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Abstract. The cube attack is a powerful cryptanalytic technique and is
especially powerful against stream ciphers. Since we need to analyze the
complicated structure of a stream cipher in the cube attack, the cube
attack basically analyzes it by regarding it as a blackbox. Therefore,
the cube attack is an experimental attack, and we cannot evaluate the
security when the size of cube exceeds an experimental range, e.g., 40. In
this paper, we propose cube attacks on non-blackbox polynomials. Our
attacks are developed by using the division property, which is recently
applied to various block ciphers. The clear advantage is that we can
exploit large cube sizes because it never regards the cipher as a blackbox.
We apply the new cube attack to Trivium, Grain128a, and ACORN. As
a result, the secret keys of 832-round Trivium, 183-round Grain128a,
and 704-round ACORN are recovered. These attacks are the current
best key-recovery attack against these ciphers.

Keywords: Cube attack, Stream cipher, Division property, Higher-order
differential cryptanalysis, MILP, Trivium, Grain128a, ACORN

1 Introduction

Cube attack is one of general cryptanalytic techniques against symmetric-key
cryptosystems proposed by Dinur and Shamir [11]. Especially, the cube attack
has been successfully applied to various stream ciphers [4,12,14,10,25]. Let x and
v be secret and public variables of stream ciphers, respectively, and let f(x,v)
be the first bit of key stream. Some bits in v are active, where they take all
possible combinations of values. The set of these values is denoted as a cube, and
the sum of f(x,v) over all values of the cube is evaluated. Then, this sum is
also represented as a polynomial whose inputs are x and v, and the polynomial
is denoted as a superpoly of the cube. The superpoly is more simplified than the
original f(x,v), and secret variables x are recovered by analyzing this simplified
polynomial. Unfortunately, it is really difficult to analyze the structure of the
superpoly. Therefore, the target stream cipher f(x,v) is normally regarded as



a blackbox polynomial in the cube attack, and this blackbox polynomial is ex-
perimentally evaluated. In the original paper of the cube attack [11], the authors
introduced a linearity test to reveal the structure of the superpoly. If the linear-
ity test always passes, the Algebraic Normal Form (ANF) of the superpoly is
recovered by assuming that the superpoly is linear. Moreover, a quadraticity test
was introduced in [24], and the ANF of the superpoly is similarly recovered. The
quadraticity test was also used in the current best key-recovery attack against
Trivium [14]. Note that they are experimental cryptanalysis, and it is possible
that cube attacks do not actually work. For example, if the superpoly is highly
unbalanced function for specific variables, we cannot ignore the probability that
the linearity and quadraticity tests fail.

The difference between the cube attack and higher-order differential attack
has been often discussed. The higher-order differential attack was proposed by
Lai [20]. Assuming the algebraic degree of f is at most d, Lai showed that the al-
gebraic degree of the ith order difference is at most d− i. Then, Knudsen showed
the effectiveness of the higher-order differential attack on toy block ciphers [18].
Nowadays, many advanced techniques similar to the higher-order differential at-
tack have been developed to analyze block ciphers, e.g., integral attack [8,22,19].

The cube attack can in some way be seen as a type of higher-order differential
attacks because it also evaluates the behavior of higher-order difference. However,
the most major difference between the cube attack and common higher-order dif-
ferential attack is whether or not secret variables are directly recovered from the
characteristic, and understanding this difference is very important to consider
key-recovery attacks against stream ciphers. When a block cipher is analyzed,
attackers first evaluate the algebraic degree of the reduced-round block cipher
and construct a higher-order differential characteristic, where the (d+1)th order
difference is always 0 if the degree is at most d. Then, the key recovery is in-
dependently appended after the higher-order differential characteristic. Namely,
attackers guess round keys used in last several rounds and compute the (d+1)th
order difference of ciphertexts of the reduced-round block cipher. If the correct
round key is guessed, the (d+ 1)th order difference is always 0. In other words,
if the (d+ 1)th order difference is not 0, guessed round keys are incorrect.

Note that we cannot use this strategy for the key-recovery attack against
many stream ciphers because the secret key is generally used during the ini-
tialization phase and is not involved when generating a keystream, i.e. even if
there is a distinguisher in the keystream, it cannot be directly utilized for key
recovery attacks by appending key recovery rounds in the key generation phase,
unlike key recovery attacks of block ciphers. To execute the key-recovery attack
of stream ciphers, we have to recover the secret key by using only key streams
that attackers can observe. Therefore, more advanced and complicated analyses
are required than the simple degree estimation of the common higher-order dif-
ferential attack or square, saturation, and integral characteristics. In the context
of the cube attack, we have to analyze the ANF of the superpoly. It is unlikely to
well analyze because symmetric-key cryptosystems are complicated. Therefore,
stream ciphers have been experimentally analyzed in the cube attack.



Another important related work to understand this paper is the division
property, which is a new method to construct higher-order differential (integral)
characteristics [31]. The division property is the generalization of the integral
property [19] that can also exploit the algebraic degree at the same time, and
it allows us to evaluate more accurate higher-order differential characteristics.
Moreover, the bit-based division property was introduced in [32], and three prop-
agation rules for basic operations, and, xor, and copy are shown. While arbitrary
block ciphers are evaluated by using the bit-based division property, it requires
much time and memory complexity [32]. Therefore, the application is first limited
to block ciphers with small block length, like Simon32 or Simeck32. In [34], Xiang
et al. showed how to model the propagation of the bit-based division property
by using the mixed integer linear programming (MILP). Moreover, they showed
that MILP solvers can efficiently evaluate the propagation. To demonstrate the
effectiveness, accurate propagations of the bit-based division property for six
lightweight block ciphers including Simon128 were shown.

Our Contribution. The most important step in a cube attack is the super-
poly recovery. If the superpoly is more efficiently recovered than the brute-force
search, it brings some vulnerability of symmetric-key ciphers. Superpolys are ex-
perimentally recovered in the conventional cube attack. The advantage of such
approach is that we do not need to analyze the structure of f in detail. On the
other hand, there are significant drawbacks in the experimental analysis.

– The size of a cube is limited to the experimental range because we have to
compute the sum of f over a cube. It may be possible that we try a cube
whose size is at most 40 in current computers, but it requires incredible effort
in the aspect to both money and time. Therefore, it is practically infeasible
to execute the cube attack when the cube size exceeds 40.

– The prediction of the true security of target stream ciphers is an important
motivation of cryptanalyses. Since the evaluation is limited to the experi-
mental range, it is difficult to predict the impact of the cube attack under
future high-performance computers.

– Since the stream cipher is regarded as a blackbox, the feedback to designers
is limited.

To overcome these drawbacks, we propose the cube attack on non-blackbox
polynomials.

Our analysis is based on the propagation of the (bit-based) division property,
and as far as we know, it is the first application of the division property to stream
ciphers. Since the division property is a tool to find higher-order differential
characteristics, the trivial application is only useful to find zero-sum integral
distinguishers, where the sum of the first bit of the key stream over the cube is
always 0 for any secret key. As mentioned earlier, it is nontrivial to recover the
secret key of stream ciphers by using zero-sum integral distinguisher. Therefore,
we propose a novel application of the division property to recover the secret
key. Our technique uses the division property to analyze the ANF of f(x,v)



Table 1. Summary of results. The time complexity in this table shows the time com-
plexity to recover the superpoly of a cube.

Applications # rounds cube size complexity key recovery reference

Trivium
799 32 † practical X [14]

832 72 277 X Sect. 5.1

Grain128a
177 33 practical [21]

183 92 2108 speculative Sect. 5.2

ACORN
503 5 ‡ practical ‡ X [25]

704 64 2122 X Sect. 5.3

† 18 cubes whose size is from 32 to 37 are used, where the most efficient cube is shown
to recover one bit of the secret key.
‡ The attack against 477 rounds is mainly described for the practical attack in [25].
However, when the goal is the superpoly recovery and to recover one bit of the secret
key, 503 rounds are attacked.

by evaluating propagations from multiple input division property according to
a cube. Finally, we can evaluate secret variables that are not involved to the
superpoly of the cube. This allows us to compute the upper bound of the time
complexity for the superpoly recovery. Note that the superpoly recovery directly
brings some vulnerability of symmetric-key ciphers, and we discuss this issue in
Sect. 4.

Let I be a set of cube indices. After the evaluation of the division property,
we get a set of indices J , where xj (j ∈ J) is involved to the superpoly. Then,
the variation of the sum over the cube is at most 2|J| for each constant part
of public variables, where |J | denotes the size of J . All sums are evaluated by
guessing |J |-bit secret variables, and the time complexity to recover the ANF
of the superpoly is 2|I|+|J| encryptions. Finally, we query the encryption oracle
and get the sum over the cube. Then, we can get one polynomial about secret
variables, and the secret variable is recovered from the polynomial.

Table 1 shows the summary of applications. We applied our new cube at-
tack to Trivium [6], Grain128a [3], and ACORN [33]. Trivium is part of the
eSTREAM portfolio [1], and it is one of the most analyzed stream ciphers. The
initialization is 1152 rounds. The secret key of Trivium with 767 initialization
rounds was recovered in the proposal paper of the cube attack [11]. Then, an
improved cube attack was proposed in [14], and the secret key of Trivium with
799 initialization rounds is recovered. This is the current best key-recovery at-
tack against Trivium. Our new cube attack recovers the secret key of Trivium
with 832 initialization rounds. Grain128a is a member of Grain family of stream
ciphers and is standardized by ISO/IEC 29167-13 [16]. The initialization is 256
rounds. The conditional differential cryptanalysis was applied to Grain128a, and



a distinguishing attack against Grain128a with 177 initialization rounds was
shown under the single-key setting [21]. On the other hand, the key-recovery at-
tack is not known. Our new cube attack recovers the secret key of Grain128a
with 183 initialization rounds. Unfortunately, when we applied our technique to
practical cube attack, i.e., the cube size is small, we could not find balanced
superpoly. In such case, the size of recovered bit of information is smaller than
1 bit. Since we cannot say that balanced superpoly is efficiently found in the
large cube size, the feasibility of the key recovery is speculative. However, 183
rounds are at least vulnerable because the superpoly recovery is more efficient
than the brute-force search. ACORN is an authenticated encryption and one of
the 3rd round candidates in CAESAR competition [2]. The structure is based
on non-linear feedback shift register (NLFSR) like Trivium and Grain. Before
the output of key streams, the secret key and initialization vector (iv) are se-
quentially XORed with the NLFSR, and then associated data is sequentially
XORed. In the nonce-respecting setting, we cannot select cube bits from the
associated data. Therefore, the initialization is regarded as 2048 rounds when
there is no associated data. The cube attack was applied in [25], and the secret
key of ACORN with 503 initialization is recovered. Our new cube attack recovers
the secret key of ACORN with 704 initialization rounds.

2 Preliminaries

2.1 Mixed Integer Linear Programming

The deployment of the mixed integer linear programming (MILP) to crypt-
analysis was shown by Mouha et al. in [23]. Then, the MILP has been applied
to search for differential [29,28], linear [28], impossible differential [7,26], zero-
correlation linear [7], and integral characteristics with division property [34]. The
use of MILP for the integral characteristic with division property is expanded in
this paper.

The MILP problem is an optimization or feasibility program where vari-
ables are restricted to integers. We create an MILP modelM, which consists of
variables M.var, constraints M.con, and an objective function M.obj. As an
example, let us consider the following optimization program.

Example 1.

M.var ← x, y, z as binary.

M.con← x+ 2y + 3z ≤ 4

M.con← x+ y ≥ 1

M.obj ← maximize x+ y + 2z

The answer of the model M is 3, where (x, y, z) = (1, 0, 1).

MILP solver can solve such optimization problem, and it returns infeasible if
there is no feasible solution. Moreover, if there is no objective function, the
MILP solver only evaluates whether this model is feasible or not.

We used Gurobi optimization as the solver in our experiments [15].



2.2 Cube Attack

The cube attack is a key-recovery attack proposed by Dinur and Shamir in
2009 [11] and is the extension of the higher-order differential cryptanalysis [20].

Let x = (x1, x2, . . . , xn) and v = (v1, v2, . . . , vm) be n secret variables and
m public variables, respectively. Then, the symmetric-key cryptosystem is rep-
resented as f(x,v), where f denotes a polynomial and the size of input and
output is n + m bits and 1 bit, respectively. In the case of stream ciphers, x is
the secret key, v is the initialization vector (iv), and f(x,v) is the first bit of the
key stream. The core idea of the cube attack is to simplify the polynomial by
computing the higher-order differential of f(x,v) and to recover secret variables
from the simplified polynomial.

For a set of indices I = {i1, i2, . . . , i|I|} ⊂ {1, 2, . . . , n}, which is referred as
cube indices and denote by tI the monomial as tI = vi1 · · · vi|I| . Then, we can
decompose f(x,v) as

f(x,v) = tI · p(x,v) + q(x,v),

where p(x,v) is independent of {vi1 , vi2 , . . . , vi|I|} and the effective number of
input variables of p is n + m − |I| bits. Moreover, q(x,v) misses at least one
variable from {vi1 , vi2 , . . . , vi|I|}.

Let CI , which is referred as a cube (defined by I), be a set of 2|I| values where
variables in {vi1 , vi2 , . . . , vi|I|} are taking all possible combinations of values, and
all remaining variables are fixed to some arbitrary values. Then the sum of f
over all values of the cube CI is⊕

CI

f(x,v) =
⊕
CI

tI · p(x,v) +
⊕
CI

q(x,v)

= p(x,v).

The first term is reduced to p(x,v) because tI becomes 1 for only one case in
CI . The second term is always canceled out because q(x,v) misses at least one
variable from {vi1 , vi2 , . . . , vi|I|}. Then, p(x,v) is called the superpoly of the cube
CI .

Blackbox Analysis. If the cube is appropriately chosen such that the superpoly
is enough simplified to recover secret variables, the cube attack succeeds. How-
ever, f(x,v) in real symmetric-key cryptosystems is too complicated. Therefore,
the cube attack regards f as a blackbox polynomial.

In the preprocessing phase, attackers first try out various cubes, change values
of public and secret variables, and analyze the feature of the superpoly. The goal
of this phase is to reveal the structure of p(x,v). Especially, the original cube
attack searches for linear superpoly p(x,0) by the summation over the chosen
cube. If the superpoly is linear,

p(x⊕ x′,0) = p(x,0)⊕ p(x′,0)⊕ p(0,0)



always holds for arbitrary x and x′. By repeating this linearity test enough,
attackers can know that the superpoly is linear with high probability, and the
Algebraic Normal Form (ANF) of the superpoly is recovered by assuming its
linearity.

In the online phase, attackers query to an encryption oracle by controlling
only public variables and recover secret variables. Attackers evaluate the sum of
f(x,v) over all values of the cube CI . Since the sum is right hand side of the
superpoly, the part of secret variables is recovered. Please refer to [11] and [4]
to well understand the principle of the cube attack.

2.3 Higher-Order Differential Cryptanalysis and Division Property

Underlying mathematical background of the cube attack is the same as that of
the higher-order differential attack. Unlike the cube attack, the common higher-
order differential attack never regards the block cipher as a blackbox polynomial.
Attackers analyze the structure of a block cipher and construct higher-order
differential characteristics, where attackers prepare the set of chosen plaintexts
such that the sum of corresponding ciphertexts of reduced-round block cipher
is 0. After the proposal of the higher-order differential attack, many advanced
techniques similar to the higher-order differential attack have been developed
to analyze block ciphers, e.g., square attack [8], saturation attack [22], multi-set
attack [5], and integral attack [19].

Division Property. At 2015, the division property, which is an improved tech-
nique to find higher-order differential (integral) characteristics for iterated ci-
phers, was proposed in [31]. Then, the bit-based variant was introduced in [32],
and it is defined as follows5.

Definition 1 ((Bit-Based) Division Property). Let X be a multiset whose
elements take a value of Fn2 . Let K be a set whose elements take an n-dimensional
bit vector. When the multiset X has the division property D1n

K , it fulfils the fol-
lowing conditions:

⊕
x∈X

xu =

{
unknown if there exist k ∈ K s.t. u � k,

0 otherwise,

where u � k if ui ≥ ki for all i, and xu =
∏n
i=1 x

ui
i .

We first evaluate the division property of the set of chosen plaintexts and then
evaluate the division property of the set of corresponding ciphertexts by evalu-
ating the propagation for every round function.

Some propagation rules for the division property are proven in [31,32]. At-
tackers determine indices I = {i1, i2, . . . , i|I|} ⊂ {1, 2, . . . , n} and prepare 2|I|

5 Two kinds of bit-based division property are proposed in [32]. In this paper, we only
focus on the conventional bit-based division property.



chosen plaintexts where variables indexed by I are taking all possible combina-
tions of values. The division property of such chosen plaintexts is D1n

k , where
ki = 1 if i ∈ I and ki = 0 otherwise. Then, the propagation of the division
property from D1n

k is evaluated as

{k} def
= K0 → K1 → K2 → · · · → Kr,

where DKi
is the division property after i-round propagation. If the division

property Kr does not have an unit vector ei whose only ith element is 1, the ith
bit of r-round ciphertexts is balanced.

Propagation of Division Property with MILP. Evaluating the propagation
of the division property is not easy because the size of Ki extremely increases.
At ASIACRYPT 2016, Xiang et al. showed that the propagation is efficiently
evaluated by using MILP [34]. First, they introduced the division trail as follows.

Definition 2 (Division Trail). Let us consider the propagation of the division

property {k} def
= K0 → K1 → K2 → · · · → Kr. Moreover, for any vector k∗i+1 ∈

Ki+1, there must exist a vector k∗i ∈ Ki such that k∗i can propagate to k∗i+1 by
the propagation rule of the division property. Furthermore, for (k0,k1, . . . ,kr) ∈
(K0 ×K1 × · · · ×Kr) if ki can propagate to ki+1 for all i ∈ {0, 1, . . . , r− 1}, we
call (k0 → k1 → · · · → kr) an r-round division trail.

Let Ek be the target r-round iterated cipher. Then, if there are division trails

k0
Ek−−→ kr = ei, attackers cannot know whether the ith bit of r-round ciphertexts

is balanced or not. On the other hand, if we can prove that there is no division

trail k0
Ek−−→ ei, the ith bit of r-round ciphertexts is always balanced. Therefore,

we have to evaluate all possible division trails to verify whether each bit of
ciphertexts is balanced or not. In [31], [30], and [32], all possible division trails are
evaluated by using a breadth-first search. Unfortunately, such a search requires
enormous memory and time complexity. Therefore, it is practically infeasible to
apply this method to iterated ciphers whose block length is not small.

MILP can efficiently solve this problem. We generate an MILP model that
covers all division trails, and the solver evaluates the feasibility whether there
are division trails from the input division property to the output one or not.
If the solver guarantees that there is no division trail, higher-order differential
(integral) characteristics are found.

Let copy, xor, and and be three fundamental operations, where 1 bit is copied
into m bits in copy, the xor of m bits is computed in xor, and the and of m
bits is computed in and. Note that MILP models for copy, xor, and and are
sufficient to represent any circuit.

Proposition 1 (MILP Model for COPY). Let a
COPY−−−−→ (b1, b2, . . . , bm) be

a division trail of COPY. The following inequalities are sufficient to describe the



propagation of the division property for copy.{
M.var ← a, b1, b2, . . . , bm as binary.

M.con← a = b1 + b2 + · · ·+ bm

Proposition 2 (MILP Model for XOR). Let (a1, a2, . . . , am)
XOR−−−→ b be a

division trail of XOR. The following inequalities are sufficient to describe the
propagation of the division property for xor.{

M.var ← a1, a2, . . . , am, b as binary.

M.con← a1 + a2 + · · ·+ am = b

Proposition 3 (MILP Model for AND). Let (a1, a2, . . . , am)
AND−−−→ b be a

division trail of AND. The following inequalities are sufficient to describe the
propagation of the division property for and.{

M.var ← a1, a2, . . . , am, b as binary.

M.con← b ≥ ai for all i ∈ {1, 2, . . . ,m}

To accept multiple inputs and outputs, three propositions are generalized
from the original ones shown in [34]. Moreover, Propositions 1 and 2 are also
introduced in [27]. Note that Proposition 3 includes redundant propagations of
the division property, but they do not affect obtained characteristics.

3 How to Analyze Non-Blackbox Polynomials

The cube attack basically regards f(x,v) as a blackbox polynomial and ana-
lyzes it experimentally because real f(x,v) are too complicated to analyze the
structure in detail. Such experimental analysis is often advantageous but has
significant drawbacks, e.g., the size of cube is limited to the experimental range.

In this section, we propose a new technique to analyze the polynomial, where
our technique never regards the polynomial as a blackbox and can analyze the
structure in detail. Accurately, we propose a new application of the division
property that enables us to analyze the Algebraic Normal Form (ANF) coeffi-
cients of f . Secret variables that are not involved in the superpoly of a cube CI
are efficiently identified by using our new method. As a result, we can estimate
the time complexity that the ANF of the superpoly of a cube CI is recovered.

3.1 What is Guaranteed by Division Property

We first revisit the definition of the division property and consider what the
division property can do for stream ciphers.



Zero-Sum Integral Distinguisher. The trivial application is to find zero-
sum integral distinguishers. Let us consider f(x,v) as a stream cipher, where x
and v denote the secret and public variables, respectively, and f is designed by
using iterative structure. For a cube CI where the variables in {vi1 , vi2 , . . . , vi|I|}
are taking all possible combinations of values, the propagation of the division
property enables us to evaluate whether or not the sum of f(x,v) over all values
of the cube CI is balanced. Therefore, if the goal of attackers is to find zero-sum
integral distinguishers, we can trivially use the division property.

Analysis of ANF Coefficients. Even if we can find a zero-sum integral dis-
tinguisher on stream ciphers, it is nontrivial to recover secret variables unlike
block ciphers. Therefore, new techniques are required for the extension to the
key-recovery attack.

We propose a novel application of the division property, where the division
property is not used to find zero-sum integral distinguishers but used to analyze
the ANF coefficients of f . Since our goal is to analyze the ANF coefficients, we
do not need to distinguish public variables from secret ones. For the simplicity of
notation, we consider f(x) instead of f(x,v), and the ANF of f(x) is represented
as follows.

f(x) =
⊕
u∈Fn

2

afu · xu,

where afu ∈ F2 denotes the ANF coefficients. Then, the following Lemma is
derived.

Lemma 1. Let f(x) be a polynomial from Fn2 to F2 and afu ∈ F2 (u ∈ Fn2 ) be the
ANF coefficients. Let k be an n-dimensional bit vector. Then, assuming there is

no division trail such that k
f−→ 1, afu is always 0 for u � k.

Proof. According to k, we first decompose f(x) into

f(x) =
⊕

u∈Fn
2 |u�k

afu · xu ⊕
⊕

u∈Fn
2 |u6�k

afu · xu,

= xk ·
⊕

u∈Fn
2 |u�k

afu · xu⊕k ⊕
⊕

u∈Fn
2 |u6�k

afu · xu.

Assume that there is no division trail such that k
f−→ 1. Then, no division trail

guarantees that the sum of f(x) over all values of the cube CI is always balanced
independent of xi (i ∈ {1, 2, . . . , n} − I). Namely,

⊕
CI

f(x) =
⊕
CI

xk ·
⊕

u∈Fn
2 |u�k

afu · xu⊕k


=

⊕
u∈Fn

2 |u�k

afu · xu⊕k = 0



holds independent of xi (i ∈ {1, 2, . . . , n}− I). It holds only if afu is always 0 for
all u such that u � k. ut

Lemma 1 is very important observation for our attack.

3.2 Superpoly Recovery

The most important part of a cube attack is to recover the superpoly, and we
simply call it the superpoly recovery in this paper. Since public variables v are
known and chosen for attackers, the ANF of pv(x) = p(v,x) is evaluated, and the
goal is to recover pv(x) whose v is fixed. Once the superpoly pv(x) is recovered,
attackers query the cube to an encryption oracle and compute the sum of f(x,v)
over the cube. Then, attackers can get one polynomial about secret variables,
and the secret variables are recovered from the polynomial.

The size of secret variables recovered from one superpoly depends on the
structure of the superpoly pv(x). If a balanced superpoly is used, one bit of
information in involved secret variables is always recovered. If an unbalanced su-
perpoly is used, the size of recovered secret variables is less than 1 bit but some
information of secret variables is leaked to attackers. Moreover, it is possible to
recover more bits of information in secret variables by exploiting multiple cubes.
As an extreme case, if the superpoly is constant function, no secret variable is re-
covered, but it trivially implies constant-sum integral distinguishers. Therefore,
the superpoly recovery directly brings vulnerability of symmetric-key cryptosys-
tems, and some information of secret variables is always recovered unless the
superpoly is constant function.

Previous Method to Recover Superpoly. The previous cube attack ex-
perimentally recovered the superpoly of a cube whose size is feasible for cur-
rent computer. Therefore, not every superpoly can be evaluated. Linearity and
quadraticity tests are repeated, and the superpoly is regarded as the linear or
quadratic polynomial if these tests are sufficiently passes. Then, assuming the
superpoly is linear or quadratic, the superpoly is recovered.

Analyze ANF Coefficients of Superpoly by Division Property. Lemma 1
implies that the division property can be used as a tool to analyze ANF coeffi-
cients of the superpoly. The following proposition is shown from Lemma 1 and
is useful to evaluate the upper bound of the complexity to recover the ANF of
the superpoly.

Proposition 4. Let f(x,v) be a polynomial, where x and v denote the secret
and public variables, respectively. For a set of indices I = {i1, i2, . . . , i|I|} ⊂
{1, 2, . . . ,m}, let CI be a set of 2|I| values where the variables in {vi1 , vi2 , . . . , vi|I|}
are taking all possible combinations of values. Let kI be an m-dimensional bit
vector such that vkI = tI = vi1vi2 · · · vi|I| , i.e. ki = 1 if i ∈ I and ki = 0

otherwise. Assuming there is no division trail such that (ej ,kI)
f−→ 1, xj is not

involved in the superpoly of the cube CI .



Proof. The ANF of f(x,v) is represented as follows.

f(x,v) =
⊕

u∈Fn+m
2

afu · (x‖v)
u
,

where afu ∈ F2 denotes the ANF coefficients. The polynomial f(x,v) is decom-
posed into

f(x,v) =
⊕

u∈Fn+m
2 |u�(0‖kI)

afu · (x‖v)
u ⊕

⊕
u∈Fn+m

2 |u6�(0‖kI)

afu · (x‖v)
u

= tI ·
⊕

u∈Fn+m
2 |u�(0‖kI)

afu · (x‖v)
u⊕(0‖kI) ⊕

⊕
u∈Fn+m

2 |u6�(0‖kI)

afu · (x‖v)
(0‖u)

= tI · p(x,v)⊕ q(x,v).

Therefore, the superpoly p(x,v) is represented as

p(x,v) =
⊕

u∈Fn+m
2 |u�(0‖kI)

afu · (x‖v)
u⊕(0‖kI).

If there is no division trail (ej‖kI)
f−→ 1, afu = 0 for u � (ej‖kI) because of

Lemma 1. Therefore,

p(x,v) =
⊕

u∈Fn+m
2 |u�(0‖kI),uj=0

afu · (x‖v)u⊕(0‖kI).

This superpoly is independent of xj because uj is always 0 and (xj)
0 = 1. ut

We can evaluate which secret variables are involved to the superpoly of a
given cube, and Algorithm 1 shows the algorithm supported by MILP. The input
M is an MILP model, where the target stream cipher is represented by the
context of the division property. How to construct M for each specific stream
cipher is shown in each application in Sect. 5. First, we pick MILP variables x
and v from M, where x and v correspond to MILP variables for secret and
public variables, respectively. As an example, in Algorithm 2 for Trivium, let
x = (s01, s

0
2, . . . , s

0
80) and v = (s093, s

0
94, . . . , s

0
172). Then, to represent the input

division property, elements of v indexed by I are constrained by 1, and the
others are constrained by 0. Since at least one element in secret variables is
additionally constrained to 1 in our cube attack, the sum of x is constrained to
1. Next, we solve this MILP model by using the solver. If M is infeasible, there
is no involved secret variables in superpoly and

⊕
CI
f(x,v) = p(x,v) is always

constant. IfM is feasible, we can get a satisfying division trail and pick an index
j ∈ {1, 2, . . . , n} such that xj = 1 in the division trail. Then, xj is involved to
the superpoly and the index j is stored to a set J . Once we detect that xj is
involved, we additionally constrain xj = 0. By repeating this procedure, we can
get the set J whose elements are an index of secret variables involved to the
superpoly.



Algorithm 1 Evaluate secret variables by MILP

1: procedure attackFramework(MILP model M, cube indices I)
2: Let x be n MILP variables of M corresponding to secret variables.
3: Let v be m MILP variables of M corresponding to public variables.
4: M.con← vi = 1 for all i ∈ I
5: M.con← vi = 0 for all i ∈ ({1, 2, . . . , n} − I)
6: M.con←

∑m
i=1 xi = 1

7: do
8: solve MILP model M
9: if M is feasible then

10: pick index j ∈ {1, 2, . . . , n} s.t. xj = 1
11: J = J ∪ {j}
12: M.con← xj = 0
13: end if
14: whileM is feasible
15: return J
16: end procedure

After the analysis of the superpoly by using Algorithm 1, we know that only
xj (j ∈ J) are involved to the superpoly of the cube CI . Attackers choose a value
in constant part of iv and prepare the cube CI by flipping bits in I. They then
recover the superpoly by trying out all possible combinations of secret variables
{xj1 , xj2 , . . . , xj|J|}. The time complexity to recover the superpoly is 2|I|+|J|.
Therefore, if |I| + |J | is smaller than the security bit level, we can efficiently
recover the superpoly.

4 Toward Key Recovery

The time complexity to recover the superpoly is estimated in Sect. 3. As de-
scribed in Sect. 3, the superpoly recovery directly brings vulnerability of stream
ciphers. On the other hand, if our goal is to recover secret variables, we have
to find a preferable superpoly that is close to balancedness for secret variables.
Under the condition that we already get the cube index I and index of involved
secret variables J by using Algorithm 1, our attack strategy to recover secret
variables consists of three phases: offline phase, online phase, and brute-force
search phase.

1. Offline phase. The goal of this phase is to find a preferable superpoly.
Attackers choose a value in the constant part of iv, and prepare a cube by
flipping bits in I. They then compute

⊕
CI
f(x,v) = pv(x) in local, where

all possible combinations of secret variables {xj1 , xj2 , . . . , xj|J|} are tried out,
and the superpoly is recovered. Finally, we search for the preferable superpoly
by changing the constant part of iv.

2. Online phase. The goal of this phase is to recover the part of secret variables
by using the preferable superpoly. After the balanced superpoly is given,
attackers query the cube CI to encryption oracle and get one bit pv(x).



Then, we get one polynomial about involved secret variables, and the half
of values in involved secret variables is discarded because the superpoly is
balanced.

3. Brute-force search phase. Attackers guess the remaining secret variables
to recover the entire value in secret variables.

We cannot know whether the superpoly is balanced or not unless it is actually
recovered, and the actual superpoly recovery requires 2|I|+|J| time complexity.
Therefore, if |I|+ |J | exceeds the experimental range, it is practically infeasible
to search for preferable superpolys. As a consequence, we introduce the following
two assumptions about collecting preferable superpolys.

Assumption 1 (Strong Assumption) For a cube CI , there are many values
in the constant part of iv whose corresponding superpoly is balanced.

Assumption 2 (Weak Assumption) For a cube CI , there are many values in
the constant part of iv whose corresponding superpoly is not a constant function.

Assumption 2 is weaker than Assumption 1 because the superpoly satisfying As-
sumption 1 always holds Assumption 2. As long as Assumption 2 holds, the size
of recovered secret variables is less than 1 bit but some secret information is at
least leaked to attackers. If Assumption 1 holds and such superpoly is used in
the online phase, values in involved secret variables are divided in exactly half,
i.e., pv(x) is 0 for 2|J|−1 values and is 1 for the others. Therefore, we can recover
one bit of information in secret variables.

4.1 Evaluating Time Complexity.

Assuming that Assumption 1 holds, we show the time complexity to recover the
entire secret key. Then, the time complexity of the offline phase is estimated as
k×2|I|+|J|, where k denotes the required number of trials for finding a preferable
superpoly. Note that we can expect that such superpoly can be reasonably found
with high probability without trying out all possible values in involved secret
variables. We evaluate a part of values in involved secret variables at random and
check whether pv(x) is almost balanced or not. If the output is highly biased for
x, the superpoly pv is not preferable and changes to other values in the constant
part of iv. The complexity of this method is O(2|I|). Once we find an almost
preferable superpoly, we entirely try out 2|J| values in secret variables.

Even if the preferable superpoly is used, the size of recovered secret informa-
tion is at most 1 bit. Therefore, when only one cube is used, the time complexity
of the brute-force search phase is 2κ−1, where κ denotes the security bit level.
Therefore, the total time complexity is

k × 2|I|+|J| + 2|I| + 2κ−1, (1)

From Eq. (1), when |I|+ |J | = κ−1, the total time complexity is greater than 2κ

because k is at least 1. Therefore, such cube is not applied to the key-recovery



attack. Moreover, when |I|+ |J | = κ−2, this attack is valid only if the best case
(k = 1), where a preferable superpoly is found in the first trial.

If only one cube is exploited, the dominant time complexity is always that
for the brute-force search phase. When ` cubes are found in the evaluation phase
and all found cubes are exploited, the total time complexity is reduced to

`×
(
k × 2|I|+|J| + 2|I|

)
+ 2κ−`.

However, this paper only focuses on the case that only one cube is exploited for
the simplicity. Note that the detection of one cube brings at least cryptographic
vulnerability.

5 Applications

We apply our general attack method to three NLFSE-based ciphers. The first
target is Trivium [6], which is one of eSTREAM portfolio [1] and one of the most
analyzed stream ciphers. Another target is Grain128a [3], which is standardized
by ISO/IEC 29167-13 [16]. The final application is ACORN [33], which is one of
the 3rd round CAESAR candidates [2], and its design is based on stream ciphers.

5.1 Application to Trivium

zi

Fig. 1. Structure of Trivium

Specification. Trivium is an NLFSR-based stream cipher, and the internal
state is represented by 288-bit state (s1, s2, . . . , s288). Figure 1 shows the state
update function of Trivium. The 80-bit key is loaded to the first register, and
the 80-bit IV is loaded to the second register. The other state bits are set to 0



except the least three bits in the third register. Namely, the initial state bits are
represented as

(s1, s2, . . . , s93) = (K1,K2, . . . ,K80, 0, . . . , 0),

(s94, s95, . . . , s177) = (IV1, IV2, . . . , IV80, 0, . . . , 0),

(s178, s279, . . . , s288) = (0, 0, . . . , 0, 1, 1, 1).

The pseudo code of the update function is given as follows.

t1 ← s66 ⊕ s93
t2 ← s162 ⊕ s177
t3 ← s243 ⊕ s288
z ← t1 ⊕ t2 ⊕ t3
t1 ← t1 ⊕ s91 · s92 ⊕ s171
t2 ← t2 ⊕ s175 · s176 ⊕ s264
t3 ← t3 ⊕ s286 · s287 ⊕ s69
(s1, s2, . . . , s93)← (t3, s1, . . . , s92)

(s94, s95, . . . , s177)← (t1, s94, . . . , s176)

(s178, s279, . . . , s288)← (t2, s178, . . . , s287)

Here z denotes the 1-bit key stream. First, in the key initialization, the state
is updated 4 × 288 = 1152 times without producing an output. After the key
initialization, one bit key stream is produced by every update function.

MILP Model. TriviumEval in Algorithm 2 generates MILP model M as the
input of Algorithm 1, and the modelM can evaluate all division trails for Triv-
ium whose initialization rounds are reduced to R. TriviumCore in Algorithm 2
generates MILP variables and constraints for each update function of register.
Since one TriviumCore creates 10 MILP variables and 7 constraints, one update
function creates 30 MILP variables and 21 constraints. Therefore, generated
MILP modelM consists of 288 + 30R MILP variables and 21R+ 282 + 1 MILP
constraints. Note that constraints by the input division property are operated
by Algorithm 1.

Experimental Verification. We implemented the MILP model M for the
propagation of the division property on Trivium and evaluated involved se-
cret variables by using Algorithm 1, where Gurobi optimizer [15] was used as
the solver of MILP. Before the theoretical evaluation, we verify our attack and
implementation by using small cube as I = {1, 11, 21, 31, 41, 51, 61, 71}. Table 2
summarizes involved secret variables from 576 to 594 rounds.

Example 2 (Verification of Our Attack against 590-round Trivium). We ac-
tually execute the offline phase against 590-round Trivium, and only K60 is



Algorithm 2 MILP model of division property for Trivium

1: procedure TriviumCore(M,x, i1, i2, i3, i4, i5)
2: M.var ← yi1 , yi2 , yi3 , yi4 , yi5 , z1, z2, z3, z4, a as binary
3: M.con← yij = xij − zj for all j ∈ {1, 2, 3, 4}
4: M.con← a ≥ z3
5: M.con← a ≥ z4
6: M.con← yi5 = xi5 + a + z1 + z2
7: for all i ∈ {1, 2, . . . , 288} w/o i1, i2, i3, i4, i5 do
8: yi = xi

9: end for
10: return (M,y)
11: end procedure

1: procedure TriviumEval(round R)
2: Prepare empty MILP Model M
3: M.var ← s0i for i ∈ {1, 2, . . . , 288}
4: for r = 1 to R do
5: (M,x) = TriviumCore(M, sr−1, 66, 171, 91, 92, 93)
6: (M,y) = TriviumCore(M,x, 162, 264, 175, 176, 177)
7: (M,z) = TriviumCore(M,y, 243, 69, 286, 287, 288)
8: sr = z ≫ 1
9: end for

10: for all i ∈ {1, 2, . . . , 288} w/o 66, 93, 162, 177, 243, 288 do
11: M.con← sri = 0
12: end for
13: M.con← (sr66 + sr93 + sr162 + sr177 + sr243 + sr288) = 1
14: returnM
15: end procedure

Table 2. Involved secret variables in the superpoly of the cube C{1,11,21,31,41,51,61,71}.

# rounds involved secret variables J size of J

576 48, 73, 74, 75 4
577 40, 65, 66, 67 4
583 48, 50, 62, 63, 66, 73, 74, 75, 76, 77 10
584 48, 50, 60, 61, 66, 67, 73, 74, 75, 76, 77 11
586 20, 30, 40, 45, 46, 47, 55, 56, 57, 58, 61, 65, 66, 67 14
587 30, 55, 56, 57, 58 5
590 60 1
591 23, 24, 25, 66, 67 5
592 · · · 25
593 · · · 57
594 · · · 47

involved to the superpoly. We randomly chose 100 superpolys by changing the
constant part of iv and evaluated the sum of the cube. As a result, the sum is
always 0 independent of K60 in 42 superpolys, where 0x00CA6124DE5F12043D62



is its example of the constant part of iv. Moreover, the sum corresponds to the
value of K60 in 22 superpolys, where 0x2F0881B93B251C7079F2 is its example.
Then, the ANF of the superpoly is represented as

pv(x) = x60.

Finally, the sum corresponds to the value of K60 ⊕ 1 in 36 superpolys, where
0x5745A1944411D1374828 is its example. Then, the ANF of the superpoly is
represented as

pv(x) = x60 ⊕ 1.

Balanced superpolys are preferable, and we found 22 + 36 = 58 such superpolys.
Therefore, the required number of trials for finding preferable superpolys is about
k = 2.

Example 3 (Verification of Our Attack against 591-round Trivium). We exe-
cute the offline phase against 591-round Trivium, and K23,K24,K25,K66,K67

are involved to the superpoly. Similarly to the attack against 590 rounds, we
randomly chose 100 superpolys by changing the constant part of iv and evalu-
ated the sum of the given cube. As a result, the sum is always 0 independent
of 5 involved secret variables in 64 superpolys, where 0x39305FDD295BDACD2FBE

is its example of the constant part of iv. There are 11 superpolys such that the
sum is 1 only when

K23‖K24‖K25‖K66‖K67 ∈ {00, 05, 08, 0D, 10, 15, 19, 1C}

as the hexadecimal notation, where 0x03CC37748E34C601ADF5 is its example of
the constant part of iv. Then, the ANF of the superpoly is represented as

pv(x) = (x66 ⊕ 1)(x23x24 ⊕ x25 ⊕ x67 ⊕ 1).

There are 9 superpolys such that the sum is 1 when

K23‖K24‖K25‖K66‖K67 ∈ {02, 07, 0A, 0F, 12, 17, 1B, 1E}

as the hexadecimal notation, where 0x78126459CB2384E6CCCE is its example of
the constant part of iv. Then, the ANF of the superpoly is represented as

pv(x) = x66(x23x24 ⊕ x25 ⊕ x67 ⊕ 1).

Moreover, there are 16 superpolys such that the sum is 1 when the value of
K23‖K24‖K25‖K66‖K67 belongs to

{00, 02, 05, 07, 08, 0A, 0D, 0F, 10, 12, 15, 17, 19, 1B, 1C, 1E}

as the hexadecimal notation, where 0x644BD671BE0C9241481A is its example of
the constant part of iv. Then, the ANF of the superpoly is represented as

pv(x) = x23x24 ⊕ x25 ⊕ x67 ⊕ 1,

and this superpoly is balanced. Note that x66 is not involve to this superpoly.
Balanced superpolys are preferable, and we found 16 such superpolys. Therefore,
the required number of trials for finding preferable superpolys is about k = 6.



Table 3. Summary of theoretical cube attacks on Trivium. The time complexity in
this table shows the time complexity to recover the superpoly.

#rounds |I| involved secret variables J time complexity

800 44 8, 33, 34, 35, 48, 59, 60, 61, 64, 73, 74, 75 244+12 = 256

802 46 32, 34, 57, 58, 59, 60, 61, 62 246+8 = 254

805 49 14, 39, 40, 41, 42, 44, 46, 58, 67,...,73 249+15 = 264

806 51 42, 67, 68, 69 251+4 = 255

808 52 26, 28, 40, 51, 52, 53, 54, 55, 58, 65, 66, 67 252+12 = 264

809 53 24, 26, 36, 38, 40, 49,...,56, 58, 61,...,67, 77,...,80 253+25 = 278

814 54 32, 34, 57, 58, 59, 60, 61 254+7 = 261

816 55 6, 31, 32, 33, 48, 50, 52, 57,...,60, 62, 73,...,79 255+19 = 274

818 58 34, 59, 60, 61 258+4 = 262

819 61 15, 17, 40, 41, 42, 43, 44, 58 261+8 = 269

820 62 15, 26, 40, 41, 42, 51, 52, 53 262+8 = 270

822 64 42, 67, 68, 69 264+4 = 268

825 65 52, 54, 66, 77, 78, 79, 80 265+7 = 272

829 66 23, 25, 26, 27, 36, 42, 56, 67, 68, 69 266+10 = 276

830 69 1, 37, 42, 56, 67, 68, 69 269+7 = 276

831 71 49, 74, 75, 76 271+4 = 275

832 72 34, 58, 59, 60, 61 272+5 = 277

For any size of cube |I|, the odd index 1, 3, . . . , 79 and even index 2, 4, . . . , 2(|I| − 40)
is chosen as cube indices.

Theoretical Results. As experimental verification shows, Assumption 1 holds
for Trivium in small example. Therefore, we can expect that theoretically re-
covered superpolys also fulfill Assumption 1.

Cube indices are chosen as the following in our experiments: the odd index
1, 3, . . . , 2|I| − 1 is chosen, and the even index 2, 4, . . . , 2(|I| − 40) is additionally
chosen. Then, we exhaustively evaluated involved secret variables, and Table 3
summarizes the result in our theoretical cube attack. Table 3 shows indices of
involved secret variables and the time complexity for the superpoly recovery
against Trivium with at least 800 initialization rounds. Since the previous best
key-recovery attack is 799 rounds, all results at least improve the current best
key-recovery attack. Under the condition that the time complexity for the su-
perpoly recovery is less than 279, the largest number of initialization rounds that
we can attack is 832 rounds. Compared with previous best key-recovery attack,
it updates 832− 799 = 33 rounds.

We do not have plausible evidence that our choice of cube indices is appro-
priate, and the choice is still difficult because we need to try out

(
80
|I|
)

cubes when

we want to evaluate all cubes whose size is |I|. How to choose appropriate cubes
is left as an open question.



5.2 Application to Grain128a

Specification. Grain128a is one of Grain family of NLFSR-based stream ci-
phers, and the internal state is represented by two 128-bit states, (b0, b1, . . . , b127)
and (s0, s1, . . . , s127). The 128-bit key is loaded to the first register b, and the
96-bit IV is loaded to the second register s. The other state bits are set to 1
except the least one bit in the second register. Namely, the initial state bits are
represented as

zi

s0 s127b0 b127

24 5

27 7 1
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g f

Fig. 2. Structure of Grain128a

(b0, b1, . . . , b127) = (K1,K2, . . . ,K128),

(s0, s1, . . . , s127) = (IV1, IV2, . . . , IV96, 1, . . . , 1, 0).

The pseudo code of the update function in the initialization is given as follows.

g ← b0 + b26 + b56 + b91 + b96

+ b3b67 + b11b13 + b17b18 + b27b59 + b40b48 + b61b65 + b68b84 (2)

+ b88b92b93b95 + b22b24b25 + b70b78b82.

f ← s0 + s7 + s38 + s70 + s81 + s96 (3)

h← b12s8 + s13s20 + b95s42 + s60s79 + b12b95s94 (4)

z ← h+ s93 +
∑
j∈A

bj (5)

(b0, b1, . . . , b127)← (b1, . . . , b127, g + s0 + z)

(s0, s1, . . . , s127)← (s1, . . . , s127, f + z)

Here, A = {2, 15, 36, 45, 64, 73, 89}. First, in the key initialization, the state is
updated 256 times without producing an output. After the key initialization, the



update function is tweaked such that z is not fed to the state, and z is used as
a key stream. Figure 2 shows the state update function of Grain128a.

Algorithm 3 MILP model for the initialization of Grain128a

1: procedure Grain128aEval(round R)
2: Prepare empty MILP Model M
3: M.var ← b0i for i ∈ {0, 1, . . . , 127} as binary
4: M.var ← s0i for i ∈ {0, 1, . . . , 127} as binary
5: for r = 1 to R do
6: (M, b′, s′, z) = funcZ(M, br−1, sr−1)
7: M.var ← zg, zf as binary
8: M.con← z = zg + zf
9: (M, b′′, g) = funcG(M, b′)

10: (M, s′′, f) = funcF(M, s′)
11: for i = 0 to 126 do
12: bri = b′′i+1

13: sri = s′′i+1

14: end for
15: M.var ← br127, s

r
127 as binary

16: M.con← b′′0 = 0
17: M.con← br127 = g + s′′0 + zg
18: M.con← sr127 = f + zf
19: end for
20: (M, b′, s′, z) = funcZ(M, bR, sR)
21: for all i ∈ {0, 1, . . . , 127} do
22: M.con← b′i = 0
23: M.con← s′i = 0
24: end for
25: M.con← z = 1
26: returnM
27: end procedure

MILP Model. Grain128aEval in Algorithm 3 generates MILP model M as
the input of Algorithm 1, and the model M can evaluate all division trails for
Grain128a whose initialization rounds are reduced to R. funcZ generates MILP
variables and constraints for Eq. (4) and Eq. (5), and it consists of 45 MILP vari-
ables and 32 MILP constraints. funcG generates MILP variables and constraints
for Eq. (2), and it consists of 70 MILP variables and 55 MILP constraints. funcF
generates MILP variables and constraints for Eq. (3), and it consists of 13 MILP
variables and 7 MILP constraints. As a result, the MILP model for every round
consists of 45+70+13+4 = 132 MILP variables and 32+55+7+4 = 98 MILP
constraints. Therefore, generated MILP model M consists of 256 + 45 + 132R
MILP variables and 98R+ 32 + 256 + 1 MILP constraints. Note that constraints
by the input division property are operated by Algorithm 1.



Experimental Verification. We implemented the MILP model M for the
propagation of the division property on Grain128a and evaluated involved secret
variables by using Algorithm 1. To verify our attack and implementation, the
offline phase is executed by using small cube as I = {1, 2, . . . , 9}.

Example 4 (Verification of Our Attack against 106-round Grain128a). The cube
C{1,2,3,...,9} brings the superpoly that involves only seven secret variables, (K46,
K53, K85, K119, K122, K126, and K127), and this result comes out of Algorithm 1.
In our experiments, the Hamming weight of all superpolys pv(x) is only 4. Specif-
ically, in arbitrary iv satisfying IV76 = 0, pv(x) is 1 only when the involved secret
variables are represented as

(K46,K53,K85,K119,K122,K126,K127) =(∗, 1, 0, 1, 1, 1, 1) or

(∗, 0, 1, 1, 1, 1, 1),

where ∗ is any bit. Moreover, in arbitrary iv satisfying IV76 = 1, pv(x) is 1 only
when the involved secret variables are represented as

(K46,K53,K85,K119,K122,K126,K127) =(∗, 1, 0, 1, 0, 1, 1) or

(∗, 0, 1, 1, 0, 1, 1).

Namely, the superpoly is represented as

pv(x) = (x53 ⊕ x85) · x119 · (x122 ⊕ v76) · x126 · x127.

This superpoly is independent of x46. Moreover, it is not balanced, and the
Hamming weight of pv(x) is 2 for six involved input bits. Therefore, the recovered
bit of information in secret variables is represented as∣∣∣∣log2

(
2× 2

26 + (62× 62
26 )

26

)∣∣∣∣ ≈ 0.09.

Double bit of information can be recovered by flipping the bit IV76, but the
recovered information is still smaller than 1.

Theoretical Results. We cannot find superpolys satisfying Assumption 1 in
our experiments using small cube. On the other hand, Assumption 2 holds.
Therefore, we can expect that theoretically recovered superpolys also fulfill As-
sumption 2, and it leaks at least some information in secret variables which is
smaller than 1 bit. Moreover, by collecting these superpolys, we can expect that
multiple bits of information in secret variables are recovered.

Table 4 shows indices of involved secret variables and the time complexity for
the superpoly recovery against Grain128a. Since the previous best attack is 177
rounds in the single-key setting, all results at least improve the current best key-
recovery attack. Under the condition that the time complexity for the superpoly
recovery is less than 2127, the largest number of initialization rounds that we
can attack is 183 rounds. Compared with previous best distinguishing attack, it
updates 183− 177 = 6 rounds. Moreover it allows for some key recovery.



Table 4. Summary of theoretical cube attacks on Grain128a. The time complexity in
this table shows the time complexity to recover the superpoly.

#rounds |I| involved secret variables J time complexity

182 88 † 36, 40, 51, 52, 53, 54, 55, 56, 61, 62,
288+18 = 2106

69, 79, 81, 82, 121, 122, 126, 127

183 92 ‡ 48, 49, 50, 51, 52, 54, 55, 61, 63, 83,
292+16 = 2108

84, 90, 93, 95, 120, 128

† Following set of indices I = {1, ..., 40, 42, 44, . . . , 51, 53, ..., 87, 89, 91, 93, 95} is used as
the cube.
‡ Following set of indices I = {1, ..., 51, 53, ..., 91, 93, 95} is used as the cube.

5.3 Application to ACORN

Specification. ACORN is an authenticated encryption and one of the 3rd round
candidates in CAESAR competition. The structure is based on NLFSR, and the
internal state is represented by 293-bit state (S0, S1, . . . , S292). There are two
component functions, ks = KSG128(S) and f = FBK128(S), in the update
function, and each is defined as

ks = S12 ⊕ S154 ⊕maj(S235, S61, S193)⊕ ch(S230, S111, S66),

f = S0 ⊕ S̃107 ⊕maj(S244, S23, S160)⊕ (ca ∧ S196)⊕ (cb ∧ ks),

where ks is used as the key stream, and maj and ch are defined as

maj(x, y, z) = (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z),
ch(x, y, z) = (x ∧ y)⊕ ((x⊕ 1) ∧ z).

Then, the update function is given as follows.

S289 ← S289 ⊕ S235 ⊕ S230

S230 ← S230 ⊕ S196 ⊕ S193

S193 ← S193 ⊕ S160 ⊕ S154

S154 ← S154 ⊕ S111 ⊕ S107

S107 ← S107 ⊕ S66 ⊕ S61

S61 ← S61 ⊕ S23 ⊕ S0

ks = KSG128(S)

f = FBK128(S, ca, cb)

(S0, S1, . . . , S291, S292)← (S1, s2, . . . , S292, f ⊕m)

The 293-bit state is first initialized to 0. Second, 128-bit secret key is sequentially
loaded to the NLFSR via m. Third, 128-bit initialization vector is sequentially
loaded to the NLFSR via m. Fourth, 128-bit secret key is sequentially loaded



to the NLFSR via m twelve times. The constant bits ca and cb are always 1 in
the initial 1792 rounds. The associated data is always loaded before the output
of the key stream, but we do not care about this process in this paper because
the number of rounds that we can attack is smaller than 1792 rounds. Figure 3
shows the structure of ACORN. Please refer to [33] in detail.

0 23 60 61 66 106 107 111 153 154 160 192 193 196 229 230 235 288 289 292

f

m

Fig. 3. Structure of ACORN

MILP Model. ACORNEval in Algorithm 4 generates MILP modelM as the in-
put of Algorithm 1, and the modelM can evaluate all division trails for ACORN
whose initialization rounds are reduced to R. xorFB generates MILP variables
and constraints for feed-back function with XOR. ksg128 and fbk128 generates
MILP variables and constraints for KSG128 and FBK128, respectively.

If there are zero constant bit in input of KSG128 and FBK128, the propa-
gation of the division property for two functions ksg128 and fbk128 is limited.
For example, when maj(x, y, z) is computed under the condition y = z = 0, this
function is represented as

maj(x, 0, 0) = 0,

and the division property of x never propagates to the output of maj. Such
limitations of the propagation only happens in the first several rounds because
the state S is initialized to 0. To control this behavior, there is the current
number of rounds as the input of ksg128 and fbk128. Note that constraints by
the input division property are operated by Algorithm 1.

Experimental Verification. We implemented the MILP model M for the
propagation of the division property on ACORN and evaluated involved secret
variables by using Algorithm 1. We searched the small cube such that |I| + |J |
is practically feasible, and the following small cube

C{1,2,3,4,5,8,20,125,126,127,128}

is used to verify our attack and implementation.

Example 5 (Verification of Our Attack against 517-round ACORN). The cube
C{1,2,3,4,5,8,20,125,126,127,128} brings the superpoly that involves only nine secret
variables, (K6, K8, K10, K11, K12, K15, K16, K45, and K49), and this result



Algorithm 4 MILP model for the initialization of ACORN

1: procedure ACORNEval(round R)
2: Prepare empty MILP Model M
3: M.var ← Ki for i ∈ {1, 2, . . . , 128} as binary
4: M.var ← IVi for i ∈ {1, 2, . . . , 128} as binary
5: M.var ← S0

i for i ∈ {0, 1, . . . , 292} as binary
6: for r = 1 to R do
7: (M,T ) = xorFB(M,Sr−1, 289, 235, 230)
8: (M,U) = xorFB(M,T , 230, 196, 193)
9: (M,V ) = xorFB(M,U , 193, 160, 154)

10: (M,W ) = xorFB(M,V , 154, 111, 107)
11: (M,X) = xorFB(M,W , 107, 66, 61)
12: (M,Y ) = xorFB(M,X, 61, 23, 0)
13: (M,Z, ks) = ksg128(M,Y , r)
14: (M,A, f) = fbk128(M,Z, r)
15: for i = 0 to 291 do
16: Sr

i = Ai+1

17: end for
18: M.var ← Sr

292 as binary
19: if 128 < r ≤ 256 then
20: M.con← Sr

292 = f ⊕ IVr−128

21: else
22: M.var ← TKr as binary
23: M.con← Sr

292 = f ⊕ TKr

24: end if
25: end for
26: for i = 0 to 127 do
27: M.con← Ki =

∑
j TKi+128×j

28: end for
29: (M,T ) = xorFB(M,SR, 289, 235, 230)
30: (M,U) = xorFB(M,T , 230, 196, 193)
31: (M,V ) = xorFB(M,U , 193, 160, 154)
32: (M,W ) = xorFB(M,V , 154, 111, 107)
33: (M,X) = xorFB(M,W , 107, 66, 61)
34: (M,Y ) = xorFB(M,X, 61, 23, 0)
35: (M,Z, ks) = ksg128(M,Y )
36: for i = 0 to 292 do
37: M.con← Zi = 0
38: end for
39: M.con← ks = 1
40: returnM
41: end procedure

comes out of Algorithm 1. We try out 100 randomly chosen constant part of iv.
As a result, all superpolys pv(x) are balanced independent of the value of the
constant part of iv. Specifically, pv(x) corresponds to the sum of involved secret



Table 5. Summary of theoretical cube attacks on ACORN. The time complexity in
this table shows the time complexity to recover the superpoly.

#rounds |I| involved secret variables J time complexity

1, 2, 3, 5, 6, 7, 8, 9, 10, 11,
12, 13, 15, 16, 18, 19, 20, 21, 22, 23,

647 35 † 24, 25, 26, 27, 28, 29, 31, 32, 33, 35, 235+43 = 278

40, 45, 49, 52, 55, 57, 60, 61, 62, 65,
66, 94, 99

649 35 † 1, 2,...,39, 41,...,49, 52,...,69,
235+74 = 2109

78, 86, 96, 97, 98, 100, 101, 102

1,...,12, 14,...21, 23,...,38, 40,...44,
704 64 ‡ 48, 49, 50, 54, 58, 60, 63, 64, 65, 68, 264+58 = 2122

69, 71, 74, 75, 97, 102, 108

† Following set of indices I = {1, 2, . . . , 16, 22, 29, 31, 113, 114, . . . , 128} is used as the
cube.
‡ Following set of indices I = {1, 2, . . . , 32, 97, 98, . . . , 128} is used as the cube.

variables. Namely, the superpoly is represented as

pv(x) = x6 ⊕ x8 ⊕ x10 ⊕ x11 ⊕ x12 ⊕ x15 ⊕ x16 ⊕ x45 ⊕ x49.

Theoretical Results. As experimental verification shows, Assumption 1 holds
for ACORN in small example. Therefore, we can expect that theoretically re-
covered superpolys also fulfill Assumption 1.

Table 5 shows indices of involved secret variables and the time complexity
for the superpoly recovery against ACORN. Since the previous best attack is
503 rounds, all results at least improve the current best key-recovery attack.
As far as we searched various cubes, the largest number of initialization rounds
that we can attack is 704 rounds, where the cube size is 64 and the number of
involved secret variables is 58. Compared with previous best key-recovery attack,
it updates 704− 503 = 201 rounds.

6 Discussions

6.1 Validity of Assumption 1 and 2

Whether the two assumptions hold depends on the structure of analyzed ciphers.
In the three applications shown in this paper, we could easily find balanced
superpoly for Trivium and ACORN by actually evaluating the offline phase
using small cube. Therefore, we can expect that Assumption 1 holds in theoretical
recovered superpolys for these two ciphers. On the other hand, we could not find
balanced superpolys for Grain128a. This implies that Assumption 1 does not
hold in theoretical recovered superpolys for Grain128a. However, since we could
easily find non-constant superpolys, we can expect that Assumption 2 holds.



Note that Assumption 1 is introduced to estimate the time complexity to re-
cover the entire secret key, and some information of secret variables is leaked to
attackers even if only Assumption 2 holds. Moreover, even if both assumptions
do not hold, the recovered superpoly is useful for distinguishing attacks. There-
fore, if the superpoly recovery is more efficient than the brute-force attack, it
immediately brings some vulnerability of symmetric-key cryptosystems. There-
fore, the time complexity for the superpoly recovery discussed in this paper is
very important.

Conventional cube attacks also have similar assumption because they exper-
imentally verify whether the superpoly is linear, quadratic, or not. For example,
in [11], the authors judged that the superpoly is linear if the superpoly passes at
least 100 linearity tests. Moreover, Fouque and Vannet also introduced heuristic
linearity and quadraticity tests in [14], where the superpoly is judged as linear
and quadratic if it passes constant-order linearity and quadraticity tests, respec-
tively. These constant-order tests may fail if there are terms of the superpoly
that are highly biased. For example, assuming that the superpoly is represented
as K1 + f(K2,K3,K4, ...,K32) where f is unbalanced, the test used in previous
cube attacks may judge the superpoly as K1 in error. Namely, the conventional
cube attack also assumes that the superpoly is balanced for each involved secret
variables, and it fails to recover secret variables if this assumption is incorrect.

6.2 Multiple-Bits Recovery only from One Cube

There is a possibility that we can recover multiple bits from given cube by
changing a value in constant part of iv. Indeed, Example 3 recovers more than one
bit of information in secret variables by using an v = 0x03CC37748E34C601ADF5

or v = 0x78126459CB2384E6CCCE together with v = 0x644BD671BE0C9241481A.
Moreover, two bits of information in secret variables are recovered if we find two
independent balanced superpolys. On the other hand, the superpoly must be
enough simplified for the key recovery. While we may be able to recover multiple
bits only from one cube by changing values of the constant part of iv when the
number of involved secret variables is high, we cannot claim that there are many
independent balanced superpolys when the number of involved secret variables
is small. Therefore, we do not claim that multiple bits are recovered from one
cube by changing values of the constant part of iv.

6.3 Comparison with Previous Techniques

There is previous work that exploits non-randomness in high degree monomial
structure in the ANF for the key recovery of stream ciphers: In [13], it is examined
if every key bit in the parametrized expression of a coefficient of some high degree
monomial in iv bits does occur, or more generally, how much influence each key
bit does have on the value of the coefficient. If a coefficient depends on less than
all key bits, this fact is exploited to filter those keys which do not satisfy the
imposed value for the coefficient. As opposed to the present work, this method
is mostly statistical in nature, whereas division property is fully algebraic.



Secondly, in [17], conditions are identified on the internal state to obtain a de-
terministic differential characteristic for some large number of rounds. Depending
on whether these conditions involve public variables only, or also key variables,
distinguishing and partial key-recovery attacks are derived. The technique is
extended to (conditional) higher order differentials and enables to distinguish
reduced round versions of some stream ciphers, and to recover parts of the key.
Again, this method is quite different from the methods of this paper, and is not
purely algebraic.

A third more recent approach is dynamic cube attack [12]. In contrast to
standard cube attack that finds the key by solving a system of (linear) equations
in the key bits, dynamic cube attack recovers the secret key by exploiting distin-
guishers obtained from cube testers. Dynamic cube attacks aim at creating lower
degree representations of the given cipher. This method has been successfully
applied to break the stream cipher Grain-128 [9]. All the previous methods share
the restriction that they are experimental rather than theoretical, i.e., they are
dependent on computing with cubes as large as practically feasible.

7 Conclusion

This paper revisited the cube attack proposed by Dinur and Shamir at Eurocrypt
2009. The conventional cube attack regards a target symmetric-key cryptosystem
as a blackbox polynomial and analyzes the polynomial experimentally. There-
fore, it is practically infeasible to evaluate the security when the size of cube
exceeds the experimental size. In this paper, we proposed the cube attack on
non-blackbox polynomials, and it leads the cube attack exploiting large num-
ber of cube size. Our method was developed by the division property, and as
far as we know, this is the first application of the division property to stream
ciphers. The trivial application brings only zero-sum integral distinguishers, and
it is non-trivial to recover the secret key of stream ciphers by using the distin-
guisher. The novel application of the division property was proposed, where it
is used to analyze the Algebraic Normal Form coefficients of polynomials. As a
result, we can estimate the time complexity for the superpoly recovery. Then,
the superpoly recovery immediately brings the vulnerability. We applied the new
technique to Trivium, Grain128a, and ACORN, and the superpoly of 832-round
Trivium, 183-round Grain128a, and 704-round ACORN are more efficiently re-
covered than the brute-force search. For Trivium and ACORN, we can expect
that the recovered superpoly is useful for the key recovery attack, and they bring
the current best key-recovery attacks. On the other hand, for Grain128a, we can-
not expect that the recovered superpoly is balanced, and then the recovered bit
of information may be significantly small. Therefore, the feasibility of the key re-
covery is speculative, but 183 rounds are at least vulnerable. We expect that our
new tool becomes a new generic tool to measure the security of stream ciphers.
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