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Abstract We study the problem of two round oblivious evaluation of
cryptographic functionalities. In this setting, one party P1 holds a private
key sk for a provably secure instance of a cryptographic functionality F
and the second party P2 wishes to evaluate Fsk on a value x. Although
it has been known for 22 years that general functionalities cannot be
computed securely in the presence of malicious adversaries with only
two rounds of communication, we show the existence of a round opti-
mal protocol that obliviously evaluates cryptographic functionalities. Our
protocol is provably secure against malicious receivers under standard as-
sumptions and does not rely on heuristic (setup) assumptions. Our main
technical contribution is a novel nonblack-box technique, which makes
nonblack-box use of the security reduction of Fsk. Specifically, our proof
of malicious receiver security uses the code of the reduction, which re-
duces the security of Fsk to some hard problem, in order to break that
problem directly. Instantiating our framework, we obtain the first two-
round oblivious pseudorandom function that is secure in the standard
model. This question was left open since the invention of OPRFs in 1997.

1 Introduction

An oblivious evaluation protocol of a cryptographic functionality F , is a two-
party protocol in which one party P1, called the sender, holds a function Fsk ∈ F
and the second party P2, called the receiver, wishes to evaluate Fsk on x. Sender
security says that P1 remains oblivious of x while receiver security guarantees
that the security of Fsk is preserved, i.e., evaluating Fsk obliviously should be as
secure as having direct access to F , even if a malicious party deviates from the
protocol arbitrarily. Although it has been known for 22 years that general func-
tionalities cannot be computed securely in the presence of malicious adversaries
with only two rounds (messages) of communication [29], we show the existence of
a two message protocol that obliviously evaluates cryptographic functionalities.
The functionalities covered by our framework have the following properties:

– There is a security experiment Exp that characterizes the security of F .
– The experiment Exp gives the adversary access to an oracle O.



– There is a black-box reduction B with certain properties that reduces the
security of Fsk to a hard problem π.

Our framework subsumes popular two-party protocols, such as blind signatures
and oblivious pseudorandom functions (OPRF). In fact, our framework yields
the first OPRF with only two rounds of communication in the standard model
— a problem that has been open since their invention in 1997 [49].

Technical Contribution Our main technical contribution is a nonblack-box
proof technique, which is nonblack-box in the reduction. To explain what being
nonblack-box means, consider an instance P of a cryptographic functionality F .
Assume further that this instance is provably secure, i.e., there is a reduction B
that turns any adversary A breaking the security of P into an algorithm solving
the underlying hard problem π. Our protocol then shows that P can be evaluated
securely. The corresponding proof of malicious receiver security makes nonblack-
box use of the underlying code of the reduction B. This proof does not reduce
the security to P but to the underlying hard problem exploiting the code of
B. To best of our knowledge, this is the first result that shows how to make
nonblack-box use of the code of a given security reduction. We call this class of
reductions oblivious reductions.

1.1 Impossibility of Malicious Security and Induced Game-Based
Security

Ideally one would like to achieve the standard notion of simulation based security
against malicious adversaries. This notion says that the malicious receiver and
sender learn only f(x) (except what can trivially be learned from f(x)) and that
the private input of the other party remains hidden. Unfortunately, it is well
known that standard simulation based security notions cannot be achieved for
two-round secure function evaluation (SFE) [29]. In fact, if one uses black-box
techniques only, then at least five rounds of communication are necessary [36].

Since there is no hope in achieving malicious simulation-based security, we
propose an alternative definition of malicious security for the setting of secure
evaluation of cryptographic primitives: On a high-level, our security notions
for malicious receiver says that the security properties of the underlying crypto-
graphic primitive is preserved even against malicious adversaries. More precisely,
we consider the secure evaluation of cryptographic functionalities, which are
equipped with a game-based security notion. In our formalization the adversary
in the corresponding security experiment has black-box access to the primitive.
Then, we define an induced security notion by replacing black-box calls to the
primitive in the security game with instances of the two-round SFE protocol.
I.e., instead of giving the adversary black-box access to the primitive, it acts
as a malicious receiver in an SFE session with the sender. Achieving this notion
and showing that the underlying security guarantees are preserved is non-trivial,
because the adversary is not semi-honest and may not follow the protocol.

Regarding security against corrupted senders, we show that malicious sender
security and induced game-based security against malicious receivers cannot
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be achieved under (standard) non-interactive assumptions. In fact, our result
is more general as it rules out protocols with three moves. Our impossibility
is constructive and shows that our notion captures the standard definition of
blind signatures. But for blind signatures it is well known that a large class
of three-move blind signture schemes cannot be proven secure in the standard
model under non-interactive assumptions [16]. Since our blind signature scheme
belongs to this class, it follows that achieving both notions of malicious security
is impossible. Thus, we also need to weakening the security against malicious
senders and we stick to the standard notion of semi-honest security.

1.2 Oblivious Reductions: A Nonblack-Box Proof Technique

We give a high-level overview of our protocol and proof strategy. Our start-
ing point is an instance Fsk of some cryptographic functionality F (such as
the pseudorandom function functionality). The corresponding security proof is a
black-box reduction B to some underlying hard problem π. Our goal is to obliv-
iously compute Fsk in a secure two-party protocol Π with only two rounds of
communication. Our protocol is simple and uses a certain type of homomorphic
encryption and works as follows: The receiver encrypts its input x using the ho-
momorphic encryption scheme, it sends the ciphertext c← Enc(x) to the sender.
The sender evaluates the function Fsk on c computing c′ ← Eval(c,Fsk) and re-
turns c′ to the receiver, who obtains Fsk(x) by simply decrypting c′. Using fully
homomorphic encryption as the underlying encryption scheme, it is well known
that this protocol is secure against semi-honest adversaries [23].

However, we are interested in achieving malicious security and we achieve
our goal using a specific type of homomorphic encryption scheme in combination
with our novel nonblack-box proof technique. We provide an efficient reduction
from the security of the homomorphically evaluated primitive to the underly-
ing problem π directly using the code of the reduction B. Our proof technique
works for a large and natural class of black-box reductions that we call oblivi-
ous. Loosely speaking, a reduction is oblivious, if it only knows an upper bound
on the number of the oracle queries, but does neither learn the query nor the
answer. We give several examples of known oblivious reductions in Section 2.2
and we sketch the basic ideas of this technique in the following.
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Figure 1. Oblivious reduction part 1 of 2.

3



In the first step of our proof (see Figure 1), we run a security experiment
where the malicious receiver A has oracle access to a homomorphically evalu-
ated functionality Eval(c,Fsk). In the second step, the experiment is transformed
in the following way. First, the adversary’s oracle inputs are extracted via an
unbounded extractor, the functionality is evaluated on the extracted input, and
finally the output is encrypted (with the right distribution). Assuming that the
homomorphic encryption is (statistically) circuit private, we show that this mod-
ification does not change the success probability of the adversary. While extract-
ing an input x from a ciphertext c is not possible in polynomial-time, it does
not change the success probability of A.

In the third step (see right picture of Figure 1), we move the extraction and
simulation procedures from the security experiment into the adversary itself,
obtaining an unbounded adversary A′. That is, the modified attacker A′ runs
A as a black-box. Whenever A sends c to its oracle, then A′ extract x from c,
invokes its own oracle obtaining y ← F (x), and returns the encryption of y to
A. Obviously, the adversary A′ does not run in polynomial-time, but this does
not change its success probability, as we have only re-arranged the algorithms
from one machine into another, but the overall composed algorithm remained
the same.
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A

Eval(·,F)
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Figure 2. Oblivious reduction part 2 of 2.

Consider the three steps shown in Figure 2. In the first part, the unbounded
adversary is plugged into the oblivious black-box reduction B, which reduces
the security of F to some hard problem π. This step is legitimate because the
reduction only makes black-box use of the adversary. Observe that a black-box
reduction cannot tell the difference between a polynomial-time adversary and
an unbounded adversary, but only depends on the adversary’s advantage in the
security experiment. Thus, BA′ is an inefficient adversary against the problem π.
In our next modification we move the extraction and simulation algorithms from
the adversary A′ into the oracle-circuit. While this is just a bridging step, the
inefficient algorithms for extraction and simulation are now part of the reduction.
That is, whenever A queries c to its oracle, then the reduction B∗ first extracts x
from c and runs the simulation of B afterwards in order to compute the simulated
answer y ← Fsk(x). Subsequently, B∗ encrypts y as c′ and sends this answer to
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A. As a result, we obtain an inefficient reduction B∗ that uses the code of the
underlying reduction.

In the last step of our proof, we turn B∗ into an efficient reduction B′ against
the underlying hard problem π (last picture in Figure 2). Here, we again exploit
the statistical circuit privacy of the homomorphic encryption scheme and replace
the inefficient computation by the homomorphic evaluation of F .

Running-time of the Reduction One may have the impression that we
cheated in our proof by building a reduction that is not efficiently computable.
This is not the case. A closer look at the formal proof reveals that the compu-
tationally inefficient steps are happening “inside” of the parts where we exploit
the statistical circuit privacy. Thus, in some sense one may view this step as a
game “in the head” while running an efficient reduction.

1.3 Our Contribution

The main contributions of this work are the following:

– We put forward the study of two-message secure evaluation of cryptographic
functionalities.

– We propose a novel security model which says that the underlying security
properties of the cryptographic functionality must be preserved, even if the
malicious receiver does not follow the protocol.

– We show that security against malicious receivers with respect to our notion
of induced game-based security and malicious senders cannot be achieved
simultaneously in the standard model. In fact, our impossibility result is
more general as it covers protocols with three moves.

– We suggest a protocol that is provably secure in this model under standard
assumptions. The corresponding security proof relies on a novel nonblack-
box technique that is nonblack-box in the reduction. We believe that this
technique might be of independent interest.

– As an instance of our protocol, we present the first two-move oblivious pseu-
dorandom function and solve a problem that was open since their invention
in 1997.

1.4 Related Work

In this section, we discuss related works in the areas of secure two-party com-
putation, round optimal oblivious PRFs and blind signatures.

Secure Two-Party Computation The seminal works of Yao [58] and Gol-
dreich, Micali, and Widgerson [28] show that any polynomial-time function can
be securely computed in various settings. Recent works have shown protocols
for secure two- and multi-party computation with practical complexity such
as [7,44,13,51]. A central measure of efficiency for interactive protocols is the
round complexity. It was shown that secure two-party computation of arbitrary
functionalities cannot be realized with only two rounds [29,42,43], and if the
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security proof uses black-box techniques only, then 5 rounds are needed [36].
On the other hand, several meaningful functionalities can be realized with only
two (resp. less than five) rounds. Research in this area has gained much at-
tention in the past and upper and lower bounds for many cryptographic pro-
tocols were discovered, such as for (concurrent) zero-knowledge proofs and ar-
guments [15,29,26,27,5,56] and [39,10,54], blind signatures [16,20,19], as well as
two- and multi-party computation [58,3,4,32,41,21] and [12,22,37].

Round Optimal Oblivious PRFs Oblivious pseudorandom functions are in
essence pseudorandom functions (PRFs) that are obliviously evaluated in a two-
party protocol. This means that the sender S holds a key k of a PRF F and
the receiver R a value x and wishes to learn F (k, x). OPRFs have many ap-
plications, such as private key-word search [17], or secure computation of set
intersection [34]. However, besides the popularity of this primitive, no scheme
in the standard model is known with only two-rounds of communication. The
first OPRF scheme was proposed by Naor and Reingold and it requires O(λ)
rounds [49]. Freedman et al. [17] used previous work of Naor and Pinkas [46,47] to
extend this to a constant round protocol assuming the hardness of DDH. Note
that this protocol realizes a “weak PRF”, which allows the receiver to learn
information about the key k as long as this information does not change the
pseudorandomness of future queries. Jarecki and Liu suggested the first round
optimal OPRFs in the random oracle model [34].

Round Optimal Blind Signatures A blind signature scheme [11] allows a
signer to interactively issue signatures for a user such that the signer learns
nothing about the message being signed (blindness) while the user cannot com-
pute any additional signature without the help of the signer (unforgeability).
Constructing round-optimal blind signature schemes in the standard model has
been a long standing open question. Fischlin and Schröder showed that all pre-
viously known schemes having at most three rounds of communication, cannot
be proven secure under non-interactive assumptions in the standard model via
black-box reductions [16]. Subsequently, several works used a technique called
“complexity leveraging” to circumvent this impossibility result [20,19] and re-
cently, Fuchsbauer, Hanser, and Slamanig suggested a round optimal blind sig-
nature scheme that is secure in the generic group model [18]. In fact, it is still
unknown if round optimal blind signatures, based on standard assumptions, exist
in the standard model.

1.5 Outlook

Our work also shows that the “quality” of the proof has implication on the
usability of the primitive in other contexts. In particular, having an oblivious
black-box reduction, in contrast to a non-oblivious one, implies that the primi-
tive can be securely evaluated in our framework while the underlying security is
preserved. In fact, our results show a certain degree of composability of crypto-
graphic functionalities and round optimal secure function evaluation.
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Outline We define our security model in Section 2. Our protocol is then given
in Section 3. Section 4 shows how our result can be applied to achieve oblivious
pseudorandom functions. The impossibility result is given in Section 4.

Notations The security parameter is λ. By y ← A(x; r) we refer to a (PPT)
algorithm A that gets as input some value x and some randomness r and returns
an output y. If X is a set, then x

$← X means that x is chosen uniformly at
random from X. The statistical distance ∆(A,B) of two probability distributions
A and B is defined as ∆(A,B) = 1

2
∑
v |Pr(A = v)− Pr(B = v)|.

2 Secure Computation of Cryptographic Functionalities

In the following section, we formalize experiments, the corresponding notion of
security of an experiment, oblivious black-box reduction, and our notion of secure
computation of cryptographic primitives. Our formalization of experiments is
similar to the one by Bellare and Rogaway [6], but our goal is to formalize
oblivious reduction, i.e., reduction that only knows an upper number on the
number of oracle queries made by an adversary and which does not see the
actual queries to the oracle.

Please note that in the literature the term “round” has been used both to
refer to a single message (either from A to B or from B to A) and to refer to two
messages (one from A to B and one from B to A). Since none of the two seems
to be favoured over the other, in this work we will stick to the former usage, i.e.,
a “round” refers a single message despite its direction.

2.1 Cryptographic Security Experiment

In this section, we formalize security experiments for cryptographic primitives
P, where we view P as a collection of efficient algorithms. The basic idea of our
notion is to define a framework, similar to the one of Bellare and Rogaway [6], for
cryptographic experiments. Our framework provides some basic algorithm, such
as initialization, an update mechanism, and a method to test if the adversary
succeeds in the experiment. Moreover, it also define oracles that may be queried
by the attacker. The most important aspect of our formalization is that the
experiment is oblivious about the adversary’s queries to its oracle. This means
that the experiment may know an upper bound on the total number of queries,
but does not learn the queries, or the corresponding answers.

Formally, the experiment consists of four algorithm. The first algorithm, Init,
initializes the environment of the security experiment and computes publicly
available informations pp and private informations st that may be hardcoded
into the oracle that will be used by the attacker in the corresponding security
notion. The algorithm Init receives a upper bound q on number of oracle queries
as input. This is necessary because several security experiments, such as the one
of blind signatures, require a concrete bound on the number of queries. This
oracle, denoted by OA, obtains (pp, st) and some query x, and it either returns
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an answer y, or ⊥ to indicate failure. The update algorithm Update allows to
re-program the oracle. The test algorithm Test checks the validity of some value
out with respect to public and private informations pp and st, respectively.

Definition 1 (Security Experiment). A security experiment for a crypto-
graphic primitive P is a tuple of four algorithms defined as follows:
Initialization. The initialization algorithm Init(1λ, q) gets as input the security

parameter 1λ and an upper bound q on the number queries. It outputs some
public information pp together with some private information st.

Oracle. The oracle algorithm OA(pp, st, x) gets as input a string pp, state in-
formation st, and a query x. It answers with special symbol ⊥ if the query
is invalid, and otherwise with a value y.

Update. The stateful algorithm Update(st, resp) takes as input some state in-
formation st and a string resp. It outputs some updated information st.

Testing. The Test(pp, st, out) algorithm gets as input the input of the attacker
pp, state information st, the output of the attacker out, and outputs a bit b
signifying whether the attacker was successful.

In almost all cases, the oracle OA embeds an algorithm from the primitive P,
such as the signing algorithm in case of signature, or the encryption algorithm in
case of the CPA (resp. CCA) security game. Given the formalization of a secu-
rity experiment, we are ready to formalize the corresponding notion of security.
Loosely speaking, a cryptographic primitive is secure, if the success probability
of the adversary in this experiment is only negligible bigger than the guessing
probability. Since our notions covers both computational and decisional crypto-
graphic experiments, we follow the standard way of introducing a function ν that
serves as a security threshold and which corresponds to the guessing probability.
In our formalization, the adversary A is a stateful algorithm that runs r rounds
of the security experiment. This algorithm is initially intitialized with an empty
state stA := ∅. Our formalization could also handle non-uniform adversaries by
setting this initial state to some string.
Definition 2 (Security of a Cryptographic Primitive). Let Exp = (Init,
O,Update,Test) be a security experiment for a cryptographic primitive P, and
let A be an adversary having a state stA querying the oracle exactly once per
invocation. Further let ν : N → [0, 1] be a function. In abuse of notation, we
denote by ExpP(A) the following cryptographic security experiment:

Game ExpP(A)
(pp, st)← Init(1λ, q)
stA := ∅
for i = 1 to q do

(respi, stA)← AO(pp,st,·)(pp, stA)
(pp, st)← Update(st, respi)

out := respq
b← Test(pp, st, out)
Return b

Oracle O(pp, st, x)
y ← OA(pp, st, x)
Return y
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We define the advantage of the adversary A as

AdvP (A) :=
∣∣∣Prob

[
ExpP(A) = 1

]
− ν(λ)

∣∣∣ .
A cryptographic primitive is secure with respect to ExpP(A) if the advantage
AdvP (A) is negligible (in λ).

Remark 1. Observe that in our formalization of a cryptographic security exper-
iment, all algorithms, except for the adversary, are oblivious of the queries to
the oracle. The reason is that the output of the oracle is returned to the adver-
sary only and no other algorithm obtains this value. In particular, the update
algorithm does not receive the output as an input and also the test algorithm,
which determines if the attacker is successful, only receives pp, st, and out as an
input and no input or output from OA.

The CCA Secure Encryption Experiment Our formalization of crypto-
graphic experiments covers standard security notions, such as CCA security for
public-key encryption schemes (obviously, the adaption to CCA secure private-
key encryption is trivial). Recall that a public-key encryption scheme HE = (Kg,
Enc,Dec) consists of a key generation algorithm (ek, dk) ← Kg(1λ), an encryp-
tion algorithm c← Enc(ek,m), and a decryption algorithm m← Dec(dk, c) and
the corresponding security experiment of CCA is a two stage game. In the first
stage, the attacker has access to a decryption oracle and may query this oracle
on arbitrary values. Subsequently, the attacker outputs two messages of equal
length and receives a challenge ciphertext that encrypts one of the messages
depending on a randomly chosen bit b. In the second stage of the experiment,
the attacker gets access to a modified decryption oracle that answers all queries,
except for the challenge ciphertext. Eventually, the attacker outputs a bit b′ try-
ing to predict b and it wins the security experiment if its success probability is
non-negligibly bigger than 1/2.

In our formalization, the game of CCA security is a 2-round experiment. The
initialization algorithm Init generates a key-pair (ek, dk) of a public-key encryp-
tion scheme, it chooses a random bit b, and sets i = 1, r = 2 and cb = ∅. The
public parameters pp contain (ek, i, r, cb) and the private state is (dk, b). The
input of the oracle OA is (pp, x), it parses pp as (ek, i, r, cb) and behaves as fol-
lows: If i = 1, then it returns the decryption of x, i.e., it outputs y = Dec(dk, x).
If i = 2, then OA outputs Dec(dk, x) if x 6= cb, and ⊥ otherwise. At some
point, the adversary A outputs as its response resp = (m0,m1, stA) two chal-
lenges messages m0,m1 and some state information stA. The update algorithm
Update(st, resp, cnt) extracts b from st and updates the public parameters pp by
replacing cb with cb ← Enc(ek,mb) and by setting i = 2. Moreover, it stores the
messages m0 and m1 in st. In the next stage of the experiment, the oracle OA
returns ⊥ when queried with cb. Eventually, A outputs a bit b′ as its response
resp. The test algorithm Test extracts m0,m1, and b from st and b′ from resp. It
returns 0 if |m0| 6= |m1| or if b′ 6= b. Otherwise, it outputs 1.
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The Unforgeability Experiment The classical security experiment of exis-
tential unforgeability under chosen messages attacks for signature schemes is not
covered by our formalization. The reason is that the testing algorithm outputs 1
if the forged message m∗ is different from all queries m1, . . . ,mi the attacker A
queried to OA. Thus, the testing algorithm is clearly not oblivious of A’s queries
to OA. However, one can easily define a modified experiment that is implied by
the classical experiment. Similar to the unforgeability notion of blind signatures,
we let the attacker query the signing oracle q times and the attacker succeeds
if it outputs q + 1 messages-signature pairs such that all messages are distinct
and all signatures are valid. Clearly, giving a successful adversary against this
modified game, one can easily break the classical notion by guessing which of
the q + 1 pairs is the forgery.

2.2 Oblivious Black-Box Reductions

Hard Computational Problem We recall the definition of hard computational
problems due to Naor [45].

Definition 3 (Hard Problem). A computational problem π = (Ch, t) is de-
fined by a machine Ch (the challenger) and a threshold function t = t(λ). We
say that an adversary A breaks the problem π with advantage ε, if

Pr[〈Ch,A〉 = 1] ≥ t(λ) + ε(λ),

over the randomness of Ch and A. If π is non-interactive, then the interaction
between A consists of Ch providing an input instance to A and A providing an
output to Ch. The problem π is hard if ε is negligible for all efficient adversaries
A.

All standard hardness assumptions used in cryptography can be modeled in this
way, for instance the DDH assumption. The goal of a reduction is to show that
the security of a cryptographic primitive P can be reduced to some underlying
hard assumption. This is shown by contraposition assuming that the crypto-
graphic primitive is insecure with respect to some security experiment. Then,
the reduction gets as input an instance of the underlying hard problem, it runs
a black-box simulation of the attacker and shows, via simulation of the security
experiment, that it can use the adversary to solve the underlying hard prob-
lem. Since the problem is assumed to be hard, such an attacker cannot exist.
A reduction is black-box if it treats the adversary as a black-box and does not
look at the code of the attacker. A comprehensive discussion about the different
types of black-box reductions and techniques is given in [55]. For our purposes
we need a specific class of black-box reductions that we call oblivious. Loosely
speaking, a black-box reduction is oblivious if it only knowns an upper bound on
the number of oracle queries made by the attacker, but does neither know the
query nor the answer. Intuitively, this motion allows the reduction to program
the oracle once for each round of the security game.

10



Definition 4 (Oblivious Black-Box Reductions). Let P be a cryptographic
primitive with an associated security experiment Exp. Moreover, let π be a hard
problem. Let B be an oracle algorithm with the following syntax.

– B is an adversary against the problem π
– B has restricted black-box access to a machine A, which is an adversary for

the security experiment Exp
– B gets as auxiliary input an upper bound q on the number of oracle queries
A makes in each invocation.

By restricted black-box access to A we mean that B is allowed to program an
oracle OB, choose inputs pp, stA and get the output (resp, stA)← AOB(·)(pp, stA).
As before, we assume that A queries its oracle exactly once per invocation (We
stress that B does not see A’s oracle queries).

We say that B is an oblivious black-box reduction from the security of Exp
to π if it holds for every (possibly inefficient) adversary A against Exp that if
AdvExp

A (λ) is non-negligible, then AdvπBA(λ) is also non-negligible.

2.3 Secure Function Evaluation for Cryptographic Primitives

In this section, we propose our security notions for two-round secure function
evaluation of cryptographic primitives P. A two-round SFE protocol is a proto-
col between two parties, a sender S and a receiver R. The sender provides as
input a function f from a family F and the receiver an input x to the function.
At the end of the protocol, the sender gets no output (except for a signal that
the protocol is over), whereas the receiver’s output is f(x). The function that
is realized by our SFE protocols is a function of the primitive P. Since we view
P as a collection of algorithms, our SFE protocol evaluates the underlying func-
tionality. For example, in the case of signature schemes this collection consists
of a key generation, a signing, and a verification algorithm. Securely evaluating
this primitive means to securely evaluate the signing algorithm.

In the following, we introduce our security definitions. Roughly speaking,
receiver security says that the security of the underling cryptographic primitive
is preserved. This property must hold even against malicious receivers. Moreover,
our security notion for the sender holds with respect to semi-honest senders.

Induced Game-based Malicious Receiver Security Regarding security,
ideally we would like to achieve that the receiver learns nothing but f(x), which
is usually modeled via standard simulation based security notions. However, it is
well known that standard simulation based security notions fail in the regime of
two-round secure function evaluation [29]. Thus, our goal is to achieve a weaker
notion of security, which roughly says that the security of the underlying crypto-
graphic primitive is preserved. More precisely, we consider the secure evaluation
of cryptographic primitives, which are equipped with a game based security no-
tion. In our formalization the adversary in the corresponding security experiment
has black-box access to the primitive. Then, we define an induced security notion
by replacing black-box calls to the primitive in the security game with instances
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of the two round SFE protocol. I.e., instead of giving the adversary black access
to the primitive, it acts as a malicious receiver in an SFE session with the sender.
Achieving this notion and showing that the underlying security guarantees are
preserved is non-trivial, because the adversary is not semi-honest and may not
follow the protocol.

Definition 5 (Induced Game-based Malicious Receiver Security). Let
Exp = (Init,O,Update,Test) be a cryptographic security experiment for a primi-
tive P. Let Π = (S,R) be a two-round SFE protocol for a function F of P. The
induced security experiment Exp′ is defined by replacing O with instances of Π,
where the adversary is allowed to act as a malicious receiver.

In the following, we study the implications of our security notion with respect
to the security of the underlying cryptographic primitive. It is not very difficult
to see, that if a protocol is perfectly correct and securely realizes our notion
of induced game-based security, then it immediately implies the security of the
underlying cryptographic primitive. Second, one can also show that the converse
is not true, by giving a counterexample. The basic idea of the counterexample is
to build a two-round SFE protocol that completely leaks the circuit and thus the
entire private input of the sender. The main result of our paper is a two-round
SFE protocol that preserves the underlying security guarantees.

Semi-honest Sender Security We define security against semi-honest senders
via the standard simulation based definition [24].

Definition 6 (Semi-honest Sender Security). Let Π = (S,R) be a two-
party protocol for a functionality F . We say that Π is semi-honest sender secure,
if there exists a PPT simulator Sim such that it holds for all receiver inputs x
and all sender inputs f that

(x, f, view(S), 〈S,R(x)〉) comp.
≈ (x, f,Sim(f), f(x))

3 2-Round SFE via 1-hop Homomorphic Encryption

In this section, we present our protocol and prove that it is induced game-
based malicious receiver secure (Definitions 5) and semi-honest sender secure
(Definition 6).

3.1 1-hop Homomorphic Encryption

1-hop homomorphic encryption schemes are a special kind of homomorphic en-
cryption schemes that allow a server to compute on encrypted data. Given a
ciphertext c produced by the encryption algorithm Enc, the evaluation algorithm
Eval can evaluate a circuit C from C on c. After this no further computation on
the output ciphertext is supported. We recall the definition of 1-hop homomor-
phic encryption schemes and the corresponding notions of security [23].
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Definition 7 (1-hop Homomorphic Encryption). Let C : {0, 1}n → {0, 1}o
be a family of circuits. A 1-hop homomorphic encryption scheme HE = (Kg,Enc,
Dec,Eval, C1, C2) for C consists of the following efficient algorithms:

Key Generation. The input of the key generation algorithm Kg(1λ) is the se-
curity parameter λ and it returns an encryption key ek and a decryption key
dk.

Encryption. The encryption algorithm Enc(ek,m) takes as input an encryption
key ek and a message m ∈ {0, 1}n and returns a ciphertext c ∈ C1.

Evaluation. The evaluation algorithm Eval(ek, c, C) takes as input a public en-
cryption key ek, a ciphertext c generated by Enc and a circuit C ∈ C and
returns a ciphertext c′ ∈ C2.

Decryption. The decryption algorithm Dec(dk, c) takes as input a private de-
cryption key dk and a ciphertext c′ generated by Eval and returns a message
y ∈ {0, 1}o.

We recall that the standard notions of completeness and compactness [23]. A
homomorphic encryption scheme is complete if the probability of a decryption
error is 0. It is compact if the size of the output ciphertext c′ of the evaluation
algorithm Eval is independent of the size of the circuit C. Moreover, we recall
the standard notion of IND-CPA-security for homomorphic encryption schemes:
Given a public key ek for the scheme, no PPT adversary succeeds to distinguish
encryptions of two adversarially chosen messages m0 and m1.

For our purposes we need a homomorphic encryption scheme with malicious
circuit privacy. This property says that even if both maliciously formed public
key and ciphertext are used, encrypted outputs only reveal the evaluation of the
circuit on some well-formed input x∗. We recall the definition in the following.

Definition 8 (Malicious Circuit Privacy). A 1-hop homomorphic encryp-
tion scheme HE = (Kg,Enc,Dec,Eval, C1, C2) for a family C of circuits is (mali-
ciously) circuit private if there exist unbounded algorithms SimHE(ek, c, y), and
deterministic ExtHE(ek, c) such that for all λ, and all ek, all c ∈ C1 and all
circuits C ∈ C it holds that

SimHE(ek, c, C(x)) stat.
≈ Eval(ek, C, c),

where x = ExtHE(ek, c).

Instantiations We consider instantiations of maliciously circuit private 1-hop
homomorphic encryption. Maliciously circuit private homomorphic encryption
for logarithmic depth circuits can be achieved by combining information-theoretic
garbled circuits (aka randomized encodings) [38,2,33] with two-message oblivious
transfer [48,1,30].

Theorem 1 ([38,2,33,48,1,30]). Under numerous number-theoretic assump-
tions, there exist a non-compact maliciously circuit private homomorphic en-
cryption scheme that support circuits of logarithmic depth.
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Ostrovsky et al. [52] provide a construction that bootstraps a maliciously
circuit privacy scheme that supports only evaluation of logarithmic depth circuits
into a scheme that supports all circuits (i.e., it is fully homomorphic).

Theorem 2 (Theorem 1 in [52]). Assume there exists a compact semi-honest
circuit private fully homomorphic encryption scheme FHE with decryption cir-
cuits of logarithmic depth and perfect completeness. Assume further that there ex-
ists a (non-compact) maliciously circuit private homomorphic encryption scheme
for logarithmic depth circuits. Then there exists a maliciously circuit private fully
homomorphic encryption scheme with perfect completeness.

3.2 Construction

We can now state the two message SFE protocol. If f is a cryptographic function-
ality that takes input s from the sender, input x from the receiver and random
coins r, we augment the functionality such that both parties contribute to the
random coins. I.e., both parties also input random string rS and rR and the
random coins for the functionality is set to rS ⊕ rR.

Construction 1 Let HE be a 1-hop homomorphic encryption scheme. The in-
teractive protocol that realizes F : (s, rS , x, rR) → (⊥, f(s, rS ;x, rR)) is shown
in Figure 3.

Sender S Receiver R
Input s Input x

rS ← {0, 1}λ rR ← {0, 1}λ

(ek, dk)← Kg(1λ)
ek, c

←−−−−−−−−−−− c← Enc(ek, (x, rR))
cout ← Eval(ek, f(s, rS ; ·, ·), c)

cout−−−−−−−−−−−→
Output y ← Dec(dk, cout)

Figure 3. Oblivious Two-Party Protocol

The following theorem shows that security against malicious receivers with re-
spect to our definition of induced game-based security.
Theorem 3. Let P be a cryptographic primitive and Exp be the corresponding
security experiment. If there exists an efficient oblivious black-box reduction B
that reduces security of P to a hard problem π, then the protocol Π is secure with
respect to Exp′. Formally, there exists an efficient reduction B′ that reduces the
security of Π to π.

Proof. Assume there exists a PPT adversaryA that has non-negligible advantage
ε1 in the security experiment Exp′.
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Step 1 In the first step, we change the security experiment Exp′ to an in-
distinguishable experiment Exp∗. In particular, we implement A’s oracles dif-
ferently. In Exp′, the oracle gets a sender-input (s, rS) and a receiver-message
(ek, c), computes c′ ← Eval(ek, f(s, rS ; ·, ·), c) and outputs c′ to A. In Exp∗,
the oracle is implemented as follows. Given sender-input (s, rS) and a receiver-
message (ek, c), the oracle first computes (x, rR) ← ExtHE(ek, c). Then it com-
putes y ← f(s, rS ;x, rR) and then c′ ← SimHE(ek, c, y) and finally outputs c′ to
A

OA1(ek, c)
c′ ← Eval(ek, f(s, rS ; ·, ·)
Return c′

OA2(ek, c)
(x, rR)← ExtHE(ek, c)
y ← f(s, rS ;x, rR)
c′ ← SimHE(ek, c, y)
Return c′

We claim that ε2 = AdvExp∗(A) ≥ AdvExp′(A) − negl(λ). We establish this
via a hybrid argument. Assume that A makes at most ` = poly(λ) oracle queries.
Define `+1 hybrid experiments H0, . . . ,H`. H0 simulates the oracle as in exper-
iment Exp′(A), whereas H` simulates it as in Exp∗(A). In Hi the first i oracle
queries to A are answered as in Exp′(A), whereas the last `− i oracle queries of
A are answered as in Exp∗(A). It follows by the statistical circuit privacy of HE
that the statistical distance between each Hi and Hi+1 is at most ν for a negli-
gible ν. Thus, by the triangle inequality the statistical distance between Exp′(A)
and Exp∗(A) is at most ` · ν, which is negligible. Note that the experiment Exp∗
is not efficient anymore.

Step 2 The second step is a bridging step: We move both the extractor ExtHE
and the simulator SimHE into a new adversary A2, which internally simulates
A. The adversary A2 is an unbounded adversary against the experiment Exp
with advantage ε2. Adversary A2 works as follows. When adversary A sends an
oracle query (ek, c), A2 computes (x, rR)← ExtHE(ek, c) and sends x to its own
oracle (in the Exp experiment). Once it receives an oracle output y, it computes
c′ ← SimHE(ek, c, y) and forwards c′ to A.

Adversary A2(pp, stA)
Has access to oracle OA
(resp, stA)← AOA′(·)(pp, stA)
Return (resp, stA)

Oracle OA′(ek, c)
(x, rR)← ExtHE(ek, c)
y ← OA(x)
c′ ← SimHE(ek, c, y)
Return c′

We claim that Exp(A2) is identically distributed to Exp∗(A). To see this,
note that we’ve just regrouped the algorithms ExtHE and SimHE into A2 and
removed the dependency of y from rR. However, since f(s, rS ;x, rR) computes
the function F (s, x, rS ⊕ rR), the distribution of y does not depend on rR (as
rS is chosen uniformly at random).
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Step 3 In the third step, we combine the adversary A2 with the oblivious black-
box reduction B, which yields an (unbounded) adversary BA2 with non-negligible
advantage ε3 against the hard problem π (as ε2 = ε1−negl(λ) is non-negligible).
Note at this stage that while the reduction B is efficient, the π-adversary BA2 is
not efficient as A2 is not efficient.

Step 4 The fourth step is again a bridging step: We move the extractor ExtHE
and the simulator SimHE into the oracle simulated by B, thus obtaining a new
reduction B∗. More precisely, B∗ simulates B, but when B invokes the adversary
with input (pp, stA) and oracle circuit OA, B∗ constructs the following new or-
acle OA∗. On input (ek, c), OA∗ computes (x, rR) ← ExtHE(ek, c), y ← OA(x),
c′ ← SimHE(ek, c, y) and outputs c′. We claim that 〈Ch,BA2〉 and 〈Ch,B∗A〉 are
identically distributed (where Ch is the challenger for the hard problem π). In
fact, we have merely rearranged the algorithms ExtHE and SimHE from the ad-
versary A2 into the oracle OA∗. Note that now the reduction B∗ is inefficient,
whereas the adversary A is efficient.

Step 5 In the fifth and final step, we change the way the reduction B∗ im-
plements its oracles, obtaining an efficient reduction B′. We will use the circuit
privacy of HE a second time to implement the oracles efficiently. Whereas B∗
constructs oracle circuit OA∗ from oracle circuit OA provided by B, B′ proceeds
as follows. On input (ek, c), the oracle OA′ computes c′ ← Eval(ek,OA(·), c) and
outputs c′. Define the circuit OA to compute the function OA(x, r) = OA(x),
i.e., it just drops its second input. Using the malicious circuit privacy of HE, we
can establish that 〈Ch,B∗A〉 and 〈Ch,B′A〉 are statistically close in the same
fashion as in step 1. Finally, note that both B′ and A are efficient, therefore B′A
is efficient. ut

The following theorem shows that our protocol is secure against semi-honest
senders. Note that achieving security against malicious senders is not possible
(under standard assumptions). The corresponding impossibility results is given
in Section 5.

Theorem 4. If HE is an IND-CPA secure 1-hop homomorphic encryption scheme,
then Π is secure against semi-honest senders.

Proof. We will first provide the simulator Sim. The main idea of Sim is to run
the protocol Π between a simulated sender S and a simulated receiver R, where
the receivers input is 0n. After the protocol terminates, Sim outputs the view of
the sender S.

Now assume there exists a PPT distinguisher D that distinguishes the distri-
butions (x, s, view(S), 〈S,R(x)〉) and (x, f,Sim(s), f(x)) with non-negligible ad-
vantage ε for some inputs s and x. We will construct an adversary A that breaks
the IND-CPA security of HE with advantage ε. Given a public key ek, A chooses
a random rR and r′R, sets m0 = (x, rR) and m1 = (0n, r′R) and sends (m0,m1)
to the IND-CPA experiment. Let c be the challenger cipher-text. A chooses ran-
dom coins rS , and runs S with input s, rS and receiver message c. Let view(S) be
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the simulated view of the sender. Next, A computes y = f(s, rS ;x, rR). Finally,
A runs D on input (x, s, view(S), y) and outputs whatever D outputs.

We claim that A breaks the IND-CPA security of HE with advantage ε. First
assume the IND-CPA challenge bit is 0. In this case the IND-CPA returns to A
an encryption of m0 = (x, rR). Thus, the view that A simulates is identically
distributed to S’s view in the real experiment, but also the output y has the
same distribution as in the real experiment. On the other hand, if the IND-CPA
choice bit is 1, then view(S) is identically distributed to Sim(s) and the output
y = f(s, rS ;x, rR) is independently distributed of view(S) (as rR is independent
of view(S)). Thus we conclude

AdvIND-CPA(A) = |Pr[IND-CPA0(A) = 1]− Pr[Pr[IND-CPA1(A) = 1]|
= |Pr[D(x, s, view(S), 〈S(s),R(x)〉) = 1]
− Pr[D(x, s,Sim(s), f(s;x)) = 1]| = ε,

which concludes the proof. ut

4 Round-Optimal Oblivious Pseudorandom Functions

Our technique yields the first two message oblivious pseudorandom function in
the standard model. Oblivious pseudorandom functions are in essence pseudo-
random functions that are obliviously evaluated in a two-party protocol. This
means that the sender S holds a key k of a PRF F and the receiver R a value
x and wishes to learn F (k, x). As already discussed in the introduction, OPRFs
have many applications, such as private key-word search [17], or secure computa-
tion of set intersection [34]. However, despite the popularity of this primitive, no
scheme in the standard model is known with only two rounds of communication.
Regarding the security of OPRFs, we wish to express that the sender S does
not learn anything about the value x, and the receiver R learns only the pseu-
dorandom value F (k, x). First recall the standard definition of pseudorandom
functions.

Definition 9 (Pseudorandom Functions). An efficiently computable two-
argument function PRF is called pseudorandom function, if it holds for every
PPT distinguisher D that

Adv(D) = |Pr[DPRF (k,·) = 1]− Pr[DH(·) = 1]| ≤ negl(λ),

where k is a randomly chosen key F and H is a random function with the same
domain and range as F .

We will now turn to the standard definition of oblivious pseudorandom func-
tions. This notion require for an OPRF protocol Π two properties to be satis-
fied. First, we require that Π is a secure two-party protocol realizing a function
F (k, x), where k is the sender input and x is the receiver input. Second, we
require that F (k, ·) is a pseudorandom function. The first part of this definition
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captures the idea that the π allows the receiver to learn one function value of
F (k, ·) per invocation only. The second requirement ensures that such function
values are pseudorandom.

While this definition is appealing due to its modularity, it is impossible in
the two message setting, even if we only consider semi-honest senders4. To cir-
cumvent this impossibility, we propose a security notion which captures both
intuitive requirements in a single definition. In this definition, a PPT distin-
guisher is given access to an oracle, which implements either an OPRF sender
or an unbounded simulator Sim with access to a truly random function H. Since
we are considering two-message OPRF protocols, the distinguisher’s queries to
its oracle are simply the first message of a malicious receiver. Since we are in the
two-message setting, the simulator has a very simple structure: It extracts the
receiver’s queries by brute force, forwards them to the random function H, and
then simulates a response by the sender using the random function’s output. This
definition contains a minor loophole: It does not rule out trivial simulators, i.e.,
it does not require the simulator to use the random function it is given access
to at all. The simulator could do anything, even simulating the real protocol
(which would give perfect indistinguishability between the two distributions),
which would defeat the purpose of the definition. To fix this, we will give the
distinguisher direct access to the random function H. In the real execution, this
is mirrored by giving the distinguisher access to an oracle that implements an
honest receiver interacting with the sender. Now, the distinguisher can actu-
ally cross check the answers of the simulator. This definition has some flavor
of the universal composability framework [9] and Nielsen’s definition of non-
programmable random oracles [50]. Think of a complex scenario where multiple
receivers interact with one OPRF sender (e.g. a server). We may think of the
distinguisher in our definition as an environment in control of several malicious
receivers over which it has full control, but it can also choose inputs and observe
outputs of honest receivers. Then this definition requires that from the environ-
ments view the OPRF server looks like it actually implements a truly random
function.

Definition 10 (Security against Malicious Receiver for Oblivious Pseu-
dorandom Functions). Let Π = (S,R) be a two-message protocol. We say that
π is a two-message oblivious pseudorandom function, if for every PPT distin-
guisher D there exists a (possibly unbounded) simulator Sim, such that

Adv(D) = |Pr[D〈S(k),·〉,〈S(k),R(·)〉 = 1]− Pr[DSimH(·),H(·) = 1]| ≤ negl(λ),

where k is a randomly chosen input for S and H is a random function (with
appropriate domain and range). Here, 〈S(k), ·〉 is a session of π where D can
choose the first message of the receiver and receives the second message by the
sender. In 〈S(k),R(·)〉, D chooses the input for R and obtains the output of R.
4 The impossibility is analogous to the impossibility of simulation based two message

oblivious transfer. Consider a malicious receiver that gets auxiliary input z, which
the malicious receiver sends as its first message. An efficient simulator Sim for this
malicious receiver must extract in input x given only z.
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The security guarantee for the receiver is the standard simulation based se-
curity against semi-honest senders (Definition 6).

Remark 2. We remark several points. First, if a simulator Sim is non-trivial
by construction, we can omit the second oracle of the distinguisher. Basically,
the only property we need to ensure non-triviality is that if the simulator gets
messages from an honest receiver, then this composed system actually imple-
ments in the random function H. Formally, this requirement can be written as
〈SimH ,R(·)〉 ≡ H(·), i.e., if an honest receiver interacts with a simulator Sim
with access to H, then this protocol implements H. If this is guaranteed, then
the oracles 〈S(k), ·〉 and SimH(·) are sufficient: Given such an oracle OA (which
is either of the two), the distinguisher D can simulate the honest oracle by
〈OA,R(·)〉. In our construction the simulator Sim will be canonical: It extracts
the first message, sends the extracted input to the random function H, and uses
the output to simulate the senders message. This simulator is non-trivial by
construction, and thus giving the distinguisher access to a single oracle will be
sufficient. Moreover, while Definition 10 allows the simulator Sim to depend on
the distinguisher D, our canonic simulator will be universal in the sense that it
works for any PPT distinguisher D.

Pseudorandom Functions with Oblivious Black-box Reductions To ap-
ply the technique developed in Section 3, we require a pseudorandom function
with an oblivious black-box reduction. Most constructions of PRFs in the lit-
erature do not possess such a reduction. In particular, most reductions need to
program the distinguishers oracle adaptively depending on prior oracle inputs
of the distinguisher. For example, the security reduction of the construction of
Goldreich, Goldwasser and Micali [25], which reduces the security of the PRF
on that of the underlying pseudorandom generator is based on a hybrid argu-
ment and needs to keep a list of the distinguisher’s distinct oracle queries to be
able to answer oracle queries consistently. This however contradicts our notion
of obliviousness.

Fortunately, there are constructions of pseudorandom functions with oblivi-
ous black-box reductions to their underlying hard problems. One example of such
a PRF is the Naor Reingold PRF [49]. While the security reduction provided
in [49] is not oblivious, there is simple way of converting this reduction into an
oblivious black-box reduction using q-wise independent functions (Appendix A).
More generally, there is a recent line of work that aims at constructing large-
domain pseudorandom functions from small-domain pseudorandom functions via
oblivious black-box reductions [8,14]. The baseline of these results is that large
domain PRFs can be constructed by combining several small-domain (i.e., poly-
sized domain) PRFs in a suitable way. The pseudorandomness of large domain
PRFs is established by replacing one of the small-domain PRFs (depending on
the query bound of the adversary) with a random function in a single shot. Since
the small-domain PRF has a domain of just polynomial size, the reduction can
(non-adptively) query its oracle on all inputs and retrieve the entire function ta-
ble. Thus, there is no need of adaptively programming the distinguishers oracle
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based on previous queries. In order to use the framework we developed in Sec-
tion 3, it will be convenient to use an alternative definition of pseudorandom
functions. In Definition 9, the distinguishers goal is to distinguish the PRF from
a truly random function. However, if we do not know any bound on the dis-
tinguisher’s number of queries in advance, the only (known) way to simulate a
random function is by evaluating the random function lazily: Every time the dis-
tinguisher queries the random function on a new input, the simulation samples
a random image and adds it into a table of input and output values. If a certain
input has been queried before, it’s image is retrieved from the table. However,
such a simulation is necessarily stateful. To overcome this, we use an equivalent
definition of pseudorandom functions which takes into account that a every PPT
distinguisher has a polynomial upper bound on the number of its oracle queries.
Once such a bound q is known, we can simulate a random function statelessly
with an efficient q-wise independent function.

Definition 11 (q-wise independent function). Let F be an efficiently com-
putable two argument function that takes a seed s and an input x. We say that F
is a q-wise independent functions, if it holds for all pairwise distinct x1, . . . , xq
that F (s, x1), . . . , F (s, xq) are distributed independently and uniformly random
over the choice of the seed s.

There are various constructions of efficient q-wise independent functions, such as
the classical construction of Wegman and Carter [57] which is based on random
degree q polynomials in large finite fields.

Definition 12 (Pseudorandom Functions, equivalent definition). An ef-
ficiently computable two-argument function PRF is called pseudorandom func-
tion, if there exists a family {Fq}q of functions, where Fq is q-wise independent,
such that the following holds. For every q = poly(λ) and every PPT distinguisher
D that queries its oracle at most q times it holds that

Adv(D) = |Pr[DPRF (k,·) = 1]− Pr[DFq(s,·) = 1]| ≤ negl(λ),

where k is a randomly chosen key for PRF and s is a randomly chosen seed for
Fq.

Theorem 5 ([49,8,14]). Under various standard hardness assumptions (pseu-
dorandom generators, DDH, LWE) there exist pseudorandom functions with
oblivious black-box reduction to their underlying hardness assumption.

Construction The construction is expectably simple. We combine Construc-
tion 1 with a pseudorandom function that possesses an oblivious black-box re-
duction to some hard problem π, which is provided by Theorem 5. For this
instantiation, we need to instantiate Construction 1 with a maliciously circuit
private fully homomorphic encryption scheme (such as provided by Theorem 2),
as there is no a priori upper bound on the size of the circuits that implement
q-wise independent functions. For convenience, we write down the protocol as
follows. Let PRF be a pseudorandom function and HE be a fully homomorphic
encryption scheme. The OPRF protocol Π is given as follows.
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Protocol ΠOPRF
Setup
S0(1λ): Choose a random key k for PRF

Query
R1(x)

(ek, sk)← Kg(1λ)
c← Enc(ek, x)
Send (ek, c) to S

S(k, (ek, c)):
c′ ← Eval(ek, PRF (k, ·), x)
Send c′ to R

R2(c′):
y ← Dec(sk, c′)
Output y

We can now prove the main theorem of this section.

Theorem 6. Let HE be an IND-CPA secure maliciously circuit private fully
homomorphic encryption scheme with perfect completeness (as provided by The-
orem 2) and PRF be a pseudorandom function with an oblivious black-box re-
duction to hard problem π. Then the protocol ΠOPRF is an OPRF protocol with
security against semi-honest senders and malicious receivers.

Proof. We begin with the proof of security against malicious receivers defining
the universal simulator Sim. Let ExtHE and SimHE be the extractor and simulator
for the statistical circuit privacy of HE. Simulator Sim is given as follows.

Simulator SimH(ek, c)
Has oracle access to a function H
x← ExtHE(ek, c)
y ← H(x)
c′ ← SimHE(ek, y, c)
return c′

Now, let D be a PPT distinguisher that makes at most q = poly(λ) oracle
queries and has non-negligible advantage ε against the malicious receiver security
experiment of ΠOPRF, i.e.,

|Pr[D〈S(k),·〉,〈S(k),R(·)〉 = 1]− Pr[DSimH(·),H(·) = 1]| ≥ ε.

First of all, notice that since D makes at most q queries to its oracles, we can
efficiently (and statelessly) simulate the random function H by an efficiently
computable q-wise independent function Fq, i.e., we get

|Pr[D〈S(k),·〉,〈S(k),R(·)〉 = 1]− Pr[DSimFq(s,·)(·),Fq(s,·) = 1]| ≥ ε.

Our proof strategy will now be as follows. We will use D to construct a
distinguisher D′ with advantage ε′ = ε − negl(λ) against the induced security
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experiment for PRF under the homomorphic encryption HE (c.f. Definition 5).
Recall that the pseudorandom function PRF possesses an oblivious black-box
reduction B to some hard problem π. Thus, Theorem 3 yields an efficient reduc-
tion B′ such that B′D

′
has non-negligible advantage against π, contradicting its

hardness.
We will now consider the induced security experiment for PRF . Therefore, we

will first define a sender algorithm S ′. Basically, S ′ homomorphically evaluates
the q-wise independent function Fq.

S ′(s, (ek, c))
c′ ← Eval(ek, Fq(s, ·), c)
return c′

Thus, while S homomorphically evaluates the pseudorandom function PRF ,
S ′ homomorphically evaluates the q-wise independent function Fq. Thus, the
induced security experiment of the experiment given in Definition 12 asks to
distinguish the oracles 〈S(k), ·〉 and 〈S ′(s), ·〉.

We will now construct a distinguisher D′ against the induced security exper-
iment of PRF using the distinguisher D. D′ is given as follows.

Distinguisher D′(1λ)
Has access to oracle OA1
out← DOA1(·),OA2(·)(1λ)
Return out

Oracle OA2(x)
y ← 〈OA1,R(x)〉
Return y

We claim that

|Pr[D′〈S(k),·〉 = 1]− Pr[D〈S
′(s),·〉 = 1]| ≥ ε− negl(λ), (1)

i.e., D′ has non-negligible advantage ε − negl(λ) against the induced security
experiment of PRF .

We claim that if OA1 = 〈S(k), ·〉, then the output of D′〈S(k),·〉(1λ) is identi-
cally distributed to the output D〈S(k),·〉,〈S(k),R(·)〉(1λ). To see this, note that the
oracle OA2 implemented by D′ is precisely 〈S(k),R(·)〉 in this case.

On the other hand, if OA1 = 〈S ′(s), ·〉, then we claim that the output of
D′〈S

′(s),·〉 is distributed statistically close to the output of DSimFq (·),Fq(·)(1λ). To
see this, note first that in this case the oracle OA2 provided by D′ to D can be
expressed as follows.

OA2(x)
(ek, sk)← Kg(1λ)
c← Enc(ek, x)
c′ ← Eval(ek, Fq(s, ·), c)
y ← Dec(sk, c′)
return y
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It follows immediately from the perfect completeness of HE that OA2 implements
exactly Fq(s, ·). It remains to show that the oracles 〈S ′(s), ·〉 and SimFq (·) are sta-
tistically close. However, as S ′(s) homomorphically evaluates Fq, it follows from
the malicious circuit privacy of HE that both oracles produce distributions that
are statistically close, even given Fq. Thus, we can use a standard q-step hybrid
argument over the queries of D to establish that D′〈S

′(s),·〉 and DSimFq (·),Fq(·)(1λ)
are statistically close. Thus, (1) follows and we can apply Theorem 3 to arrive at
a contradiction. Security against semi-honest senders follows directly from The-
orem 4, which concludes the proof. ut

5 Impossibility of Malicious Sender Security

In this section, we show that malicious receiver security (w.r.t. our notion of
induced game-based security) and malicious sender security cannot be achieved
simultaneously. Our impossibility result is constructive in the sense that we
show that our framework covers the standard security notion of blind signatures.
However, Fischlin and Schröder showed that a large class of three-move blind
signature schemes cannot be proven secure under standard assumptions [16].
Since our framework falls into this class, the impossibility result follows.

Blind Signatures Blind signatures [11] implement a carbon copy envelope al-
lowing a signer to issue signatures for messages such that the signer’s signa-
ture on the envelope is imprinted onto the message in the sealed envelope. In
particular, the signer remains oblivious about the message (blindness), but at
the same time no additional signatures without the help of the signer can be
created (unforgeability). Constructing round-optimal blind signature schemes
in the standard model has been a long standing open question. Fischlin and
Schröder showed that all previously known schemes having at most three rounds
of communication, cannot be proven secure under non-interactive assumptions
in the standard model via black-box reductions [16]. Subsequently, several works
used a technique called “complexity leveraging” to circumvent this impossibil-
ity result [20,19] and recently, Fuchsbauer, Hanser, Slamanig suggested a round
optimal blind signature scheme that is secure in the generic group model [18].
In fact, it is still unknown if round optimal blind signatures, based on standard
assumptions, exist in the standard model.

By applying our technique to the oblivious computation of signatures, we
obtain a round optimal blind signature scheme without complexity leveraging
and whose security can be based on standard cryptographic assumptions. Since
our scheme belongs to the class characterized by Fischlin and Schröder it is not
possible to prove blindness w.r.t. malicious adversaries.
Security Definition for Blind Signatures We recall the unforgeability defi-
nition of blind signatures [53,35] that can be expressed within our formalization
of a cryptographic experiment.
Definition 13 (Unforgeability). An interactive signature scheme BS = (KG,
〈S,U〉 ,Vf) is called unforgeable if for any efficient algorithm A (the malicious
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user) the probability that experiment ForgeBS
A (λ) evaluates to 1 is negligible (as

a function of λ) where

Experiment ForgeBS
A (λ)

(sk, pk)← KG(1λ)
((m∗1, σ∗1), . . . , (m∗k+1, σ

∗
k+1))← A〈S(sk),·〉∞(pk)

Return 1 iff
m∗i 6= m∗j for all i, j with i 6= j, and
Vf(pk,m∗i , σ∗i ) = 1 for all i, and
S has returned ok in at most k interactions.

The corresponding definition of blindness says that it should be infeasible for a
malicious signer S∗ to decide which of two messages m0 and m1 has been signed
first in two executions with an honest user U . If one of these executions has
returned ⊥ then the signer is not informed about the other signature (Otherwise
the signer could trivially identify one session by making the other abort.). If
one restricts this definition the semi-honest adversaries, then this definition is
immediately implied by Definition 6.

Construction Our construction instantiates our general framework as defined
in Construction 1 with a signature scheme DS = (KgSig,Sig,Vf) that has an
oblivious black-box reduction to some underlying hard problem π. For this in-
stantiation, we need maliciously circuit private homomorphic encryption for log-
arithmic depth circuits that can be achieved by combining information-theoretic
garbled circuits (aka randomized encodings) [38,2,33] with two-message obliv-
ious transfer [48,1,30] as provided by Theorem 1. Moreover, we need a digital
signature scheme that can computed via a logarithmic depth circuit. Such a
signature scheme can be obtained by using the non-apaptively secure signa-
ture scheme by Applebaum, Ishai, and Kushilevitz [2]. However, this scheme is
only non-adaptively secure, which means the adversary has to commit to all
messages before learning the public-key and the signature. Using the standard
transformation based on chameleon hash functions [40,31] one can convert any
non-adaptively secure signature scheme into one that is adaptively secure. Here
we actually deal with two reductions. One that deals with adversaries that find
collisions of the chameleon hash function and one that deals with adversaries
that do not find hash collisions, but still manage to forge signatures. The first
reduction is easily seen to be obliviously black-box, as the reduction possesses
the signing key for the signature scheme an hash collisions can be easily recov-
ered from the adversary’s output. Here the signing circuit is the same as in the
real experiment. The second reduction has the following structure. If q is the
query bound of the adversary, the reduction computes chameleon hashes on q
random values and has them (non-adaptively) signed by the signing oracle. Each
time the adversary queries its signing oracle, the reduction uses up one of the
precomputed signatures of the chameleon hashes by computing a hash collision
with the adversary’s query and returning the corresponding signature to the ad-
versary. Note that since the reduction is allowed to reprogram the signing circuit
after each query, we only need to hardwire a single hash value and trapdoor at
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a time into the signing oracle circuit. Since chameleon hash functions can easily
be obtained from the discrete logarithm assumption involving only two modular
exponentiations and a multiplication [40], this transformation can also be com-
puted by a circuit of logarithmic depth. Thus we obtain an oblivious black-box
reduction to the non-adaptive unforgeability of the signature scheme where every
circuit used by the reduction has a most an a priori known logarithmic depth.
We obtain the following theorem.
Theorem 7. Let HE be an IND-CPA secure maliciously circuit private homo-
morphic encryption scheme with perfect completeness for circuits of logarithmic
depth and let DS be a signature scheme compute by a circuit of logarithmic depth
and with an oblivious black-box reduction to hard problem π. Then the protocol
ΠBS defined above is a blind signature protocol with security against semi-honest
senders and malicious receivers.
Given this theorem, we obtain our impossibility result in the following corollary.

Corollary 1 (Impossibility of Malicious Sender Security, Informal).
There exists no two-move secure evaluation protocol for cryptographic function-
alities that is secure against malicious receivers and senders based on standard
assumptions.
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A An oblivious black-box reduction for Naor-Reingold
PRF

Lemma 1. The Naor-Reingold PRF is secure under the DDH assumption and
the reduction is oblivious.

Proof. Given an adversary A who can distinguish the Naor-Reingold PRF with
non-negligible probability ε(λ) from a truly random function making at most q
queries to its oracle, consider the following oblivious reduction B against DDH:
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B gets as input a DDH instance (g, ga, gb, gc̃), where either c̃ = a · b or not.
We restrict the reduction to the case where a, b, c̃ 6= 0 (otherwise it is trivial
to tell whether c̃ = a · b). B will choose a random j

$← {1, . . . , λ} and pick
a random q-wise independent function F

$← Fq. It will then sample values
(aj+1, . . . , aλ) $← Zp and program the oracle OA for A as follows:
OA(x):

xxj . . . xλ = x, where x is the (j − 1)-bit prefix of x
α = F (x)
If xj = 0:

Return
((
gb
)α)∏λ

k=j+1
a
xk
k

else

Return
((
gc̃
)α)∏λ

k=j+1
a
xk
k

The reduction B will invoke AOA and output 1 exactly whenever AOA does.
If c̃ = a · b, then for j = 1 the oracle perfectly simulates the Naor-Reingold

PRF PRF~a with key ~a = (bα, a, a2, . . . , aλ) (since x will be the empty string, α
will be constant). Furthermore, if c̃ 6= a · b, then for j = λ the oracle perfectly
simulates a q-wise independent function f (observed as truly random by A):

Prob
[
BA(g, ga, gb, gc̃) = 1

∣∣c̃ = a · b∧ j = 1
]

= Prob
[
APRF~a(1λ) = 1

]
Prob

[
BA(g, ga, gb, gc̃) = 1

∣∣c̃ 6= a · b∧ j = λ
]

= Prob
[
Af (1λ) = 1

]
Since gc̃ is independent of gb in case of c̃ 6= a · b it holds that

Prob
[
BA(g, ga, gb, gc̃) = 1

∣∣c̃ 6= a · b∧ j = i
]

= Prob
[
BA(g, ga, gb, gc̃) = 1

∣∣c̃ = a · b∧ j = i+ 1
]

And therefore∣∣Prob
[
BA(g, ga, gb, gc̃) = 1

∣∣ c̃ = a · b
]

−Prob
[
BA(g, ga, gb, gc̃) = 1

∣∣ c̃ 6= a · b
]∣∣

=

∣∣∣∣∣ 1λ ·
λ∑
i=1

Prob
[
BA(g, ga, gb, gc̃) = 1

∣∣ c̃ = a · b ∧ j = i
]

− 1
λ
·
λ∑
i=1

Prob
[
BA(g, ga, gb, gc̃) = 1

∣∣ c̃ 6= a · b ∧ j = i
]∣∣∣∣∣

= 1
λ

∣∣Prob
[
BA(g, ga, gb, gc̃) = 1

∣∣ c̃ = a · b ∧ j = 1
]

−Prob
[
BA(g, ga, gb, gc̃) = 1

∣∣ c̃ 6= a · b ∧ j = λ
]∣∣

= 1
λ

∣∣Prob
[
APRF~a(1λ) = 1

]
− Prob

[
Af (1λ) = 1

]∣∣ ≥ 1
λ
ε(λ)

Thus this reduction will break the DDH assumption with non-negligible prob-
ability. As the reduction does not see the queries A makes to the oracle OA, it
is oblivious according to Definition 4. This concludes the proof.
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