block AEAD. On second thought, however, this notion
turns out to be inappropriate for secure channels. While AEAD is an invaluable
building block, a channel is a higher-layer object in a more complex setting, aim-
ing not only at confidentiality and integrity, but also at replay and reordering
protection [9,35] as well as further aspects such as data processing [16,29]. For
this purpose, channel protocols regularly include header information like length
or content type fields within the output ciphertexts, rendering them clearly dis-
tinguishable from random strings. In our security definition, we hence stick to
the left-or-right indistinguishability notion rightfully established through previ-
ous channel models including [9,42,16,29].

Multiple challenge bits. As pointed out earlier, using a single challenge bit across
all phases in the confidentiality experiment is infeasible: an adaptive Reveal query
for some phase would in this case also disclose the challenge phase’s (same) bit.
We hence deploy multiple, independent challenge bits for each phase.

Alternative options would be to employ a single challenge bit in one phase and
provide regular (non–LoR) encryption oracles for all other phases, or to have the
adversary choose whether to compromise a phase at its beginning. We however
deem these approaches not only more complex, but most importantly less adap-
tive, as they prevent the adversary from retrospectively choosing (non-)challenge
phases.
6 A third variant, real-or-random (RoR) indistinguishability is equivalent to LoR in-
distinguishability [8]. See also Barwell et al. [5] for an (historical) overview of the
security notions established for authenticated encryption.

17

fski-I-mkATK

fs-I-mkATK ki-I-mkATK

I-mkATK

I-skATKI-sfATK

AEAD + PRF

Chfs Chki

Chplain Chplain

Chfs

Chki

Chmk-0

sfEncsk

Chsf

[Chsf](I,ATK)=(IND,CPA)

ChAEAD

Fig. 4: Illustration of the relations between different flavors of confidentiality
and integrity in our multi-key and single-key settings as well as for stateful
encryption [9]. The variables I and ATK are placeholders for confidentiality no-
tions (I = IND with ATK = CPA/CCA) and integrity notions (I = INT with
ATK = PTXT/CTXT).
Rounded rectangles indicate multi-key (solid-line, green), single-key (dashed-
line, blue), or stateful-encryption notions (dotted-line, purple); regular (orange)
rectangles indicate building blocks. Solid arrows indicate trivial implications.
Dashed, stroke-out arrows indicate separations and dotted arrows generic trans-
forms we establish, both provided in Section 3.4. The dash-dotted arrow indicates
the generic construction we provide in Section 4. Labels refer to the respective
construction, with brackets [X]c restricting a relation to condition c.

3.4 Relations Between Multi- and Single-key Notions

The modularity of our notions for multi-key confidentiality and integrity, param-
eterized by forward security and phase-key insulation, leads to a set of notions of
varying strength. In the following, we establish that forward security and phase-
key insulation are orthogonal properties; expectedly both adding to the strength
of a security notion. Furthermore, we show that without forward security and
phase-key insulation the single-key security notions of our framework are es-
sentially equivalent to the respective established stateful encryption notions: we
give generic, pure syntactical transforms to translate secure single-key schemes
between the two realms. Figure 4 illustrates the relations we establish.

18

Trivial implications. First of all, let us observe the trivial implications be-
tween the security notions of our framework, indicated by solid arrows in Fig-
ure 4. Those implications arise by restricting the access to one (or multiple)
oracles in the security experiments: a notion with access to a certain oracle im-
mediately implies an otherwise identical notion without this oracle access. For
instance, a fski-IND-mkCPA-secure channel is also ki-IND-mkCPA-secure, since if
no adversary can distinguish left-or-right ciphertexts when being able to corrupt
the master secret key, then doing so does not become easier when corruption is
not a possibility.

Separations. We discuss the separations between notions possibly providing
forward security and phase-key insulation starting from a multi-key channel that
provides both properties at the example of indistinguishability under chosen-
plaintext attacks. The cases of integrity and indistinguishability under chosen-
ciphertext attacks are analogous. More precisely, let Chfski := (Initfski,Sendfski,
Recvfski,Updatefski) be a multi-key channel which provides fski-IND-mkCPA secu-
rity. Recall that master secret and phase keys are computed using two determin-
istic sub-algorithms MasterKeyUpfski and KeyDerivefski, respectively.

Now we construct a new channel Chfs which differs from Chfski only in its
key derivation algorithm, which we replace by the identity function, i.e., we
define KeyDerivefs(mski) := mski for all phases i ∈ N. As MasterKeyUp remains
unmodified, Chfs inherits the forward security of Chfski. Furthermore, observe that
a revealed phase key (equal to the master secret key Ki = mski) can be iteratively
used to compute the next master secret keys mski+1 = MasterKeyUpfs(mski) and
therefore also the next phase keys Ki+1 = KeyDerivefs(mski+1). As a result, Chfs
has dependent phase keys and hence only provides fs-IND-mkCPA security, but
not fski-IND-mkCPA security, separating the two notions.

Next we build a channel Chki from Chfski which has a master secret key
space MSKki = MSK∗fski and updates its master secret keys using a func-
tion MasterKeyUpki(mski) := (mski,MasterKeyUpfski(mski[i])), where msk0 =
(MasterKeyGenfski(1λ)). In other words, Chki keeps a copy of all master secret keys
generated so far in the current master secret key, and uses the last entry to derive
the next master secret key. The phase keys are then derived from the last mas-
ter secret key entry, i.e., we define KeyDeriveki(mski) := KeyDerivefski(mski[i]).
While Chki provides the phase-key insulation of Chfski, forward security is lost.
On corruption in any phase, all previous master secret keys are leaked, allow-
ing an adversary to derive any previous phase key. Therefore Chki only provides
ki-IND-mkCPA security, but not fski-IND-mkCPA security.

Combining the two modifications above leads to a channel Chplain which only
satisfies plain IND-mkCPA security, but neither ki-IND-mkCPA nor fs-IND-mkCPA
security.

Finally, we consider the separation between the single-key notions and their
corresponding multi-key notions, both without forward security and phase-key
insulation. Again, we only discuss the notions IND-skCPA and IND-mkCPA as an
example; the other cases follow identically. We build from an IND-skCPA secure

19

single-key channel Chsk a multi-key channel Chmk-0 which uses the single-key
channel’s key for the initial phase both as master secret and phase key. As the
master secret key for the second and all following phases it then uses the zero-
string, i.e., MasterKeyUpmk(mski) := 0λ. Clearly the security is not preserved by
Chmk-0 in any phase other than the initial one, in which it behaves exactly like
Chsk. Hence, Chmk-0 is IND-skCPA-secure, but not IND-mkCPA-secure.

Generic Transforms Between Stateful Encryption andMulti-key Chan-
nels. To complete the picture, we finally study the relations between the estab-
lished notions for secure channels, stateful authenticated encryption, and our
notion of multi-key channels.

For this purpose, let us first briefly recall the notation for stateful encryption
schemes as introduced by Bellare, Kohno, and Namprempre [9]. A stateful en-
cryption scheme sfEnc = (KGen,Enc,Dec) consists of the following three efficient
algorithms. The randomized key generation algorithm KGen(1λ) $−→ (K, stE, stD)
outputs a key K ∈ K and initial encryption and decryption states stE, stD. The
randomized, stateful encryption algorithm Enc(stE,K,m) $−→ (stE

′, c) takes state,
key, and a message m and outputs an updated state and ciphertext c. The de-
terministic, stateful decryption algorithm Dec(stD,K, c) $−→ (stD

′,m) conversely
maps state, key, and a ciphertext to an updated state and either a message or
special error symbol ⊥.

Clearly, stateful encryption does not aim at achieving the advanced secu-
rity properties we consider in this work, forward security and phase-key insu-
lation. In the comparison, we hence focus on the plain confidentiality and in-
tegrity notions, i.e., IND-kATK and INT-kATK (for both k ∈ {mk, sk} and vari-
ants ATK ∈ {CPA,CCA} resp. ATK ∈ {PTXT,CTXT}) in our framework as well
as the stateful-encryption notions IND-sfCPA resp. IND-sfCCA and INT-sfPTXT
resp. INT-sfCTXT.

The relations we establish are twofold. First, our single-key security notions
which allow an adversary to access a multi-key channel only in its initial phase
are indeed equivalent in strength to the corresponding stateful-encryption no-
tions, beyond syntactical differences. For this, consider the following natural and
generic transforms for constructing a multi-key channel Chsf from any stateful
encryption scheme sfEnc and, conversely, a stateful encryption scheme sfEncsk
from any multi-key channel with single-entry error space E = {⊥}.

– Chsf(Initsf ,Sendsf ,Recvsf ,Updatesf).
For initialization, derive (K, stE, stD) $←− KGen(1λ) and set msk0 = K0 =
K, stS,0 = stE, and stR,0 = stD. For sending and receiving, use Enc and
Dec as direct replacements. Finally, the Update algorithm does nothing; i.e.,
StateUp, MasterKeyUp, and KeyDerive are defined to be the identity function.

– sfEncsk(KGensk,Encsk,Decsk).
For key generation, derive (msk0,K0, stS,0, stR,0) $←− Init(1λ) and set K =
msk0, stE = stS,0, and stD = stR,0. Encryption and decryption is directly
replaced by Send resp. Recv.

20

Careful inspection of the single-key (k = sk) notions in our framework and those
defined for stateful encryption [9,18]7 readily establishes that each two corre-
sponding notions (i.e., I-skATK and I-sfATK for same I and ATK) are preserved
by the generic transforms given above. That is, if the underlying stateful en-
cryption scheme sfEnc achieves, e.g., IND-sfCCA security then the transformed
multi-key channel Chsf satisfies the corresponding IND-skCCA notion.

Finally, and perhaps surprisingly at first glance, our generic transform Chsf of
a stateful encryption scheme into a multi-key channel also achieves (plain) multi-
key IND-mkCPA security. The reason for this is that the degenerated Update
algorithm does not alter the key which hence also makes the OSend oracle not
alter its behavior across different phases. On the other hand, the message resp.
ciphertext vectors M resp. C in the ORecv oracle can be easily set out-of-sync by
invoking Update at different positions in the ciphertext sequence on the sender
and receiver side. As a result, an adversary can make challenge ciphertexts to be
considered as valid forgery in a “different” phase (in the multi-key integrity game)
or force challenge messages to be output by ORecv (in the IND-mkCCA game).
Hence, Chsf achieves neither IND-mkCCA nor INT-mkPTXT or INT-mkCTXT
security.

3.5 Generic Composition

We round up the discussion of our framework of multi-key security notions by lift-
ing the classical composition theorem by Bellare and Namprempre [10] for sym-
metric encryption, namely that IND-CPA and INT-CTXT security imply IND-CCA
security, to the setting of multi-key channels. As noted by Boldyreva et al. [17],
this result is not directly applicable in settings where the decryption algorithm
may output multiple, distinguishable errors, an observation that also applies to
our setting. Boldyreva et al. re-establish composition in the multiple-error set-
ting by requiring that with overwhelming probability an adversary is only able
to produce a single error (a notion they call error invariance). Here, we instead
make use of the more versatile approach introduced as error predictability in
the context of stream-based channels by Fischlin et al. [29]. Error predictabil-
ity roughly requires that there exists an efficient predictor algorithm Pred that,
given the ciphertexts sent and received so far, can with overwhelming probability
predict the error message caused by receiving a certain next ciphertext (if that
ciphertext produces at all an error).

In comparison, error predictability is a milder assumption than error in-
variance [17] as it allows for channels outputting multiple distinguishable and
non-negligible errors. For stateless authenticated encryption, Barwell et al. [5]
considered the alternative notion of error simulatability in which error leakage is
simulated under an independent key. Their notion seems incomparable to error
predictability in the stateful setting, where the history of ciphertexts needs to
7 As a technical side-remark, we here consider a slight variant of stateful integrity
where the adversary in the decryption oracle is given the decrypted message instead
of only a bit telling whether decryption resulted in an error or not.

21

Expts-kERR-PRE
Ch,Pred,A (1λ):

1 (msk0, K0, stS , stR) $←− Init(1λ)
2 tS ← 0, tR ← 0
3 i0 ← 0, j0 ← 0
4 A(1λ)OSend,ORecv,[OUpdate]k=mk,[OReveal]s∈{ki,fski},[OCorrupt]s∈{fs,fski}

5 return win

If A queries OSend(m):
6 itS ← itS + 1
7 (stS , CS [tS][itS]) $←−

Send(stS , KtS , m)
8 return CS [tS][itS]

If A queries ORecv(c):
9 jtR ← jtR + 1

10 (stR, m)← Recv(stR, KtR , c)
11 if m ∈ E and

m 6= Pred(CS , CR, c) then
12 win← 1
13 CR[tR][jtR]← c
14 return m to A

If A queries OUpdate(role):
15 (msktrole+1, Ktrole+1, strole)←

Update(msktrole , strole)
16 trole ← trole + 1
17 stbegin

role,trole
← strole

If A queries OReveal(t, role):
18 if t > trole then
19 return
20 return (stbegin

role,t, Kt)

If A queries OCorrupt(role):
21 return (stbegin

role,trole
, msktrole)

Fig. 5: Security experiment for error predictability (s-kERR-PRE) with respect to
error predictor Pred of a multi-key channel Ch. An adversary A has only access
to an oracle [OX]c if the condition c is satisfied.

be taken into account and it is less clear how to define an independent receiver’s
internal state.

We translate the notion of error predictability to the multi-key setting, pa-
rameterized as s-kERR-PRE with forward security and phase-key insulation, and
in a single- and multi-key variant. This enables us to show the following compo-
sition result: for any advanced security property s ∈ {ε, fs, ki, fski} and key set-
ting k ∈ {sk,mk}, if a multi-key channel provides the according notion of cipher-
text integrity (s-INT-kCTXT), chosen-plaintext confidentiality (s-IND-kCPA),
and error predictability (s-kERR-PRE), then it also provides chosen-ciphertext
confidentiality (s-IND-kCCA).

We formalize the parameterized, multi-key version of error predictability,
s-kERR-PRE, in Definition 5 below through the experiment Expts-kERR-PRE

Ch,A in
Figure 5. An adversary wins against this experiment if it can ever cause the Recv
algorithm to output an error message that differs from the output of the pre-
dictor algorithm. Meanwhile, when forward security or phase-key insulation is
demanded, the adversary is even allowed to corrupt the master secret key resp.
reveal phase keys at will.

22

Definition 5 (Error predictability of multi-key channels (s-kERR-PRE)).
Let Ch = (Init,Send,Recv,Update) be a multi-key channel with error space E, ad-
vanced security aspects s ∈ {ε, fs, ki, fski} and key setting k ∈ {sk,mk}. We say
that Ch provides error predictability (s-kERR-PRE) with respect to an efficient
probabilistic algorithm Pred : {0, 1}∗∗ × {0, 1}∗∗ × {0, 1}∗ $−→ E, called the error
predictor, if, for every PPT adversary A playing in the experiment s-kERR-PRE
defined in Figure 5 against channel Ch, the following advantage function is neg-
ligible:

Advs-kERR-PRE
Ch,Pred,A (λ) := Pr

[
Expts-kERR-PRE

Ch,Pred,A (1λ) = 1
]
.

We are now ready to state our generic composition theorem for the setting
of multi-key channels. The proof of the multi-key composition theorem follows
along the lines of the classical result [10] adapted to the stateful setting and
making use of the error predictor in the simulation of multiple errors in the
receiving oracle as in [17,29]. Due to space limitations, we provide the proof in
the full version of this work.

Theorem 1 (s-INT-kCTXT ∧ s-IND-kCPA ∧ s-kERR-PRE =⇒ s-IND-kCCA).
Let Ch = (Init,Send,Recv,Update) be a correct multi-key channel with error
space E. If Ch provides indistinguishability under chosen-plaintext attacks, in-
tegrity of ciphertexts, and error predictability (wrt. some predictor Pred) with
advanced security aspects s ∈ {ε, fs, ki, fski} for a key setting k ∈ {sk,mk}, then
it also provides indistinguishability under chosen-ciphertext attacks for s and k.
Formally, for every efficient s-IND-kCCA adversary A there exist an efficient
s-INT-kCTXT adversary B1, s-kERR-PRE adversary B2, and s-IND-kCPA adver-
sary B3 such that

Advs-IND-kCCA
Ch,A ≤ Advs-INT-kCTXT

Ch,B1
+ Advs-kERR-PRE

Ch,Pred,B2
+ Advs-IND-kCPA

Ch,B3
.

4 AEAD-based Construction of a Multi-key Channel

In this section we generically construct a (deterministic) multi-key channel ChAEAD
from on a nonce-based AEAD scheme AEAD and a pseudorandom function f .
We then prove that our construction provides the strongest security notions
for both confidentiality and integrity in our model, namely indistinguishabil-
ity under multi-key chosen-ciphertext attacks and multi-key integrity of cipher-
texts, both with forward security and phase-key insulation (fski-IND-mkCCA and
fski-INT-mkCTXT).

Our generic construction ChAEAD = (Init,Send,Recv,Update) is defined via
the algorithms given in Figure 6. It uses a nonce-based AEAD scheme AEAD =
(Enc,Dec) with key space K = {0, 1}λ, message and ciphertext space {0, 1}∗,
nonce space {0, 1}n, associated data space {0, 1}∗, and an error symbol ⊥. Fur-
thermore, it employs a pseudorandom function f : {0, 1}λ×{0, 1} → {0, 1}λ. The
deterministic AEAD encryption algorithm maps a key K ∈ {0, 1}λ (which we
write in subscript), a nonce N ∈ {0, 1}n, an associated data value ad ∈ {0, 1}∗,

23

and a message m ∈ {0, 1}∗ to a ciphertext c ∈ {0, 1}∗. The deterministic de-
cryption algorithm conversely maps a key, nonce, associated data value, and
ciphertext to either a message or the error symbol ⊥.

Our construction supports a maximum number of maxmsg = 2n messages per
phase, where n is the AEAD nonce length. The master-secret-key and phase-key
space in our construction are equal to the AEAD and PRF key space,MSK =
K = {0, 1}λ. The error space {⊥,⊥′} consists of the error symbol ⊥ of the
AEAD scheme and a second symbol ⊥′ indicating exceedance of maxmsg. The
sending and receiving state space is SS = SR = N × N∗ × {0, 1}, encoding a
message sequence number, a list of the message counts in all previous phases,
and a failure flag indicating a previously occurred error.

On a high level, ChAEAD derives master secret and phase keys via the (domain-
separated) PRF f , an established technique ensuring forward security and sep-
aration of the keys derived; see, e.g., [13]. For encryption, it ensures reorder
protection via a sequence number used as nonce. It further authenticates the
number of messages seen in previous phases via the associated data field, bor-
rowing established concepts from distributed computing to ensure causality.8 In
detail, our construction operates as follows.

– The Init algorithm uses StateGen to initialize the sending and receiving states
as tuples containing a message sequence number seqno = 0, a list of the
number of messages sent in all previous phases prevnos = (), and a failure
flag fail = 0. Via MasterKeyGen, the Init algorithm then samples an initial
master secret key msk0

$←− {0, 1}λ uniformly at random. Finally it derives
the initial phase key K0 ← f(msk0, 1) via KeyDerive as the output of the
PRF f keyed with the initial master secret key and on input 1.

– The Send algorithm immediately outputs an error ⊥′ in case the maximum
number maxmsg = 2n of messages has been reached in this or a prior call
(indicated by fail = 1). Otherwise, it increases the message sequence num-
ber in its state by one. It then invokes the deterministic AEAD encryption
algorithm on the message m to obtain the ciphertext c. Here, the sequence
number is used as the nonce N = seqno and the previous phases’ message
count as the associated data ad = prevnos. The output of Send is the new
state and the ciphertext c.

– The Recv algorithm immediately outputs an error ⊥ in case the failure flag
has been set (fail = 1) in an earlier invocation, indicating that a previous
AEAD decryption algorithm has failed. Otherwise it increases the message
sequence number contained in the receiving state by one. It then uses the
nonce N = seqno and associated data prevnos in the AEAD decryption
algorithm on the ciphertext c to obtain m. In case the decryption fails and

8 Note that, for a more efficient construction, one can get similar authenticity guaran-
tees by storing a chained hash value of the number of messages received in previous
phases using a collision-resistant hash function. For the sake of simplicity we omit
this hash-chain optimization here and focus on demonstrating the feasibility of our
security notions.

24

Init(1λ):
1 (stS,0, stR,0)← StateGen(1λ)
2 msk0

$←− MasterKeyGen(1λ)
3 K0 ← KeyDerive(msk0)
4 return (msk0, K0, stS,0, stR,0)

Send(stS , K, m):
5 parse stS as (seqno, prevnos, fail)
6 if seqno = maxmsg or fail = 1 then
7 fail← 1
8 stS ← (seqno, prevnos, fail)
9 return (stS ,⊥′)

10 seqno← seqno + 1
11 c← EncK(seqno, prevnos, m)
12 stS ← (seqno, prevnos)
13 return (stS , c)

Recv(stR, K, c):
14 parse stR as (seqno, prevnos, fail)
15 if fail = 1 then
16 return (stR,⊥)
17 seqno← seqno + 1
18 m← DecK(seqno, prevnos, c)
19 if m = ⊥ then
20 fail← 1
21 stR ← (seqno, prevnos, fail)
22 return (stR, m)

StateGen(1λ):
23 stS,0 = (0, (), 0)
24 stR,0 = (0, (), 0)
25 return (stS,0, stR,0)

MasterKeyGen(1λ):
26 msk0

$←− {0, 1}λ
27 return msk0

KeyDerive(msk):
28 return f(msk, 1)

Update(msk, st):
29 msk← MasterKeyUp(msk)
30 K← KeyDerive(msk)
31 st← StateUp(st)
32 return (msk, K, st)

StateUp(st):
33 parse st as (seqno, prevnos, fail)
34 st← (0, (prevnos, seqno), fail)
35 return st

MasterKeyUp(msk):
36 return f(msk, 0)

Fig. 6: Our generic construction of a deterministic multi-key channel ChAEAD.

m = ⊥, the failure flag is set to 1. The output of Recv is the new state and
the message (or error) m.

– The Update algorithm uses StateUp to reset the new message sequence num-
ber to 0, and appends the previous message sequence number to the list of
previous phases’ message counts, i.e., prevnos ← (prevnos, seqno). Then it
invokes MasterKeyUp to derive a new master secret key as the output of f
keyed with the previous master secret key and on input 0. Finally, it uses
KeyDerive to compute a new phase key from the new master secret key.

Correctness. Correctness of our ChAEAD construction follows immediately from
correctness of the underlying AEAD scheme. In particular, observe that both
receiver and sender compute their master secret and phase keys via the same,
deterministic key schedule. Moreover, whenever both sides process the same
number—not exceeding maxmsg—of messages per phase (as is a precondition in
the correctness definition), they will also use the same associated data values

25

for encryption and decryption, thus rendering the receiver to derive the correct
messages as required.

Remark 2. At first glance, it might seem counter-intuitive that the sequence
number in our ChAEAD construction is reset to 0 at the start of a new phase.
Would it not be more natural to have the sequence number running over all
phases in order to ensure at the start of a phase that all messages of the previous
phase were received, and to prevent reordering of messages across phases?

As surfaced by Fournet and the miTLS [40] team in the discussion around
TLS 1.3 [30], this approach would however enable truncation attacks if the leak-
age of phase keys is considered in the security definition, as we do for phase-key
insulation.9 If sequence numbers are continued, an adversary holding the key
of some phase t can truncate a prefix of the messages (with sequence numbers
i, . . . , i+j) in phase t+1 by providing the receiver with j+1 self-generated mes-
sages at the end of t. Dropping the first j+1 messages in phase t+1, the receiver’s
sequence number matches again the one of the sender (for message i+ j+ 1), so
the truncation would go unnoticed. Resetting the sequence numbers to 0 when
switching phases prevents this attack, though additional care needs to be taken
to prevent suffix truncation at the end of a phase. In our construction, we ensure
the latter through authenticating the number of messages sent in all previous
phases. We note that this mechanism would even allow to not reset the sequence
number, but we decided to keep the reset in order to stay closer to the channel
design of TLS 1.3 (cf. the discussion in Section 4.2).

4.1 Security Analysis

We now show that our generic ChAEAD construction achieves the strongest multi-
key security notions for confidentiality and integrity, namely forward-secure and
phase-key–insulated indistinguishability under multi-key chosen-ciphertext at-
tacks (fski-IND-mkCCA) and integrity of ciphertexts (fski-INT-mkCTXT). For
proving the former notion we proceed via first showing the corresponding CPA
confidentiality variant as well as that our construction provides error predictabil-
ity (for multiple keys and with forward security and phase-key insulation), and
then leverage our generic composition theorem (Theorem 1). Our results hold
under the assumption that the underlying nonce-based AEAD scheme AEAD
provides confidentiality in the sense of IND-CPA security and integrity in terms
of AUTH security as defined by Rogaway [44]10, as well as that the employed
pseudorandom function f meets the standard notion of PRF security.

We begin with stating the multi-key chosen-plaintext confidentiality with
forward security and phase-key insulation. The according proof, provided in the
full version, proceeds in three steps. First, we guess the challenge phase t the
adversary will select, introducing a loss of nt. Second, we gradually replace all
9 In our framework, the weakest integrity property broken through this attack is phase-
key–insulated integrity of plaintexts (ki-INT-mkPTXT).

10 While Rogaway defines confidentiality via the stronger IND$-CPA notion, it suffices
for our result that AEAD provides regular indistinguishability of encryptions.

26

master secret keys up to mskt+1 and phase keys up to Kt with independent ran-
dom values, bounding the advantage difference by nt times the PRF security of f
via a hybrid argument. In the last step, we show that the remaining advantage
can be bounded by reducing the challenge phase’s operations to the IND-CPA
security of the employed AEAD scheme.

Theorem 2 (ChAEAD is fski-IND-mkCPA-secure). The ChAEAD construction
from Figure 6 provides forward-secure and phase-key–insulated indistinguisha-
bility under multi-key chosen-plaintext attacks (fski-IND-mkCPA) if the employed
authenticated encryption with associated data scheme AEAD provides indistin-
guishability under chosen-plaintext attacks (IND-CPA) and the employed pseudo-
random function f is PRF-secure.

Formally, for every efficient fski-IND-mkCPA adversary A against ChAEAD
there exists efficient algorithms B1 and B2 such that

Advfski-IND-mkCPA
ChAEAD,A (λ) ≤ nt ·

(
nt · AdvPRF

f,B1
(λ) + AdvIND-CPA

AEAD,B2
(λ)
)
,

where nt = max(tS , tR) + 1 is the maximum number of phases active in the
fski-IND-mkCPA experiment.

We now turn to the multi-key integrity of ciphertexts with forward security
and phase-key insulation of ChAEAD. In the proof, the first two steps follow closely
the proof of fski-IND-mkCPA security. For the last step, a careful case analysis
of the situations where synchronization is lost in the integrity experiment and
how this is reflected in the ChAEAD construction establishes the reduction to the
underlying AEAD scheme’s authenticity. We provide the proof of integrity for
our ChAEAD construction in the full version.

Theorem 3 (ChAEAD is fski-INT-mkCTXT-secure). The ChAEAD construction
from Figure 6 provides forward-secure and phase-key–insulated multi-key in-
tegrity of ciphertexts (fski-INT-mkCTXT) if the employed authenticated encryp-
tion with associated data scheme AEAD provides authenticity (AUTH) and the
employed pseudorandom function f is PRF-secure.

Formally, for every efficient fski-INT-mkCTXT adversary A against ChAEAD
there exists efficient algorithms B1 and B2 such that

Advfski-INT-mkCTXT
ChAEAD,A (λ) ≤ nt ·

(
nt · AdvPRF

f,B1
(λ) + AdvAUTH

AEAD,B2
(λ)
)
,

where nt = max(tS , tR) + 1 is the maximum number of phases active in the
fski-INT-mkCTXT experiment.

Finally, in the full version, we show that our ChAEAD provides multi-key error
predictability with forward security and phase-key insulation (fski-mkERR-PRE).
We can then conclude from Theorem 1 that it also achieves strong fski-IND-mkCCA
confidentiality.

27

4.2 Comparison to the TLS 1.3 Record Protocol

Our notion of multi-key channels is particularly inspired by the ongoing develop-
ments of the upcoming Transport Layer Security (TLS) protocol version 1.3 [43].
It is hence insightful to compare our generic construction with the design of the
TLS 1.3 record protocol (cf. [43, Section 5]).

First of all note that, in contrast to previous TLS versions, TLS 1.3 man-
dates the use of AEAD schemes as encryption and authentication mechanisms
for the record protocol. It follows the basic secure-channel design principle to
include a sequence number for protecting against reordering attacks; as in our
construction. Both in TLS 1.3 and our construction, the sequence number enters
the AEAD’s nonce field and is reset to 0 at the start of each new phase. Also
identically to our construction, the TLS 1.3 record protocol keys are derived via
a deterministic key schedule in which, starting from an initial master secret key
(denoted client/server_traffic_secret_0 in TLS 1.3) the current phase’s
key as well as the next phase’s master secret key are derived via independent
applications of a pseudorandom function (TLS 1.3 uses HMAC [7,36] for this pur-
pose). Beyond enabling key switches to allow secure encryption of large amounts
of data, the TLS 1.3 design in particular names forward security (combined with
insulation of phase keys) as a security goal [43, Appendix E.2]. In this sense,
our generic ChAEAD construction is comparatively close to the internal channel
design of the TLS 1.3 record protocol in both techniques and security goals.

Still, there are some notable differences between the two designs, both in
technical details as well as in the practically achieved security and its underlying
assumptions. On the technical side, the TLS 1.3 record protocol additionally
includes a content-type field in ciphertexts to enable multiplexing of messages
from multiple sources. Furthermore, TLS 1.3 does not explicitly authenticate
the numbers of seen ciphertexts in previous phases (as our construction does via
the prevnos field), but instead relies on the authenticated transmission of key
update messages. To be precise, key update messages are encoded as a specific
control (“post-handshake”) message and sent within the data channel. Thereby
associated with a sequence number, they serve as an authenticated “end-of-phase
indicator” that allows the record protocol to infer in unrevealed phases that all
messages in a phase have been correctly received when the key update message
arrives.

In contrast, our model does not rely on the authenticity of key updates
but captures more generic settings where key update notifications may be send
out-of-band and without being authenticated. Our construction hence cannot
rely on key updates as indicators that a phase was gracefully completed, but
instead needs to leverage the next uncompromised phase to detect truncations
in an earlier phase. Nevertheless, our generic ChAEAD scheme serves as proof-of-
concept construction that strong confidentiality and integrity can be achieved in
the multi-key setting with forward security and phase-key insulation even with
unauthenticated, out-of-band key updates.

28

5 Conclusions and Future Work

In this work we initiate the study of multi-key channels, providing a game-based
formalization, a framework of security notions and their relations, as well as a
provably secure construction based on authenticated encryption with associated
data and a pseudorandom function. Motivated by the channel design of the
upcoming version 1.3 of the Transport Layer Security (TLS) protocol involving
key updates and thus multiple keys, our work casts a formal light on the design
criteria for multi-key channels and their achievable security guarantees.

Being a first step towards the understanding of, in particular, real-world
designs of multi-key channels, our work also gives rise to further research ques-
tions. A natural next step is to analyze the exact security guarantees achieved
by the multi-key TLS 1.3 record protocol. In this context, a question of indepen-
dent interest lies in analyzing the trade-offs between relying on authenticated
key updates versus not authenticating them, both with respect to the security
properties achievable as well as potential functional and efficiency impacts. In
a different direction, Fischlin et al. [29] observed that TLS and other channels
deviate on the API level from the classical cryptographic abstraction of chan-
nels by providing a streaming interface rather than an atomic-message interface.
Hence, their notion of stream-based channels is a natural candidate to blend
with our multi-key notions in order to investigate the interplay of discrete key
updates with a non-discrete stream of message data. Finally, it would be in-
teresting to extend the notion of multi-key channels to capture more complex,
non-deterministic key schedules, e.g., those employed in secure messaging pro-
tocols like Signal [47] aiming at extended security properties [21,20,6].

Acknowledgments

We thank Giorgia Azzurra Marson for helpful discussions in the early phase of
this work. We furthermore thank the anonymous reviewers of EUROCRYPT 2017
and CRYPTO 2017 for their valuable comments. This work has been funded by
the DFG as part of projects P2, S4 within the CRC 1119 CROSSING.

References

1. Abdalla, M., Bellare, M.: Increasing the lifetime of a key: a comparative analysis
of the security of re-keying techniques. In: Okamoto, T. (ed.) ASIACRYPT 2000.
LNCS, vol. 1976, pp. 546–559. Springer, Heidelberg (Dec 2000)

2. Albrecht, M.R., Degabriele, J.P., Hansen, T.B., Paterson, K.G.: A surfeit of SSH
cipher suites. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi,
S. (eds.) ACM CCS 16. pp. 1480–1491. ACM Press (Oct 2016)

3. Albrecht, M.R., Paterson, K.G., Watson, G.J.: Plaintext recovery attacks against
SSH. In: 2009 IEEE Symposium on Security and Privacy. pp. 16–26. IEEE Com-
puter Society Press (May 2009)

29

4. Badertscher, C., Matt, C., Maurer, U., Rogaway, P., Tackmann, B.: Augmented
secure channels and the goal of the TLS 1.3 record layer. In: Au, M.H., Miyaji,
A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 85–104. Springer, Heidelberg (Nov
2015)

5. Barwell, G., Page, D., Stam, M.: Rogue decryption failures: Reconciling AE ro-
bustness notions. In: Groth, J. (ed.) 15th IMA International Conference on Cryp-
tography and Coding. LNCS, vol. 9496, pp. 94–111. Springer, Heidelberg (Dec
2015)

6. Bellare, M., Camper Singh, A., Jaeger, J., Nyayapati, M., Stepanovs, I.: Ratcheted
encryption and key exchange: The security of messaging. In: CRYPTO 2017. LNCS,
Springer, Heidelberg (Aug 2017)

7. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO’96. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (Aug 1996)

8. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: 38th FOCS. pp. 394–403. IEEE Computer Society Press
(Oct 1997)

9. Bellare, M., Kohno, T., Namprempre, C.: Breaking and provably repairing the
SSH authenticated encryption scheme: A case study of the encode-then-encrypt-
and-MAC paradigm. ACM Trans. Inf. Syst. Secur. 7(2), 206–241 (2004)

10. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (Dec 2000)

11. Bellare, M., Rogaway, P.: Encode-then-encipher encryption: How to exploit nonces
or redundancy in plaintexts for efficient cryptography. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 317–330. Springer, Heidelberg (Dec 2000)

12. Bellare, M., Tackmann, B.: The multi-user security of authenticated encryption:
AES-GCM in TLS 1.3. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I.
LNCS, vol. 9814, pp. 247–276. Springer, Heidelberg (Aug 2016)

13. Bellare, M., Yee, B.S.: Forward-security in private-key cryptography. In: Joye, M.
(ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 1–18. Springer, Heidelberg (Apr 2003)

14. Bhargavan, K., Blanchet, B., Kobeissi, N.: Verified models and reference imple-
mentations for the TLS 1.3 standard candidate. In: 2017 IEEE Symposium on
Security and Privacy (S&P 2017). pp. 483–503. IEEE (May 2017)

15. Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Kohlweiss, M., Pan, J.,
Protzenko, J., Rastogi, A., Swamy, N., Zanella-Béguelin, S., Zinzindohoué, J.K.:
Implementing and proving the TLS 1.3 record layer. In: 2017 IEEE Symposium on
Security and Privacy (S&P 2017) (2017)

16. Boldyreva, A., Degabriele, J.P., Paterson, K.G., Stam, M.: Security of symmetric
encryption in the presence of ciphertext fragmentation. In: Pointcheval, D., Jo-
hansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 682–699. Springer,
Heidelberg (Apr 2012)

17. Boldyreva, A., Degabriele, J.P., Paterson, K.G., Stam, M.: On symmetric encryp-
tion with distinguishable decryption failures. In: Moriai, S. (ed.) FSE 2013. LNCS,
vol. 8424, pp. 367–390. Springer, Heidelberg (Mar 2014)

18. Brzuska, C., Smart, N.P., Warinschi, B., Watson, G.J.: An analysis of the EMV
channel establishment protocol. In: Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.)
ACM CCS 13. pp. 373–386. ACM Press (Nov 2013)

19. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (May 2001)

30

20. Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A formal
security analysis of the Signal messaging protocol. In: 2017 IEEE European Sym-
posium on Security and Privacy (EuroS&P 2017). IEEE (Apr 2017)

21. Cohn-Gordon, K., Cremers, C.J.F., Garratt, L.: On Post-compromise Security. In:
IEEE 29th Computer Security Foundations Symposium (CSF 2016). pp. 164–178
(2016)

22. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246 (Proposed Standard) (Aug 2008), http://www.ietf.org/rfc/rfc5246.
txt, updated by RFCs 5746, 5878, 6176

23. Diffie, W., Van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated
key exchanges. Designs, Codes and Cryptography 2(2), 107–125 (1992)

24. Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-insulated public key cryptosystems. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 65–82. Springer,
Heidelberg (Apr / May 2002)

25. Dodis, Y., Katz, J., Xu, S., Yung, M.: Strong key-insulated signature schemes. In:
Desmedt, Y. (ed.) PKC 2003. LNCS, vol. 2567, pp. 130–144. Springer, Heidelberg
(Jan 2003)

26. Dodis, Y., Luo, W., Xu, S., Yung, M.: Key-insulated symmetric key cryptography
and mitigating attacks against cryptographic cloud software. In: Youm, H.Y., Won,
Y. (eds.) ASIACCS 12. pp. 57–58. ACM Press (May 2012)

27. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of
the TLS 1.3 handshake protocol candidates. In: Ray, I., Li, N., Kruegel:, C. (eds.)
ACM CCS 15. pp. 1197–1210. ACM Press (Oct 2015)

28. Fischlin, M., Günther, F.: Replay attacks on zero round-trip time: The case of the
TLS 1.3 handshake candidates. In: 2017 IEEE European Symposium on Security
and Privacy. IEEE (Apr 2017)

29. Fischlin, M., Günther, F., Marson, G.A., Paterson, K.G.: Data is a stream: Security
of stream-based channels. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015,
Part II. LNCS, vol. 9216, pp. 545–564. Springer, Heidelberg (Aug 2015)

30. Fournet, C.: Re: [TLS] [tls13-spec] resetting the sequence number to zero
for each record key. (#379). https://mailarchive.ietf.org/arch/msg/tls/
extoO9ETJLnEm3MRDTO23x70DFM (Dec 2015)

31. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-
tem Sciences 28(2), 270–299 (1984)

32. Günther, C.G.: An identity-based key-exchange protocol. In: Quisquater, J.J., Van-
dewalle, J. (eds.) EUROCRYPT’89. LNCS, vol. 434, pp. 29–37. Springer, Heidel-
berg (Apr 1990)

33. Katz, J., Yung, M.: Unforgeable encryption and chosen ciphertext secure modes of
operation. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 284–299. Springer,
Heidelberg (Apr 2001)

34. Kent, S., Seo, K.: Security Architecture for the Internet Protocol. RFC 4301 (Pro-
posed Standard) (Dec 2005), http://www.ietf.org/rfc/rfc4301.txt, updated
by RFC 6040

35. Kohno, T., Palacio, A., Black, J.: Building secure cryptographic transforms, or
how to encrypt and MAC. Cryptology ePrint Archive, Report 2003/177 (2003),
http://eprint.iacr.org/2003/177

36. Krawczyk, H., Bellare, M., Canetti, R.: HMAC: Keyed-Hashing for Message Au-
thentication. RFC 2104 (Informational) (Feb 1997), http://www.ietf.org/rfc/
rfc2104.txt, updated by RFC 6151

37. Krawczyk, H., Wee, H.: The OPTLS protocol and TLS 1.3. In: 2016 IEEE Euro-
pean Symposium on Security and Privacy. pp. 81–96. IEEE (Mar 2016)

31

http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc5246.txt
https://mailarchive.ietf.org/arch/msg/tls/extoO9ETJLnEm3MRDTO23x70DFM
https://mailarchive.ietf.org/arch/msg/tls/extoO9ETJLnEm3MRDTO23x70DFM
http://www.ietf.org/rfc/rfc4301.txt
http://eprint.iacr.org/2003/177
http://www.ietf.org/rfc/rfc2104.txt
http://www.ietf.org/rfc/rfc2104.txt

38. Luykx, A., Paterson, K.: Limits on authenticated encryption use in TLS. http:
//www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf (2016)

39. Marson, G.A., Poettering, B.: Security notions for bidirectional channels. IACR
Trans. Symm. Cryptol. 2017(1), 405–426 (2017)

40. miTLS: A Verified Reference Implementation of TLS, http://mitls.org/
41. Paterson, K.G., van der Merwe, T.: Reactive and proactive standardisation of TLS.

In: Chen, L., McGrew, D., Mitchell, C. (eds.) SSR 2016. Lecture Notes in Computer
Science, vol. 10074, pp. 160–186. Springer (Dec 2016)

42. Paterson, K.G., Ristenpart, T., Shrimpton, T.: Tag size does matter: Attacks
and proofs for the TLS record protocol. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 372–389. Springer, Heidelberg (Dec 2011)

43. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3 – draft-
ietf-tls-tls13-20. https://tools.ietf.org/html/draft-ietf-tls-tls13-20 (Apr
2017)

44. Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.)
ACM CCS 02. pp. 98–107. ACM Press (Nov 2002)

45. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: A block-cipher mode of
operation for efficient authenticated encryption. In: ACM CCS 01. pp. 196–205.
ACM Press (Nov 2001)

46. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (May / Jun 2006)

47. Signal protocol: Advanced cryptographic ratcheting. https://whispersystems.
org/blog/advanced-ratcheting/

48. Ylonen, T., Lonvick, C.: The Secure Shell (SSH) Protocol Architecture. RFC 4251
(Proposed Standard) (Jan 2006), http://www.ietf.org/rfc/rfc4251.txt

32

http://www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf
http://www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf
http://mitls.org/
https://tools.ietf.org/html/draft-ietf-tls-tls13-20
https://whispersystems.org/blog/advanced-ratcheting/
https://whispersystems.org/blog/advanced-ratcheting/
http://www.ietf.org/rfc/rfc4251.txt

	A Formal Treatment of Multi-key Channels
	Introduction
	Secure Cryptographic Channels
	Multi-key Channels
	Our Contributions
	Related Work

	Multi-key Channels
	Syntax Rationale

	Security Notions for Multi-key Channels
	Confidentiality
	Integrity
	Modeling Rationale
	Relations Between Multi- and Single-key Notions
	Trivial implications
	Separations
	Generic Transforms Between Stateful Encryption and Multi-key Channels

	Generic Composition

	AEAD-based Construction of a Multi-key Channel
	Security Analysis
	Comparison to the TLS 1.3 Record Protocol

	Conclusions and Future Work

