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Abstract. Garbled circuits are of central importance in cryptography, finding
widespread application in secure computation, zero-knowledge (ZK) protocols,
and verifiable outsourcing of computation to name a few. We are interested in a
particular kind of garbling scheme, termed privacy-free in the literature. We show
that Boolean formulas can be garbled information-theoretically in the privacy-
free setting, producing no ciphertexts at all. Existing garbling schemes either rely
on cryptographic assumptions (and thus require cryptographic operations to con-
struct and evaluate garbled circuits), produce garbled circuits of non-zero size, or
are restricted to low depth formulaic circuits. Our result has both theoretical and
practical implications for garbled circuits as a primitive. On the theory front, our
result breaks the known theoretical lower bound of one ciphertext for garbling an
AND gate in this setting. As an interesting implication of producing size zero gar-
bled circuits, our scheme scores adaptive security for free. On the practical side,
our garbling scheme involves only cheap XOR operations and produces size zero
garbled circuits. As a side result, we propose several interesting extensions of our
scheme. Namely, we show how to garble threshold and high fan-in gates.
An aspect of our garbling scheme that we believe is of theoretical interest is that
it does not maintain the invariant that the garbled circuit evaluator must not at any
point be in possession of both keys of any wire in the garbled circuit.
Our scheme directly finds application in ZK protocols where the verification func-
tion of the language is representable by a formulaic circuit. Such examples in-
clude Boolean formula satisfiability. The ZK protocols obtained by plugging in
our scheme in the known paradigm of building ZK protocols from garbled cir-
cuits offer better proof size, while relying on standard assumptions. Furthermore,
the adaptivity of our garbling scheme allows us to cast our ZK protocols in the
offline-online setting and offload circuit dependent communication and computa-
tion to the offline phase. As a result, the online phase enjoys communication and
computation (in terms of number of symmetric key operations) complexity that
are linearly proportional to the witness size alone.
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1 Introduction

Garbled circuits (GC) are of paramount importance in cryptographic protocol theory,
lending their power in building vital cryptographic primitives such as secure compu-
tation in two party [Yao86, LP07, LP11, LR15] and multiparty [BELO16, CKMZ14,



MRZ15] settings, zero-knowledge protocols [JKO13, FNO15, ZRE15], verifiable out-
sourcing of computation [GGP10], and functional encryption [SS10] to name a few.
Roughly speaking, a GC allows evaluation of a circuit in its encoded form on an en-
coded input, and produces an encoded output. Based on the application that a GC
serves, the information required to decode the output may be provided to the evalu-
ator, or retained by the GC constructor if she wishes to keep the function output pri-
vate. GCs first made their appearance in Yao’s secure two-party computation proto-
col [Yao86]. Following multiple optimizations [BMR90, MNPS04, NPS99, PSSW09,
BHKR13, GLNP15, ZRE15, KMR14, KS08], GCs today are an indispensable primitive
used in various secure protocols. Their theoretical importance and potential to serve as
a cryptographic primitive has been recognized by Bellare et al. [BHR12b], who elevate
GCs from a technique to be used in other protocols, to a cryptographic primitive. To
facilitate abstraction as a primitive, the fundamental work of Bellare et al. [BHR12b]
formalizes three notions of security that a garbling scheme may achieve; namely pri-
vacy, obliviousness, and authenticity, and shows separation between them. Informally,
privacy aims to protect the privacy of encrypted inputs, while obliviousness hides both
the input and the output when the output decoding information is withheld. However
once the output decoding information is revealed, obliviousness does not necessarily
imply privacy of inputs. Lastly, authenticity captures the unforgeability of the output
of a garbled circuit evaluation. Different applications of GC often use different com-
binations of the above properties of garbling schemes. Majority of the schemes in the
literature, including the classical scheme of Yao [Yao86], satisfy all the three aforemen-
tioned properties.

In the original scheme of Yao [Yao86], each wire in the GC was assigned two strings
called “keys”, each corresponding to bit values zero and one on that wire. A garbled
gate in the circuit was represented by ciphertexts encrypting its output wire keys using
the corresponding input wire keys as per the gate’s truth table. A garbled gate for a
gate with fan-in two is thus constituted of four ciphertexts. An evaluator who knows
one key for each input wire can only open one of the ciphertexts and therefore obtain
only one key for the gate output wire, corresponding to the bit output of the gate. The
final garbled circuit was a composition of the garbled gates, and its size was defined
as the number of bits of ciphertext needed overall. The encoded input consisted of the
keys on the input wires corresponding to the input bits. On receiving an encoded input,
an evaluator evaluates the gates topologically, finding the output key for every gate,
and stops when the keys for the output gates are obtained. The efficiency of a GC is
determined by the computation cost (for the constructor and the evaluator) and its size.
The latter directly impacts the communication complexity of protocols that employ the
GC. Towards making secure computation practically efficient, tremendous efforts have
been made in boosting the performance and efficiency of GCs. Some of the outstanding
lines of work are highlighted below.

The work of the evaluator is significantly cut down via a technique called point-
and-permute [BMR90, MNPS04]. Specifically, it cuts down the computation cost of
an evaluator to one quarter, by introducing a pointing mechanism for every gate that
imparts to the evaluator the knowledge of the particular ciphertext that she needs to de-
crypt in order to evaluate a garbled gate. Put differently, an evaluator simply decrypts



the relevant ciphertext, skipping the remaining three for a two-input gate. Next, the cel-
ebrated Free-XOR technique [KS08] shows a simple yet brilliant way of garbling and
evaluating XOR gates with zero ciphertexts and no cryptographic operations. Garbled
Row Reduction (GRR) techniques [NPS99,PSSW09,GLNP15,ZRE15] are devoted to-
wards making concise garbled gates by fixing some of the ciphertexts to constant values
(therefore removing the need to transmit them). Both free-XOR and GRR techniques
are instrumental in reducing the size of GCs. To date, the best known garbling scheme
can garble an XOR gate with zero ciphertexts, and an AND gate with just two cipher-
texts using free-XOR and clever GRR techniques [ZRE15]. Precluding further improve-
ment in this domain, the work of [ZRE15] shows optimality of two ciphertexts (or 2µ
bits; µ is the computational security parameter) for garbling an AND gate. Specifically,
the lower bound holds true for any scheme that is captured by their characterization of
linear garbling techniques. Informally, a garbling scheme qualifies to be linear when the
circuit constructor and evaluator need to perform linear operations apart from making
random oracle calls. Several other techniques for improving the computation cost of the
constructor and evaluator are reported in [BHR12b, BHKR13]. The efficiency study of
GCs are further enriched and extended by considering a number of interesting relax-
ations that lead to further optimizations. In one, some of the security properties of GCs
are compromised. In the others, specific classes of circuits are used for garbling. As we
discuss below, these relaxed notions of GCs are not only interesting from an application
perspective, but they also show significant savings in terms of both size and computa-
tion cost. Since our work makes further inroad in the study of the GCs exploiting some
relaxations, we take a detailed look at the relevant literature in order to set the stage for
our contribution.

Privacy-free Garbling. In a breakthrough result, Jawurek et al. [JKO13] show that effi-
cient zero knowledge (ZK) protocols for non-algebraic languages can be constructed
based on garbling schemes achieving only authenticity. Frederiksen et al. [FNO15]
termed this class of garbling schemes as privacy-free. There has since been significant
interest in garbled circuit based ZK protocols [CGM16, HMR15]. A privacy-free gar-
bling scheme does not need to satisfy privacy nor obliviousness, instead it only requires
authenticity and a notion of verifiability. Informally, verifiability ensures that even a
malicious constructor cannot create a garbled circuit that can be evaluated to different
garbled output values, for inputs which when applied to the circuit in clear give the
same output. This property is needed to mitigate selective failure attacks that a mali-
cious verifier could possibly mount in a ZK protocol. Though as of writing this paper,
the primary motivation of work in privacy-free garbling is to plug into the GC based ZK
protocols which can prove that a ‘prover’ knows x such that f(x) = 1 in zero knowl-
edge efficiently for non-algebraic f , verifiable outsourcing of computation provides
another potential application for privacy-free GCs [BHR12b, BHR12a]. Motivated by
the important use-cases of privacy-free garbling schemes, [FNO15] and [ZRE15] study
the efficiency of privacy-free garbling. Both works show that more efficient GCs than
the most optimized Yao’s GC can be constructed by leveraging privacy-freeness. In
terms of individual gate garbling computation and communication cost in the privacy-
free setting, the Half Gates approach [ZRE15] which is currently the most efficient,
requires one ciphertext per garbled AND gate, and no ciphertexts to garble XOR gates



(with two calls to a hash function H per AND gate). Zahur et al. [ZRE15] also argue
a lower bound of one ciphertext (or µ bits; µ is the computational security parameter)
required to garble an AND gate for any linear scheme, and conclude optimality of their
privacy-free construction.

Garbling for Formulaic Circuits. Formulaic circuits or formulas, informally, are cir-
cuits comprised solely of gates with fan-out of one. Formulaic circuits have several
use-cases, such as Boolean formula satisfiability and membership in a language to
name a few. By Cook’s theorem, there exists a Boolean formula of size polynomial
in |x| that can verify an NP-witness of membership of x in language L. Formula sat-
isfiability and language membership are well studied languages in the study of ZK
protocols [CD97, KR06, Gro10, Lip12, GGPR13]. There are examples abound show-
ing that treating Boolean formulas as a separate case from a general circuit may be
apt [Kol05,KR06,KKKS15]. In the context of garbling, Kempka et al. [KKKS15] show
how to garble a formulaic circuit with just four bits to represent each garbled gate. In
contrast, even the best known garbling scheme for general circuits [ZRE15] needsO(µ)
bits where µ denotes computational security parameter. However, the garbling scheme
of Kempka et al. [KKKS15] requires expensive public-key operations (which also dis-
qualifies it from being a linear scheme). In yet another attempt, Kolesnikov [Kol05]
shows how to garble a formula information-theoretically under the umbrella of “Gate
Evaluation Secret Sharing”, or GESS. The underlying garbling scheme achieves pri-
vacy (and though not explicitly proven or defined, authenticity) using only information-
theoretic operations and produces a GC of size zero. On the down side, the keys associ-
ated with the wires have their length dependent on the depth of the circuit. Specifically,
for a circuit of depth d and a statistical security parameter κ, a key on an input wire can
be of sizeO(d(κ+d)). Thus the input circuit needs to be of low depth, apart from being
formulaic. The blow-up in key size also means that it does not meet the requirement of
linearity as per [ZRE15]. Information-theoretic schemes are attractive in practice due
to their highly efficient computation cost.

The schemes reported in [FNO15,ZRE15,KKKS15] are neither information-theoretic
nor do they produce size-zero GCs. On the other hand, while the scheme of [Kol05] pro-
duces size-zero GCs, it is restricted to low-depth formulaic circuits. This leaves open
the question of achieving best of the both worlds and sets the stage for our contribution.

1.1 Our Contribution

In this work, we explore privacy-free garbling for formulas (of arbitrary depth). Our
findings are presented below.

Privacy-free garbling for formulas with size-zero GCs and information-theoretic secu-
rity. The main contribution in this paper is to present a privacy-free garbling scheme
for formulas of arbitrary depth that achieves information-theoretic security, size-zero
GCs, and circuit-depth independence for the keys. Unlike in the information-theoretic
scheme of [Kol05], the key length for the wires in our scheme is independent of the
circuit depth. Unlike the schemes of [FNO15, ZRE15, KKKS15], ours is information-
theoretic and is extremely fast due to the usage of cheap XOR operations. A couple of
interesting theoretical implications of our result are given below.



– Breaking the lower bound of [ZRE15]. The proven lower bound on the number of
ciphertexts (bits) for garbling an AND gate is one (µ bits; µ is a security parame-
ter) as per any linear garbling scheme. We show that our scheme is linear and yet
requires no ciphertext at all to garble any gate. This breaks the lower bound shown
in [ZRE15] for linear garbling schemes in the privacy-free setting.

– Achieving Adaptive Security for Free. A garbling scheme is said to achieve static
security if its security properties are guaranteed as long as the choice of input to
the circuit is not allowed to depend on the garbled circuit itself. A scheme is adap-
tively secure when there is no such restriction. Several applications, notably one-
time programs [GKR08], secure outsourcing [GGP10], and ZK protocols cast in
offline-online setting [KR06] need adaptive security, where the input may depend
on the garbled circuit. An interesting implication of size-zero GC is that, in the
terminology of Bellare et al. [BHR12b, BHR12a] achieving static security for our
construction is equivalent to achieving adaptive security3.

Several works confirm that privacy-freeness brings along efficiency both in terms
of size and computation complexity of garbled circuits. We reaffirm this belief. Specif-
ically, garbling an XOR gate requires three XOR operations (which can be improved
in the multi-fan-in setting), while garbling an AND gate requires only one XOR op-
eration. Evaluating any gate requires at most one XOR operation. Interestingly, con-
trary to the norm in secure multiparty computation, AND gates are handled (garbled,
evaluated, and verified) more efficiently than XOR gates in our construction. Further-
more, our scheme requires only one κ-bit random string to generate all keys for both
incoming wires to an AND or XOR gate. In Table 1, we compare our work against
other schemes operating in the privacy-free setting to garble formulaic circuits, namely
with [FNO15, ZRE15, Kol05]. The performance is measured with respect to a statisti-
cal security parameter κ for the information-theoretic constructions and with respect to
a computational security parameter µ for cryptographic constructions, for a formulaic
circuit of depth d. For most of the practical purposes, the value of µ can be taken as 128,
while the value of κ can be taken as 40. Apart from usual measures (size and compu-
tation cost) of GCs, we also take into account the input key length of the GCs resulted
from various schemes for comparison. The input key length impacts the communication
required in the input encoding phase, which is frequently done by expensive Oblivious
Transfer (OT) [EGL85] instances.

Technically, our scheme is very simple. We garble “upwards” from the output wire
similar to the garbling schemes of [Kol05,KKKS15]. As with many secure computation
protocols, at the heart of our scheme is our method for handling AND gates. Here,
we provide a preview of how our scheme garbles an AND gate g. Denote the keys
corresponding to bit b on the left and right incoming wires, and the gate output wire,
as Lb, Rb, and Kb respectively. Our garbling scheme proceeds as follows. L1 and R1

are defined as additive shares of K1 so that L1 ⊕ R1 = K1. Therefore, an evaluator
can derive K1 = L1 ⊕ R1 only if she has both L1 and R1. We then copy the value of
K0 to the zero keys of both incoming wires; L0 = R0 = K0. An evaluator hence has
the output key corresponding to bit value zero if she has a zero key on either incoming

3 Specifically, our scheme achieves aut1 security in the terminology of [BHR12a]



Table 1: Performance and Security comparison of various Privacy-free garbling
schemes for formulaic circuits. Calls to H refers to the number of hash function in-
vocations. µ and κ refer to the computational and the statistical parameter respectively.
d is circuit depth.

Garbling Scheme

Cost per gate

Input key size Security
Size (in bits) Computation (Calls to H)

XOR AND
Constructor Evaluator
XOR AND XOR AND

Row reduction (GRR1) [FNO15] µ µ 0 3 0 1 µ Static Computational
freeXOR+GRR2 [FNO15] 0 2µ 0 3 0 1 µ Static Computational
Half Gates [ZRE15] 0 µ 0 2 0 1 µ Static Computational
GESS [Kol05] 0 0 0 0 0 0 O (d(κ+ d)) Adaptive Unconditional

This work 0 0 0 0 0 0 κ Adaptive Unconditional

wire. Note that in the case that the left incoming wire has value 0 flowing on it, and the
right incoming wire 1, an evaluator will effectively possess both keys R0 and R1 on the
right incoming wire;R1 obtained legitimately, andR0 as it is equal to L0. We show that
our scheme tolerates the leakage of certain keys within the garbled circuit (both directly
and indirectly due to the observation above), at no cost of security.

The above aspect of our scheme is of theoretical interest as we do not maintain the
invariant that an evaluator is allowed to know only one key on each wire. Our scheme
achieves authenticity despite conceding both keys to an evaluator on certain wires. In
fact, this property is taken advantage of in order to gain much in terms of efficiency.
To the best of our knowledge, ours is the first garbling scheme where this invariant is
not maintained. A direct implication of violating this invariant is that the standard proof
paradigms for garbled circuits (which assume the invariant to hold) are not applicable
here. We exploit the fact that the only gate that is necessarily “uncompromised” is the
circuit output gate, and reduce (with no security loss) the authenticity of the circuit
output gate in the context of an arbitrarily large circuit, to the authenticity of a single-
gate circuit.

Extensions for high fan-in gates and general circuits. To optimize our garbling scheme,
we propose efficient garbling of `-fan-in gates. Apart from handling `-fan-in XOR and
AND gates, we consider threshold gates and provide a new garbling scheme for them.
A threshold gate with fan-in ` and threshold t with ` > t outputs 1 when at least t + 1
inputs carry the bit 1, and zero otherwise. The threshold range 1 < t < `−1 is of inter-
est to us, as the gate otherwise degenerates into an `-fan-in AND or NAND gate, which
can be handled more efficiently by our scheme. Boolean threshold gates are considered
and motivated by Ball et al. [BMR16], who construct a scheme to garble them natively
(generating O

(
log3 `/ log log `

)
ciphertexts) as opposed to garbling a composition of

AND, XOR and NOT gates (yielding O (` log `) ciphertexts using the best known gar-
bling scheme of [ZRE15]). Here, we present a method of garbling Boolean threshold
gates (embedded in formulaic circuits) directly in privacy-free setting, producing no ci-
phertext, and using only information-theoretic operations; specifically two independent
instances of Shamir secret sharing [Sha79] per threshold gate.



The power of threshold gates is brought out in the fact that NC0 ( AC0 ( TC0,
where circuits deciding languages in TC0 contain majority gates in addition to AND,
OR and NOT. More practically, threshold gates implement natural expressions in the
settings of zero-knowledge [JKO13] and attribute-based credentials [KKL+16]. In the
former case, threshold gates can implement statements of the form, “I have witnesses
for at least t out of these ` statements”, without revealing for which statements the
prover has witnesses. In the case of attribute-based credentials, one can prove that her
attributes satisfy at least t criteria out of ` in a policy, without revealing which ones, or
how many exactly.

We show how to garble and evaluate ` fan-in XOR and AND gates with fewer XOR
operations than are needed when we express such gates in terms of two fan-in XOR and
AND gates respectively. Specifically, garbling an `-fan-in XOR gate directly takes 2`
XOR operations, as opposed to 3(` − 1) XOR operations to garble ` − 1 XOR gates
individually. Evaluating an `-fan-in AND gate, in 2` − 1 cases out of 2`, will take zero
XOR operations. In the final case, the evaluation is done at the same cost as evaluating
`− 1 individual AND gates.

For completeness, we describe how to adapt our scheme to garble generic circuits in
the privacy-free setting in the full version of the paper. While the adaptation itself is not
generally efficient for circuits that are not largely formulaic, it establishes the feasibility
of violating the single-key invariant when garbling any generic circuit, at least in the
privacy-free setting. Our approach relies on cryptographic assumptions. For generic
circuits that are not largely formulaic in nature, the construction of [FNO15, ZRE15]
can be used. However, both the constructions rely on non-standard assumptions. In
[FNO15], it is a customized notion of key derivation function (KDF) where random
oracle can be shown to be a secure KDF. In [ZRE15], the construction needs a circular
correlation robust hash function. We take a look at the scheme of [GLNP15] which
works under standard pseudo-random function (PRF) assumption and propose several
optimizations in privacy-free setting in the full version of the paper.

Application to ZK Protocols. Lately, ZK protocols from garbled circuits has gained a lot
of momentum [JKO13,FNO15,CGM16], with applications such as attribute-based key
exchange built on top of them [KKL+16]. We apply our garbling scheme to the domain
of ZK protocols where the verification function of the language is representable by an
almost formulaic circuit such as Boolean formula satisfiability. When we plug in our
scheme in the paradigm of [JKO13] (with a slight tweak), we get ZK protocols that
rely on standard assumption (PRG) in the OT-hybrid model and results in a better proof
size for right choice of the security parameters than the known instantiations in the same
paradigm. The best known GC-based ZK instantiation that results from the composition
of the privacy-free construction of [ZRE15] and the ZK protocols of [JKO13] needs to
rely on KDF and circular correlation-robust hash function.

Leveraging the adaptivity of our garbling scheme, we cast our ZK protocols in the
offline-online paradigm and offload circuit dependent expensive communication and
computation to the offline phase. As a result, the witness size alone linearly impacts
the communication and computation (in terms of number of symmetric key operations)
complexities of the online phase. The existing ZK protocols relying on statically secure
garbling schemes cannot match the online complexities of our protocol as the garbled



circuit needs to be sent in the online phase. In contrast to the garbled circuit based ZK
protocols (including ours) where public key operations are proportional to the witness
size, the theoretically interesting ZK proofs/arguments [CD97, KR06, Gro10, Lip12,
GGPR13] for satisfiability employ public key operations proportional to the circuit size.
We focus on the protocols that are practically relevant. A practical non-interactive al-
ternative can be found in ZKBoo [GOM16], however at the cost of a large proof size;
the proof is linear in the size of the statement, and computed (and communicated) only
after the witness is available. A comparison of our ZK protocol for Boolean formula
satisfiability with [JKO13] instantiated in the offline-online paradigm with the state of
the art privacy-free garbling scheme [ZRE15] is provided in Table 2.

Table 2: Complexities of GC based ZK for Boolean formula satisfiability. The last two
rows correspond to the protocols in offline-online setting. The computational and sta-
tistical security parameters are µ and κ respectively, and the size of the statement is m,
while the size of the witness is n.

Protocol Communication Computation (Input encoding and GC evaluation)
Offline Online Offline Online

[JKO13] + [ZRE15] 0 O(µm+ κn) 0 O(n) PKE + O(m) Hash invocations
Our protocol 0 O(κm+ κn) 0 O(n) PKE + O(m) XORs
[JKO13] + [ZRE15] (Offline-online) O(µn) O(µm) O(n) PKE O(m) Hash invocations
Our protocol (Offline-online) O(κm) O(µn) O(n) PKE O(n) PRG invocations + O(m) XORs

1.2 Organization

In Section 2, we recall the necessary definitions. In Section 3, we present our privacy-
free information-theoretic garbling scheme for formulas. The full proof of security ap-
pears in Section 4. The definition of a privacy-free linear garbling scheme and the proof
that our scheme qualifies to be a linear scheme is presented in Section 5. We present the
optimizations for ` fan-in gates in Section 6. Our ZK protocol appears in Section 7 and
the required functionalities are recalled in Appendix A.

2 Preliminaries

We use a ← {0, 1}n to denote that a is assigned a uniformly random n-bit string, and
a ← alg(x) to denote that a is assigned the value output by randomized algorithm
alg when supplied the input x. We use b := a to denote that b is deterministically as-
signed the value a. The operator a||b denotes the concatenation of a and b. PPT denotes
probabilistic polynomial time. The value κ is used throughout this paper to denote the
statistical security parameter, which is reflected in the key length of the instance of the
garbling scheme. For all practical purposes, the value of κ can be taken as 40. We also
use the terms “zero key” and “key corresponding to bit value zero” interchangeably. In
what follows, we present the required definitions. We denote by [x], the set of elements
{1, . . . , x}.



2.1 Formulaic Circuits

Informally, a formula is a circuit which has a fan-out of one for every gate. The im-
plication of this is that a gate’s output wire can either be a circuit output wire, or an
input wire for only one other gate. Formally, we use a modified version of the syntax
for circuits in [BHR12b]. In GC based ZK protocols [JKO13], the verification circuit
that needs to be garbled has one bit output. The output zero indicates that the proof is
rejected, whereas the output one indicates that the proof is accepted.

Definition 1. A formulaic circuit is characterized by a tuple f = (n, q,A,B,G). The
parameters n, q define the number of input, and non-input wires respectively. Wires are
indexed from 1 to n + q, with 1 to n being input wires, and n + q being the output
wire. A gate is identified by its outgoing wire index. For a gate g ∈ [n + 1, n + q],
A(g) and B(g) are injective functions that map to left and right incoming wire indices
respectively4. We have B(g) ∈ [1, n+ q− 1], and A(g) ∈ [0, n+ q− 1]; A(g) = 0 if g
has fan-in of 1. We also require thatA(g) < B(g) < g. Additionally, we require that for
every gate g, if ∃g′, A(g′) = g, then @g′′, B(g′′) = g, and vice versa. This is to ensure
that a gate can be an incoming wire to at most one other gate. The gate functionality
G(g) is a map G(g) : {0, 1}2 7→ {0, 1}.

The terms “wire” and “gate” are used interchangeably throughout the paper, as a
gate is identified by the index of its outgoing wire.

2.2 Privacy-Free Garbling Scheme

A garbling scheme, as defined in [BHR12b], is defined by a tuple (Gb,En,De,Ev).
Their arguments and outputs are as follows:

– Gb: (f, 1κ) 7→ (F, e, d). Given the function f to garble, the PPT algorithm Gb
outputs the garbled circuit F , encoding information e, and decoding information d.

– En: (x, e) 7→ X . Given clear function input x and valid encoding information e,
the deterministic algorithm En outputs garbled input X .

– Ev: (F,X) 7→ Y . Given a garbled circuit F and garbled input X for that circuit,
Ev deterministically outputs garbled output Y .

– De: (Y, d) 7→ y. Given garbled output Y , and valid decoding information d, De
deterministically outputs the clear function output y. If Y is not consistent with d,
then De outputs ⊥.

Definition 2 (Correctness). A garbling scheme satisfies correctness if for every valid
circuit f and its input x, we have

∀(F, e, d)← Gb (f, 1κ) , De (Ev (F,En(x, e)) , d) = f(x)

4 This is a departure from the [BHR12b] definition for conventional circuits. The injection prop-
erty required here ensures that every gate in the circuit has a fan-out of one.



We consider only projective garbling schemes, where the encoding information e is
of the form

((
k0i , k

1
i

)
i∈[n]

)
. We refer the reader to [BHR12b] for a formal treatment

and discussion.
In [BHR12b], definitions for the security notions of privacy, obliviousness, and

authenticity are provided. However, as we are not interested in achieving privacy or
obliviousness, we will only consider authenticity, and the notion of verifiability defined
in [JKO13].

Definition 3 (Authenticity). A garbling scheme satisfies unconditional authenticity if
for every computationally unbounded A, and for every f : {0, 1}n 7→ {0, 1} and
x← {0, 1}n, we have

Pr [(Y 6= Ev(F,X)) ∧ (De(Y, d) 6= ⊥) : Y ← A (F,X)] ≤ 2−κ

where (F, e, d)← Gb (f, 1κ), and X := En(e, x).

The definition for unconditional authenticity in Definition 3 is stronger than that
of Bellare et al. [BHR12b], as it places no bound on the computational power of the
adversary, and specifies that no such adversary should be able to perform better than
randomly guessing a garbled output. Intuitively, schemes delivering such guarantees
should rely only on information theoretic operations.

Finally, we also consider the property of verifiability introduced in [JKO13]. A
privacy-free garbling scheme that can be plugged into their ZK protocol must have
an additional ‘verification function’ Ve : (F, f, e) 7→ b. The purpose of this function
is to enable the Prover (who evaluates the garbled circuit) to verify that the garbled
circuit that she was given was legitimately constructed, which is important in ensuring
that the garbled output obtained upon evaluation doesn’t reveal any input bits, ie. the
Prover’s witness. This function outputs a single bit b, given a garbled circuit F , the un-
derlying clear function f , and encoding information e. Informally, when Ve outputs 1
for a certain F, f, e, then evaluating F on garbled input X corresponding to x such that
f(x) = 1 will produce garbled output that matches the expected garbled output that can
be extracted given F, e.

Definition 4 (Verifiability). A verifiable garbling scheme contains a poly-time com-
putable function Ve such that there exists a poly-time algorithm Ext, which for every
computationally unbounded adversary A, function f within the domain of Gb, input x
where f(x) = 1, ensures the following,

Pr [Ext(F, e) = Ev (F,En(e, x))] = 1, when Ve (F, f, e) = 1; (F, e)← A (1κ, f)

For completeness, we require: ∀(F, e, d)← Gb (f, 1κ) , Ve (F, f, e) = 1.

Note that like Definition 3 the above definition for verifiability is stronger than the
original one in [JKO13], owing to the fact that our Definition 4 does not place a bound
on the running time of the adversary, and does not permit even a negligible error for the
Ext algorithm.

An unconditionally secure privacy-free garbling scheme is defined by a tuple G =
(Gb,En,Ev,De,Ve), and satisfies the correctness, authenticity, and verifiability proper-
ties detailed in Definitions 2, 3, and 4.



3 Privacy-Free Garbling for Formulas

In this section, we define our construction for an unconditionally secure, verifiable
privacy-free garbling scheme whose domain of circuits that can be garbled are for-
mulaic. As per previous paradigms of garbling formulaic circuits in [Kol05, KKKS15],
our garbling scheme proceeds upwards from the output wire.

3.1 Garbling Individual Gates

As per Yao’s paradigm of garbling circuits [Yao86], every wire in the circuit is assigned
two κ-bit string tokens, called “keys”; one each for bit values zero and one on that wire.
For a gate g, let the output wire keys corresponding to zero and one be K0 and K1

respectively. The zero and one keys of the left incoming wire are L0, L1 respectively,
and those of the right incoming wire are R0, R1 respectively. The bit value flowing
on wire w is bw. A gate garbling routine is a randomized algorithm that accepts the
gate keys K0,K1 as arguments, and returns constructed keys L0, L1, R0, R1 for the
gate’s input wires. A gate evaluation routine deterministically returns a key KGg(bL,bR)

where Gg is the gate functionality, upon being supplied with input wire keys LbL , RbR
(and possibly input bits bL, bR). In this section, we define gate garbling and evaluation
routines for XOR, AND, and NOT gates.

Garbling XOR Gates. Garbling and evaluation of XOR gates is relatively simple. Our
garbling scheme for XOR gates is similar to that of Kolesnikov’s [Kol05]. The wire
keys produced by our garbling scheme maintain the same relation, namelyLbL⊕RbR =
KbL⊕bR . However, while the construction of [Kol05] requires four XOR operations to
garble an XOR gate, our construction requires only three (tending to two in the l-fan-in
setting), hence saving on computation cost.

First,K0 is split into two additive shares, assigned toL1 andR1 respectively. There-
fore, L1 ⊕ R1 = K0. Next, K1 is masked with R1 and assigned to L0, and indepen-
dently masked with L1 and assigned to R0. ie. L0 := K1 ⊕ R1 and R0 := K1 ⊕ L1.
This ensures that L0⊕R1 = R0⊕L1 = K1. Conveniently, L0⊕R0 = L1⊕R1 = K0.

Evaluation can hence be defined as follows: if the evaluator has keys LbL and RbR ,
corresponding to bits bL and bR on the left and right wires respectively, she can obtain
the output key as KbL⊕bR = LbL ⊕RbR . Correctness of evaluating an XOR gate as per
this scheme is implicit.

The VeXOR routine defined in Fig. 1 ensures that any combination of LbL , RbR
taken from L0, L1, R0, R1 consistently evaluates to a KbL⊕bR . This can be considered
a “consistency check”, that a given tuple of keys (L0, L1, R0, R1) maintain correctness
of a garbled XOR gate.

Garbling AND Gates. Our construction for garbling AND gates is as simple as the
one defined for XOR gates, however the proof of authenticity is not as straightforward.
Interestingly, our scheme requires only one XOR operation to garble an AND gate,
and at most one XOR operation to evaluate a garbled AND gate (in three out of four
cases, evaluation is completely free). This makes garbling, evaluation, and verification



GbXOR
(
K0,K1, 1κ

)
The zero and one keys of the left and right incoming wires will be L0, R0 and L1, R1 respec-
tively

1. Split K0 into additive secret shares, L1 ← {0, 1}κ; R1 := K0 ⊕ L1

2. Mask K1 for the incoming zero keys, L0 := K1 ⊕R1; R0 := K1 ⊕ L1

3. return L0, L1, R0, R1

EvXOR
(
LbL , RbR

)
1. return LbL ⊕RbR

VeXOR
(
L0, L1, R0, R1

)
1. Generate both output keys in all combinations

i. K00 := L0 ⊕R0; K01 := L0 ⊕R1

ii. K11 := L1 ⊕R1; K10 := L1 ⊕R0

2. if K00 6= K11 or K10 6= K01 then the keys are inconsistent, return 0, ⊥, ⊥. else
return 1, K00,K01

Fig. 1: Garbling, evaluation and verification of an XOR gate

of AND gates cheaper than that of XOR gates. Figure 2 formalizes the construction
discussed in the Introduction.

Correctness of evaluating an AND gate as per this scheme is hence implicit. Note
that if an evaluator has key L0, she will be missing L1, therefore making whatever key
she has on the right incoming wire irrelevant; K1 remains completely hidden unless
both L1 and R1 are available. A similar argument applies in case she has R0. Addition-
ally, if she is able to deriveK1 during evaluation, it implies that she started with L1 and
R1, keepingK0 inaccessible for the lack of L0 andR0. Therefore, during an evaluation
of the gate for the first time (when no gate g′ > g has been evaluated yet), the evaluator
will be unable to forge the output key that she is missing.

It can be observed that knowledge ofL0 implies knowledge ofR0. Due to the earlier
argument regarding K1 being perfectly hidden unless both L1 and R1 are known, this
does not pose a problem. Intuitively, the worst that an adversary could do with this
knowledge (eg. given L0 and R1) is obtain both keys on the right incoming wire, but
the damage is “contained”; wires occurring after this gate are not affected. Examining
what an adversarial evaluator is capable of doing with this information (beyond just
one ‘pass’ of evaluation) requires a more comprehensive analysis, which we defer to
Section 4. We show that despite the information leaked by the key structure of the AND
gates, our scheme achieves unconditional authenticity.

The routine VeAND defined in Fig. 2 verifies that both incoming wires of a gate g
have the same zero key, which will also be the zero key for g. The key corresponding
to bit value one for wire g is defined such that it requires no consistency checking with



GbAND
(
K0,K1, 1κ

)
The zero and one keys of the left and right incoming wires areL0, R0 andL1, R1 respectively

1. Set both zero keys, L0 := K0; R0 := K0

2. Split K1 into additive secret shares, L1 ← {0, 1}κ; R1 := K1 ⊕ L1

3. return L0, L1, R0, R1

EvAND
(
LbL , RbR , bL, bR

)
Note that we require the bit values on the incoming wires to evaluate AND gates

1. if bL = 0 then return LbL
2. else if bR = 0 then return RbR
3. else return LbL ⊕RbR

VeAND
(
L0, L1, R0, R1

)
1. if L0 6= R0 then zero keys are inconsistent, return 0,⊥,⊥. else return 1, L0, L1⊕R1

Fig. 2: Garbling, evaluation and verification of an AND gate

respect to its incoming wires’ keys. This routine can hence be considered a “consistency
check” that a given tuple of keys (L0, L1, R0, R1) maintain correctness of a garbled
AND gate.

Garbling NOT Gates. NOT gates can be garbled for free, like in [Kol05], by switching
the association of the zero and one keys. If wire w has keys K0

w,K
1
w corresponding to

bit values zero and one respectively, and is input to a NOT gate g, the outgoing wire of
g will have keys K0

g = K1
w, K1

g = K0
w corresponding to values 0 and 1 respectively.

Note that none of the above schemes require ciphertexts to be published. Given that
XOR, NOT, and AND gates can be garbled without ciphertexts, we therefore have a
scheme to garble any formula without ciphertexts in the information-theoretic, privacy-
free setting. Note that unlike the GESS construction of [Kol05], in our scheme the
key size on every wire is the same (κ bits), hence allowing the online communication
complexity of encoding the input x to be dependent only on the size of the input x, and
not circuit depth of f .

3.2 Garbling an Entire Circuit

We can combine the routines defined in Fig. 1 and Fig. 2 in order to construct a gar-
bling scheme for an entire formulaic circuit. Our garbling scheme G is defined by the
tuple G = (Gb,En,Ev,De,Ve), as detailed in Fig. 3, Fig. 4, Fig. 5, Fig. 4, and Fig. 6
respectively.



Gb (f, 1κ)

– Parse n, q from f
– Denote the keys on wire w as K0

w,K
1
w corresponding to bit values 0 and 1 respectively

1. Start with the the circuit output gate, g = n+ q
2. Set circuit output gate keys, K0

g ← {0, 1}κ; K1
g ← {0, 1}κ

3. while g > n do
i. α := A(g); β := B(g)

ii. if g is an XOR Gate then K0
α,K

1
α,K

0
β ,K

1
β ← GbXOR

(
K0
g ,K

1
g , 1

κ
)

iii. else if g is an AND Gate then K0
α,K

1
α,K

0
β ,K

1
β ← GbAND

(
K0
g ,K

1
g , 1

κ
)

iv. else g is a NOT gate, K0
β := K1

g ; K1
β := K0

g

v. Proceed to the previous gate, g := g − 1

4. Prepare encoding information, e :=
((
K0
i ,K

1
i

)
i∈[n]

)
5. Prepare decoding information, d :=

(
K0
n+q,K

1
n+q

)
6. return ∅, e, d

Fig. 3: Garbling an entire circuit

En (x, e)

Let xi denote the ith bit of x

1. Parse e into keys,
((
K0
i ,K

1
i

)
i∈[n]

)
:= e

2. return (Kxi
i ||xi)i∈[n]

De (Y, d)

1. if Y = d[0] then return 0
2. else if Y = d[1] then return 1
3. else return ⊥

Fig. 4: Encoding a clear function input and Decoding a garbled output

We can further optimize our scheme to handle `-fan-in gates with better concrete
efficiency. A detailed discussion is deferred to Section 6. The full proof of security
appears in the next section.

4 Full Proof of Security

Theorem 1. The garbling scheme G is an unconditionally secure privacy-free garbling
scheme.



Ev (F,X)

– The clear circuit f is assumed to be known
– Let Kw, bw denote the key obtained on wire w, and the bit on that wire respectively

1. Parse (Kw||bw)i∈[n] := X
2. Start with the first input gate g := n+ 1
3. while g ≤ n+ q do

i. α := A(g); β := B(g)
ii. if g is an XOR Gate then compute bg := bα ⊕ bβ and Kg ← EvXOR (Kα,Kβ)

iii. else if g is an AND Gate then compute bg := bα ∧ bβ and Kg ←
EvAND (Kα,Kβ , bα, bβ)

iv. else g is a NOT gate, bg := ¬bβ
v. Proceed to the next gate, g := g + 1

4. The key on the last wire is the garbled output, return Kn+q

Fig. 5: Evaluating a Garbled Circuit on Garbled Input

Ve (F, f, e)

– The consistency of each gate is verified, and if found to be consistent, the corresponding
keys are derived

– Let K0
w,K

1
w denote the keys corresponding to values 0 and 1 respectively on wire w

– Parse n, q from f

1. Parse e into keys
((
K0
i ,K

1
i

)
i∈[n]

)
:= e

2. Start with the first gate, g := n+ 1
3. while g ≤ n+ q do

i. α := A(g); β := B(g)
ii. if g is an XOR gate then

– b,K0
g ,K

1
g := VeXOR

(
K0
α,K

1
α,K

0
β ,K

1
β

)
– if b = 0 then return 0

iii. else if g is an AND gate then

– b,K0
g ,K

1
g := VeAND

(
K0
α,K

1
α,K

0
β ,K

1
β

)
– if b = 0 then return 0

iv. else g is a NOT gate, K0
g := K1

β ; K1
g := K0

β

v. Proceed to the next gate, g := g + 1
4. All keys are consistent, return 1

Fig. 6: Verifying a Garbled Circuit

Correctness follows from the correctness of the garbling schemes for individual gates,
discussed in Section 3.1. Verifiability follows from the consistency-checks of individual
gates conducted in the Ve algorithm, discussed in Section 3.1.



We now construct a proof of authenticity by reducing the authenticity of our scheme
for a generic formulaic circuit to the authenticity of a single garbled gate. We start by
showing that a garbling of a circuit consisting of one gate is authentic. We then show
that forging an output for an n-input garbled formulaic circuit is exactly as hard as
forging an output for the same circuit with one of its gates deleted, when garbled with
the same randomness5. The “hidden core” of our argument is that any compromise in
the keys of a gate allowed by our scheme will not concede the gate’s child’s keys;
the damage will only spread ‘upward’ to its incoming wires. We denote an adversary
wishing to compromise the authenticity of a circuit with n inputs as An.

4.1 Single Gate Case

Lemma 1. The garbling scheme G achieves unconditional authenticity as per Defini-
tion 3 when the domain is restricted to circuits f with input size n = 2.

Proving that an adversarial evaluator will be unable to forge an output key, given her
requested input keys for any single gate will prove Lemma 1. This can be done by
considering the garbling of AND and XOR gates, as per Fig. 2 and Fig. 1 respectively.

Let the keys on the left input wire be L0, L1, right input wire be R0, R1, and output
wire be K0,K1. The evaluator has input bits bL and bR on the left and right input
wires respectively. Consequently, she is given the keys LbL and RbR . We denote the
adversarial evaluator as A2, and show that she can not forge the key K¬bK , where bK
is the output bit (either bL ∧ bR or bL ⊕ bR as per the case).

XOR Gate. The authenticity of XOR gate garbling is relatively straightforward. As
per the output of the GbXOR routine, we have,

L0 ⊕R0 = L1 ⊕R1 = K0, and L1 ⊕R0 = L0 ⊕R1 = K1

Let bK = bL ⊕ bR. The evaluator computes KbK = LbL ⊕ RbR . The adversarial
evaluator A2 wishing to forge K¬bK will notice that the only relations connecting her
input keys to K¬bK are as follows: K¬bK = L¬bL ⊕RbR = LbL ⊕R¬bR . Clearly, she
will be unable to forge K¬bK without guessing either L¬bL or R¬bR .

AND Gate. To show authenticity of a garbled AND gate, we have to take into account
that one of the input wires may compromise both keys. We analyze all four cases, based
on the input bits. Keep in mind that L0 = R0 = K0, and L1 ⊕R1 = K1.

1. bL = bR = 0 : In this case, A2 has absolutely no information about K1, and can
do no better than directly guessing it.

2. bL = bR = 1 : In this case, A2 has absolutely no information about K0, and can
do no better than directly guessing it.

3. bL = 1, bR = 0, bK = bL ∧ bR = 0 : A2 has K0 = R0, as well as L1. Due to the
key structure, she also obtains L0 = R0. However, this information is useless, as
the missing output key K1 = L1 ⊕ R1 requires knowledge of R1, which A2 does
not have.

5 ie. the random tapes used in the garbling of f and f ′ are identical.



4. bL = 0, bR = 1, bK = bL ∧ bR = 0 : This case is identical to Case 3, as the left
and right input wires are treated symmetrically.

NOT Gate. A NOT gate may be added on or removed from any wire at will, with
no implications for authenticity, as the distributions of input and output keys for the
individual gates remain unchanged.

Hence, we have shown on a case-by-case basis that there exists no gate or input
combination in which an adversaryA2 can do better than guessing the output keyK¬bK
that she is missing. Therefore, even a computationally unbounded adversary will be
successful in forging a gate output with probability no greater than 2−κ, which proves
Lemma 1.

4.2 Reduction Step

In this section, we perfectly reduce the authenticity of the garbling of an n-input for-
mulaic circuit to that of an (n− 1)-input one. We denote the garbling (ie. collection of
keys on each wire, generated within Gb) of a function f as K =

(
K0
i ,K

1
i

)
i∈[1,n+q].

Simply put, given that garbling an n-input formulaic circuit f producesK, an adver-
sary loses no advantage by deleting an input gate g (gate fed only by circuit input wires),
as Lemma 1 demonstrates that the keys on input wires A(g) and B(g) are completely
useless in forging an unknown key for g. Hence, an adversary An wishing to forge an
output key as per K will be as successful in forging an output key as per K′, a garbling
of f with any input gate g deleted. An adversary for the latter procedure is denoted
by An−1. As there is no security loss in the reduction from An to An−1, we finally
conclude that An is as successful in forging an output as per K as A2 is in forging an
output for a single-gate circuit. We know from Lemma 1 that no such computationally
unbounded A2 succeeds with probability greater than 2−κ.

Given an adversary An that can forge an output for an n-input formulaic circuit f ,
we construct adversary An−1 (in Fig. 7), that can forge an output for an (n − 1)-input
formulaic circuit f ′ with the same probability of success. For readability, for a scheme
G, denote the event that a computationally unbounded adversary A succeeds in forging
a garbled output Y given F,X for some f, x (where (F, e, d) ← Gb(f, 1κ);X ←
En(e, x)), by the outcome of AutG (A, 1κ). Specifically,

AutG (A, 1κ) =

{
1 if A(F,X) = Y ;Y 6= Ev(F,X),De(Y, d) 6= ⊥
0 otherwise

It is clear to see that a garbling scheme G is authentic if, and only if, Pr [AutG (A, 1κ) = 1] ≤
2−κ, ∀A. Therefore, as there is no security loss in our reduction from An to An−1, we
have:

Pr [AutG (An, 1κ) = 1] = Pr [AutG (An−1, 1κ) = 1] =

· · · = Pr [AutG (A2, 1
κ) = 1] ≤ 2−κ

Note that the reduction fromAn toAn−1 detailed in Fig. 7 only works for formulaic
circuits; deleting a gate with fan-out of l will produce l different input wires, each with



An−1

– An−1 has black-box access to An, which is capable of forging Y for the garbled circuit F
and corresponding encoded input X for a certain formulaic circuit f and corresponding
n-bit input x.

– Using An, An−1 forges garbled output Y ′ for a (F ′, X ′), for some formulaic circuit f ′

and corresponding (n− 1)-bit input x′.
– f ′, x′ are derived from f, x as follows:

i. Choose some gate g from f such that both parents A(g) and B(g) are input wiresa.
ii. Construct f ′ identical to f , with the exception that g,A(g), B(g) are replaced with

a single input wire numbered g′.
iii. Parse x into bits x1x2 · · ·xi · · ·xn, copy them to create x′, with the exception of

xA(g) and xB(g), which are replaced with x′g′ = Gg
(
xA(g), xB(g)

)b

iv. f ′, x′ are now an (n − 1)-input function and its corresponding input such that
f(x) = f ′(x′)

1. Parse X ′ into keys X ′1X ′2 · · ·X ′n−1, and copy them into X at the appropriate locations.
2. X will be missing keys at locations A(g) and B(g). They can be generated as followsc:

- if g was an XOR gate then XA(g) ← {0, 1}κ; XB(g) := XA(g) ⊕X ′g′
- else if g was an AND gate then

i. if xA(g) = xB(g) = 0 then XA(g) := XB(g) := X ′g′
ii. else if xA(g) = xB(g) = 1 then XA(g) ← {0, 1}κ, XB(g) := XA(g) ⊕X ′g′

iii. else if xA(g) = 0 then XA(g) := X ′g′ , XB(g) ← {0, 1}κ
iv. else XB(g) := X ′g′ , XA(g) ← {0, 1}κ

3. Send X to An and output the response, output An (∅, X, 1κ)

a Even g such that its parent is a NOT gate A(g) with its parent as an input wire w =
B(A(g)) < n will work. In this case, consider ¬xw in place of xw wherever relevant in
this algorithm.

b Gg is the gate functionality of gate g, ie. XOR or AND
c This subroutine effectively garbles the missing gate g such that the keys for parents
A(g), B(g) consistently evaluate to the keys on wire g′. Note that this leaves all the orig-
inal keys generated when garbling f ′ undisturbed, hence implying that a forged key re-
turned by An for its garbling of f can directly be output as a forged key for the garbling
of f ′ given to An−1. Also note a minor technical detail, that we ignore that Xi is actually
Ki||bi on an input wire, for readability.

Fig. 7: Constructing Adversary An−1 given An

its own independent pair of keys. For An−1 to ensure that the deleted gate’s keys are
consistent with l different outgoing wires is undefined as per our garbling scheme.

Hence, there exists no computationally unbounded adversary that succeeds in forg-
ing an output for a formulaic circuit of any size when garbled by G, with probability
greater than 2−κ. This proves Theorem 1.



4.3 Adaptive Security

We had mentioned in an earlier section that our scheme achieves adaptive security, or
aut1 in the terminology of [BHR12a], as opposed to Definition 3 which they term static
security, or aut.

We show this by illustrating that an adversary in the Aut1G game (which forms
the basis for the definition of adaptive security) is at no advantage in forging a garbled
output, as compared to an adversary wishing to break the ‘static’ authenticity of our
scheme as per Definition 3.

In the Aut1G game, the adversary is allowed to request from the game the garbled
circuit F for her function f before she chooses x for which she receives encoded input
X = En(e, x). The Aut1G game consists of three stages:

1. The GARBLE stage accepts from A a circuit f , computes (F, e, d) ← Gb (1κ, f),
and returns F to A.

2. The INPUT stage accepts from A an input x, outputs ⊥ if it is not in the domain of
f , otherwise returns X = En(e, x) to A.

3. The FINALIZE stage accepts from A a garbled output Y , and outputs 1 if Y 6=
Ev(F,X) while still being a valid garbled output (ie. De(Y, d) 6= ⊥), and 0 other-
wise.

The output of the experiment Aut1G (A, 1κ) is the value output by the FINALIZE stage.
An unconditionally adaptively authentic scheme will ensure that Pr[Aut1G (A, 1κ) =
1] ≤ 2−κ for all computationally unbounded A.

It is immediately evident that this extra concession granted to the adversary is use-
less in our setting, as our scheme does not produce any ciphertexts to represent a garbled
circuit. An adversary A′ for the Aut1G game can be given a null string to serve as the
garbled circuit F of any function f that it may submit to the GARBLE stage. Therefore,
A′ is forced to choose x completely independently of the garbling of f , effectively
having to commit to f, x simultaneously. Hence, the task of A′ is equivalent to that of
a static adversary A (F,X) attempting to forge a garbled output as per Definition 3,
which is proven not to succeed with probability better than 2−κ by Theorem 1.

5 Breaking the Lower Bound of [ZRE15]

Zahur et al. [ZRE15] observe that most known garbling schemes fit into their charac-
terization of linear garbling techniques. Informally, a linear garbling scheme proceeds
gate by gate, at each gate generating a vector S = (R1, · · · , Rr, Q1, · · · , Qq), where
Ris are fresh random values, and Qis are obtained by independent calls to a random
oracle (queries may depend on Ri values). The gate ciphertexts as well as the keys
on each wire touching the gate are derived by linearly combining the values in S. The
only non-linearity allowed in their model is through the random oracle invocations,
and permutation bits. All elements are µ bits long, where µ is the security parameter.
They prove that an ideally secure garbling scheme that is linear as per their charac-
terization must adhere to certain lower bounds in terms of bits of ciphertext produced
when garbling a single atomic AND gate. An ideally secure garbling scheme ensures



that no computationally unbounded adversary (with bounded calls to the random or-
acle) will have advantage better than poly (µ) /2µ in the security games of Bellare et
al. [BHR12b]. The following are the bounds in the private and privacy-free settings
respectively, as argued by Zahur et al. [ZRE15].

Lower bound for garbling schemes achieving privacy. Linear garbling schemes are
shown to require at least 2µ bits of ciphertext to garble an AND gate privately. This
bound was circumvented (but not contradicted) in the works of Ball et al. [BMR16]
and Kempka et al. [KKS16] by a different treatment of permutation bits. Both schemes
garble a single AND gate privately but non-composably with just one ciphertext.

Lower bound for privacy-free garbling schemes. Linear garbling schemes achieving
authenticity are argued to require at least µ bits of ciphertext to garble an AND gate. To
the best of our knowledge, this bound is currently unchallenged. Our scheme is clearly
linear (with no requirement of a random oracle) and yet garbles AND gates with no
ciphertexts for any µ. Moreover, our scheme composes to garble a non-trivial class of
circuits (ie. formulas) with no ciphertexts.

5.1 Linear Garbling

We recall the formal definition of linear garbling [ZRE15], but simplified for the privacy-
free setting. Specifically, we enforce that the permutation bit always be 0, as there is no
reason for the semantic value of a wire key to be hidden from an evaluator in this set-
ting. Indeed, both previous privacy-free schemes [ZRE15,FNO15] rely on an evaluator
knowing the semantic value of the key she has. A garbling scheme G is linear if its
routines are of the form described in Fig. 8.

Claim ( [ZRE15]). Every linear ideally secure privacy-free garbling scheme for AND
gates must have p ≥ 1. The garbled gate consists of at least µ bits.

Our privacy-free garbling scheme is a linear garbling scheme with the following
parameters for an AND gate and with µ = κ:

– Number of ciphertexts p = 0, random values r = 3 and random oracle queries
q = 0.

– The same vector to obtain all zero keys, L0 = R0 = K0 = [1 0 0]
– Vectors to select independent input 1-keys, L1 = [0 1 0], R1 = [0 0 1]
– Output 1-key vector as the sum of both input 1-keys, K1 = L1 + R1 = [0 1 1]
–
(
Ci
)
i∈[p] is an empty set as there are no ciphertexts required.

– Evaluation vectors (Vα,β)α,β∈{0,1} as follows:
• When the evaluator has a zero key, output the zero key. So, V0,0 = V0,1 =
[1 0], V1,0 = [0 1].

• When both keys correspond to 1, output their sum. So V1,1 = [1 1].

Succinctness of our garbling scheme. As Zahur et al. [ZRE15] note, almost all practical
techniques so far for garbling Boolean circuits qualify as linear as per their character-
ization. If we use their parameters to define s = p + r + q as a measure of ‘program
succinctness’ of a linear garbling scheme, then we observe that our garbling scheme has
the most succinct program (s = 3) of all garbling schemes in the literature.



– We describe here a simplified characterization of linear garbling [ZRE15] for the privacy-
free setting. Note that garbling by default is for a single gate.

– The integers p, q, r, and vectors L0, L1, R0, R1, K0, K1,
(
Ci
)
i∈[p], (Vα,β)α,β∈{0,1} pa-

rameterize garbling scheme G = (Gb,En,Ev,De). p denotes the number of ciphertexts.
r and q denote the number of uniformly random elements and the number of random
oracle calls needed. Each of the above vectors is of size r + q (except Vα,β which is of
size p+ q + 2) with entries in GF (2µ).

Gb (·, 1µ)

1. for i ∈ [r] do Choose Ri ← GF (2µ)
2. for i ∈ [q] do Make a query to the random oracle, store the response in Qi
3. Construct S = (R1, · · · , Rr, Q1, · · · , Qq)
4. for i ∈ {0, 1} do Corresponding to semantic value i, compute keys on the two input

wires as Li := 〈Li, S〉 and Ri := 〈Ri, S〉, and the output wire as Ki := 〈Ki, S〉
5. for i ∈ [p] do Compute the ith gate ciphertext Ci := 〈Ci, S〉
6. Construct and output encoding information e := ((L0, L1) , (R0, R1)), and gate cipher-

texts F = (Ci)i∈[p]

En (x, e)

1. Parse (x0, x1) := x, and ((L0, L1) , (R0, R1)) := e
2. Output X = (Lx0 ||x0, Rx1 ||x1)

Ev (F,X)

1. Parse input labels (Lα||α,Rβ ||β) := X , and ciphertexts (Ci)i∈[p] := F

2. for i ∈ [q] do Make a query to the random oracle, store the response in Q′i
3. Construct T =

(
Lα, Rβ , Q

′
1, · · · , Q′q, C1, · · · , Cp

)
4. Output 〈Vα,β ,T〉

Fig. 8: Form of linear garbling schemes

5.2 Where the [ZRE15] Technique for Bounding Privacy-Free Garbling Fails

As illustrated above, our garbling scheme is clearly linear and achieves ideal security,
but can still garble an AND gate in the privacy-free setting with no ciphertext. Our
scheme is therefore a simple and direct counterexample to the argument of Zahur et
al. [ZRE15] that a linear garbling scheme achieving ideal authenticity must produce at
least µ bits of ciphertext when garbling and AND gate.

In more detail, the ciphertext generating Ga,b becomes a dimension 0 matrix. At the
core of the linear garbling model is that the evaluator’s behaviour must depend only on
the public α, β ‘signal’ bits, a property which is adhered to by our privacy-free scheme.
In our setting, the signal bits convey the actual semantic values with which the keys
are associated. However, the lower bound proof in [ZRE15] relies on the property that



changing a ‘permute’ bit a/b which is defined when garbling, must also change the
corresponding signal bit on which the evaluator acts. In our setting it is immediate that
this assumption does not need to hold (as α, β are not tied to a, b), and our scheme takes
advantage of this to break the claimed lower bound.

6 `-fan-in Gates

In this section, we describe how to handle `-fan-in gates efficiently. We first provide
a new garbling scheme for threshold gates in Section 6.1, then describe how to save
computation in garbling and evaluating `-fan-in XOR and AND gates respectively in
Sections 6.2 and 6.3.

6.1 Threshold Gates

An `-input threshold gate, parameterized by a threshold t, realizes the following func-
tion:

ft(x1, · · · , xi, · · · , x`) =

1, if
∑̀
i=1

xi > t

0, otherwise

The threshold range 1 < t < `− 1 is of interest to us, as the gate otherwise degenerates
into an `-fan-in AND or NAND gate, which can be handled more efficiently by our
scheme. Boolean threshold gates are considered and motivated by Ball et al. [BMR16],
who construct a scheme to garble them natively (generating O

(
log3 `/ log log `

)
ci-

phertexts) as opposed to garbling a composition of AND, XOR and NOT gates (yield-
ing O (` log `) ciphertexts using the best known garbling scheme of [ZRE15]). Here,
we present a method of garbling Boolean threshold gates (embedded in formulaic cir-
cuits) directly, producing no ciphertext, and using only information-theoretic oper-
ations; specifically two independent instances of Shamir secret sharing [Sha79] per
threshold gate assuming the underlying field to be GF (2κ).

The idea is as follows; an evaluator having inputs x1 · · ·x` to the threshold gate

computing ft, such that
∑̀
i=1

x` = m, will possess m input 1-keys, and ` − m input

0-keys. Let the gate output keys be denoted as K0 and K1, and denote the keys on the
ith input wire as K0

i ,K
1
i . As the requirement of the threshold gate is that more than t

of the evaluator’s inputs must be 1 in order to output 1, we need to devise a garbled
evaluation scheme which allows the evaluator to obtain K1 when she has more than
t K1

i s. A natural candidate for this construction is a threshold secret sharing scheme,
where the K1

i s form a t-out-of-l sharing of K1; ie. any t+1 of the K1
i s are sufficient to

reconstructK1, while having t or fewerK1
i s rendersK1 unconditionally hidden except

with a probability of 2−κ.
Note that in order to correctly realise ft, our garbled gate evaluation scheme also

needs to ensure that if (and only if) the evaluator has fewer than (t + 1) input values
equal to 1, she should obtain K0. In this case, her ` − m zero keys K0

i should be
sufficient to reconstruct K0. Therefore, we define the K0

i s to form an (`− (t+1))-out-
of-l sharing of K0, ie. any (`− t) of the K0

i s are sufficient to reconstruct K0. This also



GbTHR
(
`, t,K0,K1, 1κ

)
The zero and one keys of the ith incoming wire will be K0

i ,K
1
i . We denote the set of all

t-degree polynomials with constant s as Ps,t.

1. Choose a uniformly random t-degree polynomial withK1 as its constant, hK1 ← PK
1,t

2. Generate the input 1-keys to be Shamir shares of K1, for all i ∈ [`] do K1
i := hK1(i)

3. Choose a uniformly random (` − (t + 1))-degree polynomial with K0 as its constant,
hK0 ← PK

0,(`−(t+1))

4. Generate the input 0-keys to be Shamir shares of K0, for all i ∈ [`] do K0
i := hK0(i).

5. return
(
K0
i ,K

1
i

)
i∈[1,`]

EvTHR
(
t′, (ji,Ki)i∈[t+1]

)
1. The input to this routine is assumed to be a set of t′+ 1 unique (index, key) pairs, where

each key corresponds to the same value. Note that t′ may be t or `− (t+ 1) depending
on the gate output.

2. Using Lagrange interpolation, we obtain the unique t-degree polynomial h, such that
h (ji) = Ki, ∀i ∈ [t+ 1].

3. Compute the output key by retrieving the constant of h; K := h(0).
4. return K

VeTHR
(
t,
(
K0
i ,K

1
i

)
i∈[`]

)
1. Using Lagrange interpolation, we obtain the unique t-degree polynomial hK1 , such that
hK1 (i) = K1

i , ∀i ∈ [t+ 1].
2. if ∃j ∈ [t+ 2, `] such that hK1 (j) 6= K1

j then return 0,⊥,⊥
3. Using Lagrange interpolation, we obtain the unique (` − (t + 1))-degree polynomial
hK0 , such that hK0 (i) = K0

i , ∀i ∈ [`− t].
4. if ∃j ∈ [`− t+ 1, `] such that hK0 (j) 6= K0

j then return 0,⊥,⊥
5. The input 0-keys and 1-keys each define unique polynomials of degrees `− (t+1) and t

respectively. Compute the output keys to be the constants of the curves, K0 := hK0(0)
and K1 := hK1(0)

6. return 1,K0,K1

Fig. 9: Garbling, evaluation and verification of a threshold gate

ensures that when m > t (ie. ft (x1 · · ·x`) = 1), she will be unable to reconstruct K0,
as (`−m) < (`− t), and she only has (`−m)K0

i s.
We formalize the described scheme in Fig. 9. It is evident how to invoke the GbTHR,

EvTHR, and VeTHR routines within the Gb, Ev, and Ve algorithms respectively. To
formally prove the authenticity of our threshold gate garbling routine, we describe how
the adversaryAn−`+1, given black-box access toAn, can forge an output for an n−`+1
input formula obtained by deleting an `-fan-in input threshold gate from an n-input
formula used by An, in Fig. 10.



An−`+1 (f ′, x′, F ′, X ′)

– This procedure is a modification of the adversary from Fig. 7, to accommodate threshold
gates.

– Without loss of generality, f ′ was generated by deleting an input threshold gate g from f ,
which was fed by input bits x1 · · ·x`.

– This routine adds a clause to Step 2 of the original An−1 to detail how to generate
X1 · · ·X` for An, given the input key X ′g on wire g′.

2. - else if g was a threshold gate ft then
i. b := ft (x1 · · ·x`)

ii. if b = 1 then Choose a uniformly random t-degree polynomial with X ′g as its
constant, h← PX

′
g,t

iii. else Choose a uniformly random (`− (t+ 1))-degree polynomial with X ′g as
its constant, h← PX

′
g,(`−(t+1))

iv. for i ∈ [1, `] do
• if xi = b then Xi := h(i)
• else Xi ← {0, 1}κ

Fig. 10: Deleting a threshold gate to reduceAn toAn−`+1 as per the gate deletion proof
strategy

Security. As discussed earlier, the unconditional authenticity of our threshold gate gar-
bling in the single gate case is implied by the unconditional security of Shamir’s secret
sharing [Sha79]. Observe that our threshold gate garbling scheme is also made possible
by the violation of Yao’s invariant; the nature of threshold secret sharing is such that
once the curve is reconstructed, the missing shares can be computed as well. Specifi-
cally, possessing the 1-key on t+1 input wires to an `-fan-in threshold gate computing
ft, allows the reconstruction of the 1-keys on the remaining ` − (t + 1) input wires in
addition to the gate output 1-key. However, this information is useless in reconstructing
the 0-key of the gate, and hence has no impact on authenticity.

Extension to Circuits. It is easy to see that our threshold gate garbling gadget can be
used to augment any privacy-free circuit garbling scheme Gc, at the cost of crypto-
graphic assumptions no stronger than required by Gc. Every input key kbi to the thresh-
old gate g can be mapped to a corresponding Kb

i output by GbTHR. During evaluation,
Kb
i is made accessible given kbi by means of a ciphertext T [g]i,b = H(g, i, kbi , b) ⊕

Kb
i , where H is the cryptographic primitive used to implement encryption in Gc, eg.

PRF [GLNP15], KDF [FNO15], circular correlation robust hash [ZRE15].
While this gadget costs only 2` ciphertexts to implement, we can additionally op-

timize this construction to cut down the ciphertexts by half. Intuitively, we can set
the curves hK1 and hK0 pseudorandomly rather than uniformly at random. Specifi-
cally, the polynomial hK1 in GbTHR (Fig. 9) can be set by fixing t − 1 points as
hK1(i) = H(g, i, 1, k1i ), ∀i ∈ [t− 1], so that cipherexts are needed to convey only the



remaining `− t + 1 points. The same optimization applied to hK0 yields that the total
number of ciphertexts that need to be communicated for this gadget is now `+ 2.

Performance. Our base construction for formulas is significantly more efficient than a
naive approach, as representing threshold gates in a formula is highly non-trivial, with
upper bounds of O

(
`3.04

)
[Ser14]. As for general circuits, the construction of Ball

et al. [BMR16] will cost O
(
log3 `/ log log `

)
more ciphertexts than our construction

when embedded directly in a Boolean circuit (accounting for ` ‘projection’ gates) de-
spite relying on a circular correlation robust hash function.

6.2 Improved `-fan-in XOR

The routine to garble an individual XOR gate described in Fig. 1 performs 3 XOR
operations in order to derive the incoming wire keys corresponding to a given pair of
gate keys. Hence, in order to garble ` XOR gates, repeating this routine `− 1 times will
cost 3(`− 1) XOR operations.

Consider a subtree (with ` leaves) consisting only of XOR gates, contained within
the tree representation of a formulaic circuit. Note that there are `− 1 gates in this sub-
tree. Without loss of generality, let the subtree be collapsed into a single gate accepting
` incoming wires. For convenience, the incoming wires (leaves of the subtree) are as-
sumed to be numbered consecutively from w to w+`−1, with the final XOR gate itself
(root of the subtree) being numbered g such that the internal nodes of the subtree are
numbered consecutively from w + ` to g − 1. As usual, the keys on wire i are denoted
K0
i ,K

1
i , corresponding to bit values 0 and 1 respectively.

Consider the keys
(
K0
i ,K

1
i

)
i∈[w,g] to be produced by `−1 instances of the GbXOR

routine from Fig. 1; starting from the root K0
g ,K

1
g and ending at the leaves to produce(

K0
i ,K

1
i

)
i∈[w,w+`−1]. Observe that the zero and one keys on each wire differ by the

same offset; ie. ∀i ∈ [w, g]:

K0
w ⊕K1

w = · · · = K0
i ⊕K1

i = · · · = K0
g ⊕K1

g (1)

We make use of the property observed in Equation (1) in order to garble such an `-fan-in
XOR gate more efficiently. Essentially, the 0-keys of the incoming wires are chosen so
as to form an additive secret sharing of the gate’s 0-key. The 1-keys are then generated
by offsetting the 0-keys by the same offset as the gate key pair (ie. K0

g ⊕ K1
g ). The

formal description is given in Fig. 11.
The routine detailed in Fig. 11 produces keys that adhere to the exact same distribu-

tion as the result of invoking the original GbXOR routine `− 1 times in an appropriate
sequence. The evaluation and verification algorithms for garbled XOR gates (Fig. 1) are
directly compatible. A separate proof of authenticity is therefore not required.

As for the computation cost, the new GbXOR routine of Fig. 11 requires one XOR
operation to find the gate offset, `− 1 XOR operations to additively secret share one of
the gate keys, and ` XOR operations to offset each of the 1-keys on the incoming wires,
bringing the total to 2`. This beats the 3(` − 1) cost of using multiple instances of the
original routine when ` > 3.



GbXOR
(
`,K0,K1, 1κ

)
– We have to generate ` key pairs, which will produce either K0 or K1 appropriately upon

being combined by XORing
– The resultant keys are locally indexed here as K0

i ,K
1
i , i ∈ [1, `]

1. Calculate the offset, ∆ := K0 ⊕K1

2. Choose the 0-keys on all but one wire randomly, for all i ∈ [1, `− 1] do K0
i ← {0, 1}κ

3. Set the final 0-key so that all the incoming wires’ 0-keys form an additive secret sharing

of K0, K0
` :=

(
`−1⊕
i=1

K0
i

)
⊕K0

4. Offset the 0-keys to generate the 1-keys on the incoming wires. for all i ∈ [1, `] do
K1
i = K0

i ⊕∆
5. return

(
K0
i ,K

1
i

)
i∈[1,`]

Fig. 11: Garbling an `-fan-in XOR gate

6.3 Improved `-fan-in AND

The cost of garbling an AND gate is already minimal, at a single XOR operation per
gate. Instead, we focus on optimizing the evaluation of AND gates.

Similar to the `-fan-in case of XOR gates, consider a subtree consisting solely of
AND gates, contained in a formulaic circuit. The gates in the subtree are numbered as
described in the `-fan-in XOR section; w to w + ` − 1 for the inputs, w + ` to g for
the intermediate gates, and g for the root of the subtree. The subtree is collapsed into a
single `-fan-in AND gate. We follow the standard naming convention for wire keys and
bit values.

Observe that if any of the bit values on wires w to w + ` − 1 are 0, then the entire
subtree (the `-fan-in AND gate) will evaluate to 0, as bg = bw ∧ · · · ∧ bw+`−1. Also
observe that as per the GbAND routine defined in Fig. 2, the following relation holds:

K0
w = · · · = K0

i = · · · = K0
g , ∀i ∈ [w, g] (2)

We exploit the above relation in order to save time during evaluation; if a wire j ∈
[w,w+`−1] is found to be carrying a bit value of 0, then the `-fan-in AND gate output
is set to 0, with the key Kj being assigned to the gate output key Kg . The routine is
formally detailed in Fig. 12.

The only case where XOR operations are performed in the EvAND routine in Fig.
12 is when all input bit values are 1; ie. bi = 1,∀i ∈ [w,w+ `− 1]. Even so, only `− 1
XOR operations are performed, which is the same as when `−1 instances of the original
EvAND routine from Fig. 2 are executed. However, if there exists at least one incoming
wire carrying bit value 0, ie. ∃j ∈ [w,w + ` − 1], bj = 0, no XOR operations are
performed to evaluate the entire `-fan-in AND gate. This occurs for 2`− 1 out of the 2`

input cases. The number of XOR operations saved will be equal to the number of gates
in the (now collapsed) subtree that evaluate to bit value 1. As there is no modification
to the garbling routine, there is no additional proof of authenticity required here.



EvAND
(

(Ki, bi)i∈[1,`] , 1
κ
)

– We have to process ` (key, bit value) pairs that effectively correspond to an `-fan-in AND
gate.

– The incoming wire keys and bit values are locally indexed as Ki, bi, where i ∈ [1, `], and
the resultant key and bit value are locally indexed as Kg, bg .

1. if ∃j ∈ [1, `] such that bj = 0 then Gate output is zero, Kj is also the output key.
Kg := Kj

2. else Gate output is 1, XOR all input keys. Kg :=
⊕̀
i=1

Ki

3. return Kg, bg

Fig. 12: Evaluating an l-fan-in AND gate

7 Online-Efficient Zero-Knowledge

Privacy-free GCs are motivated by applications to ZK protocols. Specifically, when
plugged into the ZK protocol of [JKO13], a privacy-free GC yields an efficient method
to prove non-algebraic statements. In this section, we show that when instantiated with
our scheme, we obtain a ZK protocol for Boolean formula satisfiability (SAT) state-
ments in the online-offline paradigm, where the communication in the online phase is
linearly proportional only to the size of the witness.

A SAT verification function can be realised by a formula. A witness bit may occur a
number of times in the formula. While realizing the formula as a formulaic circuit, each
occurence of a witness bit in the formula is treated as a separate input wire. Denoting the
ith witness bit of the formula to be represented by input wires Ii = {i0, i1, · · · il} in the
formulaic circuit, in order for the formula to correctly check a witness w = (wi)i∈[n]
we must ensure that ∀j ∈ Ii, xj = wi. We stress that the cumulative size of the Iis may
be much bigger than the witness length. We denote the size of ∪ni Ii as n′. We denote
the size of the (formulaic) circuit by m and the size of the witness w as n. So we have
n ≤ n′ ≤ m.

Our ZK protocol π = (πoff , πon) is described in Fig. 13. Informally, protocol π is a
direct adaptation of the ZK protocol in [JKO13] to the online-offline setting, by shifting
the public-key operations (OTs) to the offline phase. However, we observe that the same
witness bit is used to select multiple GC keys, and accordingly use a domain extension
technique for the OTs in order to encode n′ garbled inputs with just n OT instances.
This is the core of why the communication required in πon is only proportional to the
witness size, and not the size of the statement. The proof of security appears in the full
version of the paper and the formal definitions of the necessary ideal functionalities
FCOM,FCOT,FR

ZK are postponed to Appendix A.

Computation cost. The offline phase will require O (n) PRG invocations by V , and
O (n) public key operations (OTs) by both P and V . The online phase will require
O (n) PRG invocations by P to unmask the input keys, O (m) XORs to evaluate the



– The witness checking formulaic circuit f is the only input available during πoff . During πon,
the prover P additionally has her witness w = w1w2 · · ·wn as input.

– G(·) is a length-expanding PRG.
– The protocol is in the (FCOT,FCOM)-hybrid model (formal definitions of these functional-

ities appear in Appendix A).

πoff

1. V garbles the circuit,
(

Ø,
(
K0
i ,K

1
i

)
i∈[n′]

, Z
)
← Gb (1κ, f)a and groups together in-

put keys for the same witness bit asKb
i =

(
Kb
j

)
j∈Ii

for all i ∈ [n] and b ∈ {0, 1}.
2. For all i ∈ [n] and b ∈ {0, 1}, V samples seeds Sbi ← {0, 1}µ, computes T bi :=
Kb
i ⊕G(Sbi ) and sends T bi to P .

3. For all i ∈ [n], P samples ri ← {0, 1} and sends (choose, id, ri) to FCOT.
4. On receiving messages (chosen, id) for i ∈ [n] from FCOT, V samples R0

i , R
1
i ←

{0, 1}µ and sends
(
transfer, id, R0

i , R
1
i

)
as input to FCOT for all i ∈ [n].

5. P receives (transferred, id, Rrii ), for i ∈ [n] from FCOT.

πon

6. For all i ∈ [n], P computes di := ri ⊕ wi and sends di to V .
7. For all i ∈ [n], V computesM0

i := S0
i ⊕Rdii ,M1

i := S1
i ⊕R¬dii , and sends

(
M0
i ,M

1
i

)
to P .

8. P does the following:
i. computes Swi

i := Mwi
i ⊕R

ri
i for all i ∈ [n]

ii. computesKwi
i := Twi

i ⊕G (Swi
i ) for all i ∈ [n]

iii. parses {Kwi
i }i∈[n′] from {Kwi

i }i∈[n]
iv. evaluates the garbled circuit to obtain Z′ := Ev

(
Ø, {Kwi

i }i∈[n′]

)
v. sends (commit, id, Z′) to FCOM.

9. On receiving (committed, id, |Z′|) from FCOM, V sends the message
(open-all, id) to FCOT.

10. On receiving
(
transfer, id, R0

i , R
1
i

)
for all i ∈ [n] from FCOT, P does the following

i. computes S0
i , S

1
i for all i ∈ [n] using M0

i ,M
1
i and R0

i , R
1
i

ii. computesKb
i := T bi ⊕G(Sbi ) for all i ∈ [n] and b ∈ {0, 1}

iii. and parses
{
Kb
i

}
i∈[n′]

from {Kb
i}i∈[n] for b ∈ {0, 1}

iv. aborts if Ve
(

Ø, f,
{
K0
i ,K

1
i

}
i∈[n′]

)
6= 1, sends (reveal, id) toFCOM otherwise.

11. On receiving the message (reveal, id, Z′) from FCOM, V outputs accept if Z = Z′.

a Instead of returning d, Gb is tweaked to return the 1-key on the output wire.

Fig. 13: Online-efficient ZK from our Privacy-free Garbling Scheme

GC, and anotherO (n) public key operations to verify that the GC is valid. V need only
perform O(n) XOR operations in the online phase, and open one commitment.

Communication cost. The preprocessing phase will requireO (m), and the online phase
will require O (n) bits of communication. The ZK protocol when instantiated with a



statically secure garbling scheme can not possibly yield an online phase which is inde-
pendent of the size of the statement. This is because the garbled circuit will necessarily
have to be sent after the evaluator commits to her input.

Our ZK Protocol without Offline Phase. Our protocol in Fig. 13 in its monolithic form
can be obtained by running the OTs in an online fashion where the inputs of V are the
seeds of the PRG and the inputs of P are the witness bits directly. We compare this
protocol with that of [JKO13] composed with [ZRE15]. While our protocol offers the
qualitative advantage of relying on weaker primitives (PRGs), we also note that since
our garbling scheme is instantiated with a statistical security parameter, it can offer a
better proof size.
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A Zero-Knowledge from Garbled Circuits: Required
Functionalities

Here we describe the required ideal functionalities. The Zero-knowledge functionality
is detailed in Fig. 14. The FCOT and FCOM functionalities are provided in Fig. 15 and
Fig. 16 respectively. The FCOT functionality can be securely realised in the framework
of [PVW08] with an augmentation for the Open-all property, as discussed in [JKO13].
The FCOM functionality can be securely and efficiently realised as well [Lin11].



– This is the ideal functionality for proving in zero-knowledge to a Verifier V that a Prover
P possesses a witness w for instance x as per relation R. As in [JKO13] we use an ideal
functionality to succinctly capture our requirements of a zero-knowledge protocol.

FR
ZK

1. Receive (prove, sid, x, w) from P and (verify, sid, x′) from V
2. if x = x′ and R(x,w) = 1 then output (verified, x) to V

Fig. 14: The Zero-knowledge functionality

– This is the ideal functionality for Committing Oblivious Transfer, borrowed from [JKO13].
A Sender S provides two messages, of which a Receiver R chooses to receive one. S
doesn’t know which message R chose, and R has no information about the message it
didn’t choose. Upon receiving a signal from S, the functionality reveals both messages
to R.

FCOT

1. Choose: Receive (choose, id, b) from R, where b ∈ {0, 1}. If no message of the form
(choose, id, ·) exists in memory, store (choose, id, b) and send (chosen, id) to S.

2. Transfer: Receive (transfer, id, tid,m0,m1) from S, where m0,m1 ∈ {0, 1}κ. If
no message of the form (transfer, id, tid, ·, ·) exists in memory, and a message of
the form (choose, id, b) exists in memory, then send (transferred, id, tid,mb) to
R.

3. Open-all: Receive (open-all) from the S. Send all messages of the form
(transfer, id, tid,m0,m1) to R.

Fig. 15: The Ideal Committing OT functionality

– The ideal commitment functionality, borrowed from [JKO13].
– A Sender S commits to a messagem, which she later reveals to the receiverR. S is ‘bound’

to only the message that she committed, while the message is hidden from R until S
opens her commitment.

FCOM

1. Commit: Receive (commit, id,m) from the sender, where m ∈ {0, 1}∗. If
no such message already exists in memory, then store (commit, id,m) and send
(committed, id, |m|) to R.

2. Reveal: Receive (reveal, id) from S, send (reveal, id,m) to R if corresponding
(commit, id,m) exists in memory.

Fig. 16: The Ideal Commitment Functionality
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