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Abstract. In this work, we introduce a novel technique for secure com-
putation over large inputs. Specifically, we provide a new oblivious trans-
fer (OT) protocol with a laconic receiver. Laconic OT allows a receiver
to commit to a large input D (of length M) via a short message. Subse-
quently, a single short message by a sender allows the receiver to learn
mD[L], where the messages m0,m1 and the location L ∈ [M ] are dynam-
ically chosen by the sender. All prior constructions of OT required the
receiver’s outgoing message to grow with D.
Our key contribution is an instantiation of this primitive based on the
Decisional Diffie-Hellman (DDH) assumption in the common reference
string (CRS) model. The technical core of this construction is a novel
use of somewhere statistically binding (SSB) hashing in conjunction with
hash proof systems. Next, we show applications of laconic OT to non-
interactive secure computation on large inputs and multi-hop homomor-
phic encryption for RAM programs.

1 Introduction

Big data poses serious challenges for the current cryptographic technology. In
particular, cryptographic protocols for secure computation are typically based
on Boolean circuits, where both the computational complexity and communi-
cation complexity scale with the size of the input dataset, which makes it gen-
erally unsuitable for even moderate dataset sizes. Over the past few decades,
substantial effort has been devoted towards realizing cryptographic primitives
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that overcome these challenges. This includes works on fully-homomorphic en-
cryption (FHE) [Gen09, BV11b, BV11a, GSW13] and on the RAM setting of
oblivious RAM [Gol87, Ost90] and secure RAM computation [OS97, GKK+12,
LO13, GHL+14, GGMP16]. Protocols based on FHE generally have a favorable
communication complexity and are basically non-interactive, yet incur a pro-
hibitively large computational overhead (dependent on the dataset size). On the
other hand, protocols for the RAM model generally have a favorable computa-
tional overhead, but lack in terms of communication efficiency (that grows with
the program running time), especially in the multi-party setting. Can we achieve
the best of both worlds? In this work we make positive progress on this question.
Specifically, we introduce a new tool called laconic oblivious transfer that helps
to strike a balance between the two seemingly opposing goals.

Oblivious transfer (or OT for short) is a fundamental and powerful primitive
in cryptography [Kil88, IPS08]. Since its first introduction by Rabin [Rab81],
OT has been a foundational building block for realizing secure computation pro-
tocols [Yao82, GMW87, IPS08]. However, typical secure computation protocols
involve executions of multiple instances of an oblivious transfer protocol. In fact,
the number of needed oblivious transfers grows with the input size of one of the
parties, which is the receiver of the oblivious transfer.5 In this work, we ob-
serve that a two-message OT protocol, with a short message from the receiver,
can be a key tool towards the goal of obtaining simultaneous improvements in
computational and communication cost for secure computation.

1.1 Laconic OT

In this paper, we introduce the notion of laconic oblivious transfer (or laconic
OT for short). Laconic OT allows an OT receiver to commit to a large input

D ∈ {0, 1}M via a short message. Subsequently, the sender responds with a
single short message to the receiver depending on dynamically chosen two mes-
sages m0,m1 and a location L ∈ [M ]. The sender’s response message allows the
receiver to recover mD[L] (while m1−D[L] remains computationally hidden). Fur-
thermore, without any additional communication with the receiver, the sender
could repeat this process for multiple choices of L. The construction we give is
secure against semi-honest adversaries, but it can be upgraded to the malicious
setting in a similar way as we will discuss in Section 1.2 for the first application.

Our construction of laconic OT is obtained by first realizing a “mildly com-
pressing” laconic OT protocol for which the receiver’s message is factor-2 com-
pressing, i.e., half the size of its input. We base this construction on the De-
cisional Diffie-Hellman (DDH) assumption. We note that, subsequent to our
work, the factor-2 compression construction has been simplified by Döttling and
Garg [DG17] (another alternative simplification can be obtained using [AIKW13]).

5 We remark that related prior works on OT extension [Bea96,IKNP03,KK13,ALSZ13]
makes the number of public key operations performed during protocol executions
independent of the receiver’s input size. However, the communication complexity of
receivers in these protocols still grows with the input size of the receiver.
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Next we show that such a “mildly compressing” laconic OT can be bootstrapped,
via the usage of a Merkle Hash Tree and Yao’s Garbled Circuits [Yao82], to ob-
tain a “fully compressing” laconic OT, where the size of the receiver’s message is
independent of its input size. The laconic OT scheme with a Merkle Tree struc-
ture allows for good properties like local verification and local updates, which
makes it a powerful tool in secure computation with large inputs.

We will show new applications of laconic OT to non-interactive secure com-
putation and homomorphic encryption for RAM programs, as briefly described
below in Sections 1.2 and 1.3.

1.2 Warm-Up Application: Non-Interactive Secure Computation on
Large Inputs

Can a receiver publish a (small) encoding of her large confidential database D so
that any sender, who holds a secret input x, can reveal the output f(x,D) (where
f is a circuit) to the receiver by sending her a single message? For security, we
want the receiver’s encoding to hide D and the sender’s message to hide x. Using
laconic OT, we present the first solution to this problem. In our construction,
the receiver’s published encoding is independent of the size of her database, but
we do not restrict the size of the sender’s message.6

RAM Setting. Consider the scenario where f can be computed using a RAM
program P of running time t. We use the notation PD(x) to denote the execution
of the program P on input x with random access to the database D. We provide
a construction where as before the size of the receiver’s published message is
independent of the size of the database D. Moreover, the size of the sender’s
message (and computational cost of the sender and the receiver) grows only
with t and the receiver learns nothing more than the output PD(x) and the
locations in D touched during the computation. Note that in all prior works on
general secure RAM computation [OS97, GKK+12, LO13, WHC+14, GHL+14,
GLOS15,GLO15] the size of the receiver’s message grew at least with its input
size.7

Against Malicious Adversaries. The results above are obtained in the semi-
honest setting. We can upgrade to security against a malicious sender by use of (i)

6 We remark that solutions for this problem based on fully-homomorphic encryption
(FHE) [Gen09,LNO13], unlike our result, reduce the communication cost of both the
sender’s and the receiver’s messages to be independent of the size of D, but require
additional rounds of interaction.

7 The communication cost of the receiver’s message can be reduced to depend only
on the running time of the program by allowing round complexity to grow with the
running time of the program (using Merkle Hashing). Analogous to the circuit case,
we remark that FHE-based solutions can make the communication of both the sender
and the receiver small, but at the cost of extra rounds. Moreover, in the setting of
RAM programs FHE-based solutions additionally incur an increased computational
cost for the receiver. In particular, the receiver’s computational cost grows with the
size of its database.
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non-interactive zero knowledge proofs (NIZKs) [FLS90] at the cost of addition-
ally assuming doubly enhanced trapdoor permutations or bilinear maps [CHK04,
GOS06], (ii) the techniques of Ishai et al. [IKO+11] while obtaining slightly
weaker security,8 or (iii) interactive zero-knowledge proofs but at the cost of
additional interaction.

Upgrading to security against a malicious receiver is tricky. This is because
the receiver’s public encoding is short and hence, it is not possible to recover the
receiver’s entire database just given the encoding. Standard simulation-based
security can be obtained by using (i) universal arguments as done by [CV12,
COV15] at the cost of additional interaction, or (ii) using SNARKs at the cost
of making extractability assumptions [BCCT12,BSCG+13].9

Other Related Work. Prior works consider secure computation which hides
the input size of one [MRK03, IP07, ADT11, LNO13] or both parties [LNO13].
Our notion only requires the receiver’s communication cost to be independent
of the its input size, and is therefore weaker. However, these results are largely
restricted to special functionalities, such as zero-knowledge sets and computing
certain branching programs (which imply input-size hiding private set intersec-
tion). The general result of [LNO13] uses FHE and as mentioned earlier needs
more rounds of interaction.10

1.3 Main Application: Muti-Hop Homomorphic Encryption for
RAM Programs

Consider a scenario where S (a server), holding an input x, publishes an encryp-
tion ct0 of her private input x under her public key. Now this ciphertext is passed
on to a client Q1 that homomorphically computes a (possibly private) program
P1 accessing (private) memory D1 on the value encrypted in ct0, obtaining an-
other ciphertext ct1. More generally, the computation could be performed by
multiple clients. In other words, clients Q2, Q3, · · · could sequentially compute
private programs P2, P3, · · · accessing their own private databases D2, D3, · · · .
Finally, we want S to be able to use her secret key to decrypt the final ciphertext
and recover the output of the computation. For security, we require simulation
based security for a client Qi against a collusion of the server and any subset of
the clients, and IND-CPA security for the server’s ciphertext.

Though we described the simple case above, we are interested in the general
case when computation is performed in different sequences of the clients. Ex-
amples of two such computation paths are shown in Figure 1. Furthermore, we

8 The receiver is required to keep the output of the computation private.
9 We finally note that relaxing to the weaker notion of indistinguishability-based secu-

rity we can expect to obtain the best of both worlds, i.e. a non-interactive solution
while making only a black-box use of the adversary (a.k.a. avoiding the use of ex-
tractability assumptions). We leave this open for future work.

10 We remark that in an orthogonal work of Hubacek and Wichs [HW15] obtain con-
structions where the communication cost is independent of the length of the output
of the computation using indistinguishability obfuscation [GGH+13b].
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Fig. 1: Two example paths of computation on server S’s ciphertexts.

consider the setting of persistent databases, where each client is able to execute
dynamically chosen programs on the encrypted ciphertexts while using the same
database that gets updated as these programs are executed.

FHE-Based Solution. Gentry’s [Gen09] fully homomorphic encryption (FHE)
scheme offers a solution to the above problem when circuit representations of
the desired programs P1, P2, . . . are considered. Specifically, S could encrypt
her input x using an FHE scheme. Now, the clients can publicly compute ar-
bitrary programs on the encrypted value using a public evaluation procedure.
This procedure can be adapted to preserve the privacy of the computed cir-
cuit [OPP14,DS16,BPMW16] as well. However, this construction only works for
circuits. Realizing the scheme for RAM programs involves first converting the
RAM program into a circuit of size at least linear in the size of the database.
This linear effort can be exponential in the running time of the program for
several applications of interest such as binary search.

Our Relaxation. In obtaining homomorphic encryption for RAM programs,
we start by relaxing the compactness requirement in FHE.11 Compactness in
FHE requires that the size of the ciphertexts does not grow with computation.
In particular, in our scheme, we allow the evaluated ciphertexts to be bigger than
the original ciphertext. Gentry, Halevi and Vaikuntanathan [GHV10] considered
an analogous setting for the case of circuits. As in Gentry et al. [GHV10], in
our setting computation itself will happen at the time of decryption. Therefore,
we additionally require that clients Q1, Q2, · · · first ship pre-processed versions

11 One method for realizing homomorphic encryption for RAM programs [GKP+13,
GHRW14,CHJV15,BGL+15,KLW15] would be to use obfuscation [GGH+13b] based
on multilinear maps [GGH13a]. However, in this paper we focus on basing homo-
morphic RAM computation on DDH and defer the work on obfuscation to future
work.
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of their databases to S for the decryption, and security will additionally require
that S does not learn the access pattern of the programs on client databases.
This brings us to the following question:

Can we realize multi-hop encryption schemes for RAM programs where the
ciphertext grows linearly only in the running time of the computation

performed on it?

We show that laconic OT can be used to realize such a multi-hop homomor-
phic encryption scheme for RAM programs. Our result bridges the gap between
growth in ciphertext size and computational complexity of homomorphic en-
cryption for RAM programs.

Our work also leaves open the problem of realizing (fully or somewhat) homo-
morphic encryption for RAM programs with (somewhat) compact ciphertexts
and for which computational cost grows with the running time of the computa-
tion, based on traditional computational assumptions. Our solution for multi-hop
RAM homomorphic encryption is for the semi-honest (or, semi-malicious) set-
ting only. We leave open the problem of obtaining a solution in the malicious
setting.12

1.4 Roadmap

We now lay out a roadmap for the remainder of the paper. In Section 2 we give a
technical overview of this work. We introduce the notion of laconic OT formally
in Section 3, and give a construction with factor-2 compression in Section 4,
which can be bootstrapped to a fully compressing updatable laconic OT. We
present our bootstrapping step and two applications of laconic OT in the full
version of this paper [CDG+17].

2 Technical Overview

2.1 Laconic OT

We will now provide an overview of laconic OT and our constructions of this new
primitive. Laconic OT consists of two major components: a hash function and
an encryption scheme. We will call the hash function Hash and the encryption
scheme (Send,Receive). In a nutshell, laconic OT allows a receiver R to compute a

succinct digest digest of a large database D and a private state D̂ using the hash
function Hash. After digest is made public, anyone can non-interactively send
OT messages to R w.r.t. a location L of the database such that the receiver’s
choice bit is D[L]. Here, D[L] is the database-entry at location L. In more detail,
given digest, a database location L, and two messages m0 and m1, the algorithm
Send computes a ciphertext e such that R, who owns D̂, can use the decryption
algorithm Receive to decrypt e to obtain the message mD[L].

12 Using NIZKs alone does not solve the problem, because locations accessed during
computation are dynamically decided.
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For security, we require sender privacy against semi-honest receiver. In partic-
ular, given an honest receiver’s view, which includes the database D, the message
m1−D[L] is computationally hidden. We formalize this using a simulation based
definition. On the other hand, we do not require receiver privacy as opposed to
standard oblivious transfer, namely, no security guarantee is provided against
a cheating (semi-honest) sender. This is mostly for ease of exposition. Never-
theless, adding receiver privacy to laconic OT can be done in a straightforward
manner via the usage of garbled circuits and two-message OT (see Section 3.1
for a detailed discussion).

For efficiency, we have the following requirement: First, the size of digest
only depends on the security parameter and is independent of the size of the
database D. Moreover, after digest and D̂ are computed by Hash, the workload
of both the sender and receiver (that is, the runtime of both Send and Receive)
becomes essentially independent of the size of the database (i.e., depending at
most polynomially on log(|D|)).

Notice that our security definition and efficiency requirement immediately
imply that the Hash algorithm used to compute the succinct digest must be
collision resistant. Thus, it is clear that the hash function must be keyed and in
our case it is keyed by a common reference string.

Construction at a high level. We first construct a laconic OT scheme with
factor-2 compression, which compresses a 2λ-bit database to a λ-bit digest. Next,
to get laconic OT for databases of arbitrary size, we bootstrap this construction
using an interesting combination of Merkle hashing and garbled circuits. Below,
we give an overview of each of these steps.

2.1.1 Laconic OT with Factor-2 Compression

We start with a construction of a laconic OT scheme with factor-2 compression,
i.e., a scheme that hashes a 2λ-bit database to a λ-bit digest. This construction
is inspired by the notion of witness encryption [GGSW13]. We will first explain
the scheme based on witness encryption. Then, we show how this specific wit-
ness encryption scheme can be realized with the more standard notion of hash
proof systems (HPS) [CS02]. Our overall scheme will be based on the security
of Decisional Diffie-Hellman (DDH) assumption.

Construction Using Witness Encryption. Recall that a witness encryption
scheme is defined for an NP-language L (with corresponding witness relation
R). It consists of two algorithms Enc and Dec. The algorithm Enc takes as input
a problem instance x and a message m, and produces a ciphertext. A recipient
of the ciphertext can use Dec to decrypt the message if x ∈ L and the recipient
knows a witness w such that R(x,w) holds. There are two requirements for a
witness encryption scheme, correctness and security. Correctness requires that
if R(x,w) holds, then Dec(x,w,Enc(x,m)) = m. Security requires that if x /∈ L,
then Enc(x,m) computationally hides m.

We will now discuss how to construct a laconic OT with factor-2 compression
using a two-to-one hash function and witness encryption. Let H : K×{0, 1}2λ →

7



{0, 1}λ be a keyed hash function, where K is the key space. Consider the language
L = {(K,L, y, b) ∈ K×[2λ]×{0, 1}λ×{0, 1} | ∃D ∈ {0, 1}2λ such that H(K,D) =
y and D[L] = b}. Let (Enc,Dec) be a witness encryption scheme for the language
L.

The laconic OT scheme is as follows: The Hash algorithm computes y =
H(K,D) where K is the common reference string and D ∈ {0, 1}2λ is the
database. Then y is published as the digest of the database. The Send algo-
rithm takes as input K, y, a location L, and two messages (m0,m1) and pro-
ceeds as follows. It computes two ciphertexts e0 ← Enc((K,L, y, 0),m0) and
e1 ← Enc((K,L, y, 1),m1) and outputs e = (e0, e1). The Receive algorithm takes
as input K,L, y,D, and the ciphertext e = (e0, e1) and proceeds as follows. It
sets b = D[L], computes m← Dec((K,L, y, b), D, eb) and outputs m.

It is easy to check that the above scheme satisfies correctness. However,
we run into trouble when trying to prove sender privacy. Since H compresses
2λ bits to λ bits, most hash values have exponentially many pre-images. This
implies that for most values of (K,L, y), it holds that both (K,L, y, 0) ∈ L and
(K,L, y, 1) ∈ L, that is, most problem instances are yes-instances. However, to
reduce sender privacy of our scheme to the security of witness encryption, we
ideally want that if y = H(K,D), then (K,L, y,D[L]) ∈ L while (K,L, y, 1 −
D[L]) /∈ L. To overcome this problem, we will use a somewhere statistically
binding hash function that allows us to artificially introduce no-instances as
described below.

Somewhere Statistically Binding Hash to the Rescue. Somewhere sta-
tistically binding (SSB) hash functions [HW15, KLW15, OPWW15] support a
special key generation procedure such that the hash value information theoreti-
cally fixes certain bit(s) of the pre-image. In particular, the special key generation
procedure takes as input a location L and generates a key K(L). Then the hash
function keyed by K(L) will bind the L-th bit of the pre-image. That is, K(L)

and y = H(K(L), D) uniquely determines D[L]. The security requirement for
SSB hashing is the index-hiding property, i.e., keys K(L) and K(L′) should be
computationally indistinguishable for any L 6= L′.

We can now establish security of the above laconic OT scheme when in-
stantiated with SSB hash functions. To prove security, we will first replace the
key K by a key K(L) that statistically binds the L-th bit of the pre-image.
The index hiding property guarantees that this change goes unnoticed. Now
for every hash value y = H(K(L), D), it holds that (K,L, y,D[L]) ∈ L while
(K,L, y, 1 − D[L]) /∈ L. We can now rely on the security of witness encryp-
tion to argue that Enc((K(L), L, y, 1 − D[L]),m1−D[L]) computationally hides
the message m1−D[L].

Working with DDH. The above described scheme relies on a witness encryp-
tion scheme for the language L. We note that witness encryption for general
NP languages is only known under strong assumptions such as graded encod-
ings [GGSW13] or indistinguishability obfuscation [GGH+13b]. Nevertheless, the
aforementioned laconic OT scheme does not need full power of general witness
encryption. In particular, we will leverage the fact that hash proof systems [CS02]

8



can be used to construct statistical witness encryption schemes for specific lan-
guages [GGSW13]. Towards this end, we will carefully craft an SSB hash function
that is hash proof system friendly, that is, allows for a hash proof system (or
statistical witness encryption) for the language L required above. Our construc-
tion of the HPS-friendly SSB hash is based on the Decisional Diffie-Hellman
assumption and is inspired from a construction by Okamoto et al. [OPWW15].

We will briefly outline our HPS-friendly SSB hash below. We strongly en-
courage the reader to see Section 4.2 for the full construction or see [DG17] for
a simplified construction.

Let G be a (multiplicative) cyclic group of order p generated by a generator

g. A hashing key is of the form Ĥ = gH (the exponentiation is done component-
wisely), where the matrix H ∈ Z2×2λ

p is chosen uniformly at random. The hash

function of x ∈ Z2λ
p is computed as H(Ĥ,x) = Ĥx ∈ G2 (where (Ĥx)i =∏2λ

k=1 Ĥxk

i,k, hence Ĥx = gHx). The binding key Ĥ(i) is of the form Ĥ(i) = gA+T,

where A ∈ Z2×2λ
p is a random rank 1 matrix, and T ∈ Z2×2λ

p is a matrix with
zero entries everywhere, except that T2,i = 1.

Now we describe a witness encryption scheme (Enc,Dec) for the language

L = {(Ĥ, i, ŷ, b) | ∃x ∈ Z2λ
p s.t. Ĥx = ŷ and xi = b}. Enc((Ĥ, i, ŷ, b),m) first

sets

Ĥ′ =

(
Ĥ

ge
>
i

)
∈ G3×2λ,ŷ′ =

(
ŷ
gb

)
∈ G3,

where ei ∈ Z2λ
p is the i-th unit vector. It then picks a random r ∈ Z3

p and

computes a ciphertext c =
((

(Ĥ′)>
)r
,
(
(ŷ′)>

)r ⊕m). To decrypt a ciphertext

c = (ĥ, z) given a witness x ∈ Z2λ
p , we compute m = z ⊕ ĥx. It is easy to check

correctness. For the security proof, see Section 4.3.

2.1.2 Bootstrapping Laconic OT

We will now provide a bootstrapping technique that constructs a laconic OT
scheme with arbitrary compression factor from one with factor-2 compression.
Let `OTconst denote a laconic OT scheme with factor-2 compression.

Bootstrapping the Hash Function via a Merkle Tree. A binary Merkle
tree is a natural way to construct hash functions with an arbitrary compression
factor from two-to-one hash functions, and this is exactly the route we pursue. A
binary Merkle tree is constructed as follows: The database is split into blocks of
λ bits, each of which forms the leaf of the tree. An interior node is computed as
the hash value of its two children via a two-to-one hash function. This structure
is defined recursively from the leaves to the root. When we reach the root node
(of λ bits), its value is defined to be the (succinct) hash value or digest of the
entire database. This procedure defines the hash function.

The next step is to define the laconic OT algorithms Send and Receive for the
above hash function. Our first observation is that given the digest, the sender
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can transfer specific messages corresponding to the values of the left and right
children of the root (via 2λ executions of `OTconst.Send). Hence, a naive approach
for the sender is to output `OTconst encryptions for the path of nodes from the
root to the leaf of interest. This approach runs into an immediate issue because
to compute `OTconst encryptions at any layer other than the root, the sender
needs to know the value at that internal node. However, in the scheme a sender
only knows the value of the root and nothing else.

Traversing the Merkle Tree via Garbled Circuits. Our main idea to make
the above naive idea work is via an interesting usage of garbled circuits. At a
high level, the sender will output a sequence of garbled circuits (one per layer
of the tree) to transfer messages corresponding to the path from the root to the
leaf containing the L-th bit, so that the receiver can traverse the Merkle tree
from the root to the leaf as illustrated in Figure 2.

digest

e0 = `OTconst.Send(crs, digest,Keys1)

node1

node2

C̃1 = GCircuit(`OTconst.Send(crs, ·,Keys2),Keys1)

Above GCircuit is a circuit garbling procedure, which garbles the circuit
`OTconst.Send(crs, ·,Keys2) using input keys Keys1 (see the full version of this pa-
per [CDG+17] for the definition of garbled circuits).

Fig. 2: The Bootstrapping Step

In more detail, the construction works as follows: The Send algorithm outputs
`OTconst encryptions using the root digest and a collection of garbled circuits,
one per layer of the Merkle tree. The i-th circuit has a bit b hardwired in it,
which specifies whether the path should go to the left or right child at the i-th
layer. It takes as input a pair of sibling nodes (node0, node1) along the path at
layer i and outputs `OTconst encryptions corresponding to nodes on the path at
layer i + 1 w.r.t. nodeb as the hash value. Conceptually, the circuit computes
`OTconst encryptions for the next layer.
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The `OTconst encryptions at the root encrypt the input keys of the first gar-
bled circuit. In the garbled circuit at layer i, the messages being encrypted/sent
correspond to the input keys of the garbled circuit at layer i + 1. The last cir-
cuit takes two sibling leaves as input which contains D[L], and outputs `OTconst
encryptions of m0 and m1 corresponding to location L (among the 2λ locations).

Given a laconic OT ciphertext, which consists of `OTconst ciphertexts w.r.t.
the root digest and a sequence of garbled circuits, the receiver can traverse the
Merkle tree as follows. First he runs `OTconst.Receive for the `OTconst ciphertexts
using as witness the children of the root, obtaining the input labels corresponding
to these to be fed into the first garbled circuit. Next, he uses the input labels to
evaluate the first garbled circuit, obtaining `OTconst ciphertexts for the second
layer. He then runs `OTconst.Receive again for these ciphertexts using as witness
the children of the second node on the path. This procedure continues till the
last layer.

Security of the construction can be established using the sender security of
`OTconst.Receive and simulation based security of the circuit garbling scheme.

Extension. Finally, for our RAM applications we need a slightly stronger prim-
itive which we call updatable laconic OT that additionally allows for modifi-
cations/writes to the database while ensuring that the digest is updated in a
consistent manner. The construction sketched in this paragraph can be modified
to support this stronger notion. For a detailed description of this notion refer to
Section 3.2.

2.2 Non-interactive Secure Computation on Large Inputs

The Circuit Setting. This is the most straightforward application of laconic
OT. We will provide a non-interactive secure computation protocol where the
receiver R, holding a large database D, publishes a short encoding of it such that
any sender S, with private input x, can send a single message to reveal C(x,D)
to R. Here, C is the circuit being evaluated.

Recall the garbled circuit based approach to non-interactive secure computa-
tion, where R can publish the first message of a two-message oblivious transfer
(OT) for his input D, and the sender responds with a garbled circuit for C[x, ·]
(with hardcoded input x) and sends the input labels corresponding to D via the
second OT message. The downside of this protocol is that R’s public message
grows with the size of D, which could be substantially large.

We resolve this issue via our new primitive laconic OT. In our protocol, R’s
first message is the digest digest of his large database D. Next, the sender gener-
ates the garbled circuit for C[x, ·] as before. It also transfers the labels for each
location of D via laconic OT Send messages. Hence, by efficiency requirements
of laconic OT, the length of R’s public message is independent of the size of
D. Moreover, sender privacy against a semi-honest receiver follows directly from
the sender privacy of laconic OT and security of garbled circuits. To achieve
receiver privacy, we can enhance the laconic OT with receiver privacy (discussed
in Section 3.1).
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The RAM Setting. This is the RAM version of the above application where
S holds a RAM program P and R holds a large database D. As before, we
want that (1) the length of R’s first message is independent of |D|, (2) R’s first
message can be published and used by multiple senders, (3) the database is per-
sistent for a sequence of programs for every sender, and (4) the computational
complexity of both S and R per program execution grows only with running time
of the corresponding program. For this application, we only achieve unprotected
memory access (UMA) security against a corrupt receiver, i.e., the memory ac-
cess pattern in the execution of PD(x) is leaked to the receiver. We achieve full
security against a corrupt sender.

For simplicity, consider a read-only program such that each CPU step outputs
the next location to be read based on the value read from last location. At a
high level, since we want the sender’s complexity to grow only with the running
time t of the program, we cannot create a garbled circuit that takes D as input.
Instead, we would go via the garbled RAM based approaches where we have a
sequence of t garbled circuits where each circuit executes one CPU step. A CPU
step circuit takes the current CPU state and the last bit read from the database
D as input and outputs an updated state and a new location to be read. The new
location would be read from the database and fed into the next CPU step. The
most non-trivial part in all garbled RAM constructions is being able to compute
the correct labels for the next circuit based on the value of D[L], where L is the
location being read. Since we are working with garbled circuits, it is crucial for
security that the receiver does not learn two labels for any input wire. We solve
this issue via laconic OT as follows.

For the simpler case of sender security, R publishes the short digest of D,
which is fed into the first garbled circuit and this digest is passed along the
sequence of garbled circuits. When a circuit wants to read a location L, it outputs
the laconic OT ciphertexts which encrypt the input keys for the next circuit
and use digest of D as the hash value.13 Security against a corrupt receiver
follows from the sender security of laconic OT and security of garbled circuits.
To achieve security against a corrupt sender, R does not publishes digest in the
clear. Instead, the labels for digest for the first circuit are transferred to R via
regular OT.

Note that the garbling time of the sender as well as execution time of the
receiver will grow only with the running time of the program. This follows from
the efficiency requirements of laconic OT.

Above, we did not describe how we deal with general programs that also
write to the database or memory. We achieve this via updatable laconic OT (for
definition see Section 3.2), This allows for transferring the labels for updated

13 We note that the above idea of using laconic OT also gives a conceptually very
simple solution for UMA secure garbled RAM scheme [LO13]. Moreover, there is a
general transformation [GHL+14] that converts any UMA secure garbled RAM into
one with full security via the usage of symmetric key encryption and oblivious RAM.
This would give a simplified construction of fully secure garbled RAM under DDH
assumption.
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digest (corresponding to the updated database) to the next circuit. For a formal
description of our scheme for general RAM programs, see the full version of this
paper [CDG+17].

2.3 Multi-Hop Homomorphic Encryption for RAM Programs

Our model and problem — a bit more formally. We consider a scenario
where a server S, holding an input x, publishes a public key pk and an encryption
ct of x under pk. Now this ciphertext is passed on to a client Q that will compute
a (possibly private) program P accessing memory D on the value encrypted in
ct, obtaining another ciphertext ct′. Finally, we want that the server can use
its secret key to recover PD(x) from the ciphertext ct′ and D̃, where D̃ is an
encrypted form of D that has been previously provided to S in a one-time setup
phase. More generally, the computation could be performed by multiple clients
Q1, . . . , Qn. In this case, each client is required to place a pre-processed version
of its database D̃i with the server during setup. The computation itself could
be performed in different sequences of the clients (for different extensions of
the model, see the full version of this paper [CDG+17]). Examples of two such
computation paths are shown in Figure 1.

For security, we want IND-CPA security for server’s input x. For honest
clients, we want program-privacy as well as data-privacy, i.e., the evaluation
does not leak anything beyond the output of the computation even when the
adversary corrupts the server and any subset of the clients. We note that data-
privacy is rather easy to achieve via encryption and ORAM. Hence we focus on
the challenges of achieving UMA security for honest clients, i.e., the adversary
is allowed to learn the database D as well as memory access pattern of P on D.

UMA secure multi-hop scheme. We first build on the ideas from non-
interactive secure computation for RAM programs. Every client first passes its
database to the server. Then in every round, the server sends an OT message for
input x. We assume for simplicity that every client has an up-to-date digest of
its own database. Next, the first client Q1 generates a garbled program for P1,
say ct1 and sends it to Q2. Here, the garbled program consists of t1 (t1 is the
running time of P1) garbled circuits accessing D1 via laconic OT as described
in the previous application. Now, Q2 appends its garbled program for P2 to the
end of ct1 and generates ct2 consisting of ct1 and new garbled program. Note
that P2 takes the output of P1 as input and hence, the output keys of the last
garbled circuit of P1 have to be compatible with the input keys of the first gar-
bled circuit of P2 and so on. If we continue this procedure, after the last client
Qn, we get a sequence of garbled circuits where the first t1 circuits access D1,
the next set accesses from D2 and so on. Finally, the server S can evaluate the
sequence of garbled circuits given D1, . . . , Dn. It is easy to see that correctness
holds. But we have no security for clients.

The issue is similar to the issue pointed out by [GHV10] for the case of multi-
hop garbled circuits. If the client Qi−1 colludes with the server, then they can
learn both input labels for the garbled program of Qi. To resolve this issue it
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is crucial that Qi re-randomizes the garbled circuits provided by Qi−1. For this
we rely on re-randomizable garbled circuits provided by [GHV10], where given
a garbled circuit anyone can re-garble it such that functionality of the original
circuit is preserved while the re-randomized garbled circuit is unrecognizable
even to the party who generated it. In our protocol we use re-randomizable
garbled circuits but we stumble upon the following issue.

Recall that in the RAM application above, a garbled circuit outputs the
laconic OT ciphertexts corresponding to the input keys of the next circuit. Hence,
the input keys of the (τ+1)-th circuit have to be hardwired inside the τ -th circuit.
Since all of these circuits will be re-randomized for security, for correctness we
require that we transform the hardwired keys in a manner consistent with the
future re-randomization. But for security, Qi−1 does not know the randomness
that will be used by Qi.

Our first idea to resolve this issue is as follows: The circuits generated by Qi−1
will take additional inputs si, . . . sn which are the randomness used by future
parties for their re-randomization procedure. Since we are in the non-interactive
setting, we cannot run an OT protocol between clients Qi−1 and later clients.
We resolve this issue by putting the first message of OT for sj in the public key
of client Qj and client Qi−1 will send the OT second messages along with cti−1.
We do not want the clients’ public keys to grow with the running time of the
programs, hence, we think of sj as PRF keys and each circuit re-randomization
will invoke the PRF on a unique input.

The above approach causes a subtle issue in the security proof. Suppose,
for simplicity, that client Qi is the only honest client. When arguing security,
we want to simulate all the garbled circuits in cti. To rely on the security of
re-randomization, we need to replace the output of the PRF with key si with
uniform random values but this key is fed as input to the circuits of the previous
clients. We note that this is not a circularity issue but makes arguing security
hard. We solve this issue as follows: Instead of feeding in PRF keys directly to
the garbled circuits, we feed in corresponding outputs of the PRF. We generate
the PRF output via a bunch of PRF circuits that take the PRF keys as input
(see Figure 3). Now during simulation, we will first simulate these PRF circuits,
followed by the simulation of the main circuits. We describe the scheme formally
in our full version [CDG+17].

3 Laconic Oblivious Transfer

In this section, we will introduce a primitive we call Laconic OT (or, `OT for
short). We will start by describing laconic OT and then provide an extension of
it to the notion of updatable laconic OT.

3.1 Laconic OT

Definition 1 (Laconic OT). A laconic OT (`OT ) scheme syntactically con-
sists of four algorithms crsGen, Hash, Send and Receive.
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CPRF[i + 1] CPRF[n]

si+1 sn

state

rData

digest

Cstep [P, nextKeys]

Fig. 3: One step circuit for Pi along with the attached PRF circuits generated
by Qi.

– crs← crsGen(1λ). It takes as input the security parameter 1λ and outputs a
common reference string crs.

– (digest, D̂) ← Hash(crs, D). It takes as input a common reference string crs
and a database D ∈ {0, 1}∗ and outputs a digest digest of the database and

a state D̂.

– e← Send(crs, digest, L,m0,m1). It takes as input a common reference string
crs, a digest digest, a database location L ∈ N and two messages m0 and m1

of length λ, and outputs a ciphertext e.

– m ← ReceiveD̂(crs, e, L). This is a RAM algorithm with random read access

to D̂. It takes as input a common reference string crs, a ciphertext e, and a
database location L ∈ N. It outputs a message m.

We require the following properties of an `OT scheme (crsGen,Hash,Send,Receive).

– Correctness: We require that it holds for any database D of size at most
M = poly(λ) for any polynomial function poly(·), any memory location L ∈
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[M ], and any pair of messages (m0,m1) ∈ {0, 1}λ × {0, 1}λ that

Pr

m = mD[L]

crs ← crsGen(1λ)

(digest, D̂)← Hash(crs, D)
e ← Send(crs, digest, L,m0,m1)

m ← ReceiveD̂(crs, e, L)

 = 1,

where the probability is taken over the random choices made by crsGen and
Send.

– Sender Privacy Against Semi-Honest Receivers: There exists a PPT
simulator `OTSim such that the following holds. For any database D of size at
most M = poly(λ) for any polynomial function poly(·), any memory location
L ∈ [M ], and any pair of messages (m0,m1) ∈ {0, 1}λ × {0, 1}λ, let crs ←
crsGen(1λ) and digest← Hash(crs, D). Then it holds that

(crs,Send(crs, digest, L,m0,m1))
c
≈
(
crs, `OTSim(D,L,mD[L])

)
.

– Efficiency Requirement: The length of digest is a fixed polynomial in λ
independent of the size of the database; we will assume for simplicity that
|digest| = λ. Moreover, the algorithm Hash runs in time |D| ·poly(log |D|, λ),
Send and Receive run in time poly(log |D|, λ).

Receiver Privacy. In the above definition, we do not require receiver privacy as
opposed to standard oblivious transfer, namely, no security guarantee is provided
against a cheating (semi-honest) sender. This is mostly for ease of exposition. We
would like to point out that adding receiver privacy (i.e., standard simulation
based security against a semi-honest sender) to laconic OT can be done in a
straightforward way. Instead of sending digest directly from the receiver to the
sender and sending e back to the receiver, the two parties compute Send together
via a two-round secure 2PC protocol, where the input of the receiver is digest and
the input of the sender is (L,m0,m1), and only the receiver obtains the output
e. This can be done using standard two-message OT and garbled circuits.

Multiple executions of Send that share the same digest. Notice that since
the common reference string is public (i.e., not chosen by the simulator), the
sender can involve Send function multiple times while still ensuring that security
can be argued from the above definition (for the case of single execution) via a
standard hybrid argument.

It will be convenient to use the following shorthand notations (generalizing
the above notions) to run laconic OT for every single element in a database. Let
Keys = ((Key1,0,Key1,1), . . . , (KeyM,0,KeyM,1)) be a list of M = |D| key-pairs,
where each key is of length λ. Then we will define

Send(crs, digest,Keys)

=
(
Send(crs, digest, 1,Key1,0,Key1,1), . . . ,Send(crs, digest,M,KeyM,0,KeyM,1)

)
.

Likewise, for a vector e = (e1, . . . , eM ) of ciphertexts define

ReceiveD̂(crs, e) =
(
ReceiveD̂(crs, e1, 1), . . . ,ReceiveD̂(crs, eM ,M)

)
.
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Similarly, let Labels = KeysD = (Key1,D[1], . . . ,KeyM,D[M ]), and define

`OTSim(crs, D, Labels)

=
(
`OTSim(crs, D, 1,Key1,D[1]), . . . , `OTSim(crs, D,M,KeyM,D[M ]

)
.

By the sender security for multiple executions, we have that

(crs,Send(crs, digest,Keys))
c
≈ (crs, `OTSim(crs, D, Labels)) .

3.2 Updatable Laconic OT

For our applications, we will need a version of laconic OT for which the receiver’s
short commitment digest to his database can be updated quickly (in time much
smaller than the size of the database) when a bit of the database changes. We
call this primitive supporting this functionality updatable laconic OT and define
more formally below. At a high level, updatable laconic OT comes with an
additional pair of algorithms SendWrite and ReceiveWrite which transfer the keys
for an updated digest digest∗ to the receiver. For convenience, we will define
ReceiveWrite such that it also performs the write in D̂.

Definition 2 (Updatable Laconic OT). An updatable laconic OT (updat-
able `OT ) scheme consists of algorithms crsGen,Hash,Send,Receive as per Def-
inition 1 and additionally two algorithms SendWrite and ReceiveWrite with the
following syntax.

– ew ← SendWrite
(
crs, digest, L, b, {mj,0,mj,1}|digest|j=1

)
. It takes as input the

common reference string crs, a digest digest, a location L ∈ N, a bit b ∈ {0, 1}
to be written, and |digest| pairs of messages {mj,0,mj,1}|digest|j=1 , where each
mj,c is of length λ. And it outputs a ciphertext ew.

– {mj}|digest|j=1 ← ReceiveWriteD̂(crs, L, b, ew). This is a RAM algorithm with

random read/write access to D̂. It takes as input the common reference string

crs, a location L, a bit b ∈ {0, 1} and a ciphertext ew. It updates the state D̂

(such that D[L] = b) and outputs messages {mj}|digest|j=1 .

We require the following properties on top of properties of a laconic OT scheme.

– Correctness With Regard To Writes: For any database D of size at
most M = poly(λ) for any polynomial function poly(·), any memory location

L ∈ [M ], any bit b ∈ {0, 1}, and any messages {mj,0,mj,1}|digest|j=1 of length

λ, the following holds. Let D∗ be identical to D, except that D∗[L] = b,

Pr


m′j = mj,digest∗j

∀j ∈ [|digest|]

crs ← crsGen(1λ)

(digest, D̂) ← Hash(crs, D)

(digest∗, D̂∗)← Hash(crs, D∗)

ew ← SendWrite
(
crs, digest, L, b, {mj,0,mj,1}|digest|j=1

)
{m′j}

|digest|
j=1 ← ReceiveWriteD̂(crs, L, b, ew)

 = 1,
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where the probability is taken over the random choices made by crsGen and

SendWrite. Furthermore, we require that the execution of ReceiveWriteD̂ above
updates D̂ to D̂∗. (Note that digest is included in D̂, hence digest is also
updated to digest∗.)

– Sender Privacy Against Semi-Honest Receivers With Regard To
Writes: There exists a PPT simulator `OTSimWrite such that the following
holds. For any database D of size at most M = poly(λ) for any polynomial
function poly(·), any memory location L ∈ [M ], any bit b ∈ {0, 1}, and any

messages {mj,0,mj,1}|digest|j=1 of length λ, let crs ← crsGen(1λ), (digest, D̂) ←
Hash(crs, D), and (digest∗, D̂∗)← Hash(crs, D∗), where D∗ is identical to D
except that D∗[L] = b. Then it holds that(

crs,SendWrite(crs, digest, L, b, {mj,0,mj,1}|digest|j=1 )
)

c
≈
(
crs, `OTSimWrite

(
crs, D, L, b, {mj,digest∗j

}j∈[|digest|]
))

.

– Efficiency Requirements: We require that both SendWrite and ReceiveWrite
run in time poly(log |D|, λ).

4 Laconic Oblivious Transfer with Factor-2 Compression

In this section, based on the DDH assumption we will construct a laconic OT
scheme for which the hash function Hash compresses a database of length 2λ
into a digest of length λ. We would refer to this primitive as laconic OT with
factor-2 compression. We note that, subsequent to our work, the factor-2 com-
pression construction has been simplified by Döttling and Garg [DG17] (another
alternative simplification can be obtained using [AIKW13]). We refer the reader
to [DG17] for the simpler construction and preserve the older construction here.

We will first construct the following two primitives as building blocks: (1)
a somewhere statistically binding (SSB) hash function, and (2) a hash proof
system that allows for proving knowledge of preimage bits for this SSB hash
function. We will then present the `OT scheme with factor-2 compression in
Section 4.4.

4.1 Somewhere Statistically Binding Hash Functions and Hash
Proof Systems

In this section, we give definitions of somewhere statistically binding (SSB) hash
functions [HW15] and hash proof systems [CS98]. For simplicity, we will only
define SSB hash functions that compress 2λ values in the domain into λ bits.
The more general definition works analogously.

Definition 3 (Somewhere Statistically Binding Hashing). An SSB hash
function SSBH consists of three algorithms crsGen, bindingCrsGen and Hash with
the following syntax.
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– crs ← crsGen(1λ). It takes the security parameter λ as input and outputs a
common reference string crs.

– crs ← bindingCrsGen(1λ, i). It takes as input the security parameter λ and
an index i ∈ [2λ], and outputs a common reference string crs.

– y ← Hash(crs, x). For some domain D, it takes as input a common reference
string crs and a string x ∈ D2λ, and outputs a string y ∈ {0, 1}λ.

We require the following properties of an SSB hash function.

– Statistically Binding at Position i: For every i ∈ [2λ] and an overwhelm-
ing fraction of crs in the support of bindingCrsGen(1λ, i) and every x ∈ D2λ,
we have that (crs,Hash(crs, x)) uniquely determines xi. More formally, for
all x′ ∈ D2λ such that xi 6= x′i we have that Hash(crs, x′) 6= Hash(crs, x).

– Index Hiding: It holds for all i ∈ [2λ] that crsGen(1λ)
c
≈ bindingCrsGen(1λ, i),

i.e., common reference strings generated by crsGen and bindingCrsGen are
computationally indistinguishable.

Next, we define hash proof systems [CS98] that are designated verifier proof
systems that allow for proving that the given problem instance in some language.
We give the formal definition as follows.

Definition 4 (Hash Proof System). Let Lz ⊆Mz be an NP-language resid-
ing in a universe Mz, both parametrized by some parameter z. Moreover, let Lz
be characterized by an efficiently computable witness-relation R, namely, for all
x ∈ Mz it holds that x ∈ Lz ⇔ ∃w : R(x,w) = 1. A hash proof system HPS
for Lz consists of three algorithms KeyGen, Hpublic and Hsecret with the following
syntax.

– (pk, sk) ← KeyGen(1λ, z): Takes as input the security parameter λ and a
parameter z, and outputs a public-key and secret key pair (pk, sk).

– y ← Hpublic(pk, x, w): Takes as input a public key pk, an instance x ∈ Lz,
and a witness w, and outputs a value y.

– y ← Hsecret(sk, x): Takes as input a secret key sk and an instance x ∈ Mz,
and outputs a value y.

We require the following properties of a hash proof system.

– Perfect Completeness: For every z, every (pk, sk) in the support of KeyGen(1λ, z),
and every x ∈ Lz with witness w (i.e., R(x,w) = 1), it holds that

Hpublic(pk, x, w) = Hsecret(sk, x).

– Perfect Soundness: For every z and every x ∈ Mz \ Lz, let (pk, sk) ←
KeyGen(1λ, z), then it holds that

(z, pk,Hsecret(sk, x)) ≡ (z, pk, u),

where u is distributed uniformly random in the range of Hsecret. Here, ≡
denotes distributional equivalence.
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4.2 HPS-friendly SSB Hashing

In this section, we will construct an HPS-friendly SSB hash function that sup-
ports a hash proof system. In particular, there is a hash proof system that enables
proving that a certain bit of the pre-image of a hash-value has a certain fixed
value (in our case, either 0 or 1).

We start with some notations. Let (G, ·) be a cyclic group of order p with

generator g. Let M ∈ Zm×np be a matrix. We will denote by M̂ = gM ∈ Gm×n

the element-wise exponentiation of g with the elements of M. We also define L̂ =
ĤM ∈ Gm×k, where Ĥ ∈ Gm×n and M ∈ Zn×kp as follows: Each element L̂i,j =∏n
k=1 Ĥ

Mk,j

i,k (intuitively this operation corresponds to matrix multiplication in
the exponent). This is well-defined and efficiently computable.

Computational Assumptions. In the following, we first define the computa-
tional problems on which we will base the security of our HPS-friendly SSB hash
function.

Definition 5 (The Decisional Diffie-Hellman (DDH) Problem). Let (G, ·)
be a cyclic group of prime order p and with generator g. Let a, b, c be sampled

uniformly at random from Zp (i.e., a, b, c
$←− Zp). The DDH problem asks to

distinguish the distributions (g, ga, gb, gab) and (g, ga, gb, gc).

Definition 6 (Matrix Rank Problem). Let m,n be integers and let Zm×n;rp

be the set of all m× n matrices over Zp with rank r. Further, let 1 ≤ r1 < r2 ≤
min(m,n). The goal of the matrix rank problem, denoted as MatrixRank(G,m, n, r1, r2),

is to distinguish the distributions gM1 and gM2 , where M1
$←− Zm×n;r1p and

M2
$←− Zm×n;r2p .

In a recent result by Villar [Vil12] it was shown that the matrix rank problem
can be reduced almost tightly to the DDH problem.

Theorem 1 ( [Vil12] Theorem 1, simplified). Assume there exists a PPT
distinguisher D that solves MatrixRank(G,m, n, r1, r2) problem with advantage ε.
Then, there exists a PPT distinguisher D′ (running in almost time as D) that
solves DDH problem over G with advantage at least ε

dlog2(r2/r1)e
.

We next give the construction of an HPS-friendly SSB hash function.

Construction. Our construction builds on the scheme of Okamoto et al. [OPWW15].
We will not delve into the details of their scheme and directly jump into our con-
struction.

Let n be an integer such that n = 2λ, and let (G, ·) be a cyclic group of order
p and with generator g. Let Ti ∈ Z2×n

p be a matrix which is zero everywhere

except the i-th column, and the i-th column is equal to t = (0, 1)>. The three
algorithms of the SSB hash function are defined as follows.

– crsGen(1λ): Pick a uniformly random matrix H
$←− Z2×n

p and output Ĥ = gH.
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– bindingCrsGen(1λ, i): Pick a uniformly random vector (w1, w2)> = w
$←− Z2

p

with the restriction that w1 = 1, pick a uniformly random vector a
$←− Znp

and set A← w · a>. Set H← Ti + A and output Ĥ = gH.

– Hash(crs,x): Parse x as a vector in Dn (D = Zp) and parse crs = Ĥ. Compute

y ∈ G2 as y = Ĥx. Parse y as a binary string and output the result.

Compression. Notice that we can get factor two compression for an input space
{0, 1}2λ by restricting the domain to D′ = {0, 1} ⊂ D. The input length n = 2λ,
where λ is set to be twice the number of bits in the bit representation of a
group element in G. In the following we will assume that n = 2λ and that the
bit-representation size of a group element in G is λ

2 .

We will first show that the distributions crsGen(1λ) and bindingCrsGen(1λ, i)
are computationally indistinguishable for every index i ∈ [n], given that the
DDH problem is computationally hard in the group G.

Lemma 1 (Index Hiding). Assume that the MatrixRank(G, 2, n, 1, 2) problem
is hard. Then the distributions crsGen(1λ) and bindingCrsGen(1λ, i) are compu-
tationally indistinguishable, for every i ∈ [n].

Proof. Assume there exists a PPT distinguisher D that distinguishes the distri-
butions crsGen(1λ) and bindingCrsGen(1λ, i) with non-negligible advantage ε. We
will construct a PPT distinguisher D′ that distinguishes MatrixRank(G, 2, n, 1, 2)
with non-negligible advantage.

The distinguisher D′ does the following on input M̂ ∈ G2×n. It computes
Ĥ ∈ G2×n as element-wise multiplication of M̂ and gTi and runs D on Ĥ. If D
outputs crsGen, then D′ outputs rank 2, otherwise D′ outputs rank 1.

We will now show that D′ also has non-negligible advantage. Write D′’s input
as M̂ = gM. If M is chosen uniformly random with rank 2, then M is uniform
in Z2×n

p with overwhelming probability. Hence with overwhelming probability,

M + Ti is also distributed uniformly random and it follows that Ĥ = gM+Ti is
uniformly random in G2×n which is identical to the distribution generated by
crsGen(1λ). On the other hand, if M is chosen uniformly random with rank 1,
then there exists a vector w ∈ Z2

p such that each column of M can be written as
ai ·w. We can assume that the first element w1 of w is 1, since the case w1 = 0
happens only with probability 1/p = negl(λ) and if w1 6= 0 we can replace all ai
by a′i = ai ·w1 and replace wi by w′i = wi

w1
. Thus, we can write M as M = w ·a>

and consequently Ĥ as Ĥ = gw·a
>+Ti . Notice that a is uniformly distributed,

hence Ĥ is identical to the distribution generated by bindingCrsGen(1λ, i). Since
D can distinguish the distributions crsGen(1λ) and bindingCrsGen(1λ, i) with
non-negligible advantage ε, D′ can distinguish MatrixRank(G, 2, n, 1, 2) with ad-
vantage ε− negl(λ), which contradicts the hardness of MatrixRank(G, 2, n, 1, 2).

A corollary of Lemma 1 is that for all i, j ∈ [n] the distributions bindingCrsGen(1λ, i)
and bindingCrsGen(1λ, j) are indistinguishable, stated as follows.
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Corollary 1. Assume the MatrixRank(G, 2, n, 1, 2) problem is computationally
hard. Then it holds for all i, j ∈ [n] that bindingCrsGen(1λ, i) and bindingCrsGen(1λ, j)
are computationally indistinguishable.

We next show that if the common reference string crs = Ĥ is generated by
bindingCrsGen(1λ, i), then the hash value Hash(crs,x) is statistically binded to
xi.

Lemma 2 (Statistically Binding at Position i). For every i ∈ [n], every
x ∈ Znp , and all choices of crs in the support of bindingCrsGen(1λ, i) we have that
for every x′ ∈ Znp such that x′i 6= xi, Hash(crs,x) 6= Hash(crs,x′).

Proof. We first write crs as Ĥ = gH = gw·a
>+Ti and Hash(crs,x) as Hash(Ĥ,x) =

gy = gH·x. Thus, by taking the discrete logarithm with basis g our task is to
demonstrate that there exists a unique xi from H = w · a> + Ti and y = H · x.
Observe that

y = H · x = (w · a> + Ti) · x = w · 〈a,x〉+ Ti · x

=

(
1
w2

)
· 〈a,x〉+

(
0
1

)
· xi,

where 〈a,x〉 is the inner product of a and x. If a 6= 0, then we can use any
non-zero element of a to compute w2 from H, and recover xi by computing
xi = y2 − w2 · y1; otherwise a = 0, so xi = y2.

4.3 A Hash Proof System for Knowledge of Preimage Bits

In this section, we give our desired hash proof systems. In particular, we need a
hash proof system for membership in a subspace of a vector space. In our proof
we need the following technical lemma.

Lemma 3. Let M ∈ Zm×np be a matrix. Let colsp(M) = {M · x | x ∈ Znp} be

its column space, and rowsp(M) = {x> ·M | x ∈ Zmp } be its row space. Assume

that y ∈ Zmp and y /∈ colsp(M). Let r
$←− Zmp be chosen uniformly at random.

Then it holds that

(M,y, r>M, r>y) ≡ (M,y, r>M, u),

where u
$←− Zp is distributed uniformly and independently of r. Here, ≡ denotes

distributional equivalence.

Proof. For any t ∈ rowsp(M) and s ∈ Zp, consider following linear equation
system {

r>M = t
r>y = s

.
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Let N be the left null space of M. We know that y /∈ colsp(M), hence M has
rank ≤ m − 1, therefore N has dimension ≥ 1. Let r0 be an arbitrary solution
for r>M = t, and let n be a vector in N such that n>y 6= 0 (there must be
such a vector since y /∈ colsp(M)). Then there exists a solution r for the above
linear equation system, that is,

r = r0 + (n>y)−1 · (s− r>0 y) · n,

where (n>y)−1 is the multiplicative inverse of n>y in Zp. Then two cases arise:
(i) column vectors of (M y) are full-rank, or (ii) not. In this first case, there is a
unique solution for r. In the second case the solution space has the same size as
the left null space of (M y). Therefore, in both cases, the number of solutions
for r is the same for every (t, s) pair.

As r is chosen uniformly at random, all pairs (t, s) ∈ rowsp(M) × Zp have
the same probability of occurrence and the claim follows.

Construction. Fix a matrix Ĥ ∈ G2×n and an index i ∈ [n]. We will construct
a hash proof system HPS = (KeyGen,Hpublic,Hsecret) for the following language
LĤ,i:

LĤ,i = {(ŷ, b) ∈ G2 × {0, 1} | ∃x ∈ Znp s.t. ŷ = Ĥx and xi = b}.

Note that in our hash proof system we only enforce that a single specified
bit is b, where b ∈ {0, 1}. However, our hash proof system does not place any
requirement on the value used at any of the other locations. In fact the values
used at the other locations may actually be from the full domain D (i.e., Zp).
Observe that the formal definition of the language LĤ,i above incorporates this
difference in how the honest computation of the hash function is performed and
what the hash proof system is supposed to prove.

For ease of exposition, it will be convenient to work with a matrix Ĥ′ ∈ G3×n
p :

Ĥ′ =

(
Ĥ

ge
>
i

)
,

where ei ∈ Znp is the i-th unit vector, with all elements equal to zero except the

ith one which is equal to one.

– KeyGen(1λ, (Ĥ, i)): Choose r
$←− Z3

p uniformly at random. Compute ĥ =(
(Ĥ′)>

)r
. Set pk = ĥ and sk = r. Output (pk, sk).

– Hpublic(pk, (ŷ, b),x): Parse pk as ĥ. Compute ẑ = (ĥ>)x and output ẑ.

– Hsecret(sk, (ŷ, b)): Parse sk as r and set ŷ′ =

(
ŷ
gb

)
. Compute ẑ = ((ŷ′)>)r

and output ẑ.

Lemma 4. For every matrix Ĥ ∈ G2×n and every i ∈ [n], HPS is a hash proof
system for the language LĤ,i.
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Proof. Let Ĥ = gH, r = (r∗, r3) where r∗ ∈ Z2
p. Let y′ := logg ŷ′, y := logg ŷ,

H′ := logg Ĥ′, h := logg ĥ.

For perfect correctness, we need to show that for every i ∈ [n], every Ĥ ∈
G2×n, and every (pk, sk) in the support of KeyGen(1λ, (Ĥ′, i)), if (ŷ, b) ∈ LĤ,i

and x is a witness for membership (i.e., ŷ = Ĥx and xi = b), then it holds that
Hpublic(pk, (ŷ, b),x) = Hsecret(sk, (ŷ, b)).

To simplify the argument, we again consider the statement under the discrete
logarithm with basis g. Then it holds that

logg (Hsecret(sk, (ŷ, b)))

= logg

((
(ŷ′)>

)r)
= 〈y′, r〉 = 〈y, r∗〉+ b · r3

=〈H · x, r∗〉+ xi · r3 = 〈H′x, r〉 = 〈(H′)>r,x〉

=〈h,x〉 = logg

(
(ĥ>)x

)
= logg (Hpublic(pk, (ŷ, b),x)) .

For perfect soundness, let (pk, sk) ← KeyGen(1λ, (Ĥ′, i)). We will show that
if (ŷ, b) /∈ LĤ,i, then Hsecret(sk, (ŷ, b)) is distributed uniformly random in the

range of Hsecret, even given Ĥ, i, and pk. Again under the discrete logarithm,
this is equivalent to showing that 〈y′, r〉 is distributed uniformly random given
H′ and h = (H′)>r.

Note that we can re-write the language LĤ,i = {(ŷ, b) ∈ G2 × Zp | ∃x ∈
Znp s.t. H′x = y′}. It follows that if (ŷ, b) /∈ LĤ,i, then y′ /∈ span(H′). Now it
follows directly from Lemma 3 that

r>y′ ≡ u

given H′ and r>H′, where u is distributed uniformly random. This concludes
the proof.

Remark 1. While proving the security of our applications based on the above
hash-proof system, we would generate Ĥ to be the output of bindingCrsGen(1λ, i)
and use the property that if (ŷ, b) ∈ LĤ,i, then (ŷ, (1− b)) /∈ LĤ,i. This follows

directly from Lemma 2 (that is, Ĥ and ŷ uniquely fixes xi).

4.4 The Laconic OT Scheme

We are now ready to put the pieces together and provide our `OT scheme with
factor-2 compression.

Construction. Let SSBH = (SSBH.crsGen,SSBH.bindingCrsGen,SSBH.Hash)
be the HPS-friendly SSB hash function constructed in Section 4.2 with do-
main D = Zp. Notice that we achieve factor-2 compression (namely, compress-
ing 2λ bits into λ bits) by restricting the domain from Dn to {0, 1}n in our
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laconic OT scheme. Also, abstractly let the associated hash proof system be
HPS = (HPS.KeyGen,HPS.Hpublic,HPS.Hsecret) for the language

Lcrs,i = {(digest, b) ∈ {0, 1}λ×{0, 1} | ∃D ∈ D2λ : SSBH.Hash(crs, D) = digest and D[i] = b}.

Recall that the bit-representation size of a group element of G is λ
2 , hence the

language defined above is the same as the one defined in Section 4.3.

Now we construct the laconic OT scheme `OT = (crsGen,Hash,Send,Receive)
as follows.

– crsGen(1λ): Compute crs← SSBH.crsGen(1λ) and output crs.
– Hash(crs, D ∈ {0, 1}2λ) :

digest← SSBH.Hash(crs, D)

D̂← (D, digest)

Output (digest, D̂)
– Send(crs, digest, L,m0,m1):

Let HPS be the hash-proof system for the language Lcrs,L

(pk, sk)← HPS.KeyGen(1λ, (crs, L))
c0 ← m0 ⊕ HPS.Hsecret(sk, (digest, 0))
c1 ← m1 ⊕ HPS.Hsecret(sk, (digest, 1))
Output e = (pk, c0, c1)

– ReceiveD̂(crs, e, L):
Parse e = (pk, c0, c1)

Parse D̂ = (D, digest), and set b← D[L].
m← cb ⊕ HPS.Hpublic(pk, (digest, b), D)
Output m

We will now show that `OT is a laconic OT protocol with factor-2 compres-
sion, i.e., it has compression factor 2, and satisfies the correctness and sender
privacy requirements. First notice that SSBH.Hash is factor-2 compressing, so
Hash also has compression factor 2. We next argue correctness and sender privacy
in Lemmas 5 and 6, respectively.

Lemma 5. Given that HPS satisfies the correctness property, the `OT scheme
also satisfies the correctness property.

Proof. Fix a common reference string crs in the support of crsGen(1λ), a database

string D ∈ {0, 1}2λ and an index L ∈ [2λ]. For any crs, D, L such that D[L] = b,
let digest = Hash(crs, D). Then it clearly holds that (digest, b) ∈ Lcrs,L. Thus, by
the correctness property of the hash proof system HPS it holds that

HPS.Hsecret(sk, (digest, b)) = HPS.Hpublic(pk, (digest, b), D).

By the construction of Send(crs, digest, L,m0,m1), cb = mb⊕HPS.Hsecret(sk, (digest, b)).

Hence the output m of ReceiveD̂(crs, e, L) is

m =cb ⊕ HPS.Hpublic(pk, (digest, b), D)

=mb ⊕ HPS.Hsecret(sk, (digest, b))⊕ HPS.Hpublic(pk, (digest, b), D)

=mb.

25



Lemma 6. Given that SSBH is index-hiding and has the statistically binding
property and that HPS is sound, then the `OT scheme satisfies sender privacy
against semi-honest receiver.

Proof. We first construct the simulator `OTSim.

`OTSim(crs, D, L,mD[L]):
digest← SSBH.Hash(crs, D)
Let HPS be the hash-proof system for the language Lcrs,L

(pk, sk)← HPS.KeyGen(1λ, (crs, L))
c0 ← mD[L] ⊕ HPS.Hsecret(sk, (digest, 0))
c1 ← mD[L] ⊕ HPS.Hsecret(sk, (digest, 1))
Output (pk, c0, c1)

For any database D of size at most M = poly(λ) for any polynomial function
poly(·), any memory location L ∈ [M ], and any pair of messages (m0,m1) ∈
{0, 1}λ × {0, 1}λ, let crs ← crsGen(1λ) and digest ← Hash(crs, D). Then we
will prove that the two distributions (crs,Send(crs, digest, L,m0,m1)) and (crs,
`OTSim(crs, D, L,mD[L])) are computationally indistinguishable. Consider the
following hybrids.

– Hybrid 0: This is the real experiment, namely (crs,Send(crs, digest, L,m0,m1)).
– Hybrid 1: Same as hybrid 0, except that crs is generated to be binding at

location L, namely crs← SSBH.bindingCrsGen(1λ, L).
– Hybrid 2: Same as hybrid 1, except that c1−D[L] is computed by c1−D[L] ←
mD[L] ⊕ HPS.Hsecret(sk, (digest, 1 − D[L])). That is, both c0 and c1 encrypt
the same message mD[L].

– Hybrid 3: Same as hybrid 2, except that crs is computed by crs← SSBH.crsGen(1λ).
This is the simulated experiment, namely (crs, `OTSim(crs, D, L,mD[L])).

Indistinguishability of hybrid 0 and hybrid 1 follows directly from Lemma 1,
as we replace the distribution of crs from SSBH.crsGen(1λ) to SSBH.bindingCrsGen(1λ, L).
Indistinguishability of hybrids 2 and 3 also follows from Lemma 1, as we replace
the distribution of crs from SSBH.bindingCrsGen(1λ, L) back to SSBH.crsGen(1λ).

We will now show that hybrids 1 and 2 are identically distributed. Since crs
is in the support of SSBH.bindingCrsGen(1λ, i) and digest = SSBH.Hash(crs, D),
by Lemma 2 it holds that (digest, 1−D[L]) /∈ Lcrs,L. By the soundness property
of the hash-proof system HPS, it holds that

(crs, L, pk,HPS.Hsecret(sk, (digest, 1−D[L]))) ≡ (crs, L, pk, u),

for a uniformly random u. Furthermore, cD[L] can be computed by mD[L] ⊕
HPS.Hpublic(pk, (digest, D[L]), D). Hence

(crs, L, pk,mD[L] ⊕ HPS.Hsecret(sk, (digest, 1−D[L])), cD[L])

≡(crs, L, pk, u, cD[L])

≡(crs, L, pk,m1−D[L] ⊕ HPS.Hsecret(sk, (digest, 1−D[L])), cD[L]).

This concludes the proof.
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5 Construction of Updatable Laconic OT

In this section, we will construct an updatable laconic OT that supports a hash
function that allows for compression from an input (database) of size an arbitrary
polynomial in λ to λ bits. As every updatable laconic OT protocol is also a
(standard) laconic OT protocol, we will only construct the former. Our main
technique in this construction, is the use of garbled circuits to bootstrap a laconic
OT with factor-2 compression into one with an arbitrary compression factor.

Below in Section 5.1 we provide some background on the primitives needed
for realizing our laconic OT construction. Then we will give the construction
overview of laconic OT in Sections 5.2. We refer the reader to our full ver-
sion [CDG+17] for the full construction along with its correctness and security
proofs.

5.1 Background

In this section we recall the needed background of garbled circuits and Merkle
trees.

5.1.1 Garbled Circuits

Garbled circuits were first introduced by Yao [Yao82] (see Lindell and Pinkas [LP09]
and Bellare et al. [BHR12] for a detailed proof and further discussion). A circuit
garbling scheme GC is a tuple of PPT algorithms (GCircuit,Eval). Very roughly
GCircuit is the circuit garbling procedure and Eval the corresponding evaluation
procedure. Looking ahead, each individual wire w of the circuit being garbled
will be associated with two labels, namely keyw,0, keyw,1.

– C̃← GCircuit
(
1λ,C, {keyw,b}w∈inp(C),b∈{0,1}

)
: GCircuit takes as input a secu-

rity parameter λ, a circuit C, and a set of labels keyw,b for all the input wires

w ∈ inp(C) and b ∈ {0, 1}. This procedure outputs a garbled circuit C̃.

– y ← Eval
(
C̃, {keyw,xw

}w∈inp(C)
)

: Given a garbled circuit C̃ and a garbled in-

put represented as a sequence of input labels {keyw,xw
}w∈inp(C), Eval outputs

y.

Terminology of Keys and Labels. We note that, in the rest of the paper, we
use the notation Keys to refer to both the secret values sampled for wires and
the notation Labels to refer to exactly one of them. In other words, generation of
garbled circuit involves Keys while computation itself depends just on Labels. Let
Keys = ((key1,0, key1,1), . . . , (keyn,0, keyn,1)) be a list of n key-pairs, we denote
Keysx for a string x ∈ {0, 1}n to be a list of labels (key1,x1

, . . . , keyn,xn
).

Correctness. For correctness, we require that for any circuit C and input x ∈
{0, 1}m (here m is the input length to C) we have that:

Pr
[
C(x) = Eval

(
C̃, {keyw,xw

}w∈inp(C)
)]

= 1
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where C̃← GCircuit
(
1λ,C, {keyw,b}w∈inp(C),b∈{0,1}

)
.

Security. For security, we require that there is a PPT simulator CircSim such
that for any C, x, and uniformly random keys {keyw,b}w∈inp(C),b∈{0,1}, we have
that (

C̃, {keyw,xw
}w∈inp(C)

)
c
≈ CircSim

(
1λ,C, y

)
where C̃← GCircuit

(
1λ,C, {keyw,b}w∈inp(C),b∈{0,1}

)
and y = C(x).

5.1.2 Merkle Tree

In this section we briefly review Merkle trees. A Merkle tree is a hash based data
structure that generically extend the domain of a hash function. The following
description will be tailored to the hash function of the laconic OT scheme that we
will present in Section 5.2. Given a two-to-one hash function Hash : {0, 1}2λ →
{0, 1}λ, we can use a Merkle tree to construct a hash function that compresses
a database of an arbitrary (a priori unbounded polynomial in λ) size to a λ-

bit string. Now we briefly illustrate how to compress a database D ∈ {0, 1}M
(assume for ease of exposition that M = 2d ·λ). First, we partition D into strings
of length 2λ; we call each string a leaf. Then we use Hash to compress each leaf
into a new string of length λ; we call each string a node. Next, we bundle the
new nodes in pairs of two and call these pairs siblings, i.e., each pair of siblings
is a string of length 2λ. We then use Hash again to compress each pair of siblings
into a new node of size λ. We continue the process till a single node of size λ
is obtained. This process forms a binary tree structure, which we refer to as a
Merkle tree. Looking ahead, the hash function of the laconic OT scheme has
output (D̂, digest), where D̂ is the entire Merkle tree, and digest is the root of
the tree.

A Merkle tree has the following property. In order to verify that a database
D with hash root digest has a certain value b at a location L (namely, D[L] = b),
there is no need to provide the entire Merkle tree. Instead, it is sufficient to
provide a path of siblings from the Merkle tree root to the leaf that contains
location L. It can then be easily verified if the hash values from the leaf to the
root are correct.

Moreover, a Merkle tree can be updated in the same fashion when the value
at a certain location of the database is updated. Instead of recomputing the
entire tree, we only need to recompute the nodes on the path from the updated
leaf to the root. This can be done given the path of siblings from the root to the
leaf.

5.2 Construction Overview

We will now provide an overview of our construction to bootstrap an `OT scheme
with factor-2 compression into an updatable `OT scheme with an arbitrary com-
pression factor, which can compress a database of an arbitrary (a priori un-
bounded polynomial in λ) size. For the full construction, see the full version of
this paper [CDG+17].
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Consider a database D ∈ {0, 1}M such that M = 2d · λ. Given a laconic
OT scheme with factor-2 compression (denoted as `OTconst), we will first use a
Merkle tree to obtain a hash function with arbitrary (polynomial) compression
factor. As described in Section 5.1.2, the Hash function of the updatable `OT
scheme will have an output (D̂, digest), where D̂ is the entire Merkle tree, and
digest is the root of the tree.

In the Send algorithm, suppose we want to send a message depending on a
bit D[L], we will follow the natural approach of traversing the Merkle tree layer
by layer until reaching the leaf containing L. In particular, L can be represented
as L = (b1, . . . , bd−1, t), where b1, . . . , bd−1 are bits representing the path from
the root to the leaf containing location L, and t ∈ [2λ] is the position within the
leaf. The Send algorithm first takes as input the root digest of the Merkle tree,
and it will generate a chain of garbled circuits, which would enable the receiver
to traverse the Merkle tree from the root to the leaf. And upon reaching the
leaf, the receiver will be able to evaluate the last garbled circuit and retrieve the
message corresponding to the t-th bit of the leaf.

We briefly explain the chain of garbled circuits as follows. The chain consists
of d− 1 traversing circuits along with a reading circuit. Every traversing circuit
takes as input a pair of siblings sbl = (sbl0, sbl1) at a certain layer of the Merkle
tree, chooses sblb which is the node in the path from root to leaf, and generates
a laconic OT ciphertext (using `OTconst.Send) which encrypts the input keys
of the next traversing garbled circuit and uses sblb as the hash value. Looking
ahead, when the receiver evaluates the traversing circuit and obtains the laconic
OT ciphertext, he can then use the siblings at the next layer to decrypt the
ciphertext (by `OTconst.Receive) and obtain the corresponding input labels for
the next traversing garbled circuit. Using the chain of traversing garbled circuits
the receiver can therefore traverse from the first layer to the leaf of the Merkle
tree. Furthermore, the correct keys for the first traversing circuit are sent via
the `OTconst with digest (i.e., root of the tree) as the hash value.

Finally, the last traversing circuit will transfer keys for the last reading circuit
to the receiver in a similar fashion as above. The reading circuit takes the leaf
as input and outputs mleaf[t], i.e., the message corresponding to the t-th bit of
the leaf. Hence, when evaluating the reading circuit, the receiver can obtain the
message mleaf[t].

SendWrite and ReceiveWrite are similar as Send and Receive, except that (a)
ReceiveWrite updates the Merkle tree from the leaf to the root, and (b) the last
writing circuit recomputes the root of the Merkle tree and outputs messages
corresponding to the new root. To enable (b), the writing circuit will take as
input the whole path of siblings from the root to the leaf. The input keys for the
writing circuit corresponding to the siblings at the (i+1)-th layer are transferred
via the i-th traversing circuit. That is, the i-th traversing circuit transfers the
keys for the (i+ 1)-th transferring circuit as well as partial keys for the writing
circuit. In the actual construction, both the reading circuit and writing circuit
take as input the entire path of siblings (for the purpose of symmetry).
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