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Abstract. Correlated private randomness, or correlation in short, is a
fundamental cryptographic resource that helps parties compute securely
over their private data. An offline preprocessing step, which is inde-
pendent of the eventual secure computation, generates correlated secret
shares for the parties and the parties use these shares during the final
secure computation step. However, these secret shares are vulnerable to
leakage attacks.
Inspired by the quintessential problem of privacy amplification, Ishai,
Kushilevitz, Ostrovsky, and Sahai (FOCS 2009) introduced the concept
of correlation extractors. Correlation extractors are interactive protocols
that take leaky correlations as input and produce secure independent
copies of oblivious transfer (OT), the building blocks of secure compu-
tation protocols. Although their initial feasibility result is resilient to
linear leakage and produces a linear number of “fresh” OTs, the con-
stants involved are minuscule. The output of this correlation extractor
can be used to perform only small secure computation tasks, because
the number of OTs needed to evaluate a functionality securely is roughly
proportional to its circuit size. Recently, Gupta, Ishai, Maji, and Sahai
(CRYPTO 2015) constructed an extractor that is resilient to 1/4 frac-
tional leakage and has near-linear production rate. They also constructed
an extractor from a large correlation that has 1/2 fractional resilience but
produces only one OT, which does not suffice to compute even constant
size functionalities securely.
In this paper, we show the existence of a correlation that produces n-
bit shares for the parties and allows the extraction of n1−o(1) secure
OTs, despite n/2 bits of leakage. The key technical idea is to embed sev-
eral multiplications over a field into one multiplication over an extension
field. The packing efficiency of this embedding directly translates into
the production rate of our correlation extractor. Our work establishes a
connection between this problem and a rich vein of research in additive
combinatorics on constructing dense sets of integers that are free of arith-
metic progressions, a.k.a. 3-free sets. We introduce a new combinatorial
problem that suffices for our multiplication embedding, and produces
concrete embeddings that beat the efficiency of the embeddings inspired
by the reduction to 3-free sets.
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Finally, the paper introduces a graph-theoretic measure to upper-bound
the leakage resilience of correlations, namely the simple partition num-
ber. This measure is similar in spirit to graph covering problems like the
biclique partition number. If the simple partition number of a correlation
is 2λ, then it is impossible to extract even one OT if parties can perform
λ-bits of leakage. We compute tight estimates of the simple partition
number of several correlations that are relevant to this paper, and, in
particular, show that our extractor and the extractor for the large corre-
lation by Gupta et al. have optimal leakage resilience and (qualitatively)
optimal simulation error.

1 Introduction

Secure multi-party computation [71,22] helps mutually distrusting parties to
compute securely over their private data. Unfortunately, it is impossible to se-
curely compute most functionalities in the information-theoretic plain model
even against parties who honestly follow the protocol but are curious to find ad-
ditional information about the other parties’ private input [19,38,32,42,2,43,41].
However, we can securely compute any functionality if honest parties are in the
majority [5,12,56,16], parties use some trusted setup [10,37,35,11,49,17,23] or
correlated private randomness [39,68,15,44], or there are bounds on the compu-
tational power of the parties [22,35].

The study of secure computation using correlated private randomness, pri-
marily initiated due to efficiency concerns, has produced several success stories,
for example FairPlay [45,4], TinyOT [50] and SPDZ [18] (pronounced Speedz).
These secure computation protocols offload most of the computational and cryp-
tographic complexity to an offline preprocessing phase. During this preprocessing
phase, a trusted dealer samples two shares (rA, rB) from the joint distribution
(RA, RB), namely the correlated private randomness, or correlation in short,
and provides the secret shares rA to Alice and rB to Bob. During the online
secure computation phase, parties use their respective secret shares in an inter-
active protocol to securely compute the intended functionality. Note that the
preprocessing phase is independent of the functionality or the inputs fed to the
functionality by the parties.

A prominent and extremely well-studied correlation is the random oblivious
transfer correlation, represented by ROT. It samples three bits x0, x1, b indepen-
dently and uniformly at random, and provides the secret shares (x0, x1) to Alice
and (b, xb) to Bob. Note that Alice does not know the choice bit b, and Bob does
not know the other bit xb. Intuitively, ROT is an input-less functionality that
implements a randomized version of oblivious transfer functionality, where the
sender sends (x0, x1) as input to the functionality and the receiver picks xb out of
the two input bits. Given m independent samples from this distribution, parties
can securely compute any functionality with circuit complexity (roughly) m. For
example, we can utilize the randomized self-reducibility of oblivious transfer to
reimagine the GMW protocol [22] in this framework naturally.



However, the storage of the secret shares by the parties brings to fore sev-
eral vulnerabilities. For instance, parties can leak additional information from
the secret shares of the other parties. We emphasize that the leakage need not
necessarily reveal individual bits of the other party’s share. The leakage can be
on the entire share and encode crucial global information that can potentially
jeopardize the security of the secure computation protocol.

To address these concerns, Ishai, Kushilevitz, Ostrovsky, and Sahai [33] in-
troduced the notion of correlation extractors. Correlation extractors distill leaky
correlations into independent samples of the ROT correlation that are secure.
That is, for each of the new samples Alice does not know Bob’s choice bit
and Bob does not know Alice’s other bit. This problem is a direct analog of
the quintessential problems of privacy amplification and randomness extraction
problems in the secure computation setting. With the exception that, correlation
extractors ensure security against insider attacks, i.e., the parties who perform
the leakage are participants in the secure protocol itself. This additional require-
ment makes the task of correlation extraction significantly more challenging.
It is, thus, not surprising that relatively few results are known in the field of
correlation extractor construction.

For example, in the setting of privacy amplification, if Alice and Bob start
with a secret n-bit random string then, in the presence of t-bits of arbitrary
leakage to an eavesdropper, parties can re-establish a fresh m-bit secret key such
that the advantage of the eavesdropper in guessing the secret key is roughly
2−∆ ≈ 2−(n−t−m). Intuitively, the sum of “entropy deficiency” (t), “entropy of
production” (m), and “− log of the adversarial advantage” (∆) is roughly n, the
initial entropy of the secret. Analogous results also exist in the setting of random-
ness extraction, where we can extract nearly all of the min-entropy of a source.
But similar tight extraction results are not known for correlation extractors. In
fact, the task of designing correlations that simultaneously support high leakage
resilience and production rate with exponential security has been elusive.

Correlation Number of OTs Number of Simulation Round
Description Produced (m) Leakage bits (t) Error (ε) Complexity

IKOS [33] ROTn/2 αn βn 2−γn 4

GIMS [26] ROTn/2 n/poly logn (1/4− g)n 2−gn/m 2
IP (GF [2]n) 1 (1/2− g)n 2−gn 2

Our Work IP
(
Fn/ log|F|

)
n1−o(1) (1/2− g)n 2−gn 2

Fig. 1: A qualitative summary of prior relevant works in correlation extractors
and a comparison to our correlation extractor construction. All correlations have
been normalized so that each party gets an n-bit secret share. The positive con-
stants α, β, and γ are minuscule. And g < 1/2 is an arbitrary positive constant.



The number of the output ROT samples and their high security are crucial
for the secure computation protocol. For example, protocols with exponential
security can reduce the ROT production or increase the statistical security pa-
rameter only slightly to prohibitively increase the effort needed by adversaries
to break them. Furthermore, the number of these ROT samples limit the size
of the eventual functionality that can be securely computed, because the num-
ber of ROT samples needed to implement a functionality securely is directly
proportional to its circuit size. As highlighted in [26], the initial feasibility re-
sult of Ishai et al. [33], though asymptotically linear in leakage resilience and
production rate, has unsatisfactorily low resilience and production rate for re-
alistic values of n, the size of the original share of the parties. The subsequent
work of Gupta et al. [26], improves the resilience to (roughly) n/4 but trades-off
the security of the protocol for high production rate and, consequently, achieves
only negligible (and, not exponentially low) insecurity. They also consider a new
correlation, namely the inner-product correlation where the secret shares of the
parties are random n-bit binary vectors subject to the constraint that they are
orthogonal to each other.1 They construct a correlation extractor for the inner-
product correlation with resilience n/2 and exponential security. However, it is
inherently limited to producing one ROT sample as output, which is not ade-
quate for the end goal of performing interesting secure computations. Our work
shows that the inner-product correlation over an appropriately large field admits
a correlation extractor that is resilient to n/2 bits of leakage, has high concrete
production rate, and has exponentially high security. Fig. 1 summarizes the en-
tire preceding discussion tersely. Finally, similar to Gupta et al. [26], although
our construction is stated in the information-theoretic setting, it is also relevant
to the setting where computationally secure protocol generate the correlations
or use the output OTs.

However, is the upper-bound of n/2 resilience inherent to the inner-product
correlation? For example, n/2 samples of the ROT correlation cannot be resilient
to more than n/4 bits of leakage. A partition argument can demonstrate this
upper bound of the maximum resilience of this correlation [34]. In this partition
argument, Alice emulates the generation of n/4 (i.e., half of n/2) independent
samples (x0, x1) and (c, xc) from the ROT correlation and sends the correspond-
ing (c, xc) to Bob. Moreover, Bob emulates the generation of the remaining n/4
samples and sends the corresponding (x0, x1) shares to Alice. Finally, we reimag-
ine any correlation extractor that is resilient to n/4 bits of leakage and produces
even one secure ROT sample as a secure ROT protocol in the plain model where
Alice implements n/4 ROT samples, and Bob implements the remaining n/4
ROT samples; which is impossible. Typically, the partition argument applies to

1 The actual inner-product correlation is defined slightly differently. Parties get shares
(x0, x1, . . . , xn) and (y0, y1, . . . , yn) such that x0 + y0 =

∑n
i=1 xiyi. That is, x0 and

y0 are additive secret shares of the inner product of (x1, . . . , xn) and (y1, . . . , yn).
But for intuition, it suffices to consider the correlation where the secret shares of the
parties are orthogonal vectors instead.



“multiple independent samples of small correlations,” but its extension to one
huge global correlation is not apparent.

Correlation Secret Share Simple Partition Upper Bound on the Max.
Description Size (s) Number (sp) Fractional Leakage (log sp/s)
ROTn/2 n 2n/4 1/4

ROLE (F)n/2 n log |F| |F|n/4 1/4

IP (Fn) n log |F| |F|n/2 1/2

Fig. 2: A summary of the estimates of the simple partition number for the cor-
relations relevant to our work.

To address this question, we introduce a new graph-theoretic measure for
the maximum resilience of a correlation, namely its simple partition number. In
particular, a correlation with simple partition number 6 2λ cannot be resilient
to λ bits of leakage (refer to Fig. 2 for a summary of these estimates). Finally, we
prove the optimality of the resilience demonstrated by the correlation extractors
for the inner-product correlation presented in [26] and our work. Refer to Sec-
tion 5.7 for a discussion on how the relation between simple partition number
and maximum resilience is similar to the connection between biclique partition
number and Wyner’s common information [69]. The existence of correlation ex-
tractors for a slightly lesser amount of leakage implies the tightness of our upper
bounds on leakage resilience. Finally, we leverage the simple partition number
bounds and use an averaging argument to show that the decay in simulation
security with entropy gap as achieved by [26] and our correlation extractor are
qualitatively optimal.

1.1 Model

This section presents the standard model of Ishai et al. [33] for correlation extrac-
tors, which subsequent works also use. We consider 2-party semi-honest secure
computation in the preprocessing model. In the preprocessing step, a trusted
dealer draws a sample (rA, rB) from the joint distribution (RA, RB). The joint
distribution (RA, RB) is referred to as the correlated private randomness, and rA
and rB , respectively, are the secret shares of Alice and Bob. The dealer provides
the secret share rA to Alice and rB to Bob. An adversarial party can perform
arbitrary t-bits of leakage on the secret share of the other party at the end of the
preprocessing step. We represent this leaky correlation hybrid as (RA, RB)

[t].2

2 That is, the functionality samples secret shares (rA, rB) according to the correlation
(RA, RB). The adversarial party sends a t-bit leakage function L to the functionality
and receives the leakage L(rA, rB) from the functionality. The functionality sends
rA to Alice and rB to Bob. Note that the adversary does not need to know its secret
share to construct the leakage function because the leakage function gets the secret
shares of both parties as input.



In the leaky correlation (RA, RB)
[t] hybrid, during the secure computation

phase, parties perform an interactive protocol to realize their target functionality
securely. No leakage occurs during the execution of the secure computation pro-
tocol. In this work, we consider the functionality that implementsm independent
oblivious transfers between the parties, referred to as the OTm functionality.

Definition 1 (Correlation Extractor). Let (RA, RB) be a correlated pri-
vate randomness such that the secret share size of each party is n-bits. An
(n,m, t, ε)-correlation extractor for (RA, RB) is a two-party interactive proto-
col in the (RA, RB)

[t] hybrid that securely implements the OTm functionality
against information-theoretic semi-honest adversaries with ε-simulation error.

1.2 Our Contribution

Our work makes a two-fold contribution regarding correlation extractors. First,
we construct a highly resilient correlation extractor that produces a large number
of secure OTs as output and has exponential security. Finally, we provide a
general graph-theoretic measure that upper bounds the maximal resilience of
any correlation.

Correlation Extraction Construction. For any field (F,+, ·), the inner-
product correlation over Fn+1, represented by IP

(
Fn+1

)
, is a correlation that

samples random rA = (x0, x1, . . . , xn) ∈ Fn+1 and rB = (y0, y1, . . . , yn) ∈ Fn+1

such that x0+y0 =
∑n
i=1 xiyi. That is, x0 and y0 are the additive secret shares of

the inner product of x[n] := (x1, . . . , xn) and y[n] := (y1, . . . , yn). Gupta et al. [26]
consider a special case of the inner-product correlation, where F = GF [2]. Note
that each party receives (n+ 1) field elements as its secret share. In particular,
if F = GF [2a], then each party gets an a(n+ 1)-bit secret share.

Theorem 1 (High Resilience High Production Correlation Extractor).
For all constants 0 < δ < g < 1/2, there exists a correlation (RA, RB), where
each party gets n-bit secret share, such that there exists a two-round (n,m, t, ε)-
correlation extractor for (RA, RB), where m = (δn)1−o(1), t = (1/2 − g)n, and
ε = 2−(g−δ)n/2.

We use (RA, RB) = IP
(
GF
[
2δn
]1/δ) in this theorem. Note that we maintain the

dependence on δ explicitly in the theorem statement to enable computation of
concrete efficiency. As we shall see later, this theorem achieves high production
rate of (δn)log 10/ log 38 ≈ (δn)0.633 even for realistic values of n. The simulation
error is exponentially low in the difference between the entropy gap gn and the
parameter δn. Our construction achieves (δn)1−o(1) production asymptotically,
which is close to the ideal target of δn production. Qualitatively, the decay in our
simulation error is near optimal as demonstrated by Theorem 2 and Corollary 1.

The crux of our construction is the composition of two technical contribu-
tions. First, we observe that the correlation extractor for IP (GF [2]

n
) constructed

by Gupta et al. [26] extends to the IP
(
F1/δ

)
correlation, where F is a large field.



However, in this case, instead of producing a secure OT, it produces a generaliza-
tion of oblivious transfer, namely oblivious linear-function evaluation over F [68]
(represented as OLE (F)). An oblivious linear-function evaluation is a 2-party
functionality that takes (A,B) ∈ F2 as input from Alice and X ∈ F as input
from Bob, and provides Z = AX + B as output to Bob. Note that oblivious
transfer is equivalent to oblivious linear-function evaluation over GF [2], because
xb = (x1 − x0)b+ x0, for x0, x1, b ∈ GF [2].

Finally, we embed m OT evaluations simultaneously into one OLE (F) evalu-
ation. Note that, this is not an asymptotic reduction. Asymptotically, there are
several techniques to construct multiple copies of OT using multiple copies of OLE
at a good rate. Our focus is on securely implementing multiple OT evaluations
from only one OLE (F) evaluation. Development of more efficient embeddings
will directly improve the production rate of our construction. We demonstrate
that dense sets of integers that avoid any arithmetic progressions, 3-free sets,
provide such embedding of multiplications. We formulate a relaxed version of
this combinatorial problem (see Fig. 5) that suffices for our embedding problem
and obtain more efficient embeddings than those that are inspired by the 3-free
set constructions.

We emphasize that although we state our correlation extractor for the bounded
leakage model, i.e. an adversary can perform at most t-bits of leakage, it also
extends to the noisy leakage setting. As long as the noise is high enough to main-
tain (n− t) bits of (average) min-entropy in the secret share of the parties, our
extractor construction remains secure.

Bound on the Maximum Resilience. The construction of Theorem 1 and
the correlation extractor of Gupta et al. [26], with fractional resilience 1/2, lead
naturally to a fascinating question. Can there exist a correlation extractor for
IP (Fn) that achieves over 1/2 fractional resilience? In fact, more generally, can
we meaningfully upper-bound the maximum leakage resilience of an arbitrary
correlation?

Note that if parties obtain multiple independent samples from identical corre-
lation, then the partition argument can be leveraged to deduce an upper bound.
For example, either Alice or Bob by getting adequate information on half of
the other party’s secret shares can break the security of the correlation extrac-
tor protocol. As discussed earlier, this argument implies that the correlation
ROTn/2 is not resilient to dn/4e bits of leakage, because every ROT hides only
one bit of information from each party [34]. However, this approach does not ap-
ply to correlation extractors for secret shares drawn from one large correlation,
for example, IP (Fn). We prove the following main result.

Theorem 2 (Hardness of Correlation Extraction). Let (F,+, ·) be an ar-
bitrary field. There exists a universal constant ε∗ > 0 such that, for (RA, RB) =
IP
(
Fk
)
, any (n, 1, (n/k) d(k + 1)/2e , ε)-correlation extractor for (RA, RB) has

ε > ε∗, where n = k log |F|.
This result proves the optimality of the leakage resilience achieved by our ex-
tractor in Theorem 1 and the correlation extractor for IP (GF [2]

n
) proposed by



Gupta et al. [26]. In fact, a more general version of this result (using averaging
arguments) shows that any (n, 1, n/2 − gn, ε)-correlation extractor for IP

(
Fk
)

has ε > ε∗2−gn (see Corollary 1). This result proves the qualitative optimality
of simulation error achieved by these two correlation extractors.

The technical heart of this result is a new graph-theoretic measure for max-
imum leakage resilience in correlations, namely simple partition number (see
Definition 4 in Section 2). Theorem 2 is a consequence of precise estimation
of this quantity for the IP (Fn) correlation. This quantity is similar in spirit to
the biclique partition number of a graph [24,25], the minimum number of bi-
cliques needed to partition the edges of a graph. Moreover, the connection of
simple partition number to maximum resilience is intuitively analogous to the
link between biclique partition number and Wyner’s common information [69].
Section 5.7 provides details on this connection.

1.3 Prior Relevant Works

This work lies at the intersection of several fields like correlation extractors,
additive combinatorics, graph covering problems, and information theory. In this
section, we provide only a summary of the work on combiners and extractors. The
prior relevant works related to the remaining topics are covered in appropriate
sections later.

Combiners and Extractors. A closely related concept is the notion of OT
combiners, which are a restricted variant of OT extractors in which the leakage
is limited to local information about individual OT correlations, and there is no
global leakage. The study of OT combiners was initiated by Harnik et al. [28].
Since then, there has been work on several variants and extensions of OT com-
biners [27,35,47,48,55]. Recently, Ishai et al. [34] constructed OT combiners with
nearly optimal leakage parameters. However, combiners consider a restricted
variant of leakage where the leakage function leaks only individual bits of the
secret shares.

To address general leakage, Ishai, Kushilevitz, Ostrovsky, and Sahai [33],
proposed the notion of correlation extractors. Their construction has a linear
leakage resilience, production rate, and exponential security. However, as indi-
cated by Gupta et al. [26], all the constants involved are minuscule. To address
this concern, they [26] construct correlation extractor for ROTn/2 that has opti-
mal leakage resilience with only a negligible (not exponentially-low) simulation
error. They also provide a correlation extractor construction from a large correla-
tion that exhibits 1/2 leakage resilience but outputs only one OT. Our work will
achieve (roughly) the best of both these constructions, i.e., fractional resilience
1/2, (near) linear production rate, and exponential security.



1.4 Technical Overview

In this section we present a brief overview of our correlation extractor construc-
tion and the graph-theoretic measure of the maximum resilience of an arbitrary
correlation.

ROLE (F) Given a field F, Alice receives rA = (A,B) and Bob receives rB = (X,Z)
such that A,B,X are independently and uniformly sampled from F and
Z = A ·X +B.

IP (Fn) Given a field F, Alice receives rA = (x0, x1, . . . , xn−1) and Bob receives
rB = (y0, y1, . . . , yn−1) such that x0, . . . , xn−1, y0, . . . , yn−1 are randomly
selected from F, where x0 + y0 =

∑n−1
i=1 xi · yi.

Fig. 3: A quick summary of the definitions of a few correlations that are relevant
to this paper.

Correlation Extractor Construction Suppose we are given 0 < δ < g < 1/2,
and parties are in the IP

(
K1/δ

)[t]
-hybrid, where t = (1/2−g)n andK = GF

[
2δn
]
.

For m = (δn)1−o(1), we want to implement the OLE (GF [2])
m functionality.

Fig. 4 presents the outline of our correlation extractor construction. The ex-
traction protocol π is similar to the correlation extractor of Gupta et al. [26].
Except that, in their case the inner-product correlation was over GF [2] instead
of a large field K. The security of the protocol is argued in Section 3. Our corre-
lation extractor securely computes a sample from the ROLE (K) correlation. The
protocol ρ is the standard protocol that implements the OLE (K) functionality in
the ROLE (K)-hybrid with perfect security. So, all that remains is to simultane-
ously embed OLE (GF [2])

m into one OLE (K). This embedding relies on finding
solutions to a combinatorial problem that is summarized in Fig. 5. Section 4 out-
lines the technique of choosing the inputs to the OLE (K) functionality so that
the parties can implement the OLE (GF [2])

m functionality with perfect security.

Hardness of Computation Result The starting point of this result is the
observation that we know the exact characterization of the correlations which
do not suffice to construct OT asymptotically [38,32,42,2,43,41], namely simple
correlations. Constructing one OT given a single sample from a simple correlation
is even more restrictive, and, hence, the hardness of computation result carries
over.3 This result holds true even when there is no leakage on (RA, RB). In fact,
there exists a universal constant ε∗ > 0 such that any OT protocol using any
simple correlation has simulation error at least ε∗.
3 The problem of characterizing correlations whose single sample suffice to construct
OT is a fascinating open problem that lies beyond the purview of this study.



Ensure. Let F = GF [2] and K = GF
[
2δn
]
be an extension field of F. Let 0 < δ <

g < 1/2.

Private Input. Let m = (δn)1−o(1). Alice has private input (a0, . . . , am−1) ∈ Fm
and (b0, . . . , bm−1) ∈ Fm. Bob has private input (x0, . . . , xm−1) ∈ Fm.

Hybrid. Parties are in the IP
(
K1/δ

)[t]
-hybrid, where t = (1/2− g)n.

Protocol.

1. Let π(K, 1/δ−1) be a protocol in the IP
(
K1/δ

)[t]
-hybrid that securely computes

ROLE (K) with simulation error 2−(g−δ)n/2−1. Fig. 7 provides the details of the
protocol in Section 3.

2. Let ρ(K, A∗, B∗, X∗) be a perfectly secure protocol for OLE (K) in the ROLE (K)-
hybrid. The private input of Alice is (A∗, B∗) ∈ K2 and the private input of Bob
is X∗ ∈ K. Bob obtains the output Z∗ = A∗X∗ +B∗. Fig. 8 provides the details
of the protocol in Section 3.

3. The protocol σ(K, 1/δ−1, A∗, B∗, X∗) is the parallel composition of π(K, 1/δ−1)
and ρ(K, A∗, B∗, X∗) protocol.

4. Parties run the two-round protocol σ(K, 1/δ−1, A∗, B∗, X∗) with Alice’s private
input (A∗, B∗) and Bob’s private input X∗. Lemma 3 in Section 4 explains the
choice of the inputs A∗, B∗, and X∗.

Output Computation. Lemma 3 in Section 4 presents Bob’s algorithm to compute
(z0, . . . , zm−1) from Z∗.

Fig. 4: For 0 < δ < g < 1/2, the outline of the (n,m, t, ε)-correlation extractor in
the IP

(
K1/δ

)[t]
-hybrid, where m = (δn)1−o(1), t = (1/2− g)n, ε = 2−(g−δ)n/2−1.

Our Combinatorial Problem. Find S and T such that
– S and T are ordered sets of non-negative integers of equal size.
– The set S + T represents the set of the sum of every element of S with every

element in T .
– Interpret the set S + T as a matrix, where the (i, j)-th entry represents the

sum of the i-th entry in S and the j-th entry in T . All entries in S + T are in
the range [0, n), and (S + T )i,i is not equal to any other element in S + T , for
i ∈ {0, . . . , |S| − 1}.

– Size of |S| = |T | is maximum

Fig. 5: Our combinatorial problem for embedding multiple OLE over small fields
into one OLE over an extension field.



Intuitively, the simple partition number of a correlation (RA, RB), repre-
sented by sp (RA, RB), is the minimum Λ such that (RA, RB) can be “decom-
posed into a union of” Λ simple correlations. Section 5 formalizes this notion of
decomposition. Next, we prove in Lemma 4 that for any correlation (RA, RB),
in the presence of t = log sp (RA, RB) bits of leakage, any protocol π for OT has
simulation error at least ε∗. Using this result, we translate tight upper bounds
on the simple partition number of relevant correlations into corresponding mean-
ingful upper bounds on their maximum resilience. Fig. 2 summarizes our results.
We construct a smoother version of this technical lemma using averaging argu-
ments, see Corollary 1. For example, if the leakage bound t > (log sp(G))− gn,
then any (n, 1, t, ε)-correlation extractor for (RA, RB) has ε > ε∗ · 2−gn.

2 Preliminaries

We represent the set {1, . . . , n} by [n]. For a vector (x1, . . . , xn) and S =
{i1, . . . , i|S|} ⊆ [n], the set xS represents (xi1 , . . . , xi|S|). In this work we work
with fields F = GF [pa], where p is a prime and a is a positive integer. An ex-
tension field K of F of degree n is interpreted as the field of all polynomials of
degree < n and coefficients in F.

2.1 Functionalities and Correlations

We introduce some useful functionalities and correlations.
Oblivious Transfer. Oblivious transfer, represented by OT, is a two-party

functionality that takes as input (x0, x1) ∈ {0, 1}2 from Alice and b ∈ {0, 1}
from Bob and outputs xb to Bob.

Oblivious Linear-function Evaluation. For a field (F,+, ·), oblivious
linear-function evaluation over F, represented by OLE (F), is a two-party func-
tionality that takes as input (a, b) ∈ F2 from Alice and x ∈ F from Bob and
outputs z = ax + b to Bob. In particular, OLE refers to the OLE (GF [2]) func-
tionality. Note that OT is identical (functionally equivalent) to OLE because
xb = (x1 − x0)b+ x0.

Random Oblivious Transfer Correlation. Random oblivious transfer,
represented by ROT, is a correlation that samples x0, x1, b uniformly and in-
dependently at random. It provides Alice the secret share rA = (x0, x1) and
provides Bob the secret share rB = (b, xb).

Random Oblivious Linear-function Evaluation. For a field (F,+, ·),
random oblivious linear-function evaluation over F, represented by ROLE (F), is
a correlation that samples a, b, x ∈ F uniformly and independently at random.
It provides Alice the secret share rA = (a, b) and provides Bob the secret share
rB = (x, z), where z = ax + b. In particular, ROLE refers to the ROLE (GF [2])
correlation. Note that ROT and ROLE are identical (functionally equivalent)
correlations.

Inner-product Correlation. For a field (F,+, ·) and n ∈ N, inner-product
correlation over F of size n, represented by IP (Fn), is a correlation that samples



random rA = (x0, . . . , xn−1) ∈ Fn and rB = (y0, . . . , yn−1) ∈ Fn subject to the
constraint that x0 + y0 =

∑n−1
i=1 xiyi. The secret shares of Alice and Bob are,

respectively, rA and rB .
Form ∈ N, the functionality Fm represents the functionality that implements

m independent copies of any functionality/correlation F .

2.2 Toeplitz Matrix Distribution

Given a field F, the distribution T(k,n) represents a uniform distribution over
all matrices of the form [Ik×k|Pk×n−k], where Ik×k is the identity matrix and
Pk×n−k is a Toeplitz matrix with each entry in F. The distribution T⊥,(k,n) is
the uniform distribution over all matrices of the form [Pn−k×k|In−k×n−k], where
In−k×n−k is the identity matrix and Pn−k×k is a Toeplitz matrix with each entry
in F.

2.3 Graph Representation of Correlations

We introduce a graph-theoretic representation of correlations for a more intuitive
presentation.

Definition 2 (Graph of a Correlation). Let (RA, RB) be the joint distri-
bution for a correlation. The graph of the correlation (RA, RB) is the weighted
bipartite graph G = (L,R,E) defined as follows.

1. The left partite set L is the set of all possible secret shares rA for Alice,
2. The right partite set R is the set of all possible secret shares rB for Bob, and
3. The weight connecting the vertices rA and rB is the probability of sampling

the shares (rA, rB) according to the distribution (RA, RB).

In this paper, the notation (RA, RB) also represents the bipartite graph corre-
sponding to it. If the correlation is a uniform distribution over a subset E of all
possible edges, then we normalize the entire graph such that the weights on each
edge is 1. For example, consider the correlations presented in Fig. 3. Henceforth,
for the ease of presentation, we assume that the graph of a correlation is an
unweighted bipartite graph. The left-most graph in Fig. 12 is the graph of the
ROLE correlation.

A bipartite graph G = (L,R,E) is a biclique if there exists L′ ⊆ L and
R′ ⊆ R such that that edge-set E(G) = L′ ×R′.

Definition 3 (Simple Graph). A simple graph is a bipartite graph such that
each of its connected components is a biclique.

For example, consider the graph in Fig. 6.4 A simple correlation is a correlation
whose graph is simple.
4 This definition naturally generalizes to weighted graphs. Suppose p(rA, rB) rep-
resents the probability of jointly sampling (rA, rB) from the correlation (RA, RB).
Then a simple graph has p(rA, rB) = p(rA) · p(rB), for every (rA, rB) edge with
positive weight.
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Fig. 6: A representative example of a simple graph.

Definition 4 (Simple Partition Number). The simple partition number of
a graph G, represented by sp(G), is the minimum number of simple graphs needed
to partition its edges.

Fig. 12 and Fig. 13 show that the simple partition number for both ROLE (GF [2])

and ROLE (GF [2])
2 is 2.

In this work, we use the tensor product of bipartite graphs defined as follows.

Definition 5 (Tensor Product Graph). For bipartite graphs G = (LG, RG, EG)
and H = (LH , RH , EH) the tensor product of G and H is the bipartite graph
J = (LJ , RJ , EJ) defined as follows.

1. The left partite set LJ := LG × LH , the right partite set RJ := RG × RH ,
and

2. The vertices (u, v) ∈ LJ and (u′, v′) ∈ RJ are connected if (u, u′) ∈ EG and
(v, v′) ∈ EH .

Applying this definition recursively, we define Gm :=

m−times︷ ︸︸ ︷
G×· · · ×G.

3 Extracting One OLE over a Large Field

In this section we will build some of the building blocks needed to construct
the correlation extractor claimed in Theorem 1. In particular, we outline the
extraction protocol that, given a leaky IP

(
Kη+1

)[t] correlation, realizes a secure
OLE (K) functionality.

1. First, given the IP
(
Kη+1

)
correlation where parties can perform t-bits of

arbitrary leakage, we construct a secure sample of an ROLE (K) correlation.
This protocol π(K, η) is presented in Fig. 7. At the end of the protocol Alice
has (Ã0, B̃0) ∈ K2 and Bob has (X̃0, Z̃0) ∈ K2, such that Ã0, B̃0, X̃0 are



uniformly random elements in K and Z̃0 = Ã0X̃0+ B̃0. The simulation error
of this protocol is 1

2

√
|K|2t
|K|η/2 , refer to Lemma 2.

2. Next, starting with the private shares (Ã0, B̃0) with Alice and (X̃0, Z̃0) with
Bob, we implement a protocol ρ(K, A∗, B∗, X∗). Alice has private inputs
(A∗, B∗) that are arbitrary elements in K2. Bob has private input X∗ that
is an arbitrary element in K. The protocol ρ(K, A∗, B∗, X∗), described in
Fig. 8 is a perfectly secure protocol where Bob outputs Z∗ = A∗X∗ +B∗.

We emphasize that both π(K, η) and ρ(K, A∗, B∗, X∗) are 2-round protocols
and we can compose these two protocols in parallel. The resultant protocol
σ(K, η, A∗, B∗, X∗) is an extraction protocol that takes as input a leaky IP

(
Kη+1

)[t]
correlation where parties can perform t-bits of arbitrary leakage and implements
the ROLE (K) functionality with simulation error 1

2

√
|K|2t
|K|η/2 . This is formalized

in the following lemma and the proof is included below.

Lemma 1 (Security of Correlation Extractor). The protocol σ(K, η, A∗, B∗, X∗)
obtained by the parallel composition of the protocols π(K, η) (see Fig. 7) and
ρ(K, A∗, B∗, X∗) (see Fig. 8) is a secure protocol in the IP

(
Kη+1

)[t] hybrid that

implements the OLE (K) functionality with simulation error at most 1
2

√
|K|2t
|K|η/2 .

Section 4 elaborates the exact technique to choose appropriate K, η, A∗, B∗, X∗
to imply Theorem 1.

3.1 Extraction of one secure ROLE (K) correlation

The protocol is provided in Fig. 7. The security of the protocol is analogous to
the proof in [26] that reduces to the unpredictability lemma over fields. We state
this lemma in our context.

Lemma 2 (Unpredictability Lemma). Let G ∈
{
T(k,η+1),T⊥,(k,η+1)

}
. Con-

sider the following game between an honest challenger and an adversary:

1. H samples m[η] ∼ UKη .
2. A sends a leakage function L : Kη → {0, 1}t.
3. H sends L

(
m[η]

)
to A.

4. H samples x[k] ∼ UKk , G ∼ G, and computes y{0}∪[n] = x ·G+(0,m[η]). H
sends (y[η], G) to A. H picks b $←{0, 1}. If b = 0, then she sends chal = y0
to A; otherwise (if b = 1) then she sends chal = u ∼ UK to A.

5. A replies with an element b̃ ∈ {0, 1}.

The adversary A wins the game if b = b̃. For any A, the advantage of the
adversary is 6 1

4

√
|K|2t
|K|k .

Similar to the security proof provided by Gupta et al. [26], the simulation
error of the protocol in Fig. 7 is the bound provided by the unpredictability
lemma over fields (Lemma 2). Refer to the full version of the paper [6] for a
proof of correctness.



Pseudocode of the extraction protocol π(K, η).

Given. Alice has (X0, X1, . . . , Xη) and Bob has (Y0, Y1, . . . , Yη) such that X0+Y0 =∑η
i=1XiYi, where X0, . . . , Xη, Y0, . . . , Yη ∈ K. For ease of presentation assume that η

is odd and set w = (η+1)/2. An adversarial party can obtain arbitrary t-bit leakage
on the share of the other party.

Interactive Protocol.

1. First Round. Bob samples a random generator matrix G from the distribution
Tw×(η+1) such that its elements are in K. Let C be the code generated by G,
and C⊥ be its dual code. Let H be the generator matrix for the code C⊥. If the
first column of H is 0η+1−w (i.e., all zeros), then abort the protocol. Bob picks a
random codeword (X̃0, X̃1, . . . , X̃η) ∈ C⊥ and calculates M[η] = Y[η] − X̃[η].
Bob sends M[η] and G to Alice.

2. Second Round. Alice samples a random codeword (Ã0, Ã1, . . . , Ãη) ∈ C and
a random field element B̃0 ∈ K. Alice computes α[η] = X[η] + Ã[η] and β =〈
X[η],M[η]

〉
− B̃0 −X0.

Alice sends α[η] and β to Bob.

Output Computation. Alice outputs (Ã0, B̃0) and Bob outputs (X̃0, Z̃0), where
Z̃0 = −

〈
α[η], X̃[η]

〉
− β + Y0.

Fig. 7: Protocol to securely extract one random sample of the ROLE (K) func-
tionality from the leaky IP

(
Kη+1

)[t] correlation.
3.2 Securely Realizing OLE (K) using ROLE (K) Correlation

The protocol presented in Fig. 8 is a perfectly semi-honest secure protocol for
OLE (K) in the ROLE (K) correlation hybrid. Note that the protocols π(K, η) in
Fig. 7 and ρ(K, A∗, B∗, X∗) in Fig. 8 can be composed in parallel. Let σ(K, η, A∗, B∗, X∗)
be the parallel composition of the protocols π(K, η) and ρ(K, A∗, B∗, X∗). This
completes the proof of Lemma 1.

4 Embedding multiple OLEs into an OLE over an
Extension Field

One of the primary goals in this section is to prove the following lemma.

Lemma 3 (Embedding Multiple small OLE into a Large OLE). Let K
be an extension field of F of degree n. There exists a perfectly secure protocol
for OLE (F)m in the OLE (K)-hybrid that makes only one call to the OLE (K)
functionality and m = n1−o(1).

Proof. Section 4.3 provides this lemma and proves Theorem 1.



Pseudocode of the OLE protocol ρ(K, A∗, B∗, X∗)

Given. Alice has (Ã0, B̃0) and Bob has (X̃0, Z̃0), where Ã0, B̃0, X̃0 are random ele-
ments in K and Z̃0 = Ã0X̃0 + B̃0.

Private Inputs. Alice has private input (A∗, B∗) ∈ K2 and Bob has X∗ ∈ K.

Interactive Protocol.

1. First Round. Bob sends M ′ = X̃0 −X∗ to Alice.
2. Second Round. Alice sends α′ = Ã0 +A∗ and β′ = Ã0M +B∗ + B̃0.

Output Computation. Bob outputs Z∗ = α′X∗ + β′ − Z̃0.

Fig. 8: Perfectly secure protocol to realize OLE (K) in the ROLE (K) correlation
hybrid.

4.1 Intuition of the Embedding

We illustrate the main underlying ideas of this embedding problem and our
proposed solution using the representative field F = GF [2] and its extension
field K = GF [2n]. Suppose we are provided with an oracle that takes as in-
put A∗, B∗ ∈ K from Alice and X∗ ∈ K from Bob, and outputs Z∗ := A∗ ·
X∗ + B∗ to Bob. Our aim is to implement the following functionality. Alice
has inputs (a0, . . . , am−1) ∈ Fm and (b0, . . . , bm−1) ∈ Fm, and Bob has inputs
(x0, . . . , xm−1) ∈ Fm. We want Bob to obtain (z0, . . . , zm−1) ∈ Fm, where each
zi = ai · xi + bi, for i ∈ {0, . . . ,m − 1}. Intuitively, we want maximize m and
embed OLE (F)m into one OLE (K).

Preliminary Idea. Consider the following simple preliminary embedding. Let
m =

√
n. Alice defines A∗ = a0+a1ζ+· · ·+am−1ζm−1, where a0, . . . , am−1 ∈ F.

And, Alice defines B∗ =
∑n−1
i=0 riζ

i, where each ri is a random element in F;
except when (m+ 1) divides i, then we set rt(m+1) = bt, for t ∈ {0, . . . ,m− 1}.
Bob defines X∗ = x0 + x1ζ

m +· · ·+ xm−1ζ
(m−1)m, where x0, . . . , xm−1 ∈ F.

Now, the parties compute Z∗ = A∗X∗+B∗ using one oracle call to OLE (K)
and Bob obtains the output Z∗. Note that the intended zi = ai · xi + bi is
the coefficient of ζi(m+1) in Z∗, for each i ∈ {0, . . . ,m − 1}. Coefficients of
all other powers of ζ contain no information about a0, . . . , am−1, b0, . . . , bm−1,
because they are masked with random elements in F. So, for m =

√
n, we have

embedded OLE (F)m into one OLE (K).

Better Embedding. Observe that (a0+a1ζ) ·(x0+x1ζ) = a0x0+(a0x1+a1x0)ζ+

a1x1ζ
2. So, we can embed OLE (F)2 into one OLE (K), where K is an extension

field of F of degree 3, as follows. Alice chooses A∗ = a0 + a1ζ ∈ GF
[
22
]
and

B∗ = b0 + rζ + b1ζ
2 (where r is a random element from F), and Bob chooses

X∗ = x0 + x1ζ. Note that the coefficients of ζ0 and ζ2 in Z∗, respectively,



correspond to a0x0 + b0 and a1x1 + b1. Recursively applying this idea, we can
construct an embedding of OLE (GF [2])

2k into one OLE
(
GF
[
23
k
])

. Asymptot-

ically, this scheme embeds m = nlog 2/ log 3 ≈ n0.631 copies of OLE (GF [2]) into
one OLE (GF [2n]).

Generalization to 3-free sets. Consider the previous solution when n = 3k. Let
S = {s0 < s1 < · · · < sm−1} be the set of indices. The set S corresponding to the
previous solution contains all integers less than 3k whose ternary representation
does not contain the digit 2. This is the famous greedy sequence of integers that
does not include an arithmetic progression of length 3; namely, 3-free sets. In
fact, there is nothing sacrosanct about the S chosen in the previous embedding,
and any 3-free set suffices.

For example, let S = {s0 < s1 < · · · < sm−1} be any 3-free set such that
each entry is in the range [0, n/2), F = GF [2], and K = GF [2n]. Alice prepares
A∗ =

∑m−1
i=0 aiζ

si andB∗ =
∑n−1
k=0 rkζ

k, where r2si = bi; otherwise it is a random
element in F. Bob prepares X∗ =

∑m−1
i=0 xiζ

si . Using one call to OLE (K) Bob
obtains Z∗. The coefficient of ζ2si is aixi + bi, because no other sj + sk = 2si.
Now, we can embed m = n1−o(1) copies of OLE (F) into OLE (K) using the state-
of-the-art constructions of 3-free sets [3,20]. However, this approach cannot give
us m = Θ(n) due to sub-linear upper bounds on m [58,29,61,8,9,60].

New Problem. Note that although solutions to the 3-free set problem imply
embeddings in our setting, our embedding problem is potentially less restrictive.
For example, the solution for m =

√
n presented above is not obtained by the

reduction to 3-free sets. Are we missing something?
Suppose S = (s0, . . . , sm−1) and T = (t0, . . . , tm−1) be tuples of indices in

the range [0, n/2). Consider the combinatorial problem proposed in Fig. 5.
Given S and T that are solutions to the problem in Fig. 5, Alice and Bob use

the strategy explained in Fig. 9. Note that the initial solution form =
√
n indeed

corresponds to the solution S = {0, . . . ,m − 1} and T = {0,m, . . . , (m − 1)m}.
Restricted to S = T , our combinatorial problem is identical to the 3-free set
problem. We numerically solve this problem for small values of n and, indeed, it
produces more efficient embeddings than the embedding based on the optimal 3-
free set constructions. We emphasize that we compare our solutions against the
largest 3-free set computed by exhaustive search. We summarize our observations
in Fig. 10.

4.2 Relevant Prior Work on 3-free Sets

Our asymptotic construction for Theorem 1 relies on constructing a dense subset
S of {0, 1, · · · , n− 1} that does not contain any arithmetic progression, namely
3-free sets. Erdős and Turán introduced this problem in 1936 and presented a
greedy construction with |S| = Ω

(
nlog 2/ log 3

)
≈ n0,631. Salem and Spencer [59]

showed that the surface of high-dimensional convex bodies can be embedded in
the integers to construct 3-free sets of size n1−o(1). Later, Behrend [3] noticed



Given. Two sets S and T of size m that is a solution to the combinatorial problem
presented in Fig. 5. Let K be an extension field of F of degree n.

Private input. Alice has private input (a0, . . . , am−1) ∈ Fm and (b0, . . . , bm−1) ∈
Fm. Bob has private input (x0, . . . , xm−1) ∈ Fm.

Hybrid. Parties are in the OLE (K)-hybrid.

Private Input Construction.

1. Alice creates private input A∗ =
∑m−1
i=0 aiζ

si ∈ K.
2. Alice chooses ri, for i ∈ {0, . . . , n− 1}, as follows.

ri =

{
bk , if i = sk + tk for some k ∈ {0, . . . ,m− 1}
UF , otherwise.

Alice creates private input B∗ =
∑n−1
i=0 riζ

i ∈ K.
3. Bob creates private input X∗ =

∑m−1
i=0 xiζ

ti ∈ K.
4. Both parties invoke the OLE (K) functionality with respective Alice input

(A∗, B∗) and Bob input X∗. Bob receives Z∗ = A∗X∗ +B∗.

Output Decoding. Bob outputs (z0, . . . , zm−1), where zi is the coefficient of ζsi+ti
and i ∈ {0, . . . ,m− 1}.

Fig. 9: Embedding OLE (F)m into one OLE (K), where K is an extension field of
F of degree n.

that points lying on the surface of a sphere of suitable radius are a particularly
good choice, and gave a construction with |S| = Ω

(
n

22
√

2 logn·log1/4 n

)
. Recently,

after a gap of over sixty years, Elkin [20] improved this further by a factor of
Θ(
√
log n) by thickening the spheres to produce the largest known 3-free set.

The proofs of Behrend [3] and Elkin [20] are constructive in nature and the
sets can be constructed in poly(n) time. Although the greedy construction is
asymptotically worse than these two constructions, it performs well for realistic
values of n. See Fig. 11 for details.

Roth [58] provided the first nontrivial upper bound of O
(

n
log logn

)
on the

size of 3-free sets. More than thirty years later, Heath-Brown [29] showed that
|S| = O

(
n

logc n

)
, for some constant c > 0, and then Szemeredi [61] produced

an explicit value c = 1/20. Bourgain [8,9] improved the upper bound by polylog

factors. Currently, the best known upper bound is O
(
n(log logn)4

logn

)
[60,7]. Nathan

[46] provides a comprehensive summary for both 3-free set size constructions and
upper bounds.



m n(m) Solution Sets n′(m) 3-free Set

1 1 S = {0} 1 S = {0}
T = {0}

2 3 S = {0, 1} 3 S = {0, 1}
T = {0, 1}

3 7 S = {0, 1, 3} 7 S = {0, 1, 3}
T = {0, 1, 3}

4 9 S = {0, 1, 3, 4} 9 S = {0, 1, 3, 4}
T = {0, 1, 3, 4}

5 14 S = {0, 1, 3, 5, 8} 17 S = {0, 1, 3, 7, 8}
T = {0, 1, 4, 5, 3}

6 19 S = {0, 1, 3, 4, 7, 9} 21 S = {0, 1, 3, 4, 9, 10}
T = {0, 1, 3, 9, 7, 8}

7 24 S = {0, 1, 3, 4, 11, 6, 10} 25 S = {0, 1, 3, 4, 9, 10, 12}
T = {0, 1, 5, 10, 6, 12, 9}

8 27 S = {0, 1, 3, 4, 9, 10, 12, 13} 27 S = {0, 1, 3, 4, 9, 10, 12, 13}
T = {0, 1, 3, 4, 9, 10, 12, 13}

9 34 S = {0, 1, 3, 4, 9, 12, 14, 16, 17} 39 S = {0, 1, 5, 6, 8, 13, 14, 17, 19}
T = {0, 1, 3, 4, 13, 11, 12, 15, 16}

10 38 S = {0, 1, 3, 5, 8, 12, 13, 16, 17, 15} 47 S = {0, 1, 4, 6, 10, 15, 17, 18, 22, 23}
T = {0, 1, 4, 5, 3, 12, 13, 15, 17, 20}

Fig. 10: LetK be an extension field of F of degree n. Our goal is to embedm copies
of OLE (F) into one OLE (K) using minimum n. The number n(m) represents the
minimum n obtained by using solutions to our combinatorial problem in Fig. 5.
The number n′(m) represents the minimum n obtained by using the optimum
solutions to the 3-free set problem.

4.3 Generating Explicit Embedding and Proof of Theorem 1

First, we prove Lemma 3. Let S(n) be a 3-free set with elements in the range
[0, n/2). Behrend [3] and Elkin [20] provide constructions for S(n) such that
|S(n)| > n1−o(1). Note that S = T = S(n) is a solution to the combinatorial
problem proposed in Fig. 5. Now, we use the protocol described in Fig. 9.

It is clear that the protocol is correct. The coefficients of all other ζi in
Z∗ are random elements in F, if i 6= sk + tk, for all k ∈ {0, . . . ,m − 1}. It is,
therefore, easy to see that this is a perfectly secure protocol for OLE (F)m in the
OLE (K)-hybrid.

Remark. We provide a short discussion on how to pick the 3-free set S for
concrete values of n. The greedy construction is the fastest and runs in O(n log n)
time. It picks all numbers that do not have 2 in their ternary representation, and
|S(n)| = nlog 2/ log 3 ≈ n0.631. The proofs of Behrend [3] and Elkin [20] are also
constructive in nature and the set can be constructed in poly(n) time. However,
their performance for realistic values of n are worse than the greedy algorithm.

Further, for concrete values of n, one of the solutions to our combinatorial
problem generates better embeddings than the greedy solution. Note that, Fig. 10
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Fig. 11: A logarithmic scaled graph of the size of the 3-free sets produced by the
greedy, Behrend [3], and Elkin [20] constructions.

presents a solution that enables the embedding of 10 independent OLE (F) eval-
uations into one OLE (K) evaluation, where K is an extension field of F of degree
38. Recursively applying this embedding, we embedm = nlog 10/ log 38 ≈ n0.633 �
n0.631 ≈ nlog 2/ log 3 independent OLE (GF [2]) evaluations into one OLE (GF [2n])
evaluation.

Proof of Theorem 1 Suppose we given n, 0 < δ < g < 1/2, and t = (1/2 −
g)n. Let K = GF

[
2δn
]
and F = GF [2]. We construct A∗, B∗, X∗ ∈ K using

Lemma 3 and m > (δn)1−o(1). Perform the protocol σ(K, 1/δ−1, A∗, B∗, X∗) in
the IP

(
K1/δ

)[t]
-hybrid.5 The simulation error is

ε 6
1

2

√
2δn2t

2δn(1/δ−1)/2
= 2−(g−δ)n/2−1

This is an (n,m, t, ε)-correlation extractor for the correlation IP
(
K1/δ

)
.

5 Simple Partition Number

This section defines the simple partition number of a graph, provides estimates
of this quantity for correlations relevant to our work, and proves Theorem 2.

5 Recall that in the protocol π(K, η), all parties have share size (η + 1) log |K|.



5.1 Intuition of the Hardness of Computation Result

We know that if parties have multiple independent samples of secret shares sam-
pled according to a simple correlation, then the parties cannot securely compute
OT [38,32,42,2,43,41]. Constructing one OT given a single sample from such
a correlation is even more restrictive, and, hence, the hardness of computa-
tion result carries over. This result holds true even when there is no leakage on
(RA, RB). More precisely, we import the following result that we restate in our
context.

Imported Theorem 1 ([43]) Let (RA, RB) be a simple correlation with n-bit
secret shares for each party. There exists a universal constant ε∗ > 0, such that
any (n, 1, 0, ε)-correlation extractor for (RA, RB) has ε > ε∗.

Suppose (RA, RB) is a correlation that has simple partition number sp(G) =
2λ and G = G(1) + · · · + G(2

λ), where each G(i) is a simple graph. Then we
consider the leakage function L(rA, rB) = `, where ` ∈ {1, . . . , 2λ} is the unique
index such that (rA, rB) ∈ E(G(`)). Note that L is a λ-bit leakage function
and conditioned on the leakage being `, for any ` ∈ {1, . . . , 2λ}, the correlation
(RA, RB |`) is a simple correlation. So, one of the parties can break the security
of any purported OT protocol where parties get secret shares sampled from the
(RA, RB |`) correlation. Overall, with probability half, one of the parties can
break the security of any purported OT protocol where parties get secret shares
sampled from the (RA, RB) by performing the leakage L described above. This
technique upper-bounds the leakage resilience of (RA, RB) and we summarize it
as follows.

Lemma 4 (Connection between Maximum Leakage Resilience and Sim-
ple Partition Number). Let (RA, RB) is a correlated private randomness that
provides n-bit private shares to Alice and Bob. Let G be the bipartite graph cor-
responding to the correlation (RA, RB). There exists a universal constant ε∗ > 0
such that any (n, 1, t, ε)-correlation extractor for (RA, RB) with t > dlg sp(G)e
has ε > ε∗.

We construct a smoother version of this technical lemma using averaging argu-
ments. For example, if the leakage bound t is roughly (log sp(G))− gn, then we
consider a subset of simple graphs of size sp(G)·2−gn from the set

{
G(1), . . . , G(sp(G))

}
that covers at least 2−gn fraction of the edges of G. Applying the previous
lemma, we can conclude that (n, 1, t, ε)-correlation extractor for (RA, RB) with
t > dlog sp(G)− gne has ε > ε∗ · 2−gn.

Corollary 1 ((Smooth Version of the) Connection between Maximum
Leakage Resilience and Simple Partition Number). Let (RA, RB) is a
correlated private randomness that provides n-bit private shares to Alice and
Bob. Let G be the bipartite graph corresponding to the correlation (RA, RB).
There exists a universal constant ε∗ > 0 such that any (n, 1, t, ε)-correlation
extractor for (RA, RB) with t > dlg sp(G)− gne has ε > ε∗ · 2−gn.



5.2 Relevant Prior Work on Graph Covering Problems

The graph-theoretic measure proposed in our work to measure the maximum
resilience of correlations in best presented in the framework of graph covering
problems. Several problems in graph theory, for example, clique partition num-
ber, biparticity, arboricity, edge-chromatic number, vertex cover number and
biclique partition number, can be expressed as covering a graph with subgraphs
from a family of graphs. Of these representative examples, the concept of bi-
clique partition number is most relevant to our paper. For a graph G, its biclique
partition number, represented by bp (G), is the minimum number of bicliques
that suffice to partition it.

Refer to [40] for a comprehensive survey on graph covering problems. Moti-
vated by network addressing problem and graph storage problem, Graham and
Pollak [24,25] introduced the biclique partition problem (see also [1,64,70,63]).
The celebrated Graham-Pollak Theorem states that bp (Kn) = (n−1) [25,62,52,65,66],
but all proofs are algebraic, and no purely combinatorial proof is known. In
general, bp (G) > max{n+(G), n−(G)} [25,30,62,52], where n+(·) and n−(·), re-
spectively, represents the number of positive and negative eigenvalues of the
adjacency matrix of the graph. Determining the bp (G) of a general graph is
a hard problem [40], but it admits a trivial upper bound bp (G) 6 the size of
the smallest vertex cover of G. Variants of this quantity have been considered
recently by [14].

This quantity is closely related to the recently disproved [31,13] Alon-Saks-
Seymour Conjecture [36] that bp (G) + 1 colors suffice to color a graph. This
conjecture can be interpreted as a generalization of the Graham-Pollak Theorem
and has close relations to computational complexity [31,51,57]. In the context of
this paper, intuitively, the biclique partition number is a combinatorial version
of the Wyner’s Common Information [69] that corresponds to the minimum
description complexity of the information that kills the mutual information of
correlations. We interpret a correlation as a weighted bipartite graph with the
left-partite set being all possible values of rA, and the right partite set being all
possible values of rB . The weight on an edge joining rA and rB represents the
probability of jointly sampling (rA, rB). This graph-theoretic interpretation of
correlations helps establish connections between combinatorial and information-
theoretic concepts.

5.3 Relation to Leakage resilience: Proof of Lemma 4

In this section we prove Lemma 4, i.e. the maximum leakage resilience of a
correlation (RA, RB) is at most lg sp (RA, RB).

Let G be the bipartite graph corresponding to the correlation (RA, RB).
Let π be a (n, 1, t, ε)-correlation extractor for G, where t = dlog sp (G)e. Let
G = G(1)+· · ·+G(sp(G)) be the simple partition of G. Define the leakage function
L : E(G)→ {1, . . . , sp (G)} as follows. For e ∈ E(G), we have L(e) = `, where `
is the unique index in {1, . . . , sp (G)} such that e ∈ E(G(`)).



Consider an interactive protocol that runs π between Alice and Bob with
secret samples drawn from the correlation G, and both parties receive the leakage
L(rA, rB).

Note that this is identical to the interactive protocol, where the correlation
G+ that samples ` ∈ {1, . . . , sp (G)} with probability proportional to

∣∣E(G(`))
∣∣,

samples (u, v) ≡ e $← E(G(`)), and provides (u, `) to Alice and (v, `) to Bob.
The functionality G+ itself is simple, because each G(`) is simple. So, we can

use Imported Theorem 1. Therefore, one of the parties’ view cannot be simulated
with less than ε∗ > 0 simulation error when the parties follow the protocol π.
Suppose, that party is Alice, without loss of generality. That is, the view of the
party Alice∗ (to represent the semi-honest adversarial strategy) in the interactive
protocol between Alice∗ and B incurs at least ε∗ simulation error.

Now consider the case where only Alice∗ receives the leakage from the corre-
lation and not Bob. The view of Alice∗ remains identical to the previous hybrid.
Therefore, this protocol also incurs a simulation error at least ε∗

This implies that for any (n, 1, t, ε)-correlation extractor for (RA, RB), if
t > log sp (RA, RB), then ε > ε∗.

Intuitively, Lemma 4 can be summarized as follows. A small simple partition
number of the correlated private randomness (RA, RB) implies a low maximum
leakage-resilience of (RA, RB).

Proof of Corollary 1. Suppose 2t = sp (G) /2gn and π is an (n, 1, t, ε)-
correlation extractor for (RA, RB). Now, we choose the sp (G) / (2gn − 1) simple
graphs among {G(1), . . . , G(sp(G))} that cover a subset E′ ⊂ E(G) such that
|E′| / |E(G)| > (2gn − 1)

−1. The leakage function L(rA, rB) outputs the index
of the simple graph from which the edge e = (rA, rB) comes, if e ∈ E′; other-
wise, it returns ⊥. Using the same proof as Lemma 4 we can conclude that the
simulation error is ε > ε∗ (2gn − 1)

−1 ≈ ε∗2−gn.

5.4 Estimates of Simple Partition Number and Proof of Theorem 2

In this section we present the lemma that provides the estimates of the simple
partition number of relevant correlations.

Lemma 5 (Simple Partition Number Estimates). The following holds true
for arbitrary field F.

1. sp (IP (Fn)) 6 |F|d(n+1)/2e, and
2. For even n, sp

(
ROLE (F)n/2

)
6 |F|dn/4e.

Refer to the full version [6] for a proof of the first part. The proof outline of the
second part is provided in Section 5.5. The simple decomposition we construct
for the correlations mentioned above have an additional property. Given an edge
(rA, rB) ∼ (RA, RB), we can efficiently compute the index of the simple graph
in the decomposition that contains it. Thus, the leakage that demonstrates the
upper bound of the maximal resilience in Lemma 4 is computationally efficient.

The proof of Theorem 2 is a direct application of Lemma 4 and Lemma 5.



5.5 Subsuming the Partition Argument

In this section, using a particular example, we want to illustrate that the simple
partition number is sophisticated enough to subsume partition argument based
impossibility results. To begin, let us consider an example. Let (RA, RB) be
the random oblivious linear-function evaluation over GF [2]. So, the correlation
samples a, b, x ∈ GF [2] independently and uniformly at random. The secret share
of Alice is rA = (a, b) and the secret share of Bob is rB = (x, z), where z = ax+b.
The secrecy of ROLE (GF [2]) ensures that Alice has no advantage in guessing x
and Bob has no advantage in guessing a. The graph of the correlation is provided
in Fig. 12. The figure presents the simple decomposition corresponding to the
leakage ` = x− a.
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Fig. 12: The graph of the correlated private randomness ROLE (GF [2]) and its
decomposition into two simple graphs.

Now, let us consider ROLE (GF [2])
2, i.e. two independent samples from the

ROLE (GF [2]) correlation. Alice gets secret share (a1, b1, a2, b2) and Bob gets
secret share (x1, z1, x2, z2), where z1 = a1x1 + b1 and z2 = a2x2 + b2. Suppose
in the partition argument Alice implements the first correlation and Bob imple-
ments the second correlation. This implies that Alice knows x1 and Bob knows
a2. We want to achieve this effect using only one-bit leakage that is provided to
both the parties.

Given the decomposition in Fig. 12, note that we can define a two-bit leakage
to achieve this. For example the first leakage bit represents `1 = x1 − a1, and
the second leakage bit represents `2 = x2 − a2. We show in Fig. 13 that even
a one-bit leakage suffices. In particular, we use L(rA, rB) = x1 − a2. In the full
version [6], we show that sp

(
ROLE (F)2

)
6 |F|.



Using this observation and the fact that sp (G×H) 6 sp (G) · sp (H) (see full
version [6] for the proof), Lemma 5 shows that sp (ROLE (F)n) 6 |F|dn/2e. This
demonstrates that the simple partition number subsumes the partition argument.

5.6 Relevant Prior Work on Common Information and Assisted
Common Information

We briefly introduce a few relevant information-theoretic measures for maximum
resilience and maximum production rate. For a joint distribution, the mutual in-
formation I(RA;RB) measures the distance (KL-divergence) between the joint
probability distribution p(rA, rB) and the distribution p(rA) ·p(rB). The mutual
information between (RA, RB) represents the number of bits of the secret key
that the two parties can agree. The Gács-Körner [21] common information, rep-
resented by K(RA;RB), represents the largest entropy of the common random
variable that each party can generate based on their respective secret share. In-
tuitively, this corresponds to the number of connected components in a bipartite
graph representing the correlation. The Wyner common information [69], rep-
resented by J(RA;RB), is the minimum information that, when leaked to the
eavesdropper, ensures that the parties cannot establish a secret key. This quan-
tity roughly corresponds to the biclique partition number of a bipartite graph
for the correlation, where the correlation is a uniform distribution over the edges
of the bipartite graph. Prabhakaran and Prabhakaran [53,54], generalizing [67],
introduced the concept of assisted common information that, among its various
applications, helps characterize an upper bound on the number of OTs that a
correlation can produce.

Relation to Mutual Information. In the setting of key-agreement, the mu-
tual information I(RA;RB) of a correlation (RA, RB) measures the length of the
secret key that the two parties can agree on. We emphasize that this is a measure
of production, and not a measure of resilience. For example, I(IP (GF [2]

n
)) = 1.

Since, secure OT implies one-bit key-agreement, mutual information is also an
upper bound on the OT production that a correlation can support. However,
production capacity and resilience to leakage are extremely disparate quantities.
For example, in the secure computation setting, the correlation IP (GF [2]

n
) is re-

silient to n/2 bits of leakage but can only produce one OT. Additionally, mutual
information significantly overestimates the maximum OT production capacity.
For example, n-bit shared private key cannot produce one OT even without any
leakage. However, it has n-bits of mutual information.

We emphasize that the simple partition number is only a measure for the
maximum leakage resilience of correlations in the setting of secure computation.
Our measure does not provide any estimates on the OT production. The most
relevant measure for OT production is the notion of assisted common information
proposed by Prabhakaran and Prabhakaran [53,54].
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Fig. 13: A simple decomposition of ROLE (GF [2])
2, into two simple graphs. Each

collection of nodes with identical shade of gray and letter represents a connected
component.



5.7 Analogy of Biclique Partition Number and Wyner’s Common
Information

A correlation that is a biclique has no mutual-information and, hence, is use-
less for parties to agree on a secret key even asymptotically. In particular, one
sample from a correlation that is a biclique is also useless for key-agreement.
Suppose (RA, RB) is an arbitrary correlation and has biclique partition com-
plexity bp (RA, RB). Similar to Lemma 4, in the presence of t = log bp (RA, RB)
bits of leakage there is not even a one-bit secure key-agreement protocols using
(RA, RB). The random variable J for the leakage function L(RA, RB) outputs
the index of the biclique that contains the edge e = (rA, rB).

Wyner’s common information [69] is defined to be the minimum entropy
random variable J that suffices to ensure I(RA;RB |J) = 0. If the bicliques that
partition G have roughly equal number of edges then these two concepts are
identical. Analogously, sp (RA, RB) can be interpreted as the analog for Wyner’s
common information in the secure computation setting.

However, we cannot use biclique partition number or Wyner’s Common Infor-
mation to meaningfully measure the resilience of a correlation against leakage in
the secure computation setting. The biclique partition number bp (RA, RB) can
be significantly higher than the simple partition number sp (RA, RB), which is
an upper bound on the maximum resilience. For example, the biclique partition
number bp (IP (Fn)) ≈ |F|n−1 while its simple partition number sp (IP (Fn)) ≈
|F|n/2 is exponentially small. This example demonstrates the non-trivial utility
of the new measure introduced by us in the secure computation setting.
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