
Insuperability of the Standard Versus Ideal
Model Gap for Tweakable Blockcipher Security

Bart Mennink

1 Digital Security Group, Radboud University, Nijmegen, The Netherlands
b.mennink@cs.ru.nl

2 CWI, Amsterdam, The Netherlands

Abstract. Two types of tweakable blockciphers based on classical block-
ciphers have been presented over the last years: non-tweak-rekeyable and
tweak-rekeyable, depending on whether the tweak may influence the key
input to the underlying blockcipher. In the former direction, the best
possible security is conjectured to be 2σn/(σ+1), where n is the size of
the blockcipher and σ is the number of blockcipher calls. In the latter
direction, Mennink and Wang et al. presented optimally secure schemes,
but only in the ideal cipher model. We investigate the possibility to
construct a tweak-rekeyable cipher that achieves optimal security in the
standard cipher model. As a first step, we note that all standard-model
security results in literature implicitly rely on a generic standard-to-ideal
transformation, that replaces all keyed blockcipher calls by random se-
cret permutations, at the cost of the security of the blockcipher. Then, we
prove that if this proof technique is adopted, tweak-rekeying will not help
in achieving optimal security: if 2σn/(σ+1) is the best one can get with-
out tweak-rekeying, optimal 2n provable security with tweak-rekeying is
impossible.

Keywords. Optimal security, standard model, ideal model, impossibil-
ity, tweakable blockciphers.

1 Introduction

A blockcipher E : K × M → M is a family of permutations on M indexed
by a key k ∈ K. Tweakable blockciphers generalize over the classical ones by
the additional input of a tweak. More detailed, a tweakable blockcipher Ẽ :
K × T ×M → M satisfies the property that for every key k ∈ K and tweak
t ∈ T , Ẽ(k, t, ·) is a permutation onM. The key is usually secret, but the tweak
is a parameter that is known or even chosen by the user. In 2002, Liskov, Rivest,
and Wagner [36] formalized the principle of tweakable blockciphers, and they
have gained broad attention since then.

A well-established way of designing a tweakable blockcipher is by building
it on top of a conventional blockcipher E : {0, 1}n × {0, 1}n → {0, 1}n, such as
AES (other approaches will be discussed in Section 1.3). In their seminal work,



Liskov et al. proposed two such constructions:

LRW1(k, t,m) = E(k,E(k,m)⊕ t) , (1)

LRW2([k, h], t,m) = E(k,m⊕ h(t))⊕ h(t) , (2)

where for the latter scheme, h is a universal hash function taken from a family
of hash functions H. Related to LRW2 is Rogaway’s XEX [50] and its generaliza-
tions by Chakraborty and Sarkar [15] and Minematsu [42]: these constructions
replace the masking h(t) by a tweaking function based on E(k, ·), and therewith
eliminate the use of h. All of these constructions, however, only achieve birthday
bound 2n/2 security.

1.1 Quest for Beyond Birthday Bound Security

Various attempts have been made to achieve security beyond the birthday bound,
and we identify two approaches: non-tweak-rekeyable schemes and tweak-rekeyable
schemes. In a non-tweak-rekeyable scheme, the key inputs to the underlying
blockciphers are independent of the tweak, while in a tweak-rekeyable scheme,
the tweak value may have an influence on the key input to the underlying block-
cipher.

In the direction of non-tweak-rekeyable schemes, the state of the art centers
around the security of σ ≥ 1 round LRW2:

LRW2[σ]([k, h], t,m) = LRW2([kσ, hσ], t, · · · LRW2([k1, h1], t,m) · · · ) ,

where k = (k1, . . . , kσ) are blockcipher keys and h = (h1, . . . , hσ) instantia-
tions of a universal hash function family H. Landecker et al. [35] and Proc-
ter [48] showed that this construction achieves approximately 22n/3 security for
two rounds, and Lampe and Seurin [34] proved security up to about 2σn/(σ+2) for
an arbitrary even number of rounds. It is conjectured that this scheme achieves
2σn/(σ+1) security for any σ ≥ 1 [34].

Tweak-rekeyable schemes on the other hand tend to achieve higher levels of
security easier, but require a different model. Minematsu [43] introduced the
following scheme:

Min(k, t,m) = E(E(k, t‖0n−`t),m) , (3)

where `t denotes the length of the tweak, and proved that it achieves security up
to max{2n/2, 2n−`t}. It is straightforward to derive an attack on Min matching
this bound. Note that the scheme only achieves beyond birthday bound security if
`t < n/2. The tweak size can be elegantly extended using the XTX construction
of Minematsu and Iwata [45] at the cost of an extra universal hash function
evaluation.
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Mennink [38] introduced two constructions based on one, resp. two, blockci-
pher calls (for Men2 we use the adjusted function from the full version [39], see
also Section 5.2):

Men1(k, t,m) = E(k ⊕ t,m⊕ z)⊕ z, where z = k ⊗ t , (4)

Men2(k, t,m) = E(k ⊕ t,m⊕ z)⊕ z, where z = E(2k, t) . (5)

The former is proven secure up to about 22n/3 queries, the latter approximately
optimally 2n secure. Wang et al. [56] generalized the approach of Mennink and
derived a wide class of optimally secure schemes. However, on the downside,
these constructions are all analyzed in the ideal cipher model, meaning that the
underlying blockcipher is assumed to be perfectly random.

1.2 Optimal Security in Standard Model?

The usage of the ideal cipher model for tweakable blockciphers (and for symmetric-
key schemes in general) can be considered controversial: the model is significantly
stronger and allows for better security bounds, as evidenced by Mennink’s and
Wang et al.’s constructions. In this work, we investigate the distinction between
the standard and ideal model for the case of tweakable blockciphers, and show
the existence of an insuperable gap: whereas in the ideal model optimal security
is possible fairly efficiently, we prove under reasonable assumptions that this
cannot be achieved in the standard model.

Generic Standard-to-Ideal Reduction. All results on tweakable blockciphers
in the standard cipher model [15,34–36,42,43,48,50], implicitly rely on a generic
standard-to-ideal reduction, where the keyed blockcipher calls are replaced with
secret ideal permutations. This step usually costs Advsrkprp

Φ,E (D), where D is
some strong related-key PRP distinguisher with a certain amount of resources,
usually q queries to the keyed oracle Eφ(k) and τ time, and Φ is the set of
related-key deriving functions φ that D is allowed to choose. This reduction is
in fact also broadly used beyond the area of tweakable blockciphers, such as in
authenticated encryption schemes [1,3,11,21,28,33,37,44,50,51] and message au-
thentication codes [4,13,16,24,29,30,41,47,57–59], and in fact, we are not aware
of any security result of a construction based on a standard-model blockcipher
that uses a structurally different approach. Inspired by this, we investigate what
level of tweakable blockcipher security can be achieved if this proof technique is
employed.

Lower bound on Advsrkprp
Φ,E (D). The generic reduction particularly means

that Advsrkprp
Φ,E (D) becomes a necessary term in the derivation, and we derive a

lower bound on this advantage, i.e. to see how much the loss is.

Pivotal to the analysis is the set of related-key deriving functions Φ, which
differs depending on the application. For instance, for LRW1 and LRW2 we would
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have ΦLRW = {k 7→ k} and the cost of the reduction is simply the strong PRP
security of E. For the cascade LRW2[σ], we would have

ΦLRW2[σ] = {k 7→ ki | i ∈ {1, . . . , σ}} .

As the σ keys are independent this implies a reduction loss of σ times the strong
PRP security of E (see also [34,35]). In both cases, it is fair to assume that the
strong PRP security of E is small. The situation gets more technical for tweak-
rekeyable schemes. For Min and Men2 we would have larger sets of key-deriving
functions:3

ΦMin = {k 7→ E(k, t‖0n−`t) | t ∈ {0, 1}`t} ,
ΦMen2 = Φ⊕ ∪ {k 7→ 2k} = {k 7→ k ⊕ δ | δ ∈ K} ∪ {k 7→ 2k} .

If the size of Φ increases, the related-key insecurity increases. In more detail,
we show that for any Φ and any E,

Advsrkprp
Φ,E (D) ≥ Ω

(
min{q, |Φ|} · r

2n

)
,

where D can make q related-key queries to Eφ(k) for random key k and has time
to make r offline evaluations of E. (The bound is in fact a bit more fine-grained,
cf. Proposition 1, but above simplification is adequate for a proper understanding
of the result, and for Φ = ΦMin and Φ = ΦMen2 above bound matches the one of
Proposition 1.)

For Min, this bound entails a “minimal loss” of min{q, 2`t} · r/2n, a term
which in hindsight perfectly explains the security level of Min. For Men2 the
loss is even worse: q · r/2n. (Also if the “subkey” 2k in Men2 is replaced by
an independent key k′, the same loss applies.) Concretely, this means that the
usage of the generic standard-to-ideal reduction entails impossibility of beyond
birthday bound security on Men2. Clearly, this does not invalidate the security of
Men2: this negative result is purely due to the lossiness of the generic reduction.

This issue is in fact not new: already in 1998, Bellare et al. encountered
it in their seminal paper on Luby-Rackoff backwards [8], and reverted to an
analysis in the ideal cipher model. A formal treatment of the situation, however,
has not been given. The issue also appeared for schemes based on primitives
other than blockciphers. Most prominently, the security of the HMAC message
authentication code is based on the PRF security of the underlying function [5,6].
As recently argued by Gaži et al. [23], this standard-model approach might be too
pessimistic, and [25] approached the security of HMAC in the ideal compression
function model.

Generalized Impossibility. We additionally demonstrate that the issue is not
specific to Men2, but applies to a broad spectrum of schemes. In more detail,

3 The generic reduction does not directly apply to Men1 as the same key is used for
masking and encrypting, making the usage of the underlying cipher and the overlying
mode mutually dependent. This is usually resolved by using two independent keys,
such as in LRW2. In this case, ΦMen1 = Φ⊕.
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we consider a generalized construction of a tweakable blockcipher based on a
blockcipher, and show that, if the generic standard-to-ideal reduction is em-
ployed, achieving optimal standard-model security with tweak-rekeying is at least
as hard as without tweak-rekeying. Given the state of the art on non-tweak-
rekeyable schemes, and particularly the conjecture on LRW2[σ], this shines a
negative light on the possibility to find a tweakable blockcipher that is secure in
the standard cipher model. Note that the result does not imply that the generic
standard-to-ideal reduction is unavoidable, nor that optimal security cannot be
achieved, but if this reduction is employed and if the conjecture on LRW2[σ]
is true, optimality seems impossible for this generalized class of functions. The
approach followed for this impossibility result may be generalizable to different
types of primitives.

Discussion. It is reasonable to question the relevance of any result in any of both
models (other questions are discussed in detail in Section 8). It appears that,
while the ideal-model results may sometimes be a bit too promising, standard-
model results may be extremely loose. This is for instance the case for Men2,
where the ideal-model results seem more representative than the standard-model
ones. A similar observation was made by Shrimpton and Terashima [55], who
introduce the ideal model under key-oblivious access as a weakened version of
the ideal cipher model. As a general rule, it is always wise to interpret security
results in any of the models with care.

1.3 Other Ways of Tweakable Blockcipher Design

We briefly elaborate on approaches to tweakable blockcipher design, other than
constructing them from conventional blockciphers. One approach is to build
them “from scratch,” as is done for the Hasty Pudding Cipher [53], Mercy [20],
Threefish [22], and TWEAKEY [31]. This approach, however, does not allow
for any reductionist security argument. Goldenberg et al. [26] and Mitsuda and
Iwata [46] transformed generalized Feistel schemes into tweakable generalized
Feistel schemes. These constructions only achieve birthday bound security. A
novel approach is to build tweakable blockciphers from public permutations, as
is done by Sasaki et al. [52], Cogliati et al. [17, 18], Granger et al. [27], and
Mennink [40]. This approach achieves comparable levels of security to the non-
tweak-rekeyable schemes of above, but the security analysis is inherently done
in the ideal permutation model.

1.4 Outline

Our model and the security of (tweakable) blockciphers are formalized in Sec-
tion 2. In Section 3 we define what we consider a reduction and what we mean
with optimal security. This section also includes a formalization of the generic
standard-to-ideal reduction. We derive a lower bound on the strong related-key
PRP security in Section 4. We revisit LRW2 and Men2 using these formaliza-
tions and results in Section 5. In Section 6 we present a generalized tweakable
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blockcipher design, and in Section 7 we derive our impossibility result on the op-
timal security of a generalized tweakable blockcipher. We present an elaborate
discussion of the results in Section 8.

2 Notation and Model

For a positive integer n, {0, 1}n denotes the set of bit strings of length n. If X is

some set, x
$←− X denotes the uniformly random drawing of x from X . The size

of X is denoted by |X |.

2.1 Blockciphers

A blockcipher E : K ×M → M is a mapping such that for every key k ∈ K,
Ek(·) = E(k, ·) is a permutation on M. For fixed k, its inverse is denoted by
E−1k (·). We denote by BC(K,M) the set of all such blockciphers. Letting P(M)
be the set of all permutations onM, the strong PRP security of E is defined as

Advsprp
E (D) =

∣∣∣Pr
(
DE

±
k = 1

)
−Pr

(
Dπ
±

= 1
)∣∣∣ ,

where the probabilities are over k
$←− K and π

$←− P(M), and the random coins
of D. Distinguisher D is typically bounded to have limited resources, such as τ
time and q queries to its oracle.

We will consider a generalized security notion that captures the case where a
distinguisher can perform related-key attacks. We follow the theoretical frame-
work of Bellare and Kohno [7] and its generalization to tweakable blockciphers
by Cogliati and Seurin [19]. Let Φ be a set of permitted related-key deriving
functions that map K′ → K. Define the function rk[E] : K′ × Φ×M→M as

rk[E](k, φ,m) = E(φ(k),m) .

Note that rk[E] is invertible for fixed (k, φ), and the inverse is defined the
straightforward way. The strong related-key PRP security of E is defined as

Advsrkprp
Φ,E (D) =

∣∣∣Pr
(
Drk[E]±k = 1

)
−Pr

(
Drk[rE ]±k = 1

)∣∣∣ ,
where the probabilities are over k

$←− K′ and rE
$←− BC(K,M), and the random

coins of D. Distinguisher D is typically bounded to have limited resources, such
as τ time and q queries to its oracle.

Note that, for the sake of generality, the definition explicitly allows the do-
main K′ and range K of the function φ to be distinct, although in many cases
one simply has K′ = K. If K′ = K and Φ = {k 7→ k}, the definition of related-key

security boils down to the classical definition: Advsrkprp
{k 7→k},E(D) = Advsprp

E (D).

Another famous set of related-key deriving functions is Φ⊕ = {k 7→ k⊕δ | δ ∈ K}.
The set may also include more involved functions, e.g., ones that internally rely
on evaluations of E as well [2]. Throughout, for any set Φ, we assume that
it never contains two identical functions, and we denote by |Φ| the number of
functions in the set.
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2.2 Tweakable Blockciphers

A tweakable blockcipher Ẽ : K×T ×M→M is a mapping such that for every
k ∈ K and every tweak t ∈ T , the function Ẽk(t, ·) = Ẽ(k, t, ·) is a permutation

onM. Like before, its inverse is denoted as Ẽ−1k (·, ·). Let P̃(T ,M) consist of all
functions π̃ : T ×M → M such that for all t ∈ T , π̃(t, ·) ∈ P(M). We define

the standard-model strong tweakable-PRP security of Ẽ as

Advs-s̃prp

Ẽ
(D) =

∣∣∣Pr
(
DẼ

±
k = 1

)
−Pr

(
Dπ̃
±

= 1
)∣∣∣ ,

where probabilities are over k
$←− K and π̃

$←− P̃(T ,M), and the random coins of
D. As before, D is typically bounded to operate in τ time and q queries to its
oracle.

This definition applies to an arbitrary tweakable cipher Ẽ. The q queries are
solely made to Ẽ±k or π̃±, and the time τ can be spent at the distinguisher’s

discretion. Suppose Ẽ uses a blockcipher E as underlying primitive. If we denote
by τE the uniform time needed for one evaluation of E, the distinguisher can
evaluate this underlying cipher at most r := τ/τE times. Assuming this block-
cipher E does not show underlying weaknesses, we can consider an abstraction
of the model and consider the distinguisher to be information-theoretic and
to have query access to E and Ẽ±k . The approach is also known as the ideal
model [9,14,54]. More formally, we define the ideal-model strong tweakable-PRP

security of Ẽ based on E as

Advi-s̃prp

Ẽ
(D) =

∣∣∣Pr
(
DẼ

±
k ,E

±
= 1
)
−Pr

(
Dπ̃
±,E± = 1

)∣∣∣ ,
where the probabilities are over k

$←− K, E
$←− BC(K,M), and π̃

$←− P̃(T ,M), and
the random coins of D. Distinguisher D is typically bounded to make q queries
to its first (construction) oracle and r queries to its second (primitive) oracle.

3 Formalization of Reduction and Optimality

Formalization of Reduction. In order to formally argue about reductionist
security of tweakable blockciphers to classical blockciphers, we first settle our
definition of a reductionist proof.

Definition 1. Let Ẽ be a tweakable blockcipher that internally uses a dedicated
blockcipher E. We say that the strong tweakable-PRP security of Ẽ reduces to
the strong related-key PRP security of E if for any s-s̃prp distinguisher D there
exists an rk-sprp distinguisher D′ with comparable resources such that

Advs-s̃prp

Ẽ
(D) ≤ δ ·Advsrkprp

Φ,E (D′) + ε ,

where Φ is some set of related-key deriving functions depending on the design of
Ẽ, δ a small constant, and ε is a term negligible in the security parameter of Ẽ.
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All existing standard-model security proofs on tweakable blockciphers from clas-
sical blockciphers [15,34–36,42,43,48,50] derive a reductionist bound of the form
of Definition 1. Even stronger, all of these results implicitly rely on a generic
standard-to-ideal reduction which we formalize in below lemma.

Lemma 1 (Generic Standard-to-Ideal Reduction). Let Ẽ be a tweakable

blockcipher that internally uses a dedicated blockcipher E. Assume that Ẽ makes
ρ calls to its underlying E and let Φ denote the set of all related-key deriving
functions under which E is evaluated. For any s-s̃prp distinguisher D,

Advs-s̃prp

Ẽ
(D) ≤ Advsrkprp

Φ,E (D′) + Advi-s̃prp

Ẽ
(D′′) ,

where D′ is a distinguisher making at most ρ · q queries and running in time τ ,
and D′′ is an information-theoretic distinguisher making at most q queries to its
construction oracle and 0 queries to its primitive oracle.

Proof. The proof follows a simple hybrid argument: first replace the underly-

ing blockcipher evaluations by a random blockcipher rE
$←− BC(K,M). This

step costs us Advsrkprp
Φ,E (D′). For the remaining analysis of Advs-s̃prp

Ẽ
(D) with

E replaced with secret rE : the distinguisher has no access to rk[rE ]k as it does
not know k nor rE . Therefore, we can safely assume it has unbounded com-
putational power, and transform it to an information-theoretic adversary that
is not allowed to query the underlying primitive. Hence, we obtain the term
Advi-s̃prp

Ẽ
(D′′) where D′′ has resources (q, 0). ut

We remark that in Definition 1 and Lemma 1, the set of related-key deriving
functions Φ depends on the tweakable blockcipher. In many cases, Φ just consists
of the identity function, Φ = {k 7→ k}, in which case the related-key security
boils down to the classical strong PRP security. This is for example the case for
LRW1 and LRW2, cf. Theorem 1 in Section 5. An example of a more elaborate
set of key-deriving functions is Φ⊕, cf. Theorem 3 in Section 5.

We furthermore remark that Lemma 1 consists of a somewhat pessimistic
bounding: the distinguishers D′ and D′′ are in fact constructed from D, and a
more accurate bounding would be of the form

Advs-s̃prp

Ẽ
(D) ≤ Advsrkprp

Φ,E (D′[D]) + Advi-s̃prp

Ẽ
(D′′[D]) .

In the context of Lemma 1, one would usually maximize both sides of the inequal-
ity over all possible distinguishers D,D′,D′′, while in the more accurate bound-
ing one would simply maximize both sides over D. In other words, the bound of
Lemma 1 gives a slightly more pessimistic result, but nevertheless, it exactly cov-
ers the reduction that is implicitly used in the proofs of [15,34–36,42,43,48,50].

Beyond this list of tweakable blockcipher results, the reduction of Lemma 1 in
fact finds implicit use in myriad other blockcipher based cryptographic designs,
including various authenticated encryption schemes [1, 3, 11, 21, 28, 33, 37, 44,
50, 51] and message authentication codes [4, 13, 16, 24, 29, 30, 41, 47, 57–59]. We
are not aware of any security result of a construction based on a standard-
model blockcipher that does not follow this reduction but that uses a structurally
different approach.
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Optimality. We additionally define what we mean with an optimally secure Ẽ.

Definition 2. Let Ẽ be a tweakable blockcipher that internally uses a dedicated
blockcipher E. We say that it is optimally standard/ideal-model secure if for any
distinguisher D making q queries to its construction oracle and r evaluations of
the primitive (where in the standard model, r = τ/τE):

Adv
s/i-s̃prp

Ẽ
(D) ≤ const ·max{q, r}

min{|K|, |M|}
,

for some small constant const.

The term r/|K| corresponds to recovering the key for Ẽ; apart from that, the
bound is rather arbitrary and conservative to maintain generality. We refer to
Bellare and Rogaway [10, Section 3.6] for an informal justification of the bound.
We refer to Bernstein and Lange [12] for an interesting discussion on the heuristic
existence of hard-to-find attackers.

4 Lower Bound on the Strong Related-Key PRP Security

We will derive a lower bound on the strong related-key PRP security of an arbi-
trary blockcipher E for any set of key-deriving functions Φ, demonstrating that
it can always be distinguished from a random blockcipher up to approximately
the birthday bound (apart from various technicalities). Earlier lower bounds, for
instance by Bellare and Kohno [7], targeted specific sets Φ, but it turns out that
the problem gets significantly harder if an arbitrary set of key-deriving functions
is considered. This is in part attributed to the fact that the lower bound would
depend on certain structural properties of Φ.

For a set of key-deriving functions Φ and a key k ∈ K, we write Φ(k) =
{φ(k) | φ ∈ Φ}. We denote by Ex (|Φ(k)|) the expected size of the set Φ(k),

where the randomness is taken over the choice of k
$←− K.

Proposition 1. Consider a blockcipher E : K ×M → M, and denote by τE
the uniform time needed for one evaluation of E. Let Φ be a set of related-key
deriving functions. There exists a distinguisher D making q queries and operating
in about τ time, such that

Advsrkprp
Φ,E (D) ≥ max

Φ′⊆Φ,|Φ′|=q′
Ex (|Φ′(k)|) · r′

2|K|
− 1

|M| − 1
,

where q′ = min{q − 1, |Φ|} and r′ = τ/τE − 1, which are required to satisfy
q′ · r′ ≤ |K|.

Proof. Let k
$←− K be the secret key used to instantiate the distinguisher’s oracle.

Let Φ′ = {φ1, . . . , φq′} ⊆ Φ be any subset of Φ of size q′. We construct
distinguisher DΦ′ as follows. Denote its oracle by Ok ∈ {rk[E]k, rk[rE ]k}.

(i) Fix any m ∈M;
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(ii) Let K′ = {l1, . . . , lr′}
$

⊆ K be a set of randomly drawn key values;

(iii) For i = 1, . . . , q′, query ci ← Ok(φi,m);

(iv) For j = 1, . . . , r′, evaluate yj ← E(lj ,m);

(v) If for some i, j we have ci = yj :

– Fix any m′ ∈M\{m};
– Query c′i ← Ok(φi,m

′) and evaluate y′j ← E(lj ,m
′);

– If c′i = y′j , return 1;

(vi) Return 0.

Remains to bound the success probability of DΦ′ . Recall that

Advsrkprp
Φ,E (DΦ′) ≥ Pr

(
Drk[E]±k
Φ′ = 1

)
−Pr

(
Drk[rE ]±k
Φ′ = 1

)
, (6)

and we will analyze these probabilities separately.

Starting with first probability of (6), if φi(k) = lj for some (i, j), then we
necessarily have ci = yj and c′i = y′j . Therefore,

Pr
(
Drk[E]±k
Φ′ = 1

)
≥ Pr (∃l ∈ Φ′(k) : l ∈ K′)

=
∑
L⊆K

Pr (∃l ∈ L : l ∈ K′ | Φ′(k) = L) Pr (Φ′(k) = L) . (7)

Note that two independent sources of randomness are involved: the drawing of

the key k
$←− K and the generation of random subset K′

$

⊆ K. We proceed with
the first probability of (7) for any fixed L of size at most q′. Via the inclusion-
exclusion principle, Bonferroni’s inequality states

Pr (∃l ∈ L : l ∈ K′ | Φ′(k) = L)

=

q′∑
β=1

(−1)β−1
∑
L′⊆L
|L′|=β

Pr (∀l ∈ L′ : l ∈ K′ | Φ′(k) = L)

≥
∑
l∈L

Pr (l ∈ K′ | Φ′(k) = L)−
∑
l,l′∈L
l 6=l′

Pr (l, l′ ∈ K′ | Φ′(k) = L) (8)

=
∑
l∈L

r

|K|
−
∑
l,l′∈L
l 6=l′

(
r
2

)(|K|
2

) =
|L| · r′

|K|
−
(|L|

2

)(
r′

2

)(|K|
2

) ≥ |L| · r
′

2|K|
,

as q′, r′ ≥ 1 and q′ · r′ ≤ |K|. This gives for (7):

Pr
(
Drk[E]±k
Φ′ = 1

)
≥
∑
L⊆K

|L| · r′

2|K|
Pr (Φ′(k) = L) =

Ex (|Φ′(k)|) · r′

2|K|
.
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For the second probability of (6), focus on the indices (i, j) for which the if-clause
is evaluated. We have

Pr
(
Drk[rE ]±k
Φ′ = 1

)
≤ Pr

(
c′i = y′j | ci = yj

)
=

1

|M| − 1
,

using that rE is a random permutation.
We thus obtain from (6):

Advsrkprp
Φ,E (DΦ′) ≥

Ex (|Φ′(k)|) · r′

2|K|
− 1

|M| − 1
.

Note that this bound holds for every choice of Φ′. The claim of Proposition 1 is
satisfied for D = DΦ′′ , where

Φ′′ = argmax
Φ′⊆Φ,|Φ′|=q′

Ex (|Φ′(k)|) . ut

We remark that the bounding of Pr
(
Drk[E]±k
Φ′ = 1

)
could be improved (i) by

involving more terms of the inclusion-exclusion principle in (8), and (ii) for
specific sets of key-deriving functions Φ, by choosing Φ′ and K′ more smartly.
For instance, for Φ = Φ⊕, the bound reads

Pr
(
Drk[E]±k
Φ′ = 1

)
≥ q′ · r′

2|K|
,

because Ex (|Φ′(k)|) = q′ for Φ′ ⊆ Φ⊕ of size q′. It is a straightforward exercise
to verify that, for a smart choice of Φ′ and K′, the probability can be pulled up

to q′·r′
|K| . Nevertheless, the bound of Proposition 1 suffices for our purposes.

We furthermore remark that the attack of Bellare and Kohno [7] for Φ =
Φ⊕∪Φ+ is better than the one resulting from Proposition 1. In fact, their attack
exploits potential collisions in Φ, rather than preimages. A generalization of
Proposition 1 to cover attacks of this kind is beyond the scope of this paper.
Nevertheless, we think that it is an interesting problem to derive a generalized
tight attack on any E and for any Φ, or at least a generalized attack that covers
Proposition 1, the attack of Bellare and Kohno, and more.

5 Examples

We discuss two state-of-the-art examples: one from Liskov et al. [36], and one
from Mennink [38].

5.1 Liskov et al.’s Scheme

In their original work [36], Liskov et al. introduced two tweakable blockcipher
constructions, both achieving approximately 2n/2 security. We consider the con-
struction that is based on two keys: k ∈ {0, 1}n and h coming from a universal
hash function family H (see also Figure 1):

LRW2([k, h], t,m) = E(k,m⊕ z)⊕ z, where z = h(t) .

11
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Fig. 1: Tweakable blockcipher LRW2
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Fig. 2: Tweakable blockcipher Men2

Follow-up results analyzed the security of a cascade of more than one indepen-
dent LRW2’s [34, 35, 48]; the currently outlined example directly generalizes to
these results.

Theorem 1 (Liskov et al. [36], Minematsu [42]). Let n ≥ 1, and let H
be an ε-almost 2-XOR-universal hash function family.4 Let D be a distinguisher
making at most q construction queries and running in time τ . Then,

Advs-s̃prp
LRW2 (D) ≤ Advsprp

E (D′) + εq2 ,

where D′ is a distinguisher making at most q queries and running in time τ .

Note that the strong tweakable-PRP security of LRW2 reduces to the strong
PRP security of E in the terminology of Definition 1. The implicit presence of
the generic standard-to-ideal reduction of Lemma 1 is obvious from the bound.
The term εq2 is the security bound for LRW2 if the underlying blockcipher is
replaced with an ideal secret permutation π.

5.2 Mennink’s Scheme

Mennink [38,39] recently introduced two tweak-rekeyable tweakable blockciphers
and analyzed them in the ideal cipher model. One of the constructions is the
following (see also Figure 2):

Men2(k, t,m) = E(k ⊕ t,m⊕ z)⊕ z, where z = E(2k, t) .

Note that we have taken the adjusted scheme from the full version [39], where
the masking is done with key 2k instead of k. This adjustment was introduced in
order to resolve a simple oversight in the proof as pointed out by Wang et al. [56].
Mennink [39] showed that this (adjusted) scheme Men2 achieves approximately
2n security. We remark that Wang et al. generalized the approach to designing
optimally secure tweakable blockciphers. The currently outlined example directly
generalizes to the constructions of [56].

Theorem 2 (Mennink [38, 39]). Let n ≥ 1. Let D be a distinguisher making
at most q construction queries and r primitive queries. Then,

Advi-s̃prp
Men2 (D) ≤ q + r

2n
+

2qr

(2n − q)(2n − q − r)
.

4 A hash function family H : K×X → Y is called ε-almost 2-XOR-universal if for all

distinct x, x′ ∈ X and y ∈ Y, Pr
(
h

$←− K : h(x)⊕ h(x′) = y
)
≤ ε [32, 49].

12



It is easy to verify that for max{q, r} ≤ 2n/4, the advantage can be upper
bounded by 4 max{q, r}/2n. Thus, Men2 is optimally ideal-model secure in terms
of Definition 2. In the standard model, using the generic transformation of
Lemma 1 and the definition of ΦMen2 from Section 1,

ΦMen2 = Φ⊕ ∪ {k 7→ 2k} = {k 7→ k ⊕ δ | δ ∈ K} ∪ {k 7→ 2k} ,

one can obtain the following result on Men2:

Theorem 3. Let n ≥ 1. Let D be a distinguisher making at most q construction
queries and running in time τ . Then,

Advs-s̃prp
Men2 (D) ≤ Advsrkprp

ΦMen2,E
(D′) +

q

2n
,

where D′ is a distinguisher making at most 2q queries and running in time τ .

Proof. By Lemma 1, we have

Advs-s̃prp
Men2 (D) ≤ Advsrkprp

ΦMen2,E
(D′) + Advi-s̃prp

Men2 (D′′) ,

where D′ is a distinguisher making at most 2q queries and runs in time τ ,
and D′′ an information-theoretic distinguisher making at most q queries to its
construction oracle and r = 0 queries to its primitive oracle. By Theorem 2, we
have Advi-s̃prp

Men2 (D′′) ≤ q
2n . ut

While the bound of Theorem 3 seems to improve over the one of Theorem 2,
this is not the case. Indeed, by the remark after Proposition 1:

Advsrkprp
ΦMen2,E

(D′) ≥ Advsrkprp
Φ⊕,E

(D′) ≥ (2q − 1)(r − 1)

|K|
− 1

2n − 1
= Ω

(
qr

|K|

)
,

contradictory implying that Men2 cannot be provably optimally standard-model
secure if the standard-to-ideal reduction is used. However, the attack of Propo-
sition 1 to break the strong RK-security of E for related-key deriving functions
Φ⊕ does not apply to Men2: its in- and output of E themselves are masked via a
key. A way to resolve this discrepancy would be to include the maskings within
the definition of related-key security, say the “strong masked related-key PRP”
but such a security notion would in fact be equivalent to the strong tweakable-
PRP security of Men2. It would be like reducing the security of E = AES to the
“AES-security” of E.

We note that in case one uses Men2 with two independent keys, i.e., replacing
2k with independent key k′, a comparable reasoning to that of Theorem 3 gives
bound

Advs-s̃prp
Men2 (D) ≤ Advsrkprp

Φ⊕,E
(D′) + Advsprp

E (D′′) +
q

2n
,

where D′ and D′′ are distinguishers making at most q queries and running in
time τ . The same reasoning as before subsequently applies.
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6 Generalized Tweakable Blockcipher Design

We consider a generalized tweakable blockcipher Ẽ based on a classical block-
cipher E. It follows the generic design of valid tweakable blockciphers by Men-
nink [38], with two differences. First, for simplicity and sake of presentation,
we separate the number of calls to E into ρ message-independent calls and σ
message-dependent calls, where ρ and σ are constants independent of the security
parameter n. This is without loss of generality, looking back at the formalization
of [38] and the assumption that Ẽ processes the data m “as a whole.” Second,
we will explicitly use two different keys ka and kb: kb is only used in the key
inputs to E and ka is only used in the masking (and indirectly in the data inputs
to E).5 We remark that our description is equivalent to the one of [38] if we set
ka = kb. In the generic design we consider tweaks of size n bits. The generic
construction easily generalizes to arbitrarily sized tweaks, but our impossibility
result of Section 7 assumes the tweak size to be close to n.

Formally, let n ≥ 1 and consider a blockcipher E : {0, 1}n × {0, 1}n →
{0, 1}n. We consider a generic tweakable blockcipher Ẽ[ρ, σ] : {0, 1}2n×{0, 1}n×
{0, 1}n → {0, 1}n based on ρ ≥ 0 message-independent precomputation calls to
E and σ ≥ 0 message-dependent calls to E as follows (see also Figure 3):

procedure Ẽ[ρ, σ](ka‖kb, t,m)

for i = 1, . . . , ρ do

xprei = Apre
i (ka, t, ypre1 , . . . , yprei−1)

lprei = Bpre
i (kb, t, ypre1 , . . . , yprei−1)

yprei = E(lprei , xprei )

y0 = m

for i = 1, . . . , σ do

xi = Ai(k
a, t, ypre1 , . . . , ypreρ , yi−1)

li = Bi(k
b, t, ypre1 , . . . , ypreρ )

yi = E(li, xi)

return c = Aσ+1(ka, t, ypre1 , . . . , ypreρ , yσ)

The functions Apre
i : {0, 1}(i+1)n → {0, 1}n and Ai : {0, 1}(ρ+3)n → {0, 1}n

compute the data inputs to E (and are keyed via ka), while the functions Bpre
i :

{0, 1}(i+1)n → {0, 1}n and Bi : {0, 1}(ρ+2)n → {0, 1}n compute the key inputs

to E (and are keyed via kb). To guarantee invertibility of Ẽ, we require that for
fixed ka, t, ypre1 , . . . , ypreρ the functions

Ai(k
a, t, ypre1 , . . . , ypreρ , ·)

are invertible for all i = 1, . . . , σ+1. (This is also the reason that Ai does not get
inputs y0, . . . , yi−2.) Apart from this condition, the functions Apre

i , Bpre
i , Ai, Bi

5 Our generalized design, as well as all follow-up results, can be easily generalized to
the case of 2(ρ+ σ) + 1 keys (one key for every processing function).
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Fig. 3: Tweakable blockcipher Ẽ[ρ, σ]: precomputation of yprei (left) and process-
ing of m (right). “inv.” means that the function is invertible

can be any function, as long as they are sufficiently efficient. We put no limitation
on how these functions process t; it may be split apart and processed by multiple
functions separately.

Note that the message-independent precomputation calls can to a certain
extent be reordered. Without loss of generality, there exists a ρ′ ≤ ρ such that
ypre1 , . . . , ypreρ′ are only used as inputs to Apre

i , Bpre
i , Bi, and that ypreρ′+1, . . . , y

pre
ρ are

also used as inputs to Ai. We define ρ′′ = ρ− ρ′.

6.1 Key-Uniformity

In the remainder of this work we will require a technical condition on Ẽ, which
informally assures that Ẽ does not behave structurally different for different
keys. For instance, it should not be the case that for some keys, l1 can take only
one value independent of the tweak, while for other keys, it can take 2n values
(one for every tweak). We will call this property “key-uniformity.” Note that the
condition slightly limits the generality of the scheme, but it is quite reasonable
that a scheme should behave comparably for all keys.

For brevity, view the functions Bpre
i for i = 1, . . . , ρ as mappings (ka, kb, t) 7→

lprei , and the functions Bi for i = 1, . . . , σ as mappings (ka, kb, t) 7→ li. Note that,
indeed, (ypre1 , . . . , yprei ), is a function of (ka, kb, t) for any i.

Definition 3. We say that Ẽ is c-key-uniform for some c ≥ 0, if there exist
λpre1 , . . . , λpreρ , λ1, . . . , λσ such that for any ka‖kb ∈ {0, 1}2n:

for i = 1, . . . , ρ : 2λ
pre
i −c ≤

∣∣rng(Bpre
i (ka, kb, ·))

∣∣ ≤ 2λ
pre
i ,

for i = 1, . . . , σ : 2λi−c ≤
∣∣rng(Bi(k

a, kb, ·))
∣∣ ≤ 2λi .

An observation we will use later on is that Ẽ calls its underlying E with key-
deriving functions Φ = Φpre

B ∪ ΦB , where:

Φpre
B := {(ka, kb) 7→ Bpre

i (ka, kb, t) | i ∈ {ρ′ + 1, . . . , ρ}, t ∈ {0, 1}n} ,
ΦB := {(ka, kb) 7→ Bi(k

a, kb, t) | i ∈ {1, . . . , σ}, t ∈ {0, 1}n} .
(9)
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6.2 Examples

The generalized design represents LRW2 of Figure 1 for ρ = 0, σ = 1, ka = h
(abusing notation), kb = k, and the following processing functions:

A1(h, t,m) = h(t)⊕m,

B1(k, t) = k ,

A2(h, t, y1) = h(t)⊕ y1 .

Note that LRW2 is 0-key-uniform (by putting λ1 = 0).
The generalized design represents Men2 of Figure 2 for ρ = σ = 1, kb = k

(ka is not used), and the following processing functions:

Apre
1 (t) = t , A1(t, ypre1 ,m) = ypre1 ⊕m,

Bpre
1 (k, t) = 2k , B1(k, t, ypre1 ) = k ⊕ t ,

A2(t, ypre1 , y1) = ypre1 ⊕ y1 .

Also Men2 is 0-key-uniform (by putting λpre1 = 0 and λ1 = n).

7 Impossibility

We will provide a heuristic argument that if the standard-to-ideal reduction of
Lemma 1 is used, optimal security in the standard model by a tweak-rekeyable
tweakable blockcipher as described in Section 6 is at least as hard as achieving
it by a non-tweak-rekeyable one. The analysis is based on below Assumption 1.

Assumption 1. For any scheme Ẽ as described in Section 6 that is non-tweak-
rekeyable (hence, lprei and li are independent of t), and any T ⊆ {0, 1}n of size

|T | ≥ 2(ρ
′′+σ)n/(ρ′′+σ+1), we have

Advi-s̃prp

Ẽ
(D) ≥ qρ

′′+σ+1

2(ρ′′+σ)n

for some distinguisher D which only takes tweaks from T .

The lower bound on |T | in Assumption 1 is argued by the observation that

the bound on Advi-s̃prp

Ẽ
(D) is void for q ≥ 2(ρ

′′+σ)n/(ρ′′+σ+1). In other words:

any attacker against Ẽ will make at most approximately q ≤ 2(ρ
′′+σ)n/(ρ′′+σ+1)

queries and thus require at most that many tweaks for its attack. The assumption
is discussed in further detail in Section 8.

Theorem 4. Let n ≥ 1 and let ρ, σ ≥ 0. Let Ẽ be any tweakable blockcipher
as in Section 6 that is c-key-uniform for some small c. Let Φ be as in (9). If
Assumption 1 holds, then

max
D′

Advsrkprp
Φ,E (D′) + max

D′′
Advi-s̃prp

Ẽ
(D′′)

= Ω

(
min

{
qr

2n
,
qρ
′′+σ+1

2(ρ′′+σ)n
,

r(ρ
′′+σ)(ρ′′+σ+1)

2((ρ′′+σ)(ρ′′+σ+1)−1)n

})
,

(10)
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where the first maximum is taken over all srkprp distinguishers D′ that make at
most (ρ′′ + σ) · q construction queries and at most r primitive evaluations, and
the second maximum is taken over all information-theoretic i-s̃prp distinguishers
D′′ that make q construction queries and 0 primitive queries.

We give an interpretation of Theorem 4 in Section 7.1, and its proof in Sec-
tion 7.2.

7.1 Interpretation of Theorem 4

Suppose our goal is to prove security of Ẽ against any s-s̃prp distinguisherD, that
can make q construction queries and r evaluations of the primitive. If we would
opt to follow the standard-to-ideal reduction of Lemma 1, the first transition
would give us an unavoidable bound

Advs-s̃prp

Ẽ
(D) ≤ Advsrkprp

Φ,E (D′) + Advi-s̃prp

Ẽ
(D′′) ,

where D′ is a distinguisher making at most (ρ′′+σ)q queries6 and making r prim-
itive queries, and D′′ is an information-theoretic distinguisher making at most q
queries to its construction oracle and 0 queries to its primitive oracle. Effectively,
this step corresponds to replacing the ρ′′ message-independent evaluations of E
that are used by the masking functions A1, . . . , Aσ and the σ message-dependent
evaluations of E by a secret random related-key blockcipher rk[rE ]kb . The re-
maining ρ′ evaluations of E in the message-independent precomputation occur
indirectly via the related-key deriving functions.

A next step in the security analysis would be to bound both terms for the
strongest possible distinguishers D′ and D′′. However, Theorem 4 shows that we
can impossibly prove optimal security of this bound in terms of Definition 2. The
theorem can henceforth be informally captured as follows.

Corollary 1. If 2σn/(σ+1) is the best one can get without tweak-rekeying, op-
timal 2n provable security with tweak-rekeying via the generic standard-to-ideal
reduction is impossible.

The bound of Theorem 4 is worse than the bound of Assumption 1, an unavoid-
able loss to cover worst-case scenarios. The loss shows that with tweak-rekeying
we can get closer to 2n than without tweak-rekeying, but we can never achieve
optimal security. That is, the bound of (10) cannot give 2n/const security pro-
vided that ρ and σ are constant.

The result leaves aside the question of whether the generic standard-to-ideal
reduction is strictly necessary. We will discuss this question in Section 8.

6 We remark that the complexity of D′ in Lemma 1 may be optimized depending on
the scheme: if ρ′ out of ρ calls to the underlying E are solely made for the purpose
of computing subkeys to later blockcipher calls, then these evaluations of E will be
absorbed by the set of related-key deriving functions. This is for instance the case
for Min of (3), where the set of key-deriving functions will be ΦMin of Section 1, and
D′ can make at most q queries.
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7.2 Proof of Theorem 4

Before going to the proof of Theorem 4, we will give a high-level intuition. The
core idea is to consider the two terms of (10), and to make a distinction depending
on how much freedom the distinguisher has in influencing the rekeying of the σ
message-dependent evaluations of E. We consider two cases:

(1) Tweaks have little to no influence on the rekeying of each of the blockciphers.

In this case, the lower bound on Advsrkprp
Φ,E (D′) (Proposition 1) will be small

and we cannot argue based on this part of the bound. On the other hand, the
distinguisher can select a large set of tweaks T for which the blockciphers
will never be rekeyed. This way, D would simply be considering a non-tweak-
rekeyable cipher, for which Assumption 1 applies;

(2) Tweaks have a significant influence on the rekeying of some of the blockci-

phers. In this case, the lower bound on Advsrkprp
Φ,E (D′) (Proposition 1) will

be significant, and imply the impossibility of an optimal security bound.

Combining the two cases will imply the lower bound of Theorem 4. This high-
level overview omits a few technicalities. Most importantly, case (1) requires
an upper bound on the influence of the tweaks while case (2) requires a lower
bound. This is resolved using the c-key-uniformity of Definition 3.

Proof (Proof of Theorem 4). Let ka, kb be two fixed secret keys. Recall that Ẽ
is c-key-uniform for some small c. Let

λ∗ = max{λpreρ′+1, . . . , λ
pre
ρ , λ1, . . . , λσ} .

We will derive a lower bound on

max
D′

Advsrkprp
Φ,E (D′) + max

D′′
Advi-s̃prp

Ẽ
(D′′) (11)

by making a case distinction depending on λ∗.

Case 2n−λ
∗(ρ′′+σ) ≥ 2(ρ′′+σ)n/(ρ′′+σ+1). For simplicity, we bound (11) as

max
D′

Advsrkprp
Φ,E (D′) + max

D′′
Advi-s̃prp

Ẽ
(D′′) ≥ max

D′′
Advi-s̃prp

Ẽ
(D′′) ,

and argue based on the i-s̃prp security, where the maximum is taken over any
information-theoretic D′′ that makes at most q construction queries and 0 prim-
itive evaluations.

By maximality of λ∗, there is a set T ′ ⊆ {0, 1}n of size

|T ′| ≥ 2n∏ρ
i=ρ′+1 |rng(Bpre

i (ka, kb, ·))| ·
∏σ
i=1 |rng(Bi(k

a, kb, ·))|
≥ 2n−λ

∗(ρ′′+σ)

such that Bpre
i (ka, kb, t) = Bpre

i (ka, kb, t′) and Bi(k
a, kb, t) = Bi(k

a, kb, t′) for all
t, t′ ∈ T ′. By Assumption 1, applied for this T ′, we obtain

max
D′′

Advi-s̃prp

Ẽ
(D′′) ≥ qρ

′′+σ+1

2(ρ′′+σ)n
. (12)
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Note that T ′ is key-dependent and the distinguisher from Assumption 1 does
not know T ′. This is not a problem, though, as in (12) we are maximizing over
all distinguishers: the maximum over all distinguishers equals the maximum over
all distinguishers that only take tweaks from T ′, maximized over all possible sets
T ′.

Case 2n−λ
∗(ρ′′+σ) ≤ 2(ρ′′+σ)n/(ρ′′+σ+1). For simplicity, we bound (11) as

max
D′

Advsrkprp
Φ,E (D′) + max

D′′
Advi-s̃prp

Ẽ
(D′′) ≥ max

D′
Advsrkprp

Φ,E (D′) ,

and argue based on the srkprp security, where the maximum is taken over any
distinguisher D′ that makes at most (ρ′′+σ) ·q construction queries and at most
r primitive evaluations.

By Proposition 1,

max
D′

Advsrkprp
Φ,E (D′) ≥ max

Φ′⊆Φ,|Φ′|=q′
Ex (|Φ′(k)|) · r′

2n+1
− 1

2n − 1
,

where q′ = min{(ρ′′ + σ)q − 1, |Φ|} and r′ = r − 1. Note that

max
Φ′⊆Φ,|Φ′|=q′

Ex (|Φ′(k)|) ≥ min{(ρ′′ + σ)q − 1, 2λ
∗−c} .

This maximum is achieved for Φ′ being a subset of the set of key-deriving func-
tions for which the maximum λ∗ is achieved. As 2λ

∗ ≥ 2n/((ρ
′′+σ)(ρ′′+σ+1)), we

derive:

max
D′

Advsrkprp
Φ,E (D′) ≥ min{(ρ′′ + σ)q − 1, 2n/((ρ

′′+σ)(ρ′′+σ+1))−c} · r′

2n+1
− 1

2n − 1
.

Assuming that 2n/((ρ
′′+σ)(ρ′′+σ+1))r′

2n+1+c ≤ 1 (otherwise the term will not influence
the bound), above term is lower bounded by

max
D′

Advsrkprp
Φ,E (D′) ≥ min

{
((ρ′′ + σ)q − 1)r′

2n+1
,

2nr′
(ρ′′+σ)(ρ′′+σ+1)

2(n+1+c)(ρ′′+σ)(ρ′′+σ+1)

}
− 1

2n − 1
.

Conclusion. We get for (11):

max
D′

Advsrkprp
Φ,E (D′) + max

D′′
Advi-s̃prp

Ẽ
(D′′)

= Ω

(
min

{
qr

2n
,
qρ
′′+σ+1

2(ρ′′+σ)n
,

r(ρ
′′+σ)(ρ′′+σ+1)

2((ρ′′+σ)(ρ′′+σ+1)−1)n

})
,

assuming that c is a small constant. This completes the proof. ut
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8 Discussion

The results shine a negative light on optimal standard-model security of tweak-
able blockciphers and give rise to multiple questions.

What are the implications of the negative standard-model result on Men2 of The-
orem 3? Despite what the lower bound of Theorem 3 suggests, the gap is mainly
caused by the estimation in the hybrid step. More detailed, the step where E
is replaced with Advsrkprp

ΦMen2,E
(D′) is extremely loose, and an attacker D′ that

maximizes its success probability in breaking the related-key security of E is
not transformable to an attacker on Men2. Concretely, standard-model security
derivations simply cannot confirm this.

How do the standard and ideal model compare, and what are the implications
of results in both models? This question is not easy to answer. Results in the
ideal cipher model are likely to be over-optimistic, while the standard-model
results are too loose, mainly due to the seemingly necessary generic reduction of
Lemma 1. Intuitively, the “real” security of a scheme satisfies

ideal-model security ≤ “real” security ≤ standard-model security.

The question is, which of the estimates is tighter? In the ideal-model versus
standard-model results on Men2, Theorem 2 versus Theorem 3, the standard-
model bound seems to be too loose. For different schemes, it may be the other
way around. A potential approach to go is to weaken the ideal-model, an ap-
proach for instance followed by Shrimpton and Terashima [55], yet, this approach
is ultimately still an ideal-model approach.

In either situation, the findings of this work contribute to a better under-
standing of how both models compare, and demonstrate that results in the two
models should be interpreted with care. We believe that, taking these issues into
account, the ideal-cipher security model is still reasonable to consider.

Is Assumption 1 reasonable? Recall that Lampe and Seurin [34] conjectured that
the cascade of σ LRW2’s achieves 2σn/(σ+1) security (for the cascade of LRW2’s
we have ρ = ρ′ = ρ′′ = 0). Assumption 1 suggests that this is the best possible
for non-tweak-rekeyable tweakable blockciphers. Regardless of this, it is merely
used as starting point: if the assumption holds, then tweak-rekeying will not help
in achieving optimal security. Assumption 1 allows for some stretch: if it is not
true and a slightly more secure tweakable blockcipher can be constructed, the
results (and in particular Theorem 4) generalize accordingly.

The heuristic bound in Theorem 4 is better than the one of Assumption 1,
which indicates that tweak-rekeyability may result in a better bound than non-
tweak-rekeyability (but no optimal one). However, the derivation of the bound
of Theorem 4 is very conservative. For instance, it relies on the superset bound
Φ ⊇ ΦB of (9) and on a lower bound on |ΦB |, both of which are loose. Tighter

bounds for Theorem 4 may be achieved if more properties of Ẽ are taken into
account.
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Can we Salvage the Generic Standard-to-Ideal Reduction? Theoretically, Theo-
rem 4 gives a lower bound on an upper bound argued via the generic reduction
of Lemma 1. This is in itself little informative, yet it shows us that if this clas-
sical first-step reduction is used, we cannot get optimal security. Note that we
do not claim that the standard-to-ideal reduction is unavoidable, but that if
this reduction is applied, the term of (10) is unavoidable. A way to circumvent
the usage of the reduction and the strong (related-key) PRP security definition
as formalized in Section 2.1 may be by using a generalized security model for
blockciphers, such as the “strong masked related-key PRP security.” Such a gen-
eralized security model would, however, only absorb various design properties of
the tweakable blockcipher, and shift the problem instead of solving it.
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