
All-But-Many Lossy Trapdoor Functions from
Lattices and Applications

Xavier Boyen ?, Qinyi Li

Queensland University of Technology, Brisbane, Australia

Abstract. “All-but-many lossy trapdoor functions” (ABM-LTF) are a
powerful cryptographic primitive studied by Hofheinz (Eurocrypt 2012).
ABM-LTFs are parametrised with tags: a lossy tag makes the function
lossy; an injective tag makes the function injective, and invertible with
a trapdoor. Existing ABM-LTFs rely on non-standard assumptions.
Our first result is an ABM-LTF construction from lattices, based on
the learning-with-errors (LWE) problem. Unlike the previous schemes
which behaved as “encrypted signatures”, the core of our construction
is an “encrypted, homomorphic-evaluation-friendly, weak pseudorandom
function”. The weak pseudorandom function outputs matrices, where the
lossy tags are preimages of the zero matrix, and the injective tags are
preimages of random full-rank matrices.
Our second result is a public-key system tightly secure against “selective
opening” attacks, where an attacker gets many challenges and can ask
to see the random bits of any of them. Following the steps of Hemen-
way et al. (Asiacrypt 2011) and Hofheinz (Eurocrypt 2012), our ABM-
LTF gives the first lattice-based, compact public-key encryption (PKE)
scheme that has indistinguishability against adaptive chosen-ciphertext
and selective opening attacks (IND-SO-CCA2), with tight security, and
whose public-key size and security reduction are independent of the num-
ber of decryption queries and ciphertext challenges.
Meanwhile, this result provides an alternative solution to the problem of
building pairing-free IND-CCA2 PKE schemes with tight security in the
multi-challenge setting, which was firstly answered by Gay et al. (Eu-
rocrypt 2016). Additionally, our ABM-LTF answers the open question
of constructing (non-necessarily lossy) all-but-many trapdoor functions
from lattices, first asked by Alperin-Sheriff and Peikert (PKC 2012).

1 Introduction

All-but-many lossy trapdoor functions (ABM-LTF) are a useful cryptographic
primitive formalised by Hofheinz [29]. ABM-LTFs generalise lossy trapdoor func-
tions (LTFs) [39], all-but-one lossy trapdoor functions (ABO-LTFs) [39], and all-
but-N lossy trapdoor functions (ABN-LTFs) [27]. ABM-LTF have shown their
usefulness in constructiing public-key encryption schemes with strong security

? Research supported in part by ARC Discovery Project grant number DP140103885
and ARC Future Fellowship FT140101145 from the Australian Research Council.

2

properties including selective opening security, e.g, [29], key-dependent message
security, e.g., [30] and key leakage resilience, e.g., [40].

An ABM-LTF is a function described by public evaluation parameters and
parametrised by a tag from some set. The tag set consists of two disjoint super-
polynomially large subsets: the set of injective tags and the set of lossy tags. An
injective tag makes the function injective and, hence, invertible with trapdoors. A
lossy tag makes the function lossy meaning that the function looses information
of its inputs and, therefore, can not be inverted in the information-theoretical
sense (except negligible probability). Note that there could exist a spurious set
of invalid tags, that make the function injective yet disable its trapdoor invert-
ibility: in our construction we need to avoid this possibility. An ABM-LTF is
equipped with two trapdoors: one is the inversion trapdoor which allows one to
correctly invert the function in case of the tag is injective; the other is a lossy
tags generation trapdoor which allows security reduction to generate lossy tags.

ABM-LTFs have two main security properties. The first one, “lossy-tag indis-
tinguishability”, guarantees that a lossy tag is computationally indistinguishable
from a random tag, even given access to the lossy tag generation oracle. The sec-
ond one, “evasiveness”, prevents efficient adversaries from generating lossy tags
(notice that this implies that a random tag is an injective tag w.h.p.). Theses two
security properties make ABM-LTFs particularly useful for handling adaptive
attacks in the multi-challenge setting, in which adversaries are able to obtain
multiple challenge targets (e.g., challenge ciphertext). For instance, evasiveness
forces that all adaptive queries be made with injective tags, enabling inversion
trapdoors in security reductions. Indistinguishability allows security reductions
to use multiple lossy tags for creating multiple challenges embedding the same
computational problem, without tipping off adversaries.

Constructions of ABM-LTFs. Not very surprisingly, with such powerful proper-
ties, ABM-LTFs have more complicated constructions than its simpler counter-
parts, say plain LTFs. So far, essentially two types of constructions of ABM-LTFs
exist. The first type is based on Paillier/Damgard-Jurik encryption [37,19] to-
gether with some non-standard assumptions, and first instantiated by Hofheinz
[29] and latter improved by Fujisaki [23]. The second type, based on subgroup
indistinguishable problems over composite-order bilinear groups, was design by
Hofheinz [29]. Though relying on different assumptions and algebraic structures,
the two types of constructions share the same flavour at a conceptual level.
Both of them can be seen as “encrypted signature” schemes in which a lossy tag
corresponds to a valid (but disguised) signature. Existential unforgeability of sig-
natures guarantees the evasiveness. Tag indistinguishability is provided by the
semantic security of Paillier/Damgard-Jurik encryption or hardness of subgroup
decisional problems. Roughly, the two types of construction utilise either additive
homomorphism of Paillier/Damgard-Jurik ciphertexts, or group exponentiation
operations, to conduct the lossy trapdoor function evaluations. Apart from the
elegance of existing constructions, one of their disadvantages is their need for
non-standard assumptions. Thus, a first motivation for our present work is to

3

solve the open problem of finding different constructions of ABM-LTFs under
reasonable assumptions, first posed by Hofheinz [29].

All-but-Many Trapdoor Function. Without regard to lossines, a notion similar
to ABM-LTF is that of all-but-many trapdoor function (ABM-TF). An ABM-
TF’s inversion trapdoor can be concealed among super-polynomially many tags.
Candidate constructions from assumptions related to factoring or discrete log-
arithm have already been proposed [29,23]. On the other hand, while there ex-
ist many constructions and applications of lattice-based all-but-one trapdoor
functions [1,35,4] and all-but-N trapdoor functions for N bounded a priori [5],
lattice-based ABM-TFs appears to be harder to construct. Therefore, a second
motivation for this work is to solve the open problem stated in [5], namely to
construct lattice-based ABM-TFs (and, a fortiori, ABM-LTFs).

IND-SO-CCA2 Public-Key Encryption. A direct application of ABM-LTFs,
shown in [29], is to construct compact public-key encryption schemes that have
ciphertext indistinguishability against adaptively chosen-ciphertext attacks and
selective opening attacks (IND-SO-CCA2) 1.

In selective opening attacks (SOA), an adversary gets a collection of some
arbitrary N challenge ciphertexts (cti = Encrypt(pk,mi; ri))i∈[N] that encrypt
mi with randomness ri under public key pk, where {mi}i∈[N] satisfy some joint
distribution dist chosen by the adversary. The adversary may choose some sub-
set I ⊂ [N] and ask that the corresponding ciphertexts cti be “opened” to
get (mi, ri). The adversary must try to extract information on the messages
in the unopened ciphertexts (cti)i∈[N]\I . IND-SO-CCA2 security ensures that
no adversary can distinguish the unopened messages from new messages which
are freshly and efficiently sampled according to dist conditioned on the opened
messages. One drawback of this definition of IND-SO-CCA2 is that it requires
that the joint message distributions be efficiently re-sampleable conditionally on
opened messages. Unfortunately, it is not difficult to come up with examples of
efficiently sampleable joint distributions whose conditionals as above would not
be efficiently sampleable.

A stronger version of indistinguishability-based security definition (some-
times called Full IND-SO-CCA2, see Definition 2 of [31]) does not have the re-
quirement of efficient conditional resampling. This appears preferable, but prob-
lems remain. First, such stronger definition neither has any known instantiation
nor is implied by any known realisable definition, suggesting that it could be too
strong to achieve. Second, the existence of efficiently sampleable joint distribu-
tions with inefficient conditionals could be exploited by an adversary to use the
challenger as a hard-problem oracle, rather than the other way around. Never-
theless, it has been shown by Hofheinz and Rupp[31] that even the first version
of IND-SO-CCA2 is stronger than traditional IND-CCA2 security. Therefore it
is well motivated to find efficient constructions that are IND-SO-CCA2 secure.
1 “Compact” here means that the size of public keys is independent of the number of

challenge ciphertexts adversary asks for. ABN-LTFs results in IND-SO-CCA2 PKE
schemes but the size of public keys is at least linear in N .

4

For completeness, we mention that stronger and/or more natural definitions
than IND-SO-CCA2 are possible, especially in a simulation-based real/ideal
framework. We mention the SIM-SO-CCA2 definition (see [8,11] for details)
and several PKE schemes that meet it (see, e.g., [22,27,29,32,23]). Nevertheless,
SIM-SO-CCA2 secure PKE schemes from lattice assumptions remain unknown.

1.1 Our Contribution

In this paper, we address Hofheinz’s [29] open problem of building tightly se-
cure ABM-LTFs under reasonable assumptions. We propose a new ABM-LTF
from widely accepted lattice assumptions: specifically, all the security properties
of our ABM-LTF can be tightly and ultimately reduced to the computational
hardness of Learning with Errors (LWE). Our ABM-LTF also provides a solu-
tion to Alperin-Sheriff and Peikert’s [5] open problem of constructing ABM-TFs
from lattices.

Moreover, by following the pathway given in [27,29,42], our ABM-LTF further
leads to the first IND-SO-CCA2 public-key cryptosystem from lattices with a
tight security reduction. In turn, such a scheme provides an alternative solution
to the question of building tightly secure PKE (without bilinear maps) in the
multi-challenge setting, recently and very differently answered by Gay et al. [24].
Being high-dimensional-lattice-based, all of our constructions are conjectured to
be quantum-safe.

Our Approach. At a high level, instead of building ABM-LTFs as “encrypted
signatures” which is the approach of [29], our ABM-LTF builds an “encrypted
homomorphic-evaluation-friendly pseudorandom function” whose outputs are
(encrypted) matrices whose rank controls the function’s lossiness.

Our starting point is the lattice-based (and lossy) trapdoor function from
[10], given by g(s, e) = st · [A|AR + HG] + et mod q, where the matrix R has
low-norm, and G is the now famous “gadget” matrix (a public matrix with a
public trapdoor TG such that G ·TG = 0 with very low norm).

The trapdoor function g() traces back to the two-sided lattice trapdoor frame-
work from [1,13] and the efficient strong lattice trapdoor generators from [35].
It was showed by Bellare et al. [10] that if A is built from LWE samples (to
consist of a truly random matrix on its top and a pseudorandom matrix on its
bottom), then for certain parameters, the function is injective and invertible if H
has full column-rank, and is lossy if H = 0. The indistinguishability property of
all-but-many trapdoors requires that there must be unbounded many tags that
can be mapped to H = 0 and this mapping should be oblivious to “outside”
evaluators. Boyen and Li [14] recently showed such a way in another context by
embedding a pseudorandom function (PRF) into the above trapdoor function to
compute H, i.e., H = PRF(K, tag) · I, where PRF(K, tag) ∈ {0, 1} and I is the
identity matrix (in this case H is square). However, their method only allows
two values for H. 2 This makes a random tag lossy with probability half, for

2 The binary restriction on H in [14] comes from the fact that the fully homomorphic
evaluation techniques from [26,12,16] usually supports operations on two bits or two

5

hitting H = 0, thereby violating the evasiveness property (i.e., lossy tags should
be hard to find without trapdoor).

Our first idea is to parallelly apply multiple PRFs and expand their pseudo-
random outputs from bit strings to matrices, through universal hash functions.
Particularly, we set tags with form tag = (D, µ). D is a matrix, which allows us
to add additional control on generating H. µ is the input for PRFs. Then we set
H = ZD +

∑
PRF(Ki, µ) ·Hi mod q for randomly sampled, encrypted matrices

Hi, and full-rank matrix Z. Firstly, the subset-sum operation
∑

PRF(Ki, µ) ·Hi

and ZD can be easily performed by existing evaluation techniques with small
adjustments on the dimensions of gadget matrices as we will show. Secondly, for
any “outside” evaluator, as the outputs of PRFs are unpredictable, the output
of the subset-sum formula, and, hence, H will be pseudorandom. For one who
knows the keys of PRFs and the matrix Z, a lossy tag can be generated by ran-
domly selecting µ and solving D for the equation 0 = ZD +

∑
PRF(Ki, µ) ·Hi

(mod q). Now the problem we have is that the adversary can reuse µ from a
prior lossy tag (D, µ) it was given, to create a new tag (D̄, µ) where D̄ = D+D′

for non-full-rank D′. This special tag — we call it an “invalid tag” — could
disable the gadget trapdoors while still making the function injective. To solve
this problem, we use a chameleon hash function to tie D and µ together (say
µ is the output of the chameleon hash on input D and some fresh randomness)
to enforce the one-time use of µ. For generating lossy tags in the simulation,
we can pick random µ, solve for D and use the trapdoor of the chameleon hash
function to find randomness under which µ chameleon-hashes to D.

As a consequence of using a chameleon hash function, the inputs to the PRFs
(i.e., µ) will be random for all randomly generated tags in the real schemes and
all responses from the lossy tag generation oracle to queries in the security reduc-
tions. Moreover, the collision-resistant property of the chameleon hash function
essentially forces all adversarially generated PRF inputs (i.e., µ) to be differ-
ent. This fact drives us towards relaxing the PRFs into so-called “weak PRFs”
[3], which only guarantee pseudorandomness for random inputs. The advantages
of using weak PRFs is that weak PRFs admit potentially much simpler, more
efficient constructions from weaker assumptions, with shallower circuit imple-
mentations than normal PRFs. The remaining problem of using a weak PRF
(WPRF for short) instead of a usual PRF is that, in the evasiveness security
game, the adversary is allowed adaptively to come up with lossy tag guesses
in which µ may not be random, and receive binary answers of ”lossy/invalid”
or ”injective”. Such answers may leak damaging information to the adversary,
since the WPRF indistinguishability from random may not apply on non-random
inputs µ.

We resolve this last problem by pre-processing µ with a (very basic) universal
hash, essentially XOR-ing µ with a secret constant. This keeps the WPRF input

small scalars. It would be very useful to find a way to do such evaluation over two
vectors or matrices. We note that Hiromasa et al. [28] showed how to do homomor-
phic evaluation on matrices for GSW-FHE scheme [26]. But it is not clear how to
apply such technique to the gadget-based trapdoors.

6

random for all the challenger-generated µi, and further randomises one of the
adversarially generated µ to make it jointly random with the random µi. This
restores WPRF indistinguishability for one adversarial queries, which in turns
all but guarantees (with probability overwhelmingly close to 1) that the response
to the adversary’s guess will be ”injective”. Because the response was a foregone
conclusion, it is devoid of information, and could have been answered without
looking at µ. This allows us to consider the second adversarial query without
regard for the first one (which we answered without even looking at it). Repeating
the previous argument, this second adversarial query µ together with the random
µi induce a set of jointly random WPRF inputs after universal hashing, and
thus the adversary will also expect an ”injective” answer with all but negligible
probability on this second query, as for the first query. The conclusion carries
inductively for any polynomially bounded number of queries.

For our purpose of constructing ABM-LTF and PKE schemes without relying
on any of the “pre-quantum” assumptions of existing schemes, WPRFs can be
instantiated directly from the Learning-With-Rounding assumption [7]. Such
WPRFs can be implemented as Boolean NAND circuits in the NC1 circuit
class, which allows us to use smaller modulus in our construction (or nearly
equivalently, larger relative LWE noise). The addition of a universal hash (or a
simple XOR) at the input of the WPRF barely makes the circuit more complex.

Finally, we also mention that we need that random tags (and even adversari-
ally chosen tags) make the column-rank of H full, with overwhelming probability,
as required for evasiveness of ABM-LTFs. Since we are able to use a polynomial
rather than sub-exponential modulus (in the security parameter), a randomly
sampled square matrix H will not overwhelmingly likely be full-rank. We resolve
this by adding extra columns to H, making it “wider”, and to such end we also
adjust the dimension of the gadget matrices. (We note that if the WPRF, which
we can view as a black-box, is instantiated from LWR problem, it would use
another modulus which unfortunately is slightly super-polynomial [7].)

A Parallel and Independent Work. In concurrent and independent work, Libert
et al. [34] propose an ABM-LTF and a SIM-SO-CCA2 secure PKE scheme us-
ing rather similar techniques. Both papers give ABM-LTF constructions based
on embedding key-homomorphic PRF evaluation into the lattice-based LTF of
Bellare et al. [9], and give applications to PKE with selective-opening security.

The first notabale difference is that our ABM-LTF uses the weaker notion
of weak PRF in the homomorphic evaluation. Unlike the stronger usual PRFs,
weak PRFs need not to be pseudo-random on all inputs; only on random ones.
They have more efficient constructions from weaker assumptions, along with
tighter reductions. Using weak PRFs gives us shallower circuit implementations,
which cause milder noise growth in the key-homomorphic evaluations. In turn,
this lessens our LWE assumptions for the construction of ABM-LTF.

The second important difference is that the PKE scheme in [34] does achieve
SIM-SO-CCA2 security, compared to ours which has IND-SO-CCA2 security. It
is the first lattice-based PKE scheme that enjoys such strong notion of selective-
opening security. At a high level, they first build an IND-SO-CCA2-secure PKE

7

scheme from their ABM-LTF, then give an efficient mechanism to ”explain” any
lossy ciphertext as an encryption of an arbitrary message to get SIM-SO-CCA2.

A natural question, given the complementary strengths of our respective
papers, would be to combine them and achieve the best of both worlds.

1.2 Other Related Works

Lossy trapdoor functions (LTFs) were proposed by Peikert and Waters [39].
They admit instantiations from standard assumptions, e.g., DDH, DCR and
LWE. They also have enormous applications, e.g., in the construction of IND-
CCA2 public-key schemes, the first lattice trapdoor function, lossy encryption
[8]. All-but-N LTFs (ABN-LTFs) were firstly proposed by Hemenway et al. [27]
as a means to construct PKE secure against chosen-ciphertext and selective
opening attacks. In contrast to ABM-LTFs in which unbounded many lossy
tags are provided, an ABN-LTF contains exact N lossy tags. ABN-LTFs suffer
from a drawback that N has to be fixed when generating the public parameters,
making the size of public parameters grow at least linearly inN . Last, we mention
that lossiness arguments have been used in a LWE context for establishing the
hardness of the LWE problem with uniform rather than Gaussian noise [21,36].

2 Preliminaries

Notation. ‘PPT’ abbreviates “probabilistic polynomial-time”. If S is a set, we

denote by a
$←− S the uniform sampling of a random element of S. For a positive

integer n, we denote by [n] the set of positive integers no greater than n. We use
bold lowercase letters (e.g. a) to denote vectors and bold capital letters (e.g. A)
to denote matrices. For a positive integer q ≥ 2, let Zq be the ring of integers
modulo q. We denote the group of n × m matrices in Zq by Zn×mq . Vectors
are treated as column vectors. The transpose of a vector a (resp. a matrix A) is

denoted by at (resp. At). For A ∈ Zn×mq and B ∈ Zn×m′q , let [A|B] ∈ Zn×(m+m′)
q

be the concatenation of A and B. We write ‖x‖ for the Euclidean norm of a
vector x. The Euclidean norm of a matrix R = {r1, . . . , rm} is denoted by ‖R‖ =
maxi ‖ri‖. The spectral norm of R is denoted by s1(R) = supx∈Rm+1 ‖R·x‖. The
inner product of two vectors x and y is written 〈x,y〉. For a security parameter
λ, a function negl(λ) is negligible in λ if it is smaller than all polynomial fractions
for a sufficiently large λ. The logarithm function log2(·) is abbreviated as log(·).

We will be using the following lemma which is directly implied by the The-
orem 1.1 of [17]

Lemma 1. Let an integer n ≥ 2, and a prime q ≥ 2. A randomly sampled
Zn×2n
q -matrx H will have n linearly independent columns, i.e., rank n, with all

but negligible probability in n.

Proof. By the Theorem 1.1 of [17] the probability that H has rank n is

n∏
i=1

(1− 1

qn+i
) ≥ (1− 1

qn+1
)n ≥ 1− n · q−(n+1) ≥ 1− negl(n)

8

as required. ut

2.1 Randomness Extractor

Let X and Y be two random variables over some finite set S. The statistical
distance between X and Y , denoted as ∆(X,Y), is defined as

∆(X,Y) =
1

2

∑
s∈S
|Pr[X = s]− Pr[Y = s]| .

Let Xλ and Yλ be ensembles of random variables indexed by the security pa-
rameter λ. X and Y are statistically close if ∆(Xλ, Yλ) = negl(λ).

The min-entropy of a random variable X over a set S is defined as

H∞(X) = − log(max
s∈S

Pr[X = s]).

The average min-entropy of a random variable X given Y is defined as

H̃∞(X|Y) = − log
(
Ey←Y

[
2−H∞(X|Y=y)

])
Lemma 2 ([38], Lemma 2.1). If Y takes at most 2r possible values and X is
any random variable, then

H̃∞(X|Y) ≥ H∞(X)− r.

Definition 1 (Universal Hash Functions). A family of functions UH =
{UHk : X → Y} is called a family of universal hash functions with index (key)
k, if for all x, x′ ∈ X , with x 6= x′, we have Pr[UHk(x) = UHk(x′)] ≤ 1

|X | over

the random choice of UHk.

Lemma 3 ([38], Lemma 2.2). Let X, Y be random variables such that X ∈
{0, 1}n and H̃∞(X|Y) ≥ k. Let UH be a family of universal hash functions from

{0, 1}n to {0, 1}` where ` ≤ k − 2 log(1/ε). It holds that for UHk
$←− UH and

r
$←− {0, 1}`, ∆ ((UHk,UHk(X), Y), (UHk, r, Y)) ≤ ε.

Corollary 1. Let q > 2, ε > 0. Let UH = {UHh : {0, 1}` → Zq} be a fam-

ily of hash functions where ` ≥ log(q/(ε2)), y = UHh(x) =
∑`
i=1 hixi mod q

for x = x1 . . . x` ∈ {0, 1}`, h = h1 . . . h`
$←− Z`q . Let r

$←− Zq, we have
∆((UHh,UHh(x)), (UHh, r)) ≤ ε.

Proof. It is easy to see that for different inputs x and x′, and h
$←− Z`q, UHh(x) =

UHh(x′) happens with probability 1/q. So UH is a family of universal hash
function. Applying Lemma 3 concludes the proof. ut

9

2.2 Discrete Gaussians

Let m ∈ Z>0 be a positive integer. Let an integer lattice Λ ⊂ Zm. For any
real vector c ∈ Rm and positive parameter σ ∈ R>0, let the Gaussian function
ρσ,c(x) = exp

(
−π‖x− c‖2/σ2

)
on Rm with centre c and parameter σ. Define

the discrete Gaussian distribution over Λ with centre c and parameter σ as
DΛ,σ = ρσ,c(y)/ρσ(Λ) for ∀y ∈ Λ, where ρσ(Λ) =

∑
x∈Λ ρσ,c(x). For notational

convenience, ρσ,0 and DΛ,σ,0 are abbreviated as ρσ and DΛ,σ.

Lemma 4 ([9], Lemma 5.1). Let h > 0, w > 0 be integers and σ > 0 be
Gaussian parameter. For R ← Dh×w

Z,σ , we have s1(R) ≤ σ · O(
√
h +
√
w) with

all but probability 2−Ω(h+w).

Lemma 5 ([9], Lemma 5.2). For prime q and integer b ≥ 2, let m̄ ≥ n logb q+
ω(log n). With overwhelming probability over the uniformly random choice of
A ∈ Zn×m̄q , the following holds: for r← Dm̄

Z,b·ω(
√

logn)
, the distribution of Ar is

statistically close to the uniform distribution over Znq .

2.3 Gadget Matrices

We define two gadget matrices with different dimensions than the canonical
gadget matrix given by Micciancio and Peikert [35]. Let an integer n ≥ 2, a
primt q ≥ 2, a radix b ≥ 2, and let w = logb q. Let G∗ be the primitive matrix
defined as G∗ = In⊗ [1, b, b2, . . . , bw−1] ∈ Zn×nwq . We define the gadget matrices

G =
[
G∗| 0

]
∈ Zn×2nw

q

and

Ĝ = I2n ⊗ [1, b, b2, . . . , bw−1] =

[
G 0
0 G

]
∈ Z2n×2nw

q .

Those gadget matrices have useful properties as stated below.

Lemma 6 ([12], Lemma 2.1). There is a deterministic algorithm, denoted
G−1(·) : Zn×mq → Zm×m, that takes any matrix A ∈ Zn×mq as input, and
outputs the preimage G−1(A) of A such that G ·G−1(A) = A (mod q) and
s1

(
G−1(A)

)
≤ (b− 1)m.

There is a deterministic algorithm, denoted Ĝ−1(·) : Z2n×m
q → Zm×m, that

takes any matrix A ∈ Z2n×m
q as input, and outputs the preimage Ĝ−1(A) of A

such that Ĝ · Ĝ−1(A) = A (mod q) and s1(Ĝ−1(A)) ≤ (b− 1)m.

Lemma 7 ([35], Theorem 3). Let A ∈ Zn×m̄q , R ∈ Zm̄×2nw. Let H ∈
Zn×2nw
q with rank n. Let Ĝ ∈ Z2n×2nw

q be the gadget matrix. For yt = gF(x) =

xt
[
Im
F

]
= xt1 + xt2 · F mod q where F = [A|AR + HĜ], there is a PPT algo-

rithm Invert(F,R,H,y) that outputs x with overwhelming probability if ‖x1‖ ≤
q/Θ(b · s1(R)).

10

2.4 Homomorphic Evaluation Algorithms

In our construction we use the homomorphic evaluation algorithms developed
in [26,16,12]. The next lemma follows directly from Claim 3.4.2, the Lemma 3.6,
and Theorem 3.5 of [16]. It has been used in [14].

Lemma 8. Let C : {0, 1}` → {0, 1} be a NAND Boolean circuit in class NC1,
i.e. C has depth d = η log ` for some constant η. Let {Ai = ARi + xiG ∈
Zn×2nw
q }i∈[`] be ` matrices correspond to the ` input wires of C where A

$←−
Zn×m̄q , Ri ← Dm̄×2nw

Z,b·ω(
√

logn)
, xi ∈ {0, 1} and G ∈ Zn×2nw

q is the gadget matrix.

There is an efficient deterministic algorithm EvalBV that takes as input C and
{Ai}i∈[`] and outputs a matrix AC = ARC+C(x1, . . . , x`)G = EvalBV(C,A1, . . . ,A`)
where RC ∈ Zm̄×2nw can be computed deterministically from {Ri}i∈[`] and
{x1}i∈[`], and C(x1, . . . , x`) is the output of C on the arguments x1, . . . , x`.

EvalBV runs in time poly(4d, `, n, log q).
Let 2nw ≤ m̄. So s1 (Rmax) = max {s1 (Ri)}i∈[`] ≤ b · O(

√
m̄) by Lemma

4. the spectral norm of RC can be bounded, with overwhelming probability, by
s1 (RC) ≤ O(4d · m̄3/2) = O(`2η · m̄3/2).

We also explicitly use the following two evaluation formulas. Let C = AR +
xG and Ĉ = AR̂ + HĜ where A ∈ Zn×m̄q , R, R̂ ∈ Zm̄×2nw has low norm,

x ∈ {0, 1}, H ∈ Zn×2n, and G ∈ Zn×2nw
q , Ĝ ∈ Z2n×2nw

q be gadget matrices. We

can multiplicatively evaluate C and Ĉ with respect to the “message” product
xH by computing

Ĉ′ = C ·G−1(Ĉ) (mod q)

= AR ·G−1(Ĉ) + x(AR̂) + xHĜ (mod q)

= AR̂′ + xHĜ (mod q)

Let Ĉ1 = AR̂1 + ZĜ and Ĉ2 = MĜ 3 where A ∈ Zn×m̄q , R̂1, R̂2 ∈ Zm̄×2nw

have low norm, Z ∈ Zn×2n
q , M ∈ Z2n×2n

q , and Ĝ is the gadget matrix. We
compute the “encryption” of ZM ∈ Zn×2n

q by computing:

Ĉ = Ĉ1 · Ĝ−1(Ĉ2) (mod q)

= A
(
R̂1 · Ĝ−1(Ĉ2)

)
+ (ZM)Ĝ (mod q)

= AR̂ + (ZM)Ĝ (mod q)

2.5 Computational Assumptions

We use the classic variant of learning-with-errors (LWE) problem where the
secret components have the same distribution as the noise components. Such
variant is known as the normal-form LWE problem and is no easier than the

3 In our construction, Z will be hidden and M will be publicly samplable.

11

LWE problem with uniform secret, up to a small difference in the number of
available samples (see e.g., [6]). Additionally, we consider the LWE problem in
which the secret is a matrix in Zn×h rather than single vector in Zn. By a
standard hybrid argument, such problem, as shown in Lemma 6.2 of [39], can be
reduced to the LWE problem with a single vector secret, while loosing a factor
h of security. We point out that in our constructions h is independent of the
number of adversarial queries.

Definition 2. Let n, q, h be positive integers. Let χ be be a distribution over
Zq. Let S← χn×h be a secret matrix. Define two oracles:

– OS: samples a
$←− Znq , e← χh; returns (a,Sta + et mod q).

– O$: samples a
$←− Znq , b

$←− Zhq ; returns (a,b).

The normal form of the LWEn,h,q,χ problem with matrix secret asks for distin-
guishing between OS and O$. The advantage of a distinguishing algorithm A in
the security parameter λ is defined as

Adv
LWEn,h,q,χ
NF,A (λ) =

∣∣Pr[AOS(1λ) = 1]− Pr[AO$(1λ) = 1]
∣∣

We also implicity make the short integer solution (SIS) assumption [2,25] for
invoking the lattice-based chameleon hash function by Cash et al. [18], which is
viewed as a black box in our constructions. Since the SIS assumption is quan-
titatively much weaker than the LWE assumption we use, and is implied by it,
our constructions are ultimately based on LWE assumption.

3 Definitions

3.1 Weak Pseudorandom Functions

Weak pseudorandom functions (weak PRFs) [3] are keyed functions that have
pseudorandom outputs on random inputs. They hav many applications in pro-
tocol design, e.g., [20,33], improving efficiency when a full PRF is not needed.

Let λ be a security parameter, t = t(λ), and ` = `(λ). An efficiently com-
putable, deterministic (one-bit-output) function family F : {0, 1}t × {0, 1}` →
{0, 1} is called weak PRF if it satisfies the following: For every Q = poly(λ), the
ensemble X = {(xi, FK(xi)}i∈[Q] is computationally indistinguishable from the
ensemble Y = {(xi, R(xi))}i∈[Q], where K is random in {0, 1}t, xi is random in

{0, 1}`, and R : {0, 1}` → {0, 1} is a random function.

Weak PRFs, which turn out to be much weaker that normal PRFs, admit
simple and efficient constructions from various assumptions. To base our ABM-
LTF purely on lattice assumptions, we can use a weak PRF from [7]

FK(·) = bp
q
〈s, ·〉e mod p where 2 ≤ p� q

12

For binary output, p = 2. The key K = s is a randomly chosen vector in Znq .
FK(·) has input space Znq . The security of FK(·) is based on the hardness of
learning with rounding (LWR), a deterministic variation on LWE, defined in [7].

Let q > p ≥ 2. For a vector s ∈ Znq , the LWR distribution Ls over Znq ×Zp is
obtained by randomly choosing a form Znq , and outputting (a, bpq 〈s,a〉e mod p).
The LWRn,p,q problem asks for distinguishing between any desired number of
independent samples from Ls, and the same number of samples from uniform
distribution over Znq × Zp. It has been shown that the hardness of the decision
LWR problem can be based on the decision LWE problem for certain parameters.

Notice that FK(·) with p = 2 is exactly an instance of the decision-LWRn,2,q
problem, and it is a weak pseudorandom function if the LWRn,2,q problem is
hard. It has been shown that for q/2 ≥ (αq) · nω(1), the LWRn,2,q problem is
no easier than the LWEn,q,DZ,αq problem where α ≤ n−ω(1). 4 We note that FK
here is essentially the same decryption circuit as in many lattice-based encryption
schemes (e.g., [15,26,16]) and belongs to a very shallow NC1 circuit class.

3.2 Chameleon Hash Functions

A chameleon hash function CH = (CH.Gen, CH.Eval, CH.Equiv) has three PPT
algorithms. The key generation algorithm CH.Gen takes as input a security pa-
rameter λ, outputs a hash key and trapdoor pair (Hk,Td). The randomised
hashing algorithm takes as input a message X, random coins r ∈ RCH, and
outputs Y = CH.Eval(Hk, X;R). The equivocation algorithm takes as input a
trapdoor Td, an arbitrary valid hash value y and an arbitrary message x, and
outputs a valid randomness R ∈ RCH such that Y = CH.Eval(Hk, X;R).

A chameleon hash function has output uniformity which guarantees the dis-
tribution of hashes is independent of the messages. Particularly, for all Hk, two

messages X,X ′, the distributions {R $←− RCH : CH.Eval(Hk, X;R)} and {R $←−
RCH : CH.Eval(Hk, X ′;R)} are identical. A chameleon hash function is collision-
resistant. That is, for all PPT adversary A, for random (Hk,Td)← CH.Gen(1λ),
the advantage

AdvcollCH,A(λ) =

 ((X,R), (X ′, R′))← A(1λ,Hk)
(X,R) 6= (X ′, R′),

CH.Eval(Hk, X;R) = CH.Eval(Hk, X ′;R′)


must be negligible in λ.

As in the definition of chameleon hash function from [29], the message space
is assumed to be {0, 1}∗. This is not a big issue since we can always apply
a collision-resistant hash function on the input to get a chameleon-hash input
with fixed size. We additionally require the chameleon hash function used in

4 Unfortunately, this proof indicates that if such LWR-based weak PRFs are used in
our construction, we need to make a slightly stronger LWE assumption with super-
polynomial modulus q. However, such LWE assumption remains weaker than widely
used LWE assumptions with sub-exponential moduli q, e.g., [12].

13

our ABM-LTF construction to have the following property in order to achieve
selective opening security:

Definition 3. Let CH = (CH.Gen,CH.Eval,CH.Equiv) be a secure chameleon
hash function. We say CH has equivocation indistinguishability if, for ran-
dom (Hk,Td)← CH.Gen(1λ), given a fixed message X ∈ XCH, the following two
distributions of tuple (X,R, Y) are statistically indistinguishable:

{X ∈ XCH, R
$←− RCH, Y ← CH.Eval(Hk, X;R)) ∈ YCH}

and
{X ∈ XCH, Y

$←− YCH, R← CH.Equiv(Td, Y,X) ∈ RCH}
Cash et al. [18] constructed a chameleon hash function from the short inte-

ger solutions (SIS) assumption [2]. Such construction has equivocation indistin-
guishability and output uniformity which follow directly from the properties of
preimage-sampleable functions given by Gentry et al. [25].

3.3 Lossy Trapdoor Functions

A lossy trapdoor function with domain D consists of three PPT algorithms:

– LTF.Gen(1λ,mode): a key generation algorithm that takes as input a security
parameter and a mode parameter mode = {inj, loss}, then behaves as follows:

– LTF.Gen(1λ, inj) outputs (LTF.ek, LTF.ik) where LTF.ek is a injective eval-
uation key and LTF.ik is an inversion trapdoor.

– LTF.Gen(1λ, loss) outputs (LTF.ek,⊥) where LTF.ek is a lossy evaluation
key.

– LTF.Eval(LTF.ek, X): an evaluation function that evaluates the function on
input X ∈ D using evaluation key LTF.ek.

– LTF.Inv(LTF.ik, Y): an inversion function that takes as input a value Y , and
uses the inversion key LTF.ik to find a value X.

A lossy trapdoor function has the following properties.

Invertibility. For all (LTF.ek, LTF.ik) ← LTF.Gen(1λ, inj), X ∈ D, and Y =
LTF.Eval(LTF.ek, X), we have

Pr [X = LTF.Inv(LTF.ik, Y)] = 1− negl(λ)

Lossiness. We say that the lossy trapdoor function is `-lossy if for all LTF.ek =
LTF.Gen(1λ, loss), the image set of LTF.Eval(LTF.ek,D) has size at most
|D|/2`.

Indistinguishability. The first outputs of LTF.Gen(1λ, inj) and LTF.Gen(1λ, loss)
are computationally indistinguishable. That is, for all PPT adversary A, the
advantage AdvindLTF,A(λ), given by∣∣Pr

[
A(1λ, LTF.ek) = 1

]
− Pr

[
A(1λ, LTF.ek′) = 1

]∣∣
is negligible in λ, where (LTF.ek, LTF.ik)← LTF.Gen(1λ, inj) and (LTF.ek′,⊥)←
LTF.Gen(1λ, loss).

14

3.4 All-But-Many Lossy Trapdoor Functions

Our definition mainly follows the original definition given by Hofheinz [29], and
maintains the same tagging mechanism. That is, a tag tag is divided into two
parts: the primary part tp and the auxiliary part ta. The auxiliary part is usually
just a random string. For any ta, given a lossy tag generation trapdoor, one can
compute tp to make tag = (tp, ta) a lossy tag. As in [29], the auxiliary part helps
us to embed auxiliary information (e.g., a one-time signature verification key).

One difference between our definition (and construction) and that of Hofheinz,
is that we divide a tag set into three disjoint subsets: (1) a lossy tag set, (2) an
injective tag set and (3) an invalid tag set. This is because in our lattice-based
construction, some tags can simultaneously make the function injective and dis-
able the inversion trapdoor. We will need to make sure that those tags are
generally hard to find (except when knowing a trapdoor).

We now define ABM-LTFs. An all-but-many lossy trapdoor function with
domain D consists of four PPT algorithms:

– ABM.Gen(1λ): a key generation algorithm. It takes as input a security param-
eter, and outputs an evaluation key ABM.ek, an inversion key ABM.ik, and
a lossy tag generation key ABM.tk. The evaluation key ABM.ek defines the
tag space T = tp × {0, 1}∗ consisting of three disjoint sets: injective tags
Tinj, lossy tags Tloss, and invalid tags Tinvalid. All tags have form tag = (tp, ta)
where tp is the primary part of the tag, and ta ∈ {0, 1}∗ is the auxiliary part
of the tag.

– ABM.Eval(ABM.ek, tag, X): an evaluation algorithm. It takes as input ABM.ek,
a tag tag ∈ T , and X ∈ D. It produces Y = ABM.Eval(ABM.ek, tag, X).

– ABM.Inv(ABM.ik, tag, Y): an inversion algorithm. It takes as input ABM.ik,
a injective tag tag ∈ Tinj and Y , where Y = ABM.Eval(ABM.ek, tag, X). It
outputs X = ABM.Inv(ABM.ik, tag, Y).

– ABM.LTag(ABM.tk): a lossy tag generation algorithm. It uses ABM.tk to gen-
erate a lossy tag tag ∈ Tloss.

We require the following properties of ABM-LTFs.

Invertibility. The invertibility property consists of two sub-properties. Firstly,
it requires that randomly sampled tags be injective tags with all but negligible
probability, i.e.,

Pr
[
tag ∈ Tinj | tag

$←− T
]
≥ 1− negl(λ)

for some negligible function negl(λ) in the security parameter λ. Secondly, it
requires that for all injective tags, the ABM-LTF be invertible with all bat neg-
ligible probability. That is, for all (ABM.ek,ABM.ik,ABM.tk) ← ABM.Gen(1λ),
tag ∈ Tinj, X ∈ D, and Y = ABM.Eval(ABM.ek, tag, X) we have

Pr [ABM.Inv(ABM.ik, tag, Y) = X] = 1− negl(λ)

Lossiness. An ABM-LTF is `-lossy if for all (ABM.ek,ABM.ik,ABM.tk)← ABM.Gen(1λ),
and all tag ∈ Tloss, the image set ABM.Eval(ABM.ek, tag,D) has size ≤ |D|/2`.

15

Indistinguishability. The indistinguishability property requires that even mul-
tiple lossy tags be indistinguishable from random tags. That is, for all PPT
adversary A’s, the advantage AdvindABM-LTF,A(λ) given by∣∣∣Pr

[
AABM.LTag(ABM.tk,·)(1λ,ABM.ek) = 1

]
− Pr

[
AOT (·)(1λ,ABM.ek) = 1

]∣∣∣
is negligible in λ, where (ABM.ek,ABM.ik,ABM.tk) ← ABM.Gen(1λ), the call
ABM.LTag(ABM.tk, ·) returns a lossy tag, and OT (·) returns a random tag in T .

Evasiveness. Evasiveness asks that lossy and invalid tags be computationally
hard to find, even given multiple lossy tags. That is, for all PPT adversary A,
for (ABM.ek,ABM.ik,ABM.tk)← ABM.Gen(1λ), A has negligible advantage

AdvevaABM-LTF,A(λ) = Pr
[
AABM.LTag(ABM.tk,·),O(·)(1λ,ABM.ek) = tag ∈ Tloss ∪ Tinvalid

]
where the oracle O(·) takes as input a tag tag output from A and returns answers
“lossy/invalid” and “injective” indicating the type of tag.

4 All-But-Many Lossy Trapdoor Function from LWE

We now present our main construction, which borrows and combines various
ideas from many different sources, primarily [29,10,7,14]; we also credit an anony-
mous source for suggesting the marriage of weak PRFs with chameleon hashing.

4.1 Basic LTF from [10]

We recall the lattice-based LTF proposed by Bellare et al. [10], which is the basis
of our ABM-LTF construction.

Let c > 1 and b ≥ 2 be two constants. Let n1 ≥ 2 be an integer, q ≥ 2 be a
large enough prime. Let n = cn1 and w = logb q. Let m̄ be any integer such that
m̄ > n logb q+ω(log n), and m = m̄+2nw = Θ(n logb q). Let β and γ be integers
such that 1 < γ < β < q. Define Iβ = {0, 1, · · · , β−1} and Iγ = {0, 1, · · · , γ−1}.
Let Ĝ ∈ Z2n×2nw

q be the gadget matrix.

– LTF.Gen(1λ, loss) The lossy function generation algorithm dose the following:
1. Sample A′ ∈ Zn1×m̄

q , E1 ← χm̄×(n−n1), E2 ← χn1×(n−n1).

2. Compute A =

[
A′

Et
1 + Et

2A
′

]
∈ Zn×m̄q .

3. Sample R← Dm̄×2nw
Z,b·ω(

√
logn)

.

4. Set LTF.ek: F = [A|AR] ∈ Zn×(m̄+2nw)
q .

– LTF.Gen(1λ, inj) The injective trapdoor function generation algorithm does
the following:

1. Sample A′ ∈ Zn1×m̄
q , E1 ← χm̄×(n−n1), E2 ← χn1×(n−n1).

2. Compute A =

[
A′

Et
1 + Et

2A
′

]
∈ Zn×m̄q .

16

3. Sample R← Dm̄×2nw
Z,b·ω(

√
logn)

and H ∈ Zn×2n
q with rank n.

4. Set LTF.ek = F = [A|AR+HĜ] ∈ Zn×(m̄+2nw)
q and LTF.ik = (R,H, Ĝ)

– LTF.Eval(LTF.ek,x) For x ∈ Im+n1

β × In−n1
γ , the evaluation algorithm returns

yt = gF(x) = xt
[
Im
F

]
mod q

– LTF.Inv(LTF.ik,y) Given y, the inversion algorithm outputs x = Invert(F,R,H,y).

The invertibility of the basic lossy trapdoor function directly relies on Lemma
7. The lossiness and the indistinguishability of the function gF(·) relies on the
following two lemmas.

Lemma 9 (Lemma 5.4, [9]). Let F = [A|AR] ∈ Zn×mq be as generated by

LTF.Gen(1λ, loss) under the conditions γc−1 ≥ 2Ω(m/n1) and β ≥ γ · s1(Ẽ) where

Ẽt = [Et
1|Et

1 ·R|Et
2]. The function gF(x) = xt

[
Im
F

]
mod q, where x ∈ Im+n1

β ×

In−n1
γ , is an Ω(m)-lossy function.

Lemma 10 (Lemma 5.7, [9]). For any PPT adversary A against the indistin-
guishability of above LTF with advantage AdvindLTF,A(λ), there exists an adversary
B against LWEn1,q,χ such that

AdvindLTF,A(λ) ≤ 2 · AdvLWEn1,n−n1,q,χ

NF,B + negl(λ)

for some negligible probability negl(λ).

4.2 Our Construction of ABM-LTF

Let n1 ≥ 2, m̄ ≥ 2 be integers, q ≥ 2 be a prime. Let n = cn1, w = logb q
for constants c and b. Set m = m̄ + 2nw. Let β and γ be integers such that
1 < γ < β < q. Define Iβ = {0, 1, · · · , β − 1} and Iγ = {0, 1, · · · , γ − 1}.
Let CH = (CH.Gen,CH.Eval,CH.Equiv) be a secure chameleon hash function
with equivocation indistinguishability. Let UH = {UHs : {0, 1}`′ → {0, 1}`} for
s ∈ {0, 1}t′ .

– ABM.Gen(1λ, d) The key generation algorithm does the following steps:

1. Choose A′
$←− Zn1×m̄

q , E2
$←− χn1×(n−n1), E1 ← χm̄×(n−n1) and set

A =

[
A′

Et
2A
′ + Et

1

]
∈ Zn×m̄q

2. Select a weak PRF WPRF : {0, 1}t × {0, 1}` → {0, 1}. Select K
$←−

{0, 1}h×t. We denote by ki ∈ {0, 1}t the i-th row of K, to serve as an
independent key for WPRF. We denote by ki,j ∈ {0, 1} the j-th bit of

ki. Select a universal hash function UHs
$←− UH with hidden key s =

s1 . . . st′ ∈ {0, 1}t
′
. Express the function WPRF(·,UH·(·)) as a Boolean

circuit CWPRF with gate fan-in 2 and depth d.

17

3. Sample a set of low-norm matrices {Rki,j}i∈[h],j∈[t], {Rsi}i∈[t′] from the

distribution Dm̄×2nw
Z,b·ω(

√
logn)

. Compute Cki,j = ARki,j + ki,jG and Csi =

ARsi + siG. 5

4. Sample a set of low-norm matrices {RHi}i∈[h] for RHi ← Dm̄×2nw
Z,b·ω(

√
logn)

.

Sample a set of random rank-n matrices {Hi}i∈[h] for Hi
$←− Zn×2n

q .

Compute ĈHi
= ARHi

+ HiĜ ∈ Zn×2nw
q for i ∈ [h]. 6

5. Select Z← Dm̄×2nw
Z,b·ω(

√
logn)

, and compute ĈZ = ARZ + ZĜ.

6. Run CH.Gen(1λ) to generate a chameleon hash key Hk and a trapdoor Td.
Assume this chameleon hash function has message space XCH = {0, 1}∗,
randomness space RCH and output space {0, 1}`′ .

7. Set the public evaluation key

ABM.ek =

(
WPRF, CWPRF,A, {Cki,j}i∈[h],j∈[t],

{Csi}i∈[t′], {ĈHi
}i∈[h], ĈZ,Hk

)
the private inversion key

ABM.ik =

(
WPRF, CWPRF,K, s, {Rki,j}i∈[h],j∈[t],
{Rsi}i∈[t′], {Hi}i∈[h], {RHi

}i∈[h],Z,RZ

)
and the lossy tag generation key

ABM.tk =
(
WPRF, CWPRF,K, s, {Hi}i∈[h],Z,Td

)
– Tags. A tag has form tag = (tp, ta). The primary tag part tp = (D, R) ∈

Z2n×2n
q ×RCH and the auxiliary tag part ta ∈ {0, 1}∗. Set the tag space as
T = Z2n×2n

q ×RCH×{0, 1}∗. With a tag tag = ((D, R), ta), we can compute

µ = CH.Eval(Hk, (D, ta);R) ∈ {0, 1}`′ . Let

H = ZD−
h∑
i=1

WPRF(ki,UHs(µ)) ·Hi (mod q)

We define

tag ∈

 Tinj if H has rank n;
Tloss if H = 0;
Tinvalid if H has rank 6= 0 and 6= n.

– ABM.Eval(ABM.ek, tag,x) For input x ∈ Im+n1

β × In−n1
γ , the algorithm does:

1. Let tag = (tp, ta) = ((D, R), ta) ∈ T , compute µ = CH.Eval ((D, ta);R) ∈
{0, 1}`′ .

2. Let µi ∈ {0, 1} be the i-th bit of µ. Compute

C̃i = EvalBV(CWPRF,Cki,1 , . . . ,Cki,t ,Cs1 , . . . ,Cst′ , µ1G, . . . , µ`′G)

= AR̃i + WPRF(ki,UHs(µ))G (mod q)

for some low-norm R̃i ∈ Zm̄×2nw and i ∈ [h] .

5 G is the gadget matrix with dimensions n-by-2nw.
6 Ĝ is the gadget matrix with dimensions 2n-by-2nw.

18

3. Compute C̄ = ĈZĜ−1(DĜ) = A(RZĜ−1(DĜ)) + (ZD)Ĝ = AR̄ +
(ZD)G, where R̄ ∈ Zm̄×2nw is of low norm.

4. Set

F = [A|C̄]− [0|
∑h

i=1
C̃i ·G−1(ĈHi)] mod q

= [A|AR + (ZD−
∑h

i=1
(WPRF(ki,UHs(µ)) ·Hi)Ĝ] mod q

= [A|AR + HĜ] mod q

for the unknown low-norm Zm̄×2nw-matrix

R = R̄−
∑h

i=1

(
R̃i ·G−1(ĈHi

) + WPRF(ki,UHs(µ)) ·RHi

)
(1)

Notice that here R is unknown to the the function evaluator, and, how-
ever, is known to the inversion algorithm ABM.Inv which has the knowl-
edge of ABM.ik.

5. Compute the output of the function yt = gF(x) = xt
[
Im̄+2nw

F

]
mod q.

– ABM.Inv(ABM.ik, tag,y) The inversion algorithm takes as input an inversion
key ABM.ik, an injective tag tag ∈ Tinj and an image y. It does the following:

1. Let tag = ((D, R), ta), compute µ = CH.Eval(Hk, (D, ta);R) ∈ {0, 1}`′ .
2. Compute F = [A|AR + HĜ] as the algorithm ABM.Eval.
3. Use the knowledge of ABM.ik to compute the low-norm R by the formula

1 and compute H = ZD−
∑h
i=1 WPRF(ki,UHs(µ)) ·Hi (mod q). Notice

H has rank n.
4. Call the algorithm Invert(F,R,H,y) to get x.

– ABM.LTag(ABM.tk) The lossy tag generation algorithm takes as input the
lossy tag generation key ABM.tk. It does the following:
1. Randomly select a tag tag′ = ((D′, R′), t′a) ∈ T and compute µ =

CH.Eval(Hk, (D′, t′a);R
′).

2. Solve for D ∈ Z2n×2n
q such that ZD =

∑h
i=1(WPRF(ki,UHs(µ)) · Hi)

(mod q).
3. Randomly select ta ∈ {0, 1}∗.
4. ComputeR = CH.Equiv(Td, ((D′, t′a), R

′),D) and output tag = ((D, R), ta).
It is easy to check that the algorithm indeed outputs a lossy tag.

4.3 Correctness

We show in the following theorems that our ABM-LTFs are invertible with
injective tags and lossy with lossy tags.

Theorem 1. For our construction, randomly sampled tags are injective tags
with all but negligible probability. In addition, for any injective tag tag ∈ Tinj, the
function gF(·) is invertible with overwhelming probability, where F = [A|AR +

HĜ] ∈ Zn×mq was computed via ABM.Eval with tag.

19

Proof. Let tag = ((D, R), tp) be a randomly sampled tag; that is, D
$←− Z2n×2n

q ,

R
$←− RCH and tp

$←− {0, 1}∗. We have ZD mod q is uniformly random over
Zn×2n
q , thus, so is H. By Lemma 1, H has rank n except negligible probability.

Hence, tag = ((D, R), tp) is an injective tag.

Since ‖x‖ ≤ β ·
√
m, we can bound β (with large enough q) to ensure that

‖x‖ ≤ q/Θ(b · s1(R)). We then apply Lemma 7 to conclude the proof. ut

Theorem 2. With our parameter restrictions (see also parameter selection in
Section 4.4), for any lossy tag tag ∈ Tloss, the function gF(·) is Ω(m)-lossy, where
F = [A|AR] ∈ Zn×mq computed via ABM.Eval using tag, and m = Θ(n logb q).

Proof. This proof borrows from the proof of Lemma 9 which follows directly
from the proof of Lemma 5.4 of [9].

By the construction of F ∈ Zn×mq we have

gF(x) = xt
[
Im
F

]
mod q = (xt


Im̄

I2nw

In1

Et
1 Et

1 ·R Et
2

)

Im̄
I2nw

A′ A′R

 mod q

= (xt
[
Im+n1

Ẽt

]
)

[
Im
F′

]
mod q

It suffices to bound the number of possible values of xt
[
Im+n1

Ẽt

]
∈ Zn1+m.

By the triangle inequality, we have∥∥∥∥xt [Im+n1

Ẽt

]∥∥∥∥ ≤ β√n1 +m+ s1(Ẽ) · γ
√
n− n1 ≤

√
n1 +m · (β + γ · s1(Ẽ))

Define Nd(r) to be the number of integer points in a d-dimensional Euclidean ball
of radius r. For r ≥

√
d, from the volume of the ball and Stirling’s approximation,

we have Nd(r) = O(r/
√
d)d. So the number of possible values of xt

[
Im+n1

Ẽt

]
is

O(β + γ · s1(Ẽ))n1+m.

By the structure of F, γ ≥ 2Ω(m/n1) and γ ≤ q1/C , the base-2 logarithm of
the domain of the function gF(·) is

(n1 +m) log β + n1 log γc−1 ≥ (n1 +m) log β +Ω(m)

Since β ≥ γ · s1(Ẽ), the base-2 logarithm of the range of the function gF(·) is at
most

(n1 +m) logO(β + γ · s1(Ẽ)) = (n1 +m) log β +O(m)

By choosing a sufficiently large constant in the Ω notation, we have log |D| −
log |R| = Ω(m). We conclude that the function gF(·) is Ω(m)-lossy. ut

20

Setting β and γ. The restrictions on β and γ originate from two lemmas.
Firstly, for invertibility (Lemma 7), we need ‖x‖ ≤ β

√
m < q/Θ(b · s1(R)).

Secondly, for lossiness (Lemma 9), we need γc−1 ≥ 2Ω(m/n1) where m =
Θ(n logb q) = Θ(cn1 logb q), and γ · s1(Ẽ) ≤ β; hence γ ≥ qΘ(1/ log b)·c/(c−1).

For any desired constant C > 1, we can set up constants c > 1 and b ≥ 2 so
that γ ≤ q1/C . This gives

q1/C · s1(Ẽ) ≤ β ≤ q/Θ(b · s1(R) ·
√
m) (2)

Therefore, it is sufficient to take q large enough such that

q1−1/C ≥ Ω
(
s1(R) · s1(Ẽ) ·

√
m
)

(3)

4.4 Parameter Selections

An instance of parameter selection that meets all requirements of correctness
and security properties is given here.

Firstly, to enable the statistical argument for security, i.e., Lemma 5 and
Lemma 3, we set m̄ > n logb q+ω(log n), and for any ε > 0, set h = poly(λ) such
that log(q/(ε2)) ≤ h.

We set the constant C = 6 for Equation (2), which we can do by picking a
suitable constant c and logarithm radix b.

Instantiating WPRF by the weak PRF from [7], which has fan-in-2 Boolean
circuit implementation in class NC1, and a universal hash function from Corollary
1, we can get the fan-in-2 Boolean circuit CWPRF in class NC1, i.e., CWPRF has
input length `′ + t′ + t = poly(λ), and depth η log(`′ + t′ + t) = η log(poly(λ)),
for some constant η > 0.

We now bound the norm of R ∈ Zm̄×2nw per the formula 1. Firstly we have

s1

(∑h
i=1 R̃i ·G−1(ĈHi

) + WPRF(ki,UHs(µ)) ·RHi

)
≤ O

(
h · 4d · m̄3/2

)
· ((b− 1) · 2nw) (Lemma 8, 6)

≤ O
(
h · 4d · m̄3/2 · m̄

)
((b− 1) · 2nw ≤ O(m̄))

≤ O
(
h · 4d · m̄2

)
and

s1(R̄) ≤ 3 · b · ω(
√

log n) ·O(
√
m̄) · (b− 1) · 2nw

≤ Õ(m̄3/2)

So we have

s1(R) ≤ s1

(
h∑
i=1

R̃i ·G−1(ĈHi
) + WPRF(ki,UHs(µ))) ·RHi

)
+ s1(R̄)

≤ O
(
h · 4d · m̄2

)
+ Õ(m̄3/2)

= Õ(h · 4d · n2
1) (4)

21

We now choose the LWE noise distribution χ = DZ,2√n1
for accommodating

the average-case to worst-case hardness reduction from classical lattice problems,
e.g. SIVP, given by [41]. We bound s1(Ẽ) where Ẽt = [Et

1|Et
1 ·R|Et

2] according
to Lemma 9.

s1(Ẽ) ≤ s1(E)(1 + s1(R))

≤ 2
√
n1 · (

√
m̄+ n1 +

√
n− n1)(1 + s1(R)) (by Lemma 4)

= Õ(h · 4d · n3
1)

We now set q through Equation (3) as

q = Θ
(

(s1(R) · s1(Ẽ) ·
√
m)C/(C−1)

)
= Θ̃

(
(h · 4d · n3

1 · h · 4d · n2
1 · n0.5

1)C/(C−1)
)

= Θ̃
(
h2.4 · 24.8d · n6.6

1

)
Lastly we fix γ = Õ

(
(h2 · 24d · n5.5

1)1/(C−1)
)

= Õ
(
h0.4 · 20.8d · n1.1

1

)
≤ q1/C .

To fix β we have γ · s1(Ẽ) = Õ
(
h1.4 · 22.8 · n4.1

1

)
and q/Θ(b · s1(R)

√
m) =

Õ
(
h2.4 · 22.8d · n4.1

1

)
, so to satisfy Equation (2), we set

γ · s1(Ẽ) ≤ β = Θ̃
(
h2.4 · 24.8d · n6.6

1

)
≤ q/Θ(b · s1(R)

√
m)

Summing up, an example of parameter selection per the foregoing, is:

d = O (log(poly(λ)) ; q = Θ̃
(
h2.4 · 24.8d · n6.6

1

)
; m = Θ(n1 logb q)

β = Θ̃
(
h2.4 · 24.8d · n6.6

1

)
; γ = Õ

(
h0.4 · 20.8d · n1.1

1

)
4.5 Security Proofs

Theorem 3 (Indistinguishability). For any PPT adversary A against indis-
tinguishablity of the above ABM-LTF with advantage AdvindABM,A(λ), there exist
two adversaries A1, A2 and a negligibly small error negl(λ) such that

AdvindABM,A(λ) ≤ Adv
LWEn1,n−n1,q,χ

NF,A1
(λ) + h · AdvWPRF

A2
(λ) + negl(λ) + ε

Proof. We proceed with the proof using a game sequence. Let Si be the event
that A outputs 1 in the game Game i. In Game 1, all algorithms work ex-
actly the same as the real scheme. A interacts with ABM.LTag(ABM.tk, ·) which
outputs lossy tags. So we have

Pr[S1] = Pr
[
AABM.LTag(ABM.tk,·)(1λ,ABM.ek) = 1

]
In Game 2, we change the way of generating public matrix A. Particularly,

we sample A from Zn×m̄q uniformly at random. Because A does not affect the

22

output distribution of ABM.LTag, by the LWE assumption, this change is not
noticeable to A, lest it give an LWE distinguisher. So we have

|Pr[S2]− Pr[S1]| ≤ Adv
LWEn1,n−n1,q,χ

NF,A1
(λ)

for a suitable LWEn1,q,χ adversary A1.
In Game 3, the public evaluation key of the ABM-LTF is set as

ABM.ek =
(
WPRF, CWPRF,A, {Cki,j}i∈[h],j∈[t], {Csi}i∈[t′], {ĈHi

}i∈[h], ĈZ,Hk
)

where {Cki,j}i∈[h],j∈[t], {Csi}i∈[t′], {ĈHi
}i∈[h], and ĈZ are chosen uniformly

random from Zn×2nw
q . Accordingly, the low-norm secret matrices in ABM.ik,

which include {Rki,j}i∈[h],j∈[t], {Rsi}i∈[t′], {RHi
}i∈[h], and RZ are no longer

needed. It is easy to see that this change does not affect the (output distribution
of) algorithm ABM.LTag. Moreover, by Lemma 5, ABM.ek in Game 3 has a
distribution that is statistically close to the distribution of ABM.ek in Game 2.
So for some negligibly small statistical error negl(λ), we have

|Pr[S3]− Pr[S2]| ≤ negl(λ)

In Game 4, we change the algorithm ABM.LTag. Specifically, in step 2 of
ABM.LTag, we compute ri(UHs(µ)) with random functions ri : {0, 1}` → {0, 1}
instead of WPRF(ki,UHs(µ)) for i ∈ [h]. (Note this does not affect ABM.Eval
which still uses CWPRF.) As µ is uniformly random, for a PPT adversary A2

against WPRF, a straightforward hybrid argument shows that

|Pr[S4]− Pr[S3]| ≤ h · AdvWPRF
A2

(λ)

In Game 5, we randomly sample a matrix S
$←− Zn×2n

q instead of com-

puting S =
∑h
i=1 ri(UHs(µ)) Hi mod q as in Game 4. By Corollary 1 with

h ≥ log(q/(ε2)), the statistical distance between the distribution of the random

variable
∑h
i=1 ri(UHs(µ)) ·Hi mod q and the uniform distribution over Zn×2n

q is
less than ε. Hence, we have

|Pr[S5]− Pr[S4]| ≤ ε

On the other hand, in Game 5, H = ZD − S mod q with random S. Thus
the pair (D, R) is independent of H. Therefore all tags generated in Game 5
are random tags. So we have

Pr[S5] = Pr
[
AOT (·)(1λ,ABM.ek) = 1

]
Summing up, we find that adversary A’s advantage AdvindABM-LTF,A(λ) is∣∣∣Pr
[
AABM.LTag(ABM.tk,·)(1λ,ABM.ek) = 1

]
− Pr

[
AOT (·)(1λ,ABM.ek) = 1

]∣∣∣
≤ Adv

LWEn1,n−n1,q,χ

NF,A1
(λ) + h · AdvWPRF

A2
(λ) + negl(λ) + ε (5)

which completes the proof. ut

23

Theorem 4 (Evasiveness). For any PPT adversary A against the evasiveness
of the above ABM-LTF with advantage AdvevaABM-LTF,A(λ), there exist A1, A2, A3

and a negligible function negl(λ) such that

AdvevaABM-LTF,A(λ) ≤ Adv
LWEn1,n−n1,q,χ

NF,A1
(λ)+h·AdvWPRF

A2
(λ)+AdvcollCH,A3

(λ)+ε+negl(λ)

Proof. We prove the theorem using a game sequence. Let Si be the event that
A outputs a lossy or invalid tag in Game i. We further consider two types of
(lossy or invalid) tag output by A. We say that a tag tag = ((D∗, R∗), t∗a) has
Type I if µ∗, which is equal to CH.Eval(Hk, (D∗, t∗a);R∗), is also the chameleon
hash output of some previously generated tag. A tag tag = ((D∗, R∗), t∗a) has
Type II if µ∗ = CH.Eval(Hk, (D∗, t∗a);R∗) is not the chameleon hash output
of any previously generated tag. W.l.o.g., we assume that the adversary gets
N = poly(λ) lossy tags {tagi}i∈[N] = {(Di, Ri), tai}i∈[N] generated by the lossy
tag generation oracle. Then the adversary adaptively comes up withN ′ = poly(λ)
tags {tag∗i }i∈[N ′] = {(D∗i , R∗i), ta∗i }i∈[N ′] and gets answers “lossy/invalid” or
“injective” from the oracle O indicating whether theses tags are lossy/invalid or
injective.

In Game 1, A interacts with ABM.LTag(ABM.tk, ·) which works exactly as
in the real system. By hypothesis, we have

AdvevaABM-LTF,A(λ) = Pr[S1]

In Game 2, we sample the public matrix A randomly from Zn×m̄q . This does
not affect the output distribution of ABM.LTag. By the LWE assumption, the
change is not noticeable to A; if it is, there is an LWE distinguisher. So we have

|Pr[S2]− Pr[S1]| ≤ Adv
LWEn1,n−n1,q,χ

NF,A1
(λ)

for a suitable LWE adversary A1.
In Game 3, the public evaluation ABM-LTFs is set as

ABM.ek =
(
WPRF, CWPRF,A, {Cki,j}i∈[h],j∈[t], {Csi}i∈[t′], {ĈHi

}i∈[h], ĈZ,Hk
)

where {Cki,j}i∈[h],j∈[t], {Csi}i∈[t′], {ĈHi
}i∈[h], and ĈZ are chosen uniformly

random from Zn×2nw
q . Accordingly, the low-norm secret matrices in ABM.ik, in-

cluding {Rki,j}i∈[h],j∈[t], {Rsi}i∈[t′], {RHi}i∈[h], RZ, are not needed anymore.
It is easy to see that this change does not affect the (output distribution of)
algorithm ABM.LTag. Moreover, by Lemma 5, ABM.ek in Game 3 has a distri-
bution that is statistically close to the distribution of ABM.ek in Game 2. So
for some negligibly small statistical error negl1(λ), we have

|Pr[S3]− Pr[S2]| ≤ negl1(λ)

In Game 4, we make the following changes. In step 2 of ABM.LTag, for
any µ, instead of computing S =

∑h
i=1 WPRF(ki,UHs(µ))Hi mod q, we sample

S
$←− Zn×2n

q . For all queries {tag∗i }i∈[N ′] to O, we return the answer “injective”.

24

We prove by induction that distinguishing between this game and the previ-
ous one implies a distinguisher for the WPRF. Notice that since the µi for all
the issued lossy tags are random according to ABM.LTag, their images UHs(µi)
are also random.

For the base step, supposeN ′ = 1 (the caseN ′ = 0 is vacuous). In Game 3,O
answers honestly by computing H = ZD−

∑h
i=1 WPRF(ki,UHs(µ

∗
1)) Hi mod q.

Since UHs(µ
∗
1) is random and jointly random with all independently sampled

UHs(µi), by Corollary 1 and the security of WPRF, the Game-3 distribution

{
∑h
j=1 WPRF(Kj ,UHs(µi))Hij}i∈[N]∪{

∑h
j=1 WPRF(Kj ,UHs(µ

∗
1))Hj} and the

Game-4 distribution {Si
$←− Zn×2n

q }i∈[N] ∪ {S
$←− Zn×2n

q } are computationally

distinguishable with probability at most h ·AdvWPRF
A2

(λ) + ε for a suitable WPRF
adversary A2. Moreover, since for µ∗1 from tag∗1 in Game 4 the matrix S is
random, so is H, the adversary always gets the answer “injective” except with
negligible probability ε. This shows that |Pr[S4] − Pr[S3]| ≤ h · AdvWPRF

A2
(λ) +

ε+N ′ · ε when N ′ = 1.
For the inductive step, assume that the above holds for k = N ′ − 1 ≥ 1. Ac-

cordingly, in Game 4, for tags {tag∗i }i∈[k], we simply answer “injective” without
even looking at the query µ∗i ; we look at the N ′-th query tag tag∗k+1. In Game 3,
we honestly derived the same “injective” answers for the first k guesses, and the
last answer is computed as H = ZD −

∑h
i=1 WPRF(ki,UHs(µ

∗
k+1)) Hi mod q.

Since WPRF in Game 4 is only evaluated on {UHs(µi)}i∈[N] ∪ {UHs(µ
∗
k+1)}

which by construction is jointly uniformly random, and since in Game 3 by
inductive hypothesis the answers were all “injective”, the inductive hypothesis
continues to hold, and we have |Pr[S4]−Pr[S3]| ≤ h ·AdvWPRF

A2
(λ) + ε+ k · ε+ ε.

Therefore we have for all N ′ = poly(λ), and taking N ′ · ε = negl2(λ),

|Pr[S4]− Pr[S3]| ≤ h · AdvWPRF
A2

(λ) + ε+ negl2(λ)

Notice that {tagi}i∈[N] generated in Game 4 are distributed as random tags.
In Game 5, the trapdoor Td of the chameleon hash function is not available.

All primary tags are generated randomly, i.e, (D, R)
$←− Z2n×2n

q ×RCH. Hence,

Pr[S5] = Pr[S4]

Moreover, for any fresh µ that was not derived from previous queries, S ∈ Zn×2n
q

will be chosen randomly and independently. In other words, there does not exist
an adversary that outputs Type II tags with more than some negligible prob-
ability negl2(λ). So we have Pr[S5,I] ≤ negl3(λ). Any Type I output breaches
the collision-resistance of the chameleon hash function, therefore Pr[S5,I] ≤
AdvcollCH,A3

(λ) for some adversary A3. Since Pr[S5] ≤ Pr[S5,I]+Pr[S5,II], we obtain

Pr[S5] ≤ negl3(λ) + AdvcollCH,A3
(λ)

To sum up, letting negl(λ) = negl1(λ) + negl2(λ) + negl3(λ) + ε, we have

AdvevaABM-LTF,A(λ) ≤ Adv
LWEn1,n−n1,q,χ

NF,A1
(λ) + h · AdvWPRF

A2
(λ) (6)

+ AdvcollCH,A3
(λ) + negl(λ)

25

This concludes the proof. ut

5 IND-SO-CCA2 Secure PKE from Lattices

Using the constructions from [27,29] as a guide, we build the first LWE-based
IND-SO-CCA2-secure public-key encryption scheme with our LWE-based ABM-
LTF. In our construction, we take the advantage of the chameleon hash function
embedded in our ABM-LTF. Our apprach also draws the idea from [42] in which
transformations from tag-based PKE schemes to IND-CCA2 PKE schemes are
proposed with the help of chameleon hashing.

5.1 Definition of IND-SO-CCA2 Security

A public-key encryption scheme Π consists of three PPT algorithms: KeyGen,
Encrypt and Decrypt. KeyGen(1λ) takes as input a security parameter λ, outputs
a public key pk and a private key sk. We define the message spaceMλ, random-
ness space Rλ and the ciphertext space Cλ in the obvious way. Encrypt(pk,m; r)

encrypts a message m ∈ Mλ using pk and randomness r
$←− Rλ, and outputs

a ciphertext ct. Decrypt(sk, ct) recovers the message m from ct using sk. The
correctness of a PKE scheme requires that for all m ∈ Mλ, valid randomness
r ∈ Rλ, and (pk, sk)← KeyGen(1λ),

Pr [m = Decrypt (sk,Encrypt(pk,m; r))] ≥ 1− negl(λ)

for some negligible function negl(λ).

Selective Opening Security. Suppose that a vector of messages, coming from
some joint distribution dist, has been encrypted into a vector of ciphertexts, and
sent out. A “selective opening” attack allows an adversary to choose a subset
of these ciphertexts and have them “opened”, revealing their messages and the
random coins used during encryption.

The opened messages, random coins, and distribution dist might help the
adversary to learn information about the remaining messages, in the unopend
ciphertexts. Selective opening security means that the content of the unopend
ciphertexts remains secure in that scenario.

There are a few different ways of formalising selective opening security. As
in [29], we are considering the indistinguishability-based definition of security
against chosen-ciphertext attacks (referred to as IND-SO-CCA2) with respect
to joint message distributions that are efficiently re-sampleable.

Definition 4 (Efficient Resampling). Let N = N(λ) > 0, let Mλ be the
message space, and let dist be a joint distribution over MN

λ . We say that dist
is efficiently re-samplable if there is a PPT algorithm ReSamp such that for any

I ⊂ [N] and any partial vector (m′(i))i∈I ∈ M|I|λ , ReSamp samples from the
distribution dist, conditioned on m(i) = m′(i) for all i ∈ I.

26

The IND-SO-CCA2 security essentially requires that no efficient adversary
can distinguish the unopened messages from fresh messages drawn from the same
joint distribution conditioned on the opened messages.

Definition 5 (IND-SO-CCA2 Security). A public-key encryption scheme
Π = (KeyGen,Encrypt,Decrypt) has IND-SO-CCA2 security iff for every poly-
nomial N = N(λ), and every PPT adversary A, we have that

Advind-so-ccaΠ,A (λ) =
∣∣∣Pr
[
Expind-so-cca-bΠ,A (λ) = 1

]
− 1/2

∣∣∣
is negligible, where the experiment Expind-so-cca-bΠ,A (λ) is defined in Figure 1.

Experiment Expind-so-cca-bΠ,A (λ)

1. b
$←− {0, 1}

2. (pk, sk)← KeyGen(1λ)
3. (dist,ReSamp)← ADecrypt(sk,·)(pk)
4. m0 = (m(i))i∈[N] ← dist

5. r = (r(i))i∈[N] ← (Mλ)N

6. c =
(
ct(i)

)
i∈[N]

=
(
Encrypt(pk,m(i); r(i))

)
i∈[N]

7. I ← ADecrypt(sk,·)(pk, c)
8. m1 = ReSamp(dist,mI)

9. b′ ← ADecrypt(sk,·)
(
mb, {m(i), r(i)}i∈I

)
10. Return 1 if b′ = b, and 0 otherwise

Fig. 1: Security experiment of IND-SO-CCA2 security

The adversary A is required to output the resampling algorithm ReSamp as
per Figure 1, and never to submit any challenge ciphertext ct(i) to the decryption
oracle Decrypt(sk, ·).

5.2 Construction of IND-SO-CCA2 PKE

Let λ be the security parameter and κ = ω(log λ). Let ABM-LTF = (ABM.Gen,
ABM.Eval, ABM.Inv) be an l-lossy ABM-LTF with domain D = Im+n1

β ×In−n1
γ as

constructed before. Assume X = In1

β ×In−n1
γ . Let LTF = (LTF.Gen, LTF.Eval, LTF.Inv)

be an l′-lossy LTF with domain D. Without loss of generality, we assume l ≥ l′.
Let UH be a family of universal hash functions from D × Imβ → {0, 1}τ with

τ ≤ (l + l′ − log |X| − 2λ) − 2 log(1/ε) for some negligible ε = negl(λ) 7. Let
B = Θ(b ·s1(R)) as in Lemma 7. The message space is {0, 1}τ . The PKE scheme
Π = (KeyGen,Encrypt,Decrypt) is as follows.

7 We can satisfy this condition with large enough l, l′ from the LTF and our ABM-LTF.

27

– KeyGen(1λ) The key generation algorithm does:
1. Run (ABM.ek,ABM.ik,ABM.tk)← ABM.Gen(1λ).
2. Run (LTF.ek, LTF.ik)← LTF.Gen(1λ, inj).
3. Set the public key pk = (LTF.ek,ABM.ek) and private key sk = (LTF.ik,ABM.ik).

– Encrypt(pk,m; r) To encrypt m ∈ {0, 1}τ , the encryption algorithm does:

1. Randomly select e1, e2
$←− Imβ , x

$←− In1

β × In−n1
γ ; Set xt1 = [et1|xt],

xt2 = [et2|xt] ∈ D.

2. Randomly select a universal hash function UHk
$←− UH. 8

3. Compute y1 = LTF.Eval(LTF.ek,x1) and ρ = UHk(x, e1, e2)⊕m.
4. Set tag = (tp, ta) for randomly sampled tp = (D, R) and ta = (UHk, ρ,x2),

then compute µ = CH.Eval(Hk, (D, ta,y1);R).
5. Use µ as the input of the step 2 of the algorithm ABM.Eval, and compute

the output of ABM-LTF: y2 = ABM.Eval(ABM.ek, tag,x2).
6. Set the ciphertext ct = (y1,y2, tp,UHk, ρ, µ).

Note the randomness of this encryption r = tag where all elements in tag
are public except x2.

– Decrypt(sk, ct) The decryption algorithm does:
1. Parse the ciphertext as ct = (y1,y2, tp,UHk, ρ, µ).
2. Run LTF.Inv(LTF.ik,y1) to get xt1 = [et1|xt]; Reject if ‖e1‖ > B.
3. Let F be the matrix derived at the step 2 of ABM.Inv. Compute et2 =

yt2 − xtF; Reject if ‖e2‖ > B; Otherwise, go to the next step.
4. Compute µ′ = CH.Eval(Hk, (D, ta,y1);R) where ta = (UHk, ρ,x2); if
µ′ 6= µ, reject; Otherwise go to the next step.

5. Output the message m = ρ⊕ UHk(x, e1, e2).

The correctness of decryption algorithm can be easily checked.

5.3 Security Proof

Theorem 5. Suppose that the ABM-LTF specified above is secure. Then the
PKE scheme Π = (KeyGen,Encrypt,Decrypt) is IND-SO-CCA2 secure. In par-
ticular, for every PPT adversary A against Π with advantage Advind-so-ccaΠ,A (λ),

there exist PPT adversaries B1, B2 and B3 such that Advind-so-ccaΠ,A (λ)

≤ AdvcollCH,B1
(λ) + AdvindABM-LTF,B2

(λ) + AdvevaABM-LTF,B3
(λ) + AdvindLTF,B4

(λ) + negl(λ)

for the same chameleon hash function CH used in the construction of ABM-LTF,
where AdvcollCH,B1

(λ) is the advantage of B1 against CH that is used in ABM-LTF.

Proof. Recall that in the IND-SO-CCA2 security game (Figure 1), we have N
challenge ciphertexts. We denote the i-th challenge ciphertext by

ct(i) = (y
(i)
1 ,y

(i)
2 , t(i)

p ,UHk(i) , ρ(i), µ(i))

8 Note the family of universal hash functions is used for masking the message and not
the one used in the construction of ABM-LTF.

28

where t
(i)
p = (D(i), R(i)). Also recall ta = (UHk, ρ,x2) for some xt2 = [et2|xt].

And x2 is applied to ABM.Eval with tag = (tp, ta, µ) to generate y2.
We prove the theorem through a game sequence. Let Si be the event that A

outputs 1 in Game i. The first game Game 1 is the same as the experiment
Expind-so-cca-bΠ,A (λ). By definition we have

|Pr[S1]− 1/2| = Advind-so-ccaΠ,A (λ).

In Game 2, we reject all the decryption queries in which the component µ has
already appeared in one of the challenge ciphertexts. If the adversary makes a
decryption query on ciphertext ct = (y1,y2, tp = (D, R),UHk, ρ, µ

(i)) where µ(i)

is from some ct(i) = (y1
(i),y

(i)
2 , t

(i)
p ,UHk(i) , ρ(i), µ(i)), we argue that such query

will be rejected unless the collision resistant property of the chameleon hash
function is broken. Notice that R is the randomness, y2 is the only ciphertext
component that is not a part of the message of the chameleon hash function. Let

ta = (UHk, ρ,x2) and t
(i)
a = (UHk(i) , ρ(i),x

(i)
2). There are three cases:

– If y2 = y
(i)
2 and(tp,UH, ρ) = (t

(i)
p ,UHk(i) , ρ(i)): In this case the query is

exactly the i-th challenge ciphertext which is invalid.

– If y2 = y
(i)
2 and (tp,UH, ρ) 6= (t

(i)
p ,UHk(i) , ρ(i)): The decryption algorithm

will output x2 in the step 3 (when the ciphertext passes through all test up to
step 3) and recompute µ′. We would have µ 6= µ, thus reject the query, un-

less CH.Eval(Hk, (D, ta,y1);R) = CH.Eval(Hk, (D(i), t
(i)
a ,y

(i)
1);R(i)), which

corresponds to a collision to the chameleon hash function.

– If y2 6= y
(i)
2 : Recall that µ = µ(i) is derived from an injective tag. If the

query makes decryption algorithm output x2 at step 3, we must have x2 6=
x

(i)
2 and, thus, ta 6= t

(i)
a . Then the query will be reject at step 4 unless an

explicit collision, ((D, ta,y1);R) and (D(i), t
(i)
a ,y

(i)
1);R(i)), happens to the

chameleon hash function.

So Game 2 and Game 1 behave the same unless the collision resistancy of the
chameleon hashing is broken. Thus we have

|Pr[S2]− Pr[S1]| ≤ AdvcollCH,B1
(λ)

for some suitable adversary B1.
In Game 3, lossy tags are generated using ABM.LTag for all challenge ci-

phertexts, i.e., ct(i) for i ∈ [N]. Notice that here we allow the decryption queries
made with lossy tags in which µ 6= µ(i). (Of course it is computationally hard
to come up with such queries by the evasiveness of ABM-LTF, which we have
not used yet.) This is because the decryption algorithm in Game 3 does not use
ABM-LTF to invert to get x. Instead, x is recovered by LTF from y1 and then
e2 can be uniquely recovered from x and y2. By tag indistinguishability of the
ABM-LTF,

|Pr[S3]− Pr[S2]| ≤ AdvindABM-LTF,B2
(λ)

for some suitable adversary B2.

29

Recall that in Game 3, we use LTF to invert y1 to get xt1 = [et1|xt] and
use y2 and x to recover e2 and, thus x2. In Game 4, we directly use ABM.ik
to invert y2 and get x2. By our correctness of LTF and ABM-LTF, this gives
the same result unless µ in the decryption query is from one of the challenge
ciphertexts, or the queries are made with lossy or invalid tags. The first case
is already excluded in Game 3. The latter case would not happen under the
evasiveness of ABM-LTF. So we have

|Pr[S4]− Pr[S3]| ≤ AdvevaABM-LTF,B3
(λ)

for some suitable adversary B3.
In Game 5, we generate a lossy evaluation key for LTF. We have

|Pr[S5]− Pr[S4]| ≤ AdvindLTF,B4
(λ)

for some suitable adversary B4.
In Game 6, we produce the ρ component in each challenge ciphertext by

randomly sampling a string r
$←− {0, 1}τ and setting ρ = r⊕m. As in Game 5,

the y2 components are computed from ABM-LTF with lossy tags on x2 ∈ D for
all challenge ciphertexts. Let |E2| and |X| be the number of possible values of
e2 and x respectively 9. Recall xt1 = [et1|xt] and xt2 = [et2|xt]. By the parameter
selection and Lemma 2, we have

H̃∞(x1,x2|y1,y2, µ) = H̃∞(x, e1, e2|y1,y2, µ)

≥ H∞(x, e1, e2)− (log |D| − l)− (log |D| − l′)− 2λ

≥ log |D|+ log |E2| − (log |D| − l)− (log |X|+ log |E2| − l′)− 2λ

= l + l′ − log |X| − 2λ

Consequently, by the hypothesis that τ ≤ (l − 2λ)− 2 log(1/ε) and Lemma 3,

∆ ((y1,y2, µ,UHk,UHk(x)), (y1,y2, µ,UHk,Uτ)) ≤ ε = negl(λ)

where Uτ stands for the uniform distribution over {0, 1}τ . So we get

|Pr[S6]− Pr[S5]| ≤ negl(λ)

In Game 6, as all challenge messages are masked by an one-time pad, A gets
no information about them. The original message vector m0 and the condition-
ally resampled message vector m1 come from the same distribution, thus

Pr[S6] = 1/2

Summing up, we obtain that Advind-so-ccaΠ,A (λ)

≤ AdvcollCH,B1
(λ) + AdvindABM-LTF,B2

(λ) + AdvevaABM-LTF,B3
(λ) + AdvindLTF,B4

(λ) + negl(λ)

which completes the proof. ut
9 Recall that x, e1, e2 are chosen uniformly at random from certain intervals.

30

5.4 Tightly Secure IND-CCA2 PKE

The above PKE scheme is also a tightly secure PKE scheme with respect to the
multi-ciphertext IND-CCA2 definition adopted by Gay et al. [24] (Definition 6).
One can easily modify the IND-SO-CCA2 security proofs into a tight security
proof with respect to the IND-CCA2 definition, where the security loss is in-
dependent of the number of decryption queries and the number of encryption
queries.

Particularly, such a reduction is able to answer all the decryption queries and
construct all challenge ciphertexts with lossy tags simultaneously, making the
challenge ciphertexts information-theoretically unrecoverable. This IND-CCA2
secure PKE scheme we just outlined is thus the first tightly secure PKE scheme in
the multi-ciphertext IND-CCA2 security model based on the LWE assumptions
(or more generally without using quantumly broken assumptions).

Definition 6 (Multi-ciphertext IND-CCA2 security). A PKE scheme Π =
(KeyGen,Encrypt, dec) is IND-CCA2 secure in the multi-ciphertext setting if for
every PPT adversary A, we have A’s advantage

Advind-cc2aΠ,A (λ) =
∣∣∣Pr
[
Expind-cca2Π,A (λ) = 1

]
− 1/2

∣∣∣
is negligible in λ where the experiment Expind-cca2Π,A (λ) is defined in Fig. 2.

Experiment Expind-cca2Π,A (λ)

1. L ← ∅
2. (pk, sk)← KeyGen((1λ)

3. b
$←− {0, 1}

4. b′ ← AOenc(·,·),Odec(·)(pk)
5. return 1 if b′ = b, 0 otherwise

Oenc(m0,m1)

1. If |m0| 6= |m1| return ⊥
2. r

$←− RΠ
3. ct← Encrypt(pk,mb; r)
4. L ← L ∪ ct

Odec(ct)

1. If ct ∈ L,
return ⊥

2. return
Decrypt(sk, ct)

Fig. 2: Security experiment of IND-CCA2 security

6 Conclusion

In this paper, we have proposed the first All-But-Many Lossy Trapdoor Function
based on lattice assumptions. ABM-LTFs are a very powerful primitive with
potentially many applications in the construction of multi-challenge or multi-
user cryptosystems. Our result answers the two open questions of constructing,
from lattices, ABM-TF (originally posed by Alperin-Sheriff and Peikert [5]) and
ABM-LTF (posed by Hofheinz [29]).

In addition, we have constructed an IND-SO-CCA2-secure PKE scheme from
lattices by taking our ABM-LTF along the path of [27,29]. Our PKE scheme

31

enjoys a tight security reduction, in the sense that the reduction is independent of
all adversarial queries, including decryption, opening, and challenge ciphertexts.
This gives the first tightly IND-CCA2 secure PKE scheme from LWE, and an
alternative solution, lattice-based, to the problem of constructing tightly secure
CCA PKE without bilinear or multilinear parings [24].

Acknowledgement

We thank Benôıt Libert and Damien Stehlé and the anonymous reviewers for
useful comments.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
EUROCRYPT 2010, Springer (2010)

2. Ajtai, M.: Generating hard instances of lattice problems (extended abstract).
STOC 1996, ACM (1996)

3. Akavia, A., Bogdanov, A., Guo, S., Kamath, A., Rosen, A.: Candidate weak pseu-
dorandom functions in AC0◦MOD2. ITCS 2014, ACM (2014)

4. Alperin-Sheriff, J.: Short signatures with short public keys from homomorphic
trapdoor functions. PKC 2015, Springer (2015)

5. Alperin-Sheriff, J., Peikert, C.: Circular and kdm security for identity-based en-
cryption. PKC 2012, Springer (2012)

6. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and
circular-secure encryption based on hard learning problems. CRYPTO 2009,

7. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. EURO-
CRYPT 2012, Springer (2012)

8. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for en-
cryption and commitment secure under selective opening. In: EUROCRYPT 2009.

9. Bellare, M., Kiltz, E., Peikert, C., Waters, B.: Identity-based (lossy) trapdoor func-
tions and applications. Cryptology ePrint Archive, Report 2011/479 (2011)

10. Bellare, M., Kiltz, E., Peikert, C., Waters, B.: Identity-based (lossy) trapdoor func-
tions and applications. EUROCRYPT 2012, Springer (2012)

11. Böhl, F., Hofheinz, D., Kraschewski, D.: On definitions of selective opening security.
PKC 2012, Springer (2012)

12. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikun-
tanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic
circuit abe and compact garbled circuits. EUROCRYPT 2014, Springer (2014)

13. Boyen, X.: Lattice mixing and vanishing trapdoors: A framework for fully secure
short signatures and more. PKC 2010, Springer (2010)

14. Boyen, X., Li, Q.: Towards tightly secure lattice short signature and Id-based
encryption. ASIACRYPT 2016, Springer (2016)

15. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. FOCS 2011, IEEE (2011)

16. Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. ITCS
2014, ACM (2014)

17. Brent, R.P., McKay, B.D.: Determinants and ranks of random matrices over zm.
Discrete Mathematics 66(1), 35 – 49 (1987)

32

18. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. Journal of Cryptology 25(4), 601–639 (2012)

19. Damg̊ard, I., Jurik, M.: A generalisation, a simpli. cation and some applications of
paillier’s probabilistic public-key system. PKC 2001, Springer (2001)

20. Dodis, Y., Kiltz, E., Pietrzak, K., Wichs, D.: Message authentication, revisited.
EUROCRYPT 2012, Springer (2012)

21. Döttling, N., Müller-Quade, J.: Lossy codes and a new variant of the learning-
with-errors problem. EUROCRYPT 2013, Springer (2013)

22. Fehr, S., Hofheinz, D., Kiltz, E., Wee, H.: Encryption schemes secure against
chosen-ciphertext selective opening attacks. EUROCRYPT 2010, Springer (2010)

23. Fujisaki, E.: All-but-many encryption. ASIACRYPT 2014, Springer (2014)
24. Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly cca-secure encryption without

pairings. EUROCRYPT 2016, Springer (2016)
25. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new

cryptographic constructions. STOC 2008, ACM (2008)
26. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with er-

rors: Conceptually-simpler, asymptotically-faster, attribute-based. CRYPTO 2013,
27. Hemenway, B., Libert, B., Ostrovsky, R., Vergnaud, D.: Lossy encryption: Con-

structions from general assumptions and efficient selective opening chosen cipher-
text security. ASIACRYPT 2011, Springer (2011)

28. Hiromasa, R., Abe, M., Okamoto, T.: Packing messages and optimizing bootstrap-
ping in GSW-FHE. PKC 2015, Springer (2015)

29. Hofheinz, D.: All-but-many lossy trapdoor functions. EUROCRYPT 2012, Springer
(2012)

30. Hofheinz, D.: Circular chosen-ciphertext security with compact ciphertexts. In:
EUROCRYPT 2013, Springer (2013)

31. Hofheinz, D., Rupp, A.: Standard versus selective opening security: separation and
equivalence results. TCC 2014, Springer (2014)

32. Huang, Z., Liu, S., Qin, B.: Sender-equivocable encryption schemes secure against
chosen-ciphertext attacks revisited. PKC 2013, Springer (2013)

33. Lyubashevsky, V., Masny, D.: Man-in-the-middle secure authentication schemes
from LPN and weak PRFs. CRYPTO 2013, Springer (2013)

34. Libert, B., Sakzad, A., Stehl, D., Steinfeld, R.: All-But-Many Lossy Trapdoor
Functions and Selective Opening Chosen-Ciphertext Security from LWE. CRYPTO
2017, Springer (2017)

35. Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller.
EUROCRYPT 2012, Springer (2012)

36. Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters.
CRYPTO 2013, Springer (2013)

37. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. EUROCRYPT 1999, Springer (1999)

38. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and com-
posable oblivious transfer. CRYPTO 2008, Springer (2008)

39. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. SIAM
Journal on Computing 40(6), 1803–1844 (2011)

40. Qin, B., Liu, S.: Leakage-resilient chosen-ciphertext secure public-key encryption
from hash proof system and one-time lossy filter. ASIACRYPT 2013,

41. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. STOC 2005, ACM (2005)

42. Zhang, R.: Tweaking tbe/ibe to pke transforms with chameleon hash functions.
ACNS 2007, Springer (2007)

	All-But-Many Lossy Trapdoor Functions from Lattices and Applications
	Introduction
	Our Contribution
	Other Related Works

	Preliminaries
	Randomness Extractor
	Discrete Gaussians
	Gadget Matrices
	Homomorphic Evaluation Algorithms
	Computational Assumptions

	Definitions
	Weak Pseudorandom Functions
	Chameleon Hash Functions
	Lossy Trapdoor Functions
	All-But-Many Lossy Trapdoor Functions

	All-But-Many Lossy Trapdoor Function from LWE
	Basic LTF from BKPW12
	Our Construction of ABM-LTF
	Correctness
	Parameter Selections
	Security Proofs

	IND-SO-CCA2 Secure PKE from Lattices
	Definition of IND-SO-CCA2 Security
	Construction of IND-SO-CCA2 PKE
	Security Proof
	Tightly Secure IND-CCA2 PKE

	Conclusion

